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Abstract. With the aid of Taylor-based approximations, this paper presents re-

sults for pricing insurance contracts by using indifference pricing under general

utility functions. We discuss the connection between the resulting “theoretical”

indifference prices and the pricing rule-of-thumb that practitioners use: Best Esti-

mate plus a “Market Value Margin”. Furthermore, we compare our approximations

with known analytical results for exponential and power utility.
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Introduction

Due to untradable insurance risks, the pricing of life insurance contracts takes place

in an incomplete market setup. In such markets, there exist a series of equivalent

martingale measures and generally no unique price can be achieved by arbitrage the-

ory. An alternative to the arbitrage theory for pricing the contingent claims in an

incomplete market is utility-based approach (c.f. Hodges and Neuberger (1989)).

Henderson and Hobson (2004) provide an overview of utility indifference pricing. In

the problem of pricing contingent claims in incomplete markets, this approach takes

account of the investors’s attitude towards those unhedgable risks. For instance, the

indifference price from the seller’s viewpoint is the price which leaves an economic
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agent indifferent between the optimal utility he obtains from selling a certain con-

tingent claim and investing his money in an optimal self-financing portfolio and that

he obtains from investing his money in an optimal self-financing portfolio. The so-

lution to these optimal terminal wealth problems is well known (See e.g. Karatzas

et al. (1987) and Cox and Huang (1989)) and it can be expressed in terms of the

inverse function of the first derivative of the utility. In most of the existing literature,

the analysis is carried out under either constant absolute risk aversion (exponential

utility) or constant relative risk aversion (power utility). For the exponential utility,

explicit solution can be achieved for the utility maximization problem, whereas for

the power utility, there is no closed-form solution because the resulting partial dif-

ferential equation (PDE) is highly nonlinear.

In the present paper, we start with an insurance company which issues a fairly pop-

ular type of life insurance contracts, unit-linked types of contracts. It can be a

with-profit contract as introduced in Bacinello (2001) or a French participating con-

tract in Briys and de Varenne (1994) as well as an equity-linked product etc. The

payoffs of these unit-linked types of contracts are contingent not only on the untrad-

able insurance risks but on the evolution of some tradable asset(s). In other words, in

contrast to the previous literature1 which consider payoffs like g(yT ), i.e. the payoff

depends on the untradable uncertainty yT only, our payoff functions are generalized

to g(ST , yT ), where ST denotes the final value of the tradable asset S. Under general

utility functions, we determine the seller’s price (premium) for the issued liabilities.

It is important to generalize the utility class because many unit-linked types of in-

surance contracts sold by insurance companies cannot be priced using exponential

or power utility. However, there are usually no explicit closed-form solution in the

indifference pricing theory when a general utility function comes into consideration.

In other words, without approximations we have to solve the problem numerically,

and it becomes much more difficult to interpret the results.

Therefore, in the present work, we are interested in exploring approximations of the

indifference price for more general utility functions via Taylor-series. To this end,

we shall discuss the papers of Henderson and Hobson (2002) and Henderson (2002)

where they approximate the power indifference pricing with respect to the number

1C.f. for instance Musiela and Zariphopoulou (2001), Henderson and Hobson (2002) and Henderson
(2002).
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of the contingent claims. The former paper deals with claims which are units of

the non-traded asset, and the latter considers more general European claims. In

comparison, our analysis is carried out not only for power but more general utilities.

Further, our approximation is not developed around the number of contingent claims.

Simple asymptotical results can be obtained when an approximation is done around

the number (when the number approaches 0), i.e. the indifference price reduces to

the expected value under the minimal martingale measure (c.f. Davis (2004) for the

convergence result). However, for life insurance liabilities which deal with a large

portfolio problem, this convergence result around the number becomes not highly

relevant.

We are not the first to use utility indifference in an insurance context. Møller (2003a,

2003b) determine fair premiums and optimal strategies under financial variance and

standard deviation principles for some insurance contracts with financial risk. These

principles can be derived via a utility indifference argument. Our analysis differs

from his by considering more general utility functions and we are more interested in

developing approximate solutions.

Although our model is set up to find an approximate solution to pricing insurance

contracts, our results should be suitable for specific utility functions and regular non-

traded contingent claims g(yT ). Therefore, in order to verify our results and examine

the quality of the approximation, we apply our results to price contingent claims

whose payoffs depend on the nontradable risk only, for both the exponential and

power utility function. More specifically, we compare our results with some existing

results e.g Musiela and Zariphopoulou (2001) and Henderson (2002). Our approxi-

mate prices coincide with the results obtained there.

The remainder of the paper is structured as follows: In section 1, we derive the

dual formulation of an indifference pricing problem and section 2 focuses on Taylor-

series approximations to achieve approximations of the indifference price for general

utility functions. Section 3 demonstrates the application of our pricing approach

in exponential and power utility in order to examine our approximate results. In

the subsequent Section 4, we investigate the impact of the unhedgeable risk on the

optimal wealth and strategy. Section 5 concludes the paper.
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1. Derivation of dual formulation

Using the dual formulation approach of Rogers (2001), we will derive the dual for-

mulation of an indifference pricing problem. The indifference pricing problem can be

formulated as an incomplete markets optimal utility problem:

max
θ

IE[U(XT − g(ST , yT ))]

s.t. dSt = µ St dt + σ St dW1(t) (1.1)

dyt = a(t, ω)dt + b(t, ω)(ρdW1(t) +
√

1− ρ2dW2(t)).

XT denotes the wealth at time T , S denotes the traded asset (that follows Black-

Scholes dynamics where µ is the drift rate and σ the volatility), y is the non-traded

(insurance) process and both define an insurance claim g(ST , yT ). The variable θ

denotes the optimal investment strategy that leads to the wealth XT at time T , i.e.

XT is associated with the investment strategy.

The investor can only trade in the stock S, hence the wealth process only depends

on the Brownian Motion W1 and the wealth dynamics are given by

dXt = (rX + θ(µ− r))dt + θ σ dW1(t), (1.2)

with r denoting the deterministic interest rate. In Musiela and Zariphopoulou (2001)

the problem described above is solved analytically via the route of an HJB problem

for the special case of exponential utility and the insurance claim being a function

g(yT ) only. We are interested in solving the problem via the dual formulation, i.e. by

introducing a Lagrange multiplier process Λ that forces the final wealth XT to be a

solution of (1.2). Along the lines of Rogers (2001), we can find the dual formulation

as follows. Let us consider the positive process:

dΛt = Λt(α(t, ω) + β1(t, ω)dW1(t) + β2(t, ω)dW2(t)), (1.3)

where α, β1, β2 are adapted stochastic processes that will be determined later. Using

the derivation in Rogers (2001), we can express the dynamic optimization problem

(1.1) as a static Lagrangian optimization problem:

L(Λ) = max
X,θ

IE

[
U(XT − g(ST , yT ))− ΛT XT + Λ0X0 −

∫ T

0

ΛT

(
(α + r)Xt

+θσβ1(t, ω) + θ(µ− r)
)
dt

]
. (1.4)
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Note that in this static Lagrangian formulation the dynamics of y do not explicitly

enter and also the Lagrange volatility parameter β2 is not explicitly present. They

are however still available in the “background” and will later serve to determine

the optimal solution for the Lagrange function L. Let us begin with solving the

“inner maximization” of the Lagrangian (1.4). We can derive the following first

order condition:

IE[U ′(XT − g(ST , yT ))− ΛT ] = 0 ⇒ X∗
T = g(ST , yT ) + I(ΛT ). (1.5)

This is the “Cox-Huang” (c.f Cox and Huang (1989) and Karatzas et al. (1987))

condition for the optimal wealth X∗
T (including the non-hedgeable claim g(ST , yT )),

where I(.) denotes the inverse function of U ′(.).

Furthermore we find:

IE

[
−
∫ T

0

ΛT (α + r)dt

]
= 0 ⇒ α(t, ω) = −r, (1.6)

IE

[
−
∫ T

0

ΛT (σ β1(t, ω) + (µ− r))dt

]
= 0 ⇒ β1(t, ω) = −µ− r

σ
. (1.7)

These two results are also very nicely in line with the “Cox-Huang” framework since

they imply that the Lagrange multiplier Λ is actually a pricing kernel (or deflator)

that prices all assets driven by the Brownian Motion W1. If fact, the prices obtained

in this way are fully consistent with the arbitrage-free prices in the Black-Scholes

economy. Note also that when g(ST , yT ) does not depend on y, then we have a com-

plete market pricing problem which can be solved with the Cox-Huang formalism.

If we substitute the results found in (1.5)-(1.7) back into the Lagrangian (1.4), we

now obtain the reduced Lagrangian L∗:

L∗(Λ) = IE [U(I(ΛT ))− ΛT (I(ΛT ) + g(ST , yT )) + Λ0X0]

= IE
[
Ũ(ΛT )− ΛT g(ST , yT ) + Λ0X0

]
, (1.8)

where the function Ũ denotes the convex dual of the utility function U(.). This is a

well-known result and is also derived e.g. in Henderson and Hobson (2004).

As noted above, the Lagrange function Λ has not been fully specified yet. Hence, for

each choice of Λ, the function L∗(Λ) will give an upper bound for the maximization
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problem (1.1). The tightest possible upper bound will be given by minimizing the

function L∗(Λ) for all Λ (and in particular by choosing the remaining parameter Λ0

and process β2).

The dual formulation of (1.1) therefore ought to be

min
Λ0

IE
[
Ũ(ΛT )− ΛT g(ST , yT ) + Λ0X0

]
. (1.9)

To begin with, from (1.3) we can explicitly represent the Lagrange multiplier Λ as

ΛT = Λ0 exp{−rT}M0,T
1 M0,T

2

with M t,T
1 = exp

{
−
∫ T

t

µ− r

σ
dW1(s)−

1

2

∫ T

t

(µ− r)2

σ2
ds

}
(1.10)

M t,T
2 = exp

{∫ T

t

β2(s, ω)dW2(s)−
∫ T

t

1

2
(β2(s, ω))2ds

}
.

M1 and M2 are change-of-measure exponential martingales which act on the Brow-

nian Motions W1 and W2 respectively. Let us consider the minimization of L∗ with

respect to Λ0. The first order condition is given by

IE[Ũ ′(ΛT )e−rT M0,T
1 M0,T

2 − e−rT M0,T
1 M0,T

2 g(ST , yT ) + X0] = 0 (1.11)

⇒ X0 = e−rT IE∗∗[I(ΛT ) + g(ST , yT )]. (1.12)

We have used the fact that Ũ ′(ΛT ) = −I(ΛT ). In addition, IE∗∗ denotes the expec-

tation with respect to the measure IP∗∗ which is induced by M0,T
1 M0,T

2 . This result

indicates that Λ0 is determined in order to make (1.12) binding.

Not surprisingly, we are also interested in the evolution of the optimal wealth at any

t ∈ (0, T ). First, we reformulate ΛT as a function of Λt, i.e. ΛT = Λte
−r(T−t)M t,T

1 M t,T
2 .

According to the law of iterated expected value, (1.9) can be rewritten as

min
Λ0

IE
[
IEt

[
Ũ(ΛT )− ΛT g(ST , yT ) + Λ0X0

]]
= min

Λ0

IE

[
IEt

[
Ũ(ΛT )− ΛT g(ST , yT ) + ΛtXt −

∫ t

0

(ΛsdXs + XsdΛs + dXsdΛs)
]]

Throughout the paper, we use IEt[x] := IE[x|Ft] to denote the expected value con-

ditional on the information structure Ft and IE[x] := IE0[x]. Taking the first order
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condition of L∗ with respect to Λ0 leads to

dL∗

dΛ0

=
dL∗

dΛt

dΛt

dΛ0

= IE

[
IEt

[(
(Ũ ′(ΛT )− g(ST , yT ))

dΛT

dΛt

+ Xt

)
dΛt

dΛ0

]]
= 0.

Since dΛT /dΛt = e−r(T−t)M t,T
1 M t,T

2 , we finally obtain

Xt = e−r(T−t)IE∗∗
t [I(ΛT ) + g(ST , yT )]. (1.13)

The optimal wealth at time t is given by the conditional expected discounted of

optimal final wealth X∗
T under the measure IP∗∗.

1.1. Determining β2(t, ω) by solving HJB in dual form. In this subsection, we

use HJB approach to solve the dual problem directly in order to obtain the optimal

β2(., ω), i.e. we are dealing with the following optimization problem:

min
β2

IE
[
Ũ(ΛT )− ΛT g(ST , yT )

]
+ Λ0X0

s.t. dΛt = Λt

[
−r dt− µ− r

σ
dW1(t) + β2(t, ω)dW2(t)

]
dSt = µ St dt + σ St dW1(t) (1.14)

dyt = a(t, ω)dt + b(t, ω)(ρdW1(t) +
√

1− ρ2dW2(t)).

We can now define the indirect dual utility

f(t, Λ, S, y) = IE
[
Ũ(ΛT )− ΛT g(ST , yT )|t, Λt = Λ, St = S, yt = y

]
:= IEt

[
Ũ(ΛT )− ΛT g(ST , yT )

]
. (1.15)

That is, the indirect dual utility is defined on (Ω,F ,Ft) with Ft = σ{(Λu, Su, yu), 0 ≤
u ≤ t}. Please note that we have ignored the constant Λ0X0 and will revisit this

in Section 1.2 when we discuss the indifference price. The indirect dual utility

f(t, Λ, S, y) follows the PDE

ft + (−r)ΛfΛ + afy + µ S fS +

(
1

2

(
µ− r

σ

)2

+
1

2
(β2(t, Λ, S, y))2

)
Λ2fΛΛ

+
1

2
b2fyy +

1

2
σ2S2fSS + b

(
ρ

µ− r

−σ
+
√

1− ρ2β2(t, Λ, S, y)
)
ΛfΛ y

+b ρ σ S fy S − (µ− r)S Λ fΛ S = 0, (1.16)

where a and b satisfy Markovian property, i.e. a = a(t, S, y) and b = b(t, S, y).

Further, we use the notations fv := ∂ f
∂ v

; fuv := ∂ f2

∂u ∂v
. Based on the assumption that

we will follow the optimal policy for t < s ≤ T , the optimal choice of β2(t, ω) at time
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t is given by maximizing (1.16) over β2(t, ω) This leads to:

β∗
2(t, ω) = β∗

2(t, Λ, S, y) = −
√

1− ρ2 b fΛ y

ΛtfΛΛ

. (1.17)

Substituting this optimal value back to (1.16) results in:

ft + (−r)ΛfΛ + afy + µ S fS +
1

2

(
µ− r

σ

)2

Λ2fΛΛ +
1

2
b2fyy

+
1

2
σ2S2fSS + b ρ

µ− r

−σ
ΛfΛ y + b ρ σ S fy S − (µ− r)S Λ fΛ S

=
1

2

(1− ρ2)b2(fΛy)
2

fΛΛ

=
1

2
fΛΛΛ2(β∗

2(t, Λ, S, y))2. (1.18)

This is a nonlinear PDE which is difficult to solve. For the case of exponential utility,

it can be solved with a similar technique as Musiela and Zariphopoulou (2001).

Now one possibility to approximate this nonlinear PDE for f is as follows. As

the first step, we neglect the righthand side of (1.18), which removes the nonlin-

ear term. In other words, we set β2 = 0 first and then ΛT is reduced to Λ
(0)
T =

Λ
(0)
0 exp{−rT}M0,T

1 = Λ
(0)
t exp{−r(T − t)}M t,T

1 , which corresponds to the state price

deflator under the minimal martingale measure. Let f
(0)
t denote the solution to the

linear PDE with the righthand side of (1.18) equal to zero. The Feynman-Kač formula

which establishes a link between PDEs and conditional expectations of stochastic

processes tells that the solution can be written as a conditional expectation:

f (0)(t, Λ, S, y) = IE
[
Ũ(Λ

(0)
T )− Λ

(0)
T g(ST , yT )

∣∣∣Λ(0)
t = Λ(0), St = S, yt = y

]
.

According to the expression in (1.17), we obtain:

β
(0)
2 (t, ω) = β

(0)
2 (t, Λ(0), S, y) = −

√
1− ρ2 b f

(0)
Λ y

Λ(0)f
(0)
ΛΛ

. (1.19)

β
(0)
2 is the approximate version of (1.17) and used later to determine the approximate

indifference price. Plugging f (0) in the righthand side of (1.18) leads to

f
(1)
t + (−r)Λf

(1)
Λ + af (1)

y + µ S f
(1)
S +

1

2

(
µ− r

σ

)2

(Λ)2f
(1)
ΛΛ

+
1

2
b2f (1)

yy +
1

2
σ2S2f

(1)
SS + b ρ

µ− r

−σ
Λf

(1)
Λ y + b ρ σ S f

(1)
y S

−(µ− r)S Λ f
(1)
Λ S =

1

2
f

(0)
ΛΛΛ2(β

(0)
2 (t, Λ(0), S, y))2. (1.20)
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This PDE is still solvable in closed form and an extended Feynman-Kač formula

(prove?) provides the solution to f (1)(t, Λ, S, y):

f (1)(t, Λ, S, y) = f (0)(t, Λ, S, y)+IE

[∫ T

t

1

2
f

(0)
ΛΛ(Λs)

2(β
(0)
2 (s, Λ(0), S, y))2d s

∣∣∣Λt = Λ, St = S, yt = y

]
.

(1.21)

f (1)(t, Λ, S, y) is the approximation we propose. In principle, it is possible to continue

with f (2), f (3) and so on, but we use f (1) only.

In the remainder of this section, let us have a close look at β∗
2(t, Λ, S, y) and β

(0)
2 (t, Λ(0), S, y)

given in (1.17) and (1.19). Due to the relation ∂Ũ(ΛT )/∂ΛT = −I(ΛT ) and the lin-

earity of expectation ∂IE[ ]/∂Λ = IE [∂/∂Λ], we have

fΛ =
∂IEt

[
Ũ(ΛT )− ΛT g(ST , yT )

]
∂Λt

= IEt

[(
Ũ ′(ΛT )− g(ST , yT )

) ∂ΛT

∂Λt

]
= IEt

[
(−I(ΛT )− g(ST , yT )) e−r(T−t)M t,T

1 M t,T
2

]
= −e−r(T−t)IE∗∗

t [I(ΛT ) + g(ST , yT )] = −X∗
t ,

where the expectation IE∗∗ is taken under the probability measure IP∗∗ which corre-

sponds to the probability measure induced by M0,T
1 M0,T

2 . Using similar derivations

we find

fΛy = −e−r(T−t)IE∗∗
t

[
gyT

(ST , yT )
∂yT

∂yt

]
fΛΛ = −e−r(T−t)IE∗∗

t

[
I ′(ΛT )

ΛT

Λt

]
.

As a result, β∗
2(t, Λt, S, y) given in (1.17) can be alternatively expressed as

β∗
2(t, Λ, S, y) =

IE∗∗
t

[√
1− ρ2 b gyT

(ST , yT )∂yT

∂yt

]
−IE∗∗

t [I ′(ΛT )ΛT ]
. (1.22)

Recall that β
(0)
2 (t, Λ(0), S, y) depends on Λ(0) which is a function of W1 and not related

to W2, hence, we obtain

f
(0)
Λy = −e−r(T−t)IE∗

t

[
gyT

(ST , yT )
∂yT

∂yt

]
f

(0)
ΛΛ = −e−r(T−t)IE∗

t

[
I ′(Λ

(0)
T )

Λ
(0)
T

Λ
(0)
t

]
.
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Since Λ
(0)
T = Λ

(0)
t M t,T

1 , the expectation IE∗ is now taken under the probability measure

IP∗ which corresponds to the probability measure induced by M0,T
1 . As a result, an

alternative expression for the approximate β(0)(t, Λ(0), S, y) is given by

β
(0)
2 (t, Λ(0), S, y) =

IE∗
t

[√
1− ρ2 b gyT

(ST , yT )∂yT

∂yt

]
−IE∗

t

[
I ′(Λ

(0)
T )Λ

(0)
T

] . (1.23)

Furthermore, the optimal terminal wealth expression in (1.5) can be reformulated

into

X∗
T − g(ST , yT ) = I(ΛT ) ⇒ ΛT = U ′(X∗

T − g(ST , yT )). (1.24)

As it holds I ′(ΛT ) = 1/U ′′(I(ΛT )), we obtain

−I ′(ΛT )ΛT = −U ′(X∗
T − g(ST , yT ))

U ′′(X∗
T − g(ST , yT ))

=
1

R(X∗
T − g(ST , yT ))

= T (X∗
T − g(ST , yT )),

(1.25)

where R(x) = −U ′′(x)/U ′(x) stands for the Arrow-Pratt measure of absolute risk-

aversion (see Arrow (1970) and Pratt (1964)) and is a measure of the absolute amount

of wealth an individual is willing to expose to risk as a function of changes in wealth.

T (x) := 1/R(x) is defined as the inverse of the absolute risk aversion and called risk

tolerance. To sum up, the expression for β∗
2(t, Λ, S, y) is rewritten as

β∗
2(t, Λ, S, y) =

IE∗∗
t

[√
1− ρ2 b gyT

(ST , yT )∂yT

∂yt

]
IE∗∗

t [T (X∗
T − g(ST , yT ))]

. (1.26)

The higher the expected absolute risk aversion (or the lower the expected risk toler-

ance), the higher the optimal β∗
2 .

Following the same reasonings, we can describe the approximate β
(0)
2 (t, Λ(0), S, y) as

a function of tolerance too:

β0
2(t, Λ

(0), S, y) =
IE∗

t

[√
1− ρ2 b gyT

(ST , yT )∂yT

∂yt

]
IE∗

t

[
T (X

(0)
T )
] , (1.27)

where X
(0)
T is the optimal terminal wealth when the claim g(ST , yT ) is not available.

Please note that we have T (X
(0)
T ) rather than T (X∗

T − g(ST , yT )). This is due to the

fact that in the denominator we are taking the expectation of I ′(Λ
(0)
T )Λ

(0)
T instead of

I ′(ΛT )ΛT . Concerning Λ
(0)
T , it holds

X
(0)
T = I(Λ

(0)
T ) ⇒ Λ

(0)
T = U ′(X

(0)
T ).
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1.2. (Approximate) indifference price. By investing in some self-financing hedg-

ing strategies, the indifference pricing principle states that the insurance company

shall be indifferent between the utility he obtains from not issuing the insurance li-

ability g(ST , yT ) and what he obtains from issuing g(ST , yT ). From now on, we put

the superscript ∗0 on the parameters to denote the optimal values we obtain for the

case without issuing the liability, and the superscript ∗π is used to denote the opti-

mal values we obtain for the case with issuing the liability2. For instance, Λ∗0
T is the

optimal Lagrangian level ΛT when no liability is issued, whereas Λ∗π
T is the optimal

ΛT when g(ST , yT ) is issued.

The derivation in Section 1.1 provides us an approximate optimal indirect utility (at

time 0) when the insurance company issues the insurance liability g(ST , yT ):

U∗π = f (1)(0, Λ∗0, S, y) + Λ∗π
0 (X0 + π0), (1.28)

where π0 is the utility indifference price we are looking for. First, after substituting

(1.23) to (1.21), f (1)(t, Λ, S, y) can be further calculated:

f (1)(t, Λ∗0, S, y)

= f (0)(t, Λ∗0, S, y) + IEt

[∫ T

t

1

2
f

(0)
ΛΛ(Λ∗0

s )2(β
(0)
2 (s, Λ∗0, S, y))2d s

]

= f (0)(t, Λ∗0, S, y) +
1

2
IEt

∫ T

t

e−r(T−s)Λ∗0
s

(
IE∗

s

[√
1− ρ2 b gyT

(ST , yT )∂yT

∂ys

])2

−IE∗
s [I ′(Λ∗0

T )Λ∗0
T ]

d s


= IEt

[
Ũ(Λ∗0

T )− Λ∗0
T g(ST , yT )

]
+

1

2
e−rT Λ∗0

0 IE∗
t

∫ T

t

(
IE∗

s

[√
1− ρ2 b gyT

(ST , yT )∂yT

∂ys

])2

−IE∗
s [I ′(Λ∗0

T )Λ∗0
T ]

d s

 . (1.29)

From step 2 to step 3 we use f
(0)
ΛΛ(Λ∗0

s )2 = −e−r(T−s)Λ∗0
s IE∗

s[I
′(Λ∗0)Λ∗0

T ].

On the other side, the case without issuing insurance liabilities corresponds to a

complete market setting, where the initial optimal indirect utility is given by

U∗0 = IE[Ũ(Λ∗0
T )] + Λ∗0

0 X0. (1.30)

2The parameters with the superscript (0) in Section 1.1 indeed coincide the ones with ∗0 used in
this section.
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Proposition 1.1 (Approximate indifference price for g(ST , yT ) via HJB approach).

The approximate indifference price for g(ST , yT ) via HJB approach is given as follows:

π0 ≈ e−rT IE∗[g(ST , yT )]− e−rT

2
IE∗

∫ T

0

(
IE∗

t

[√
1− ρ2 b gyT

(ST , yT )∂yT

∂yt

])2

IE∗
t [I

′(Λ∗0
T )Λ∗0

T ]
d t

 .

(1.31)

Proof: Utility indifference indicates U∗0 = U∗π, i.e.

IE[Ũ(Λ∗0
T )] + Λ∗0

0 X0 = IE[Ũ(Λ∗0
T )]− e−rT Λ∗0

0 IE∗[g(ST , yT )] + Λ∗π
0 X0 + Λ∗π

0 π0

+
1

2
e−rT Λ∗0

0 IE∗

∫ T

0

(
IE∗

t

[√
1− ρ2 b gyT

(ST , yT )∂yT

∂yt

])2

−IE∗
t [I ′(Λ∗0

T )Λ∗0
T ]

d s

 .

In principle, we can calculate Λ∗π
0 from the first order condition ∂U∗π/∂Λ∗π

0 = 0 and

obtain an approximate optimal value for Λ∗0
0 because it depends on the approximate

value of f (1). Since we would end up with an approximate value anyway, in this

place, we assume Λ∗0
0 ≈ Λ∗π

0 . This leads to the approximate indifference price for the

insurance claim g(ST , yT ) via HJB approach:

π0 ≈ e−rT IE∗[g(ST , yT )]− e−rT

2
IE∗

∫ T

0

(
IE∗

t

[√
1− ρ2 b gyT

(ST , yT )∂yT

∂yt

])2

IE∗
t [I

′(Λ∗0
T )Λ∗0

T ]
d t

 .

2

The indifference price consists of two parts: the first part corresponds to the expected

discounted payoff under the minimal martingale measure IP∗ and reflects what prac-

titioners call the “best estimate” in terms of pricing life insurance liabilities. The

second part has the same sign as the absolute risk aversion coefficient ( or risk toler-

ance). Under risk aversion, we always obtain a positive term. This can be described

as “market value margin” which suggests the insurance company to charge an addi-

tional cash amount due to the unhedgeable risk. For a given numerator of β2, the

higher the expected absolute risk aversion (or the lower the risk tolerance), the higher

the “market value margin”, the higher the indifference price. The size of the market

value margin depends on the interplay between the denominator and numerator of β2.

An assumption made in the HJB-approach is that we are in a Markovian setting.

In the next section, we start with the results obtained by the dual formulation and
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develop Taylor-series approximations of the indifference price to value insurance con-

tracts. A more general approach “martingale representation approach” is used to

determine β∗
2 .

2. Taylor-series approximations of the indifference price

Again, the case without issuing insurance liabilities leads to the following (dual)

formulation of the optimal investment problem:

U∗0 = min
Λ0

IE[Ũ(ΛT ) + Λ0X0]. (2.1)

Let us denote the optimal choice for Λ by Λ∗0
T = Λ∗0

0 e−rT M0,T
1 . Note that in the

complete market case, we have that M0,T
2 = 1. The remaining parameter Λ∗0

0 is a

solution of the first-order condition

IE[e−rT M0,T
1 I(Λ∗0

T )] = X0. (2.2)

In the incomplete market case with an insurance liability g(ST , yT ), the indifference

price π0 is given by solving:

U∗π = IE[Ũ(Λ∗π
T )− Λ∗π

T g(ST , yT ) + Λ∗π
0 (X0 + π0)] (2.3)

where Λ∗π
T = Λ∗π

0 e−rT M0,T
1 M0,T

2 denotes the optimal choice of Λ that minimizes the

dual utility on the right-hand side of (2.3). Please note that (2.3) is an implicit

equation in π0 as Λ∗π
0 and Λ∗π

T both depend on π0. The first-order condition for Λ∗π
0

is given by:

IE
[
e−rT M0,T

1 M0,T
2 (I(Λ∗π

T ) + g(ST , yT ))
]

= X0 + π0, (2.4)

Let us also recall that the function Ũ is defined as Ũ(Λ) = U(I(Λ)) − ΛI(Λ). If we

combine this definition with (2.1) and (2.3) we obtain

IE
[
U(I(Λ∗0

T ))− Λ∗0
T I(Λ∗0

T ) + Λ∗0
0 X0

]
= IE [U(I(Λ∗π

T ))− Λ∗π
T (I(Λ∗π

T ) + g(ST , yT )) + Λ∗π
0 (X0 + π0)] . (2.5)

According to (2.2) and (2.4), we obtain the simplified expression

IE [U(I(Λ∗π
T ))]− IE

[
U(I(Λ∗0

T ))
]

= 0. (2.6)

This expression should not come as a surprise, as we have simply recovered the primal

formulation of the indifference price by noting that I(Λ∗0
T ) represents the optimal

wealth X∗0
T at time T .
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2.1. Result for Λ0. Up to now all our expressions have been exact. Let us now try

to make some progress by investigating some Taylor-expansion of the expressions we

have considered in Λ∗π
T around Λ∗0

T .

Let us first start with (2.6). If we note that the derivative ∂U(I(Λ))
∂Λ

= U ′(I(Λ))I ′(Λ) =

ΛI ′(Λ), then (2.6) combined with Taylor expansion leads to

IE
[
Λ∗0

T I ′(Λ∗0
T )(Λ∗π

T − Λ∗0
T )
]
≈ 0

⇒ IE
[
Λ∗0

T I ′(Λ∗0
T ) Λ∗π

0 e−rT M0,T
1 M0,T

2

]
≈ IE

[
Λ∗0

T I ′(Λ∗0
T ) Λ∗0

0 e−rT M0,T
1

]
⇒ Λ∗π

0 IE
[
Λ∗0

T I ′(Λ∗0
T ) e−rT M0,T

1

]
IE[M0,T

2 ] ≈ Λ∗0
0 IE

[
Λ∗0

T I ′(Λ∗0
T ) e−rT M0,T

1

]
⇒ Λ∗π

0 IE[M0,T
2 ] ≈ Λ∗0

0

⇒ Λ∗π
0 ≈ Λ∗0

0 . (2.7)

In the third line we bring the constants Λ∗π
0 and Λ∗0

0 outside the expectation operator,

and we use the fact that M2 is independent from Λ∗0
0 . In the fourth line we have

divided out the common factor, and in the fifth line we have used the fact that M2

is a martingale with expectation 1. This leads to the result Λ∗π
0 ≈ Λ∗0

0 .

2.2. Derivation of β2(t, ω) via martingale representative theorem. In an in-

complete market, there exist uncertainties which cannot be hedged by trading in the

market’s financial instruments. However, fictitious risky assets which are perfectly

correlated with the unhedgeable uncertainties can be created to complete the finan-

cial market. On the one hand, the optimal strategies (also for the fictitious assets)

can be derived under the fictitious complete market. The resulting strategies are

functions of “market prices of the uncertainties”. On the other hand, due to the

untradablility of the uncertainties, the hedging demand for these uncertainties shall

be as small as possible or equal to zero. If we equate the optimal strategies for the

fictitious assets to the low or zero demand for the untradable uncertainties, we are

able to determine the the parameters determining the “market prices of the uncer-

tainties”. The idea of “completing” the incomplete financial market (by creating a

fictitious risky asset) goes back to Karatzas et al. (1991) and is recently used by

Keppo et al. (2007) who develop a computation scheme for the optimal strategy in

a model setup with an unhedgeable endowment. Henceforth, we address this idea

to determine β2. In our model setup, we would like to find a market completion

where the optimal hedging demand for W2 (unhedgeable risk) equal to zero. More
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precisely, we need to write down the martingale representation for X∗π
t and let the

coefficient of dW2 equal to zero. Due to (1.13), in order to obtain the martingale rep-

resentation for the optimal wealth, we just need to use Malliavin calculus and write

down the generalized Clark-Ocone formulae for the expressions I(Λ∗π
T ) and g(ST , yT ).

According to the expression of Λ∗π
T

Λ∗π
T = Λ∗π

0 exp

{
− rT − µ− r

σ
W1(T )− 1

2

(
µ− r

σ

)2

T +

∫ T

0

β2(s, ω)dW2(s)

−1

2

∫ T

0

(β2(s, ω))2ds

}
,

we obtain the Mallivian expansion (under IP∗∗)

I(Λ∗π
T ) = IE∗∗[I(Λ∗π

T )] +

∫ T

0

IE∗∗
t

[
−µ− r

σ
I ′(Λ∗π

T ) Λ∗π
T

]
dW ∗∗

1 (t) +

∫ T

0

(
IE∗∗

t [β2(t, ω)

I ′(Λ∗π
T ) Λ∗π

T ] + E∗∗
t

[
I(Λ∗π

T )

∫ T

t

Dt(β2(u, ω))dW ∗∗
2 (u)

])
dW ∗∗

2 (t). (2.8)

Moreover, the generalized Clark-Ocone formula for g(ST , yT ) under IP∗∗ is given by

g(ST , yT ) = IE∗∗ [g(ST , yT )] +

∫ T

0

(
IE∗∗

t [gST
(ST , yT ) σST ] + IE∗∗

t

[
gyT

(ST , yT )b(t, ω)ρ
∂yT

∂yt

])

dW ∗∗
1 (t) +

∫ T

0

(
IE∗∗

t

[
b(t, ω)

√
1− ρ2gyT

(ST , yT )
∂yT

∂yt

]
+IE∗∗

t

[
g(ST , yT )

∫ T

t

Dt(β2(u, ω))dW ∗∗
2 (u)

])
dW ∗∗

2 (t). (2.9)

Based on the martingale representations for I(Λ∗π
T ) and g(ST , yT ) together with

(1.13), we come to the following alternative expression for X∗π
t :

X∗π
t = X0e

rt +

∫ t

0

(
IE∗∗

u

[
−µ− r

σ
I ′(Λ∗π

T ) Λ∗π
T

]
+
(
IE∗∗

u [gST
(ST , yT ) σST ]

+IE∗∗
u

[
gyT

(ST , yT )b(u, ω)ρ
∂yT

∂yu

]))
dW ∗∗

1 (u) +

∫ t

0

(
IE∗∗

u [β2(u, ω)I ′(Λ∗π
T ) Λ∗π

T ]

+IE∗∗
u

[
b(u, ω)

√
1− ρ2gyT

(ST , yT )
∂yT

∂yu

]
+ E∗∗

u

[
(I(Λ∗π

T ) + g(ST , yT ))∫ t

u

Du(β2(s, ω))dW ∗∗
2 (s)

])
dW ∗∗

2 (u). (2.10)
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In the optimal control problem, we will follow the optimal policy for t < s ≤ T

not the past. Hence, the integral in the last line of (2.10) shall not play a role in

determining β2. Furthermore, since dW ∗∗
2 is an unhedgeable uncertainty, the hedge

demand for W ∗∗
2 shall be equal to 0. This leads to the following β2(t, ω):

β2(t, ω) · IE∗∗
t [I ′(Λ∗π

T ) Λ∗π
T ] = −IE∗∗

t

[
b(t, ω)

√
1− ρ2gyT

(ST , yT )
∂yT

∂yt

]
.

Or alternatively it holds

β∗
2(t, ω) = −

IE∗∗
t

[
b(t, ω)

√
1− ρ2gyT

(ST , yT )∂yT

∂yt

]
IE∗∗

t [I ′(Λ∗π
T ) Λ∗π

T ]
. (2.11)

It is noted that β∗
2(t, ω) value resulting from the martingale representation is more

general than the optimal β∗
2(t, Λ, s, y) achieved by HJB-approach given in (1.22) be-

cause for the latter case it is necessary to assume that we are in a Markovian setting.

The approximate representation of β2(t, ω) is developed according to the Taylor-series

expansion of I(Λ∗π
T ), i.e.

I(Λ∗π
T ) ≈ I(Λ∗0

T ) + I ′(Λ∗0
T )Λ∗0

T (M0,T
2 − 1) ≈ I(Λ∗0

T ) + I ′(Λ∗0
T )Λ∗0

T ln M0,T
2 . (2.12)

Here we use approximate M0,T
2 − 1 by ln M0,T

2 . Since we are only interested in cal-

culating the approximation solution for β2(t, ω), we just need to write down the

generalized Clark-Ocone formula for I ′(Λ∗0
T )Λ∗0

T ln M0,T
2 and g(ST , yT ) which are re-

lated to β2(t, ω). The martingale representation of g(ST , yT ) is already given in (2.9)

and that of I ′(Λ∗0
T )Λ∗0

T ln M0,T
2 owns the following expression:

I ′(Λ∗0
T )Λ∗0

T ln M0,T
2

= IE∗∗[I ′Λ∗0
T )Λ∗0

T ln M0,T
2 ] +

∫ T

0

(
IE∗∗

t

[
(I ′(Λ∗0

T )Λ∗0
T β2(t, ω)

]
+IE∗∗

t

[
I ′(Λ∗0

T )Λ∗0
T ln M0,T

2

∫ T

t

Dt(β2(u, ω))dW ∗∗
2 (u)

])
dW ∗∗

2 (t)

+

∫ T

0

IE∗∗
t

[
ln M0,T

2 (I ′′(Λ∗0
T )Λ∗0

T + I ′(Λ∗0
T ))Λ∗0

T (−µ− r

σ
)

]
dW ∗∗

1 (t). (2.13)

Develop an approximation for X∗π
t similarly as in (2.10) and let the hedge demand

for dW ∗∗
2 equal 0, we obtain an approximate expression for β2:

β2(t, ω) ≈
IE∗

t

[
b(t, ω)

√
1− ρ2gyT

(ST , yT )∂yT

∂yt

]
−IE∗

t [I
′(Λ∗0

T )Λ∗0
T ]

. (2.14)
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Similarly, (2.14) is more general than (1.23) because the Makovian assumption is not

needed here.

2.3. Approximate indifference price. We now want to turn our attention to find-

ing an (approximate) expression for the price π0. By rewriting (2.4) we obtain:

π0 = e−rT IE
[
M0,T

1 M0,T
2 (I(Λ∗π

T ) + g(ST , yT ))
]
−X0

= e−rT IE∗∗ [I(Λ∗π
T ) + g(ST , yT )]−X0

= e−rT IE∗∗ [g(ST , yT ) +
(
I(Λ∗π

T )− I(Λ∗0
T )
)]

= X∗π
0 −X0. (2.15)

In the third line we have used (2.2) and the fact that since Λ∗0
T is W1-measurable we

have e−rT IE∗∗[I(Λ∗0
T )] = e−rT IE∗[I(Λ∗0

T )] = X0. Up to this point the derivation has

been exact.

From (2.15) we once again see that the indifference price π0 consists of two compo-

nents. The first component is the expected value under the martingale measure IP∗∗

of the insurance payoff g(ST , yT ). The second component is the wealth difference

I(Λ∗π
T )− I(Λ∗0

T ) between the “pre-insurance” and “post-insurance” portfolios. More

specifically, the second component quantifies the compensation that is required for

the unhedgeable risk due to writing the insurance claim g(ST , yT ). It is this second

component which makes the indifference price operator a non-linear operator. When

the unhedgeable part of the risk disappears, the price operator reduces to the familiar

(linear) risk-neutral martingale pricing operator. More details about the compensa-

tions caused by the unhedgeable risk will be provided in Section 4.

Proposition 2.1 (Approximate indifference price for g(ST , yT ) via Taylor expan-

sion). The approximate indifference price for g(ST , yT ) via Taylor expansion is given

as follows:

π0 ≈ e−rT

(
IE∗[g(ST , yT )]− 1

2
IE∗[I ′(Λ∗0

T )Λ∗0
T ]IE∗

[∫ T

0

(β∗
2(t, ω))2dt

])
= e−rT

(
IE∗[g(ST , yT )]− 1

2
IE∗[I ′(Λ∗0

T )Λ∗0
T ]Var∗[M0,T

2 ]

)
,

where “Var∗” denotes a variance under the probability measure IP∗ induced by M0,T
1 .
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Proof: We continue the calculation (2.15) with another Taylor-expansion

π0e
rT

≈ IE∗∗ [g(ST , yT ) + I ′(Λ∗0
T )(Λ∗π

T − Λ∗0
T )
]

≈ IE∗
[
g(ST , yT )M0,T

2

]
+ IE∗∗

[
I ′(Λ∗0

T )Λ∗0
T (M0,T

2 − 1)
]

≈ IE∗[g(ST , yT )(ln M0,T
2 + 1)] + IE∗[I ′(Λ∗0

T )Λ∗0
T ]IE∗∗[M0,T

2 − 1]

= IE∗[g(ST , yT )] + IE∗[g(ST , yT ) · ln M0,T
2 ] + IE∗[I ′(Λ∗0

T )Λ∗0
T ]IE∗∗[M0,T

2 − 1]. (2.16)

From line 2 to 3 we use ln M0,T
2 ≈ M0,T

2 − 1. In order to calculate the second term in

(2.16) we represent ln M0,T
2 and g(ST , yT ) in martingale forms via Mallivian calculus:

ln M0,T
2 = IE∗∗[ln M0,T

2 ] +

∫ T

0

(
β2(t, ω) + IE∗∗

t

[
ln M0,T

2

∫ T

t

Dt(β2(u, ω))dW ∗∗
2 (u)

])
dW ∗∗

2 (t),

and g(ST , yT ) is already given in (2.9). According to (2.14), we obtain

IE∗∗
t

[
b(t, ω)

√
1− ρ2gyT

(ST , yT )
∂yT

∂yt

]
≈ −β2(t, ω)E∗

t [I
′(Λ∗0

T )Λ∗0
T ].

Hence, it holds:

IE∗[g(ST , yT ) · ln M0,T
2 ] = −IE∗[I ′(Λ∗0

T )Λ∗0
T ]IE∗

[∫ T

0

(β2(t, ω))2dt

]
.

Moreover, we approximate the last term of (2.16) as follows:

IE∗∗[M0,T
2 − 1] ≈ IE∗∗[ln M0,T

2 ]

= IE∗[M0,T
2 ln M0,T

2 ] ≈ IE∗[(ln M0,T
2 + 1) ln M0,T

2 ]

= IE∗
[∫ T

0

(β2(t, ω))2dt

]
− 1

2
IE∗
[∫ T

0

(β2(t, ω))2dt

]
=

1

2
IE∗
[∫ T

0

(β2(t, ω))2dt

]
.

Here we use the approximation M0,T
2 − 1 ≈ ln M0,T

2 twice.

2

Via Taylor approximation, the indifference price π0 can be decomposed into exactly

two parts: IE∗[g(ST , yT )] plus a correction term proportional to the variance of the

martingale M0,T
2 . This approximate indifference price coincides with the one given in
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Proposition 1.1 and suggests the practitioners to use “best estimate plus a correction

term” to price insurance liabilities.

3. Illustrative examples

Although the present work is designed to use a more tractable approach to price life

insurance contracts, the results of the paper shall be suitable for other untradable

contingent claims. Hence, in this section, we would examine our result and investigate

the quality of the approximation by comparing it with Musiela and Zariphopoulou

(2001) where the untradable contingent claim depends on yT only and the agent owns

an exponential utility. Further, Henderson and Hobson (2002) and Henderson (2002)

where power utility is discussed are served as a comparison basis, too.

3.1. Exponential utility. For an exponential utility U(x) = − 1
γ
e−γx, it holds

U ′(x) = e−γx, I(Λ) = − 1
γ

ln(Λ) and Ũ(Λ) = 1
γ
(Λ ln(Λ) − Λ), in addition, I ′(Λ) =

− 1
γ∗Λ . Further, for those contingent claims whose terminal payments depend on the

evolution of yT only, i.e., g(ST , yT ) = g(yT ), β2(t, ω) value expressed in (2.11) is

reduced to

β2(t, ω) = γIE∗∗
t

[
b(t, ω)

√
1− ρ2 gyT

(yT )
]
.

For the specific specification of y in Musiela and Zariphopoulou (2001), it follows
∂yT

∂yt
= 1. According to Proposition 1.1 or 2.1, the approximate indifference price of

g(yT ) is determined by

π0 ≈ e−rT

(
IE∗[g(yT )] +

1

2

1

γ

∫ T

0

IE∗[(β2(t, ω))2]dt

)
= e−rT

(
IE∗[g(yT )] +

1

2
γ

∫ T

0

IE∗
[(

IE∗∗
t [ (b(t, ω))2 (1− ρ2) gyT

(yT )]
)2]

dt

)
. (3.1)

On the other hand, the indifference price for this special utility is given by the exact

Musiela and Zariphopoulou (2001) price formula:

πMZ
0 = e−rT 1

γ(1− ρ2)
ln IE∗

[
eγ(1−ρ2)g(yT )

]
We can interpret the expectation on the right-hand side as the moment-generating

function of g(yT ) with parameter γ(1 − ρ2). Hence, up to second order we can
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approximate the price-formula as

πMZ
0 ≈ e−rT 1

γ(1− ρ2)
ln

(
exp

{
γ(1− ρ2)IE∗[g(yT )] +

1

2
γ2(1− ρ2)2Var∗[g(yT )]

})
≈ e−rT

(
IE∗[g(yT )] +

1

2
γ (1− ρ2) Var∗[g(yT )]

)
. (3.2)

Further, if we decompose g(yT ) by writing down the generalized Clark-Ocone formula

as follows:

g(yT ) = IE∗∗ [g(yT )] +

∫ T

0

IE∗∗
t [gyT

(yT )b(t, ω)ρ] dW ∗∗
1 (t)

+

∫ T

0

IE∗∗
t [b(t, ω)

√
1− ρ2gyT

(yT )]dW ∗∗
2 (t),

we obtain

Var∗[g(yT )] =

∫ T

0

IE∗
[(

IE∗∗
t

[
(b(t, ω))2gyT

(yT )
])2]

dt.

From this we can infer that the expressions (3.1) and (3.2) coincide.

3.2. Power utility. For a power utility U(x) = x1−η

1−η
, η > 0 and η 6= 1, it holds

U ′(x) = x−η, I(Λ) = Λ− 1
η and Ũ(Λ) = η Λ

1− 1
η

1−η
, in addition, I ′(Λ) = − 1

η
Λ− 1

η
−1.

Furthermore, the following relation hold particularly for the power utility function:

IE∗
t [I

′(Λ∗0
T )Λ∗0

T ] = −1

η
IE∗

t

[
I(Λ∗0

T )
]

= −1

η
er(T−t)X∗0

t .

The prices given in Propositions 1.1 and 1.2 are the seller’s indifference price, while

in Henderson (2002), buyer’s price is derived. In order to compare our results with

Henderson (2002), we adapt our results to buyer’s price, i.e. the approximate buyer’s

indifference price is given by

π0 ≈ e−rT IE∗[g(ST , yT )] +
e−rT

2
IE∗

∫ T

0

(
IE∗

t

[√
1− ρ2 b(t, ω) gyT

(ST , yT )∂yT

∂yt

])2

IE∗
t [I

′(Λ∗0
T )Λ∗0

T ]
d t


= e−rT IE∗[g(ST , yT )]

−η

2
IE∗

∫ T

0

e−2rT+rt
(
IE∗

t

[√
1− ρ2 b(t, ω) gyT

(ST , yT )∂yT

∂yt

])2

X∗0
t

d t

 . (3.3)

On the other side, as mentioned in the introduction, Henderson (2002) develops an

approximation in framework of a power utility for the contingent claims of the form

kg(yT ), where k is a constant and can be interpreted as the number of the claims.
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She obtains an approximate utility indifference price:

πHe
0 (k) = ke−rT IE∗[g(yT )]− k2

2

η

X0

b2(1− ρ2)

IE∗

[∫ T

0

e−rt y
2
t e

−2r(T−t) (IE∗
t [gyT

(yT )])2

(X∗0
t /X0)

]
dt + o(k2) (3.4)

Since our result is more general and in order to compare it with Henderson (2002), we

have to fit our parameters to their modeling setup. First, it holds g(ST , yT ) = k g(yT ).

Second, the y-process in Henderson is assumed to follow a geometric Brownian mo-

tion, i.e. a(t, ω) = ayt, b(t, ω) = byt, where a, b is a constant. Combining these with

(3.3), we obtain

π0 ≈ e−rT IE∗[kg(yT )]− η

2
IE∗

∫ T

0

e−2rT+rt
(√

1− ρ2 b ytIE
∗
t [k gyT

(yT )]
)2

X∗0
t

d t

 .

This coincides with the Henderson’s (2002) approximate power utility indifferent

price.

4. Impact of the unhedgeable risk on optimal wealth (“surpluses”)

and strategy

In order to gain some insights into the impact of the unhedgeable risk on the optimal

wealth, we compare the optimal wealth derived for the case without and with the

unhedgeable risk.

Abstracting from the unhedgeable risk, the optimal wealth is described as

X∗0
T = I(Λ∗0

T ).

Whereas with the unhedgeable risk, we obtain the following relation:

X∗π
T − g(ST , yT ) = I(Λ∗π

T ).

Now we apply the Taylor expansion to I(Λ∗π
T ) at Λ∗0

T and achieve the approximation

as follows:

I(Λ∗π
T ) ≈ I(Λ∗0

T ) + I ′(Λ∗0
T )Λ∗0

T (M0,T
2 − 1). (4.1)

Hence, the optimal wealth X∗π
T can be described approximately by

X∗π
T ≈ g(ST , yT ) + I(Λ∗0

T ) + I ′(Λ∗0
T )Λ∗0

T (M0,T
2 − 1).
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Based on the approximate version of X∗π
T , we achieve an approximate value for X∗π

t

by using the relation (1.13):

X∗π
t ≈ e−r(T−t)

(
IE∗∗

t [g(ST , yT )] + IE∗∗
t [I(Λ∗0

T )] + IE∗∗
t [I ′(Λ∗0

T )Λ∗0
T (M0,T

2 − 1)]
)

. (4.2)

Since Λ∗0
T depends on the W1 only and M0,T

2 on W2 only, besides W1 and W2 are

independent, we can rewrite (4.2) to

X∗π
t ≈ e−r(T−t)

(
IE∗∗

t [g(ST , yT )] + IE∗
t [I(Λ∗0

T )] + IE∗
t [I

′(Λ∗0
T )Λ∗0

T ]IE∗∗
t [(M0,T

2 − 1)]
)

= X∗0
t + e−r(T−t)

(
IE∗∗

t [g(ST , yT )] + IE∗
t [I

′(Λ∗0
T )Λ∗0

T ]IE∗∗
t [(M0,T

2 − 1)]
)

. (4.3)

With the introduction of the unhedgeable insurance risk, the optimal wealth X∗π
t

differs from that obtained in a complete market setting X∗0
t by the size

X∗π
t −X∗0

t = e−r(T−t)
(
IE∗∗

t [g(ST , yT )] + IE∗
t [I

′(Λ∗0
T )Λ∗0

T ]IE∗∗
t [(M0,T

2 − 1)]
)

, 0 ≤ t ≤ T.

(4.4)

Basically, the optimal wealth margin process (X∗π
t −X∗0

t )t∈[0,T ] hinges on the realiza-

tion of W ∗
1 (t) (or W1(t)) as IE∗

t [I
′(Λ∗0

T )Λ∗0
T ] is generally a function of W ∗

1 (t) (or W1(t)).

An exception here is the exponential utility in which this expected value becomes a

constant:

IE∗[I ′(Λ∗0
T )Λ∗0

T ] = −1

γ
.

The optimal wealth margin is accordingly given by

X∗π
t −X∗0

t ≈ e−r(T−t)

(
IE∗∗[g(ST , yT )]− 1

γ
IE∗∗[(M0,T

2 − 1)]

)
. (4.5)

This indicates that using the exponential utility has a consequence that the optimal

wealth margin is not a function of W1 or the tradable risky asset S. Therefore, only

investment in the riskless asset (or cash amount) is necessary to compensate the

wealth loss caused by the unhedgeable risk.

When we take into consideration other general utility functions, the additional invest-

ment in he risky (tradable) asset cannot always be determined explicitly. However,

we can conclude that the additional investments (either in the risky assets or in

both the risky and riskless assets) depend on the risk attitude of the agent, because

X∗π
t −X∗0

t can be expressed alternatively as (c.f. (1.24)):

X∗π
t −X∗0

t = e−r(T−t)
(
IE∗∗

t [g(ST , yT )]− IE∗
t [T (X∗0

T )]E∗∗
t [(M0,T

2 − 1)]
)

, 0 ≤ t ≤ T.
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T (.) is again the risk tolerance. The lower the risk tolerance (or the higher the ab-

solute risk aversion), the more investments are needed to compensate the optimal

wealth margin.

Let us have a close look at the strategy henceforth. First we can read from the

martingale representation of the optimal wealth in (2.10) that amount invested in

the hedgeable risk W ∗∗
1 at time t is given by:

IE∗∗
t

[
−µ− r

σ
I ′(Λ∗π

T ) Λ∗π
T

]
+ IE∗∗

t [gST
(ST , yT ) σST ] + IE∗∗

t [gyT
(ST , yT )b(t, ω)ρ] . (4.6)

In contrast, in a complete market setup, the resulting amount invested in the hedge-

able risk W ∗
1 (= W ∗

2 ) at time t is determined by

IE∗
t

[
−µ− r

σ
I ′(Λ∗0

T ) Λ∗0
T

]
.

This is the Merton’s (1971) optimal portfolio derived for the original problem of

optimal consumption and portfolio choice in continuous time. Due to

IE∗∗
t [I ′(Λ∗π

T ) Λ∗π
T ] ≈ E∗∗

t

[
I ′(Λ∗0

T ) Λ∗0
T +

(
I ′′(Λ∗0

T )Λ∗0
T + I ′(Λ∗0

T ))
)
(Λ∗π

T − Λ∗0
T )
]

= E∗
t

[
I ′(Λ∗0

T ) Λ∗0
T

]
+ E∗

t

[
I ′′(Λ∗0

T )(Λ∗0
T )2 + I ′(Λ∗0

T ))Λ∗0
T

]
IE∗∗

t

[
M0,T

2 − 1
]
,

the difference between the “new” and the original Merton strategy can be approxi-

mated by

IE∗∗
t

[
−µ− r

σ
I ′(Λ∗π

T ) Λ∗π
T

]
− IE∗

t

[
−µ− r

σ
I ′(Λ∗0

T ) Λ∗0
T

]
≈ µ− r

σ
E∗

t

[
I ′′(Λ∗0

T )(Λ∗0
T )2 + I ′(Λ∗0

T ))Λ∗0
T

]
IE∗∗

t

[
M0,T

2 − 1
]

=
µ− r

σ
E∗

t

[
I ′′(Λ∗0

T )(Λ∗0
T )2 + I ′(Λ∗0

T ))Λ∗0
T

](
exp

{∫ T

t

(β2(u, ω))2du

}
− 1

)
︸ ︷︷ ︸

>0

.

Further, it is noted that

I ′′(Λ∗0
T )(Λ∗0

T )2 = Λ∗0
T − Λ∗0

T

U ′(Λ∗0
T )

U ′′(Λ∗0
T )

U ′′′(Λ∗0
T )

U ′′(Λ∗0
T )

− U ′(Λ∗0
T )

U ′′(Λ∗0
T )

I ′(Λ∗0
T ) =

U ′(Λ∗0
T )

U ′′(Λ∗0
T )

.
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Accordingly, the difference between the “new” and the original Merton strategy can

be further expressed

µ− r

σ

(
IE∗∗

t

[
Λ∗0

T

]
− IE∗∗

t

[
Λ∗0

T

U ′(Λ∗0
T )

U ′′(Λ∗0
T )

U ′′′(Λ∗0
T )

U ′′(Λ∗0
T )

])(
exp

{∫ T

t

(β2(u, ω))2du

}
− 1

)
=

µ− r

σ
IE∗∗

t

[
Λ∗0

T (1− C(Λ∗0
T )
](

exp

{∫ T

t

(β2(u, ω))2du

}
− 1

)
where R(.) = −U ′′(.)

U ′(.)
is the coefficient of absolute risk aversion and P (.) = −U ′′′(.)

U ′′(.)

is the coefficient of absolute prudence introduced by Kimball (1990). Risk aversion

has interpretations for investors’ investment activities in financial market, whereas

prudence explains the saving decision of the investor. Kimball (1990) show that an

individual with a larger coefficient of absolute risk aversion has a larger risk premium

than the other individual at any given wealth level, whereas an individual with a

larger coefficient of absolute prudence has a larger equivalent precautionary premium

than the other at any given level of savings. Further, the notation C(.) is defined by

the ratio P (.)/R(.) and represents the concept cautiousness. It measures the strength

of an investor’s motives to hedge the down-side risk of his investment using convex-

payoff contracts. There exists the negative relation between the cautiousness and

relative risk aversion, i.e. if investor A is more cautious than investor B, he would

be less relative risk averse than investor B, and if A is more relative risk averse than

B, A is less cautious than B (a detailed discussion on this topic can be found e.g. in

Kimball (1990) and Huang (2000). Given an increasing and concave utility function,

we can obtain an alternative expression for the cautiousness, i.e.

C(x) = − R′(x)

(R(x))2
+ 1,

and an alternative description for the “new” and original strategy:

µ− r

σ

(
IE∗∗

t

[
Λ∗0

T

]
− IE∗∗

t

[
Λ∗0

T

U ′(Λ∗0
T )

U ′′(Λ∗0
T )

U ′′′(Λ∗0
T )

U ′′(Λ∗0
T )

])(
exp

{∫ T

t

(β2(u, ω))2du

}
− 1

)
=

µ− r

σ
IE∗∗

t

[
Λ∗0

T

R′(Λ∗0
T )

(R(Λ∗0
T ))2

](
exp

{∫ T

t

(β2(u, ω))2du

}
− 1

)
.

From this we can read that those utility functions with constant absolute risk aver-

sion, i.e. R′(x) = 0, the “new” and original strategy can be approximately considered

equal. Exponential utility belongs to this category. This result conforms to the con-

clusion of the optimal wealth margin we draw for the exponential utility, i.e. it is

unnecessary to invest more in W1 but just in cash amounts to compensate the wealth
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loss. However, for decreasing absolute risk aversion type utilities which disclose an

investor’s utility most likely, as widely agreed in the literature, the “new strategy” is

smaller than the original one because R′(x) < 0. This is due to the unhedgeable in-

surance risk component. The investor becomes exposed to the risk of (unexpectedly)

underperforming with respect to his optimal wealth-target. Therefore, he becomes

“more worried” about investing in the risky asset and consequently he acts as if he

is more risk-averse, and hence holds less of the risky asset (i.e. a lower exposure to

W1).

5. Conclusion

Under general utility class, this paper develops an approximate pricing framework

for life insurance liabilities using utility indifference. The resulting approximate in-

difference price has a nice connection to the pricing rule-of-thumb that practitioners

use: best estimate plus a “Market Value Margin”. The best estimate corresponds

to the expected discounted value of the contingent claim, where the expectation is

taken under the minimal Martingale measure. The “Market Value Margin” can be

interpreted as a safety load which usually depends on the expected risk aversion co-

efficient (except the exponential utility case).

Although our main purpose is to develop tractable market-consistent tractable ap-

proximate prices for life insurance contracts, our results also apply to other un-

tradable contingent claims and our approximate formulae lead to the same results

obtained in the existing literature.

Furthermore, we investigate the question of how the untradable insurance risk af-

fects the optimal wealth process and what risk management strategies the insurance

company can use to compensate the wealth loss.
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