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PART 1: Consumption-portfolio choice
� Introduction to standard consumption-portfolio choice problem

� Merton (1971):

�Di¤usion models

�Dynamic programming

� Cox & Huang (1989, 1991), Karatzas, Lehoczky & Shreve (1987):

� Ito processes

�Probabilistic methods

� Outline

� Dynamic choice problem

� Basic valuation principles

� Equivalent static choice problem

� Optimal policies

� Examples
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1.1 Consumption-portfolio choice: the di¤usion model

� Underlying structure

� Finite horizon [0; T ]

� Brownian motion W , d-dimensional

� Information: �ltration generated by W : F(�)= fFt : t 2 [0; T ]g

� Probability space (
;F ; P ) - P is physical measure

� Financial market

� Risky assets: d stocks. Price of stock i; i = 1; :::; d; satis�es

dSit = Sit [(�i(Yt; t)� �i(Yt; t)) dt+ �i(Yt; t)dWt] (1)

��i expected return, �i dividend yield, �i volatility coe¢ cients (1� d)

�depend on k � 1 vector of state variables Y = (Y1; :::; Yk)0

�Satisfy integrability conditions

�Matrix � assumed invertible at all times (i.e. all risks are hedgeable)

� Riskless asset

�Money market account: pays interest at rate r(Yt; t)

� r is positive and depends on state variables

�Satis�es integrability condition

� State variables: Y = (Y1; :::; Yk)0

� Any variable a¤ecting return components

� Interest rate, market prices of risk, dividend-price ratio, �rm size, sales

�Evolution
dYt = �

Y (Yt; t)dt+ �
Y (Yt; t)dWt (2)

��Y (Yt; t) is k � 1 vector of drift coe¤., �Y (Yt; t) is k � d volatility matrix

�Lipschitz+Growth conditions: existence of unique strong solution
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� Consumption, portfolios and wealth

� Investor consumes and invests in the di¤erent assets available

�Wealth X. Consumption c.

�Portfolio �: d� 1 vector of wealth fractions in stocks

�Fraction in riskless asset is 1� �0t1

� Evolution of wealth:

dXt = (Xtrt � ct) dt+Xt�
0
t [(�t � rt1) dt+ �tdWt] (3)

� Initial condition X0 = x: amount of capital at initial date

� Assume integrability conditions

� Preferences

� Time-separable von Neumann-Morgenstern representation

�Consumption-bequest plan (c;XT ) ranked according to

E

�Z T

0

u(cv; v)dv + U(XT ; T )

�
(4)

� Instantaneous utility function u : R+ � [0; T ]! R

�Bequest (terminal utility) function U : R+ ! R

�Strictly increasing, strictly concave, di¤erentiable over domains

�Various behavioral assumptions can be embedded in this setting:

� Here assume Inada condition at 0 and 1
� limc!0 u

0(c; t) = limX!0 U
0(X;T ) =1

� limc!1 u
0(c; t) = limX!1 U

0(X;T ) = 0 hold for all t 2 [0; T ]
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� Example: constant relative risk aversion (CRRA)

u (c; t) = at

(
1

1�Rc
1�R for R 6= 1; R > 0 Power utility

log (c) for R = 1 Log utility

� at is subjective discount factor; assumed deterministic

�Marginal utility

u0 (c; t) = at

(
c�R for R 6= 1; R > 0 Power utility

c�1 for R = 1 Log utility

�Relative risk aversion

R (c) = �u
00 (c; t) c

u0 (c; t)
=

(
R for R 6= 1; R > 0 Power utility

1 for R = 1 Log utility
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� Under assumptions above inverse marginal utility functions exist and unique:

� Iu : R+ � [0; T ]! R+ solves u0(Iu (y; t) ; t) = y

� IU : R+ ! R+ solves U 0(IU (y; T ) ; T ) = y

�Strictly decreasing

� limy!0 I
u(y; t) = limy!0 I

U(y; T ) =1 and limy!1 I
u(y; t) = limy!1 I

U(y; T ) = 0

� Example: CRRA

� Inverse marginal utility

I (y; t) =

8><>:
�
y
at

��1=R
for R 6= 1; R > 0 Power utility�

y
at

��1
for R = 1 Log utility
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� Dynamic consumption-portfolio choice problem

max
(c;�;XT )

E

�Z T

0

u(cv; v)dv + U(XT ; T )

�
(5)

s:t:

8><>:
dXt = (rtXt � ct) dt+Xt�

0
t [(�t � rt1) dt+ �tdWt] ; X0 = x

ct � 0; t 2 [0; T ] ; and XT � 0
Xt � 0; ; t 2 [0; T ]

� First eq. describes evolution of wealth given policy (c; �)

� Second captures physical restriction that consumption cannot be negative

� Last constraint is no-bankruptcy condition: wealth cannot be negative

� Optimization over consumption, terminal wealth (bequest) and portfolios
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1.2 Valuation principles

� State prices

� Market price of risk:

� �t � ��1t (�t � rt1) where 1 = (1; :::; 1)0 is d-dimensional vector

�Premia per unit risk (price of Brownian motions) - Sharpe ratios

� State price density (SPD)

�v � exp
�
�
Z v

0

�
rs +

1

2
�0s�s

�
ds�

Z v

0

�0sdWs

�
; v 2 [0; T ]

�Stochastic discount factor for valuation at 0 of cash �ows received at v

�Marginal cost of consumption at time v

� Conditional state price density (CSPD)

�t;v � exp
�
�
Z v

t

�
rs +

1

2
�0s�s

�
ds�

Z v

t

�0sdWs

�
=
�v
�t
;v 2 [t; T ]

�Stochastic discount factor for valuation at t of cash �ows received at v
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� Valuation

� Stocks
St = Et

�Z T

t

�t;vDvdv + �t;TST

�
�Stock price is present value of future dividends

�Dividends are discounted using risk-adjusted rates (implicit in �)

� Contingent claim with payo¤ (f; F )

Vt = Et

�Z T

t

�t;sfvdv + �t;TFT

�
�Price of claim is present value of future cash �ows

�Cash �ows discounted at same risk-adjusted rate

� Price behavior

�Discounted cum-dividend prices are P -martingales

�tSt +

Z t

0

�vDvdv = Et

�Z T

0

�vDvdv + �TST

�
�Discounted ex-dividend prices are P -supermartingales (assuming D > 0)

�tSt = Et

�Z T

t

�vDvdv + �TST

�
� Et [�TST ]
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1.3 Static consumption choice problem

� Static budget constraint

� Consumption plan (c;XT ) is budget feasible at x i¤

E

�Z T

0

�vcvdv + �TX

�
� x: (6)

� Budget set is set of consumption-bequest plans satisfying (6)

� Constraint (6) is static budget constraint:

�Constraint on resource allocation, at zero, for all future times, states

�Does not specify manner in which resources transferred over time

�Market completeness ensures required transfers can be made

� Static consumption-portfolio choice problem

max
(c;XT )

E

�Z T

0

u(cv; v)dv + U(XT ; T )

�
(7)

s:t:

(
E
hR T
0
�vcvdv + �TX

i
� x

ct � 0; t 2 [0; T ] and XT � 0:
(8)

� First constraint: static budget constraint

� Second: captures same physical restrictions as in dynamic problem

� Maximization is over consumption-bequest policies (c;XT )
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� Theorem 1.1: ( Cox-Huang (1989, 1991) and Karatzas-Lehoczky-Shreve (1987))

� Suppose (c; �;XT ) solves dynamic consumption-portfolio choice problem. Then,
(c;XT ) solves static problem

� Conversely, suppose (c;XT ) is a solution to the static problem. Then there
exists a portfolio � such that (c; �;XT ) solves dynamic problem

� Remarks:

� Portfolio � �nancing (c;XT ) leads to wealth process

�tXt = x+ Et

�Z T

t

�vcvdv + �TXT

�
� E

�Z T

0

�vcvdv + �TXT

�

� Assume cons.-bequest policy saturates budget: E
hR T
0
�vcvdv + �TXT

i
= x

�Then wealth �nances exactly PV future consumption at all times

�tXt = Et

�Z T

t

�vcvdv + �TXT

�
� �tVt

� Wealth is present value of future consumption
� In particular XT = VT

�Otherwise resources are left over after �nancing consumption

�tXt = �tVt +

�
x� E

�Z T

0

�vcvdv + �TXT

��
� Optimal portfolio

� If (c;XT ) solves static problem, optimal portfolio is X�0� = ��1�0 + X�0

where � is square integrable process representing martingale

Mt � Et
�Z T

0

�vcvdv + �TXT

�
� E

�Z T

0

�vcvdv + �TXT

�
=

Z t

0

�0vdWv:

�Martingale representation theorem shows existence of � and �

�Formula not very explicit. Structure of portfolio?
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1.4 Optimal consumption-bequest policies

� Optimality conditions

� Complete market:

�Every state contingent allocation can be attained by some port.

� Investor free to select consumption state by state

�No need to worry about means of transferring wealth across states-time

� State by state optimization: compare marginal cost and bene�ts

�Marginal bene�t of consumption at t is marginal utility u0(c; t)

�Marginal bene�t of bequest is U 0 (XT ; T )

�Marginal cost of consumption at t 2 [0; T ] is SPD

� First order conditions are
u0(c; t) = y�t (9)

U 0(XT ; T ) = y�T (10)

E

�Z T

0

�vcvdv + �TXT

�
� x (11)

� Theorem 1.2: Consumption-bequest policy (c�; X�
T ) is optimal for the static prob-

lem (hence the dynamic problem), if and only if there exists a constant y� > 0 such
that (c�; X�

T ; y
�) solves (9)-(11)
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� Theorem 1.3:

� Optimal consumption and bequest policies

c�t = I
u (y��t; t) ; t 2 [0; T ] ; X�

T = I
U (y��T ; T )

�where y� is unique solution of non-linear equation

x = E

�Z T

0

�tI
u (y��t; t) dt+ �T I

U (y��T ; T )

�
:

� Optimal portfolio

X�
t �

�
t = X

�
t (�

0
t)
�1
�t + �

�1
t (�0t)

�1
��t ; t 2 [0; T ]

��� is d-dimensional, square-integrable and progressively meas. process

�uniquely represents P -martingale

Mt = Et

�Z T

0

�tc
�
tdt+ �TX

�
T

�
� E

�Z T

0

�tc
�
tdt+ �TX

�
T

�
:

� Optimal wealth process

X�
t = Et

�Z T

t

�t;vc
�
vdt+ �t;TX

�
T

�
; t 2 [0; T ]

� Value function

J�t = Et

�Z T

t

u (Iu (y��t; t) ; t) dt+ U
�
IU (y��T ; T ) ; T

��
; t 2 [0; T ]
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1.5 Examples

� Examples: constant relative risk aversion

� u (c; t) = atvc (c), U (X;T ) = aTvx (X)

� at; t 2 [0; T ] is deterministic process with initial value a0 = 1

� Example 1: Logarithmic utility, bequest functions (unit relative risk aversion)

� vc (e) = vx (e) = log (e)

� Optimal consumption, bequest, wealth and value function J� are8>>>>>>>><>>>>>>>>:

c�t =
�
y��t
at

��1
XT =

�
y��T
aT

��1
X�
t =

�
y��t
at

��1
m�1
t

J�t = � log
�
y��t
at

�
atm

�1
t � Et

hR T
t
av log

�
�t;v
at;v

�
dv + aT log

�
�t;T
at;T

�i
where

y� = x�1E

�Z T

0

avdt+ aT

�

mt =

�
Et

�Z T

t

at;vdt+ at;T

���1
� Alternatively

c�t = mtX
�
t

J�t = (log (mt) + log (X
�
t )) atm

�1
t � Et

�Z T

t

av log

�
�t;v
at;v

�
dv + aT log

�
�t;T
at;T

��
�mt is marginal propensity to consume out of wealth
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� Construction:

� Inverse marginal functions: Iu (y; t) = (y=at)�1 and IU (y; t) = (y=aT )�1

� Candidate consumption-bequest functions:

cv = I
u(y�v; v) =

�
y�v
av

��1
XT = I

U(y�T ; T ) =

�
y�T
aT

��1
:

� Budget constraint multiplier

	(y) = E

�Z T

0

�vI
u(y�v; v)dt+ �T I

U(y�T ; T )

�
= E

"Z T

0

�v

�
y�v
av

��1
dt+ �T

�
y�T
aT

��1#

= y�1E

�Z T

0

avdt+ aT

�
so that

(y�)�1 =
x

E
hR T
0
avdt+ aT

i :
� Demand functions

c�v = I
u(y��v; v) =

�
y��v
av

��1
=

x

E
hR T
0
avdt+ aT

i ��v
av

��1

X�
T = I

U(y��T ; T ) =

�
y��T
aT

��1
=

x

E
hR T
0
avdt+ aT

i ��T
aT

��1
:

� Optimal wealth

X�
t = Et

"Z T

t

�t;v

�
y��v
av

��1
dv + �t;T

�
y��T
aT

��1#

=

�
y��t
at

��1
Et

"Z T

t

�t;v

�
�t;v
at;v

��1
dv + �t;T

�
�t;T
at;T

��1#

=

�
y��t
at

��1
Et

�Z T

t

at;vdv + at;T

�
�
�
y��t
at

��1
m�1
t
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� Feedback policies

� Inverting wealth �
y��t
at

��1
= mtX

�
t

�Optimal policies

c�t =

�
y��t
at

��1
= mtX

�
t

� Remarks:

� Consumption proportional to wealth

� Marginal propensity to consume does not depend on market coe¢ cients (r; �)

� Lifecycle behavior:

�Marginal propensity to consume explodes as t! T if no bequest motive

�Want to exhaust all resources as horizon approaches
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� Example 2: Power utility, bequest functions (constant relative risk aversion)

� vc (e) = vx (e) = (1�R)�1e1�R; R > 0

� Optimal policies8>>>>>>>>><>>>>>>>>>:

c�t =
�
y��t
at

��1=R
and XT =

�
y��T
aT

��1=R
X�
t =

�
y��t
at

��1=R
m�1
t

J�t =
1

1�R

�
y��t
at

��
atEt

hR T
t
a
1=R
t;v �

�
t;vdv + a

1=R
t;T �

�
t;T

i
where

y� = x�R
�
E

�Z T

0

��va
1=R
v dv + ��Ta

1=R
T

��R
mt =

�
Et

�Z T

t

a
1=R
t;v �

�
t;vdv + a

1=R
t;T �

�
t;T

���1
� Feedback form

ct = mtXt

J�t =
1

1�RX
�1�R
t atm

�R
t

:

� Consumption behavior:

� Consumption linear in wealth

� Market structure matters: dependence on (r; �)

� Lifecycle behavior:

�Horizon behavior similar to log utility

�But dependence on state
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� Assume constant coe¢ cients �; r; �

Et
�
��t;v
�
= exp

�
�
�
�r +

1

2
� (1� �) �0�

�
(v � t)

�

a
1=R
t;v Et

�
��t;v
�
= exp

�
�
�
1

R
� + �r +

1

2
� (1� �) �0�

�
(v � t)

�
� exp (�K (v � t))

mt =

�
Et

�Z T

t

a
1=R
t;v �

�
t;vdv + a

1=R
t;T �

�
t;T

���1
=

�
1

K
(1� exp (�K (T � t))) + exp (�K (T � t))

��1
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1.6 Some extensions

� Failure of Inada condition at zero

� u0 (0; t) <1 at c = 0

� Example: HARA

�u (c; t) = 1
1�R (c+ A)

1�R with A � 0

�u0 (c; t) = (c+ A)�R so that u0 (0; t) = A�R

�u00 (c; t) = �R (c+ A)�R�1

�R (c) = �u00(c;t)c
u00(c;t) =

R(c+A)�R�1c

(c+A)�R
= R c

c+A
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� Inverse marginal utility: Iu (y) = y�1=R � A
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� Optimal policy: ct = max fIu (y��t; t) ; 0g = max
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�1=R � A; 0
o
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� Subsistence consumption, intolerance to shortfalls

� utility function

u (c; t) =

(
u (c� s; t) for c � s
�1 for c < s

� s > 0

�u0 (0; t) =1

� Example: HARA

�u (c� s; t) = 1
1�R (c� s)

1�R for c � s

�u0 (c� s; t) = (c� s)�R so that u0 (0; t) =1

�u00 (c� s; t) = �R (c� s)�R�1

�R (c) = �u00(c�s;t)c
u00(c�s;t) =

R(c�s)�R�1c
(c�s)�R = R c

c�s

� Optimal policy: ct = Iu (y��t; t) + s

� Loss aversion and threshold e¤ects

� Discontinuous derivative at some critical point(s)

� Asymmetric behavrior above and below threshold
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PART 2: Introduction to Malliavin calculus
�Malliavin calculus is a calculus of variations for stochastic processes

� Applies to Brownian functionals: random variables and stochastic processes
that depend on trajectories of Brownian motion

� Malliavin derivative measures impact of small change in trajectory of Brown-
ian motion on value of Brownian functional

� Development of theory:

�Malliavin, Stroock, Bismut,...

�Existence and smoothness of densities

�Reference: Nualart (1995)

� Outline

� De�nition

� Riemann, Wiener and Ito integrals

� Clark-Ocone formula

� Chain rule

� Stochastic di¤erential equations
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2.1 De�nition

� Smooth Brownian functionals

� Space of (smooth) functions: C1p
�
Rnd

�
� f (�) : Rnd ! R

� In�nitely di¤erentiable

�Polynomial growth

� Wiener space generated by d-dimensional Brownian motion W = (W1; :::;Wd)
0

�Each state of nature corresponds to a trajectory of BM

�Set of states is space of trajectories

� Let (t1; :::; tn) be a partition of [0; T ]

�Sample BM at points of this partition: (Wt1 ; :::;Wtn)

�Construct random variable

F (W ) � f (Wt1 ; :::;Wtn)

� f 2 C1p
�
Rnd

�
�F is smooth Brownian functional

� Examples: assume W is one-dimensional

� Quadratic function: W 2
T ,
Pn

j=1W
2
tj

� Any polynomial:
PK

k=1 akW
k
T ;
Pn

j=1

�PK
k=1 akW

k
tj

�
� Stock price in Black-Scholes model: (limit of sequence of SBF)

�ST = S0 exp
��
�� 1

2
�2
�
T + �WT

�
�Write ST = f(WT ) with f(x) = S0 exp

�
(�� 1

2
�2)T + �x

�
�ST is (limit of) smooth Brownian functional (sampled at one point)
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� Experiment:

� Perturbate trajectoy of BM from some time t onward

� Shift W by " starting at t, where tk � t < tk+1 for some k = 1; :::; d
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�Malliavin derivative of smooth Brownian functional (assume d = 1)

� MD at t of F is change in F due to a change in path of W starting at t

� MD of F at t is de�ned by

DtF (W ) �
@f
�
Wt1 + "1[t;1[(t1); :::;Wtn + "1[t;1[(tn))

�
@"

�����
"=0

(12)

= lim
"!0

F (W + "1[t;1[)� F (W )
"

(13)

�where 1[t;1[ is indicator of [t;1) (i.e., 1[t;1[(s) = 1 for s 2 [t;1); 0 otherwise)

�Compact notation

DtF (W ) =
nX
j=1

@jf (Wt1 ; :::;Wtk ; :::;Wtn)1[t;1[(tj) (14)

where @jf is derivative of f with respect to jth argument of f

� MD of F is DF (W ) = fDtF (W ) : t 2 [0; T ]g
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� Example: Black-Scholes model

� Recall ST = f(WT ) with f(x) = S0 exp
�
(�� 1

2
�2)T + �x

�
� Direct application of de�nition gives

DtST = @f(WT )1[t;1[(T )

= �S0 exp

�
(�� 1

2
�2)T + �WT

�
1[t;1[(T ) = �ST1[t;1[(T )

� Malliavin derivative is derivative with respect to WT :

�Perturbation of path of W from t onward a¤ects ST only through WT

� Malliavin derivative at t of Sv

DtSv = �Sv1[t;1[(v)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
95

100

105

110

115
Stock price trajectory

Time

S
to

ck
 p

ric
e

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

10

20

30
Malliavin derivative at time t=1 of stock price process

Time

M
al

lia
vi

n 
de

riv
at

iv
e 

at
 t=

1

26



�Multidimensional case: d > 1

� MD of F at t is now 1� d-dimensional vector DtF = (D1tF; :::;DdtF )

� ith coordinate DitF measures impact of perturbation in Wi by " starting at t

� If tk � t < tk+1 can write one-dimensional de�nition for this derivative

DitF =
nX
j=k

@f

@xij
(Wt1 ; :::;Wtk ; :::;Wtn)1[t;1[(tj) (15)

�where @f=@xij is derivative with respect to ith component of jth argument
of f (i.e. derivative with respect to Witj)

� MD of F is DF (W ) = fDtF (W ) : t 2 [0; T ]g; d-dimensional (row) stoch. proc.

� Domain of Malliavin derivative operator

� MD exists for F 2 D1;2

� Completion of set of smooth Brownian functionals in norm

k F k1;2=
�
E(F 2) + E

�Z T

0

kDtFk2 dt
�� 1

2

where kDtFk2 =
P

i (DitF )
2.
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2.2 Malliavin derivatives of Riemann, Wiener, Ito integrals

�Wiener integral F (W ) =
R T
0
h(t)dWt, where h(t) is fct of time and W is one-dim.

� Integration by parts: F (W ) = h(T )WT �
R T
0
Wsdh(s)

� Application of de�nition gives

F (W + "1[t;1[)� F (W ) = h(T )
�
WT + "1[t;1[(T )

�
�
Z T

0

�
Ws + "1[t;1[(s)

�
dh(s)

�
�
h(T )WT �

Z T

0

Wsdh(s)

�
= h(T )"1[t;1[(T )�

Z T

0

"1[t;1[(s)dh(s)

= "

�
h(T )�

Z T

0

1[t;1[(s)dh(s)

�
= "

�
h(T )�

Z T

t

dh(s)

�
= "h(t):

so that
DtF (W ) = lim

"!0

F (W + "1[t;1[)� F (W )
"

= h (t) (16)

� Conclusion: DtF = h(t)

�MD of F at t is volatility h(t) of stochastic integral at t

�Measures sensitivity of random variable F to Brownian shock at t
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� Random Riemann integral with integrand depending on path of BM

� F (W ) �
R T
0
hsds where hs progressively measurable

� MD

DtF = lim
"!0

F (W + "1[t;1[)� F (W )
"

= lim
"!0

Z T

0

�
hs(W + "1[t;1[)� hs(W )

"

�
ds =

Z T

t

Dthsds

� Ito integral

� F (W ) =
R T
0
hs(W )dWs

� MD
DtF = ht +

Z T

t

DthsdWs

� Malliavin derivatives of Wiener, Riemann, Ito integrals depending on multi-
dimensional BM de�ned in same way (component by component)
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2.3 Clark-Ocone formula

� Clark-Ocone formula:

� Any random variable F 2 D1;2 can be decomposed as

F = E[F ] +

Z T

0

Et [DtF ] dWt (17)

� Martingale closed by F 2 D1;2 (i.e. Mt = Et [F ]):

�Take conditional expectations

�Mt = E[F ] +
R t
0
Es [DsF ] dWs

� Remark

� Results can be used to show MD and conditional expectation commute

� For martingale Mv = Ev [F ] Malliavin derivative is DtMv = Ev [DtF ]

� Equivalently, DtEv [F ] = Ev [DtF ]
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2.4 Chain rule of Malliavin calculus

� In applications often need MD of function of path-dependent random variable

� Chain rule also applies in Malliavin calculus

� Let G = g(F ) where

� F = (F1; :::; Fn) is vector of random variables in D1;2

� g is a di¤erentiable function of F with bounded derivatives

� Malliavin derivative of G = g(F ) is

DtG = Dtg(F ) =
nX
i=1

@g

@xi
(F )DtFi

where @g
@xi
(F ) is derivative relative to the ith argument of �.
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2.5 Stochastic di¤erential equations

� Suppose state variable Yt follows di¤usion process

� dYt = �Y (Yt)dt+ �Y (Yt)dWt where Y0 given

�Assume W one dimensional

� Integral form

Yt = Y0 +

Z t

0

�Y (Ys)ds+

Z t

0

�Y (Ys)dWs:

� Taking Malliavin derivative on each side gives, for s � t ,

DtYs = DtY0 +

Z s

t

@�YDtYvdv +
Z s

t

@�YDtYvdWv + �(Yt)

=

Z s

t

@�YDtYvdv +
Z s

t

@�YDtYvdWv + �(Yt)

where second equality follows from DtY0 = 0

� Conclusion: MD follows linear SDE

d(DtYs) =
�
@�Y (Ys)ds+ @�

Y (Ys)dWs

�
(DtYs) (18)

subject to initial condition lims!tDtYs = �Y (Yt)

� Solution

DtYs = DtYt � exp
�Z s

t

�
@�Y (Yv)�

1

2

�
@�Y (Yv)

�2�
dv +

Z s

t

@�Y (Yv)dWv

�

�Multidimensional case:

� If �Y (Yt) is 1� d vector (W is d-dimensional BM) same arguments apply

� Obtain (18) subject to initial condition lims!tDtYs = �(Yt)

� @�Y (Ys) � (@�Y1 (Ys); :::; @�Yd (Ys)) is row vect: deriv. of components of �Y (Ys)

� MD DtYs is 1� d row vector DtYs = (D1tYs; :::;DdtYs)
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PART 3: Optimal portfolios
� Determination of optimal portfolio (�nancing the consumption-bequest policy)

� Ocone and Karatzas (1991): Clark-Ocone formula

� Detemple, Garcia, Rindisbacher (2003): di¤usion models - implementation

� Outline:

� Optimal portfolio formula

� Special cases and examples

� Implementation

� Example
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3.1 The portfolio formula

� Summary:

� Optimal portfolio uniquely given by

X�
t �

�
t = X

�
t (�

0
t)
�1
�t + �

�1
t (�0t)

�1
��t (19)

��� is d-dimensional process representing martingale

Mt � Et [F �T ]� E [F �T ]

F �T �
Z T

0

�tc
�
tdt+ �TX

�
T

� (c�; X�
T ) as given in Theorem 1.3

� For explicit formula it su¢ ces to identify �� in terms of primitives (r; �; u; U; T )

� Malliavin calculus is instrumental: Clark-Ocone formula

� Derivation:

� Assume F �T 2 D1;2

� Clark-Ocone formula gives
��t = Et

�
(DtF �T )

0� (20)

� Using rules of Malliavin calculus,

DtF �T = Dt
�Z T

0

�vI
u(y��v; v)dt+ �T I

U(y��T ; T )

�
=

Z T

t

Dt (�vIu(y��v; v)) dt+Dt
�
�T I

U(y��T ; T )
�

=

Z T

t

(Iu(y��v; v) + y
��v@yI

u(y��v; v))Dt�vdv

+
�
IU(y��T ; T ) + y

��T@yI
U(y��T ; T )

�
Dt�T

�
Z T

t

Zu(y��v; v)Dt�vdv + ZU(y��T ; T )Dt�T (21)

where @yIu(y��v; v); @yIU(y��T ; T ) are derivatives of Iu(y��v; v); IU(y��T ; T ) with re-
spect to �rst argument
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� MD of SPD: for all v � t

Dt�v = Dt exp
�
�
Z v

0

�
rs +

1

2
�0s�s

�
ds�

Z v

0

�0sdWs

�
de�nition of SPD

= �v �Dt
�
�
Z v

0

�
rs +

1

2
�0s�s

�
ds�

Z v

0

�0sdWs

�
chain rule

= ��v
�Z v

t

(Dtrs + �0sDt�s) ds+
Z v

t

(dWs)
0Dt�s + �0t

�
MD of Riemann, Ito int.

� ��v
�
H 0
t;v + �

0
t

�
def. of Ht;v (22)

� Malliavin derivatives of r; �

�Chain rule: Dtrs = @r (Ys; s)DtYs and Dt�s = @� (Ys; s)DtYs

�Where DtYs is derivative of solution of SDE

dDtYs =
"
@�Y (s; Ys)ds+

dX
i=1

@�Yi (s; Ys)dWis

#
DtYs; DtYt = �Y (t; Yt): (23)

� Here @f (Y ) is 1� k-gradient of function f with respect to Y

� Substituting (20)-(22) into (20) and (19)

��t = Et

"�Z T

t

Zu(y��v; v)Dt�vdv + ZU(y��T ; T )Dt�0T
�0#

= �Et
�Z T

t

Zu(y��v; v)�v (Ht;v + �t) dv + Z
U(y��T ; T )�T (Ht;T + �t)

�

��t = X�
t (�

0
t)
�1
�t + �

�1
t (�0t)

�1
��t

= X�
t (�

0
t)
�1
�t

���1t (�0t)
�1
Et

�Z T

t

Zu(y��v; v)�v (Ht;v + �t) dv + Z
U(y��T ; T )�T (Ht;T + �t)

�
=

�
X�
t � Et

�Z T

t

Zu(y��v; v)�t;vdv + Z
U(y��T ; T )�t;T

��
(�0t)

�1
�t

� (�0t)
�1
Et

�Z T

t

Zu(y��v; v)�t;vHt;vdv + Z
U(y��T ; T )�t;THt;T

�
:
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� Finally

X�
t � Et

�Z T

t

Zu(y��v; v)�t;vdv + Z
U(y��T ; T )�t;T

�
= �Et

�Z T

t

y��v@yI
u(y��v; v)�t;vdv + y

��T@yI
U(y��T ; T )�t;T

�
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� Theorem 3.1:

� Optimal portfolio has decomposition X�
t �

�
t = X

�
t [�

�
1t + �

�
2t] where

X�
t �

�
1t = �Et

�Z T

t

y��v@yI
u(y��v; v)�t;vdv + y

��T@yI
U(y��T ; T )�t;T

�
(�0t)

�1
�t

= Et

�Z T

t

�t;v�
u (c�v; v) dv + �t;T�

U (X�
T ; T )

�
(�0t)

�1
�t (24)

X�
t �

�
2t = � (�0t)

�1
Et

�Z T

t

Zu(y��v; v)�t;vHt;vdv + Z
U(y��T ; T )�t;THt;T

�
= � (�0t)

�1
Et

�Z T

t

�t;v (c
�
v � �u (c�v; v))Ht;vdv + �t;T

�
X�
T � �U (X�

T ; T )
�
Ht;T

�
(25)

� MD of state variables, DtYs, satis�es SDE(23)

� �u (c�v; v) ;�U (X�
T ; T ) are absolute risk tolerance measures

�u (c; v) � � u
0 (c; v)

u00 (c; v)
; �U (X;T ) � �U

0 (X;T )

U 00 (X;T )

�Evaluated at optimal consumption-bequest

� Remarks: two motives for investment

� First motive:

�Tradeo¤ risk ��0 vs expected excess return �� r1: (�0)�1 � = (��0)�1 (�� r1)

�Underlies mean-variance demand �1
�Originally identi�ed by Markowitz (1952)

�Still at core of practical implementations and �nancial advice

� Second motive:

�Hedging motive: prompted by stochastic �uctuations in opportunity set
(interest rate and market price of risk)

�Underlies demand component �2
� Identi�ed by Merton (1971)

� Important aspect of optimal dynamic asset allocation policies
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3.2 Special cases and examples

� Deterministic opportunity set (r; � deterministic)

� Malliavin derivatives Dtrv = Dt�v = 0. Hedging demand vanishes X�
t �

�
2t = 0

� Investment demand reduces to mean-variance term

X�
t �

�
1t = Et

�Z T

t

�t;v�
u (c�v; v) dv + �t;T�

u (X�
T ; T )

�
(�0t)

�1
�t

� Irrespective of preferences

� Coe¢ cient in MV demand is cost of optimal risk tolerance

� Stochastic opportunity set (r; � stochastic)

� Dynamic hedging motive becomes relevant

� Signing hedges:

�Suppose condition
�
(�0t)

�1Ht;v
�
i
� 0 for all v 2 [t; T ]

�Hedging increases (decreases) holdings of asset i if risk tolerance exceeds
(falls below) consumption and bequest

� As c�v � �u (c�v; v) � 0 and X�
T � �U (X�

T ; T ) � 0
� Can be restated in terms of relative risk aversion (Breeden (1979))

c�v � �u (c�v; v) =
c�v

Ru (c�v; v)
(Ru (c�v; v)� 1)

X�
T � �U (X�

T ; T ) =
X�
T

RU (X�
T ; T )

�
RU (X�

T ; T )� 1
�

�Condition on Ht;v applies, in particular for IRH in one risky asset model

� if interest rate negatively impacted by innovations, and
� the stock market returns positively a¤ected by innovations
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� Constant relative risk aversion (Example 2) with subjective discount factor
at � exp (��t) where � is a constant

� Optimal consumption policy c�v = (y��v=av)�1=R and X�
T = (y

��T=aT )
�1=R

� Optimal portfolio X�
t �

�
t = X

�
t [�

�
1t + �

�
2t] where

X�
t �

�
1t =

X�
t

R
(�0t)

�1
�t (26)

X�
t �

�
2t = �X�

t � (�
0
t)
�1
Et

hR T
t
��t;va

1=R
t;v Ht;vdv + �

�
t;Ta

1=R
t;T Ht;T

i
Et

hR T
t
��t;va

1=R
t;v dv + �

�
t;Ta

1=R
t;T

i (27)

with � = 1� 1=R

� Details:

�Consumption-bequest functions: c�v = (y��v=av)�1=R and X�
T = (y

��T=aT )
�1=R

�Substituting �u (c�v; v) = c�v=R and �U (X�
T ; T ) = X

�
T=R in portfolio gives

X�
t �

�
1t =

1

R
Et

�Z T

t

�t;vc
�
vdv + �t;TX

�
T

�
(�0t)

�1
�t =

1

R
X�
t �t

X�
t �

�
2t = �� (�0t)

�1
Et

�Z T

t

�t;vc
�
vHt;vdv + �t;TX

�
THt;T

�
= �� (�0t)

�1
Et

"Z T

t

�t;v

�
y��v
av

��1=R
Ht;vdv + �t;T

�
y��T
aT

��1=R
Ht;T

#

= �
�
y��t
at

��1=R
� (�0t)

�1
Et

"Z T

t

�t;v

�
�t;v
at;v

��1=R
Ht;vdv + �t;T

�
�t;T
at;T

��1=R
Ht;T

#

= �
�
y��t
at

��1=R
� (�0t)

�1
Et

�Z T

t

��t;va
1=R
t;v Ht;vdv + �

�
t;Ta

1=R
t;T Ht;T

�
:

�Constant y� eliminated by using wealth

X�
t = Et

�Z T

t

�t;vc
�
vdv + �t;TX

�
T

�
= Et

"Z T

t

�t;v

�
y��v
av

��1=R
dv + �t;T

�
y��T
aT

��1=R#

=

�
y��t
at

��1=R
Et

�Z T

t

��t;va
1=R
t;v dv + �

�
t;Ta

1=R
t;T

�
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to deduce �
y��t
at

��1=R
=

X�
t

Et

hR T
t
��t;va

1=R
t;v dv + �

�
t;Ta

1=R
t;T

i
� Properties:

�Portfolio linear in wealth

�Fraction of wealth invested depends on state (r; �)
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3.3 Implementation

� Computation of optimal portfolios:

� Structure of portfolios as conditional expectations suggests Monte Carlo

� Several possibilities for implementation: here method using formula above

� Monte Carlo Malliavin derivatives method - MCMD (DGR (2003))

� Two cases: depending on whether y� is known or not

� Case 1: known multiplier

� Write X�
t �

�
2t = � (�0t)

�1Et [Gt;T ] where Gt;T � Gct;T +Gxt;T , with

Gct;s �
Z s

t

�t;vZ1(y
��v; v)Ht;vdv and Gxt;T � �t;TZ2(y��T ; T )Ht;T : (28)

� Write RV in hedges as joint system Vt;s � (Ys; DtYs; Kt;s; Ht;s; G
c
s), where

Kt;v �
Z v

t

�
rs +

1

2
�0s�s

�
ds+

Z v

t

�0sdWs

H 0
t;v �

Z v

t

@r(Ys; s)DtYsds+
Z v

t

�0s@�(Ys; s)DtYsds+
Z v

t

dW 0
s � @�(Ys; s)DtYs

�t;v = exp (�Kt;v)

� By Ito�s Lemma

dKt;s =

�
rs +

1

2
�0s�s

�
ds+ �0sdWs (29)

dH 0
t;s = @r(Ys; s)DtYsds+ (dWs + �(Ys; s)ds)

0 @�(Ys; s)DtYs; (30)

dGct;s = �t;sZ1(y
��s; s)Ht;sds (31)

and (Ys;DtYs) satisfy SDEs

dYt = �
Y (Yt; t)dt+ �

Y (Yt; t)dWt (32)

dDtYs =
"
@�Y (s; Ys)ds+

dX
i=1

@�Yi (s; Ys)dWis

#
DtYs; DtYt = �Y (t; Yt): (33)
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� Simulate M trajectories of V using (29)-(31), (32)-(33)

�Select discretization scheme (e.g., Euler, Milshtein, ...): N points in [0; T ]

�Simulate M trajectories of W along discretization. Construct traject. V

�Get M estimates
n
V N;it;s : s 2 [t; T ]

o
; i = 1; :::;M of trajectories fVt;s : s 2 [t; T ]g

�From terminal values of simulated proc. construct M estimates of Gt;T

�Averaging over these M values produces estimate of hedging demand

\X�
t �

�
2t = � (�0t)

�1 1

M

MX
i=1

GN;it;T

� Case 2: y� is unknown. Use two stage procedure:

� Stage 1: calculate y� by simulation-iteration

�Fix candidate multiplier y

�Based on this choice simulate
�
K0;s; F

c
0;s

�
where F c0;s =

R s
0
�vI(y�v; v)dv

�Obtain estimate of cost of consumption by taking average

� If budget constraint fails raise y and repeat. Else reduce y

�Repeat to desired precision

� Stage 2: proceed as described above

� Various schemes can be used to accelerate stage 1 (Newton-Raphson,...)
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3.4 Example

�Model:

� One stock and riskless asset

� State variables (r; �)

� Constant relative risk aversion

� Evolution of opportunity set

drt = �r(r � rt)
�
1 + �r(r � rt)2�r

�
dt� �rr
rt dWt; r0 given (34)

d�t =
�
��(� � �t) + �r�(rt;�t)

�
dt+ ��(�t)dWt; �0 given, (35)

where W is one dimensional

�r�(rt; �t) � �r(r � rt)(�l + �t)
�
1�

�
�l + �t
�l + �u

��
(36)

��(�t) = ��(�l + �t)

1�

 
1�

�
�l + �t
�l + �u

�1�
1�!
2�
: (37)

� Coe¢ cients

� (�r; r; �r; �r; �r; 
r; ��; �; ��; ��; �l; �u; 
1�; 
2�) are constants

� (�r; r; ��; �l; �u) are positive, and � 2 (��l; �u)

�Brownian motion W is unidimensional

� Remarks:

� Interest rate process:

�Mean reverting with constant elasticity of variance (NMRCEV), 2
r
�Nonlinear speed of mean reversion: �r(r � rt)2�r
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� Market price of risk process:

�Mean reverting with hyperbolic elasticity of variance

� Interest dependence in drift (MRHEVID)

�Elasticity

"(x) = �2 x

�l + x

264
1� � 
2�(1� 
1�)
�
�l+x
�l+�u

�1�
1�
1�

�
�l+x
�l+�u

�1�
1�
375 :

Process stays between bounds
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�Malliavin derivatives

dDtrv =
�
@

@r
�r(rv)dt�

@

@r
�r(rv)dWv

�
Dtrv; Dtrt = �r(rt)

dDt�v =
�
@

@�
��(rv; �v)dv +

@

@�
��(�v)dWv

�
Dt�v +

@

@r
��(rv; �v)Dtrvdv; Dt�t = ��(�t)

� Parameter values (see DGR 2003)
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� Implementation: portfolio components - risk aversion and horizon e¤ects
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� Dynamic behavior of portfolio components
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PART 4: Optimal Portfolio and Bonds

� Alternative decomposition of portfolio

� Unobserved short rate: substitute information in term structure

� Portfolio behavior for long horizons: long run risk factors

� Portfolio and bond pricing models

� Detemple-Rindisbacher (2006)

� Outline

� Forward measure

� Optimal portfolio: utility of terminal wealth

� Optimal portfolio: intermediate consumption

� Di¤usion models: implementation

� Deterministic forward density
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4.1 Bond pricing and forward measure

� Forward measure:

� Pure discount bond with maturity T � t has price: BTt = Et
�
�t;T
�

� State price density in bond numeraire

Zt;T �
�t;T

Et
�
�t;T
� = �t;T

BTt

�Zt;T > 0 and Et [Zt;T ] = 1

�Use as density of new measure

� Forward T -measure

� dQTt = Zt;TdP

�Equivalent to P

�Zt;T is forward T -density

�Geman (1989), Jamshidian (1989)

� Pricing in bond numeraire

� Claim with payo¤ YT has price

V (t) = Et
�
�t;TYT

�
= Et

�
�t;T
�
Et

"
�t;T

Et
�
�t;T
�YT# = BTt ETt [YT ]

�ETt [�] � Et [Zt;T �] is expectation under QTt

� Price in bond numeraire
V (t)

BTt
= ETt [YT ] = Et [Zt;TYT ]

� Density Zt;T is stochastic discount factor

�Converting future cash �ows into current values measured in bond units
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� Theorem 4.1:

� The conditional state price density at time t is �t;T = BTt Zt;T

� The forward T -density is

Zt;T � exp
�Z T

t

�Z (s; T )0 dWs �
1

2

Z T

t

�Z (s; T )0 �Z (s; T ) ds

�
(38)

�Volatility �Z (s; T ) � �B (s; T )� �s

��B (s; T )0 � Ds logBTs is vol. of return on discount bond with maturity T

� Decomposition of SPD: �t;T = BTt Zt;T . Two parts

� Bond price

� Risk-adjusted SDF: applies to risky cash �ows in bond numeraire

� Forward density formula:

� Volatility ��Z (�; T ) � �� � �B (�; T )

�MPR in bond numéraire: forward market price of risk

� Cumulative standard deviation of the growth rate of the forward density

� (t; T ) =

�Z T

t

�Z (s; T )0 �Z (s; T ) ds

�1=2
: (39)

�Measures risk to horizon T , in forward density

�� (t; T ) is forward T -risk or forward risk
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4.2 Optimal portfolio and long term bonds

� Theorem 4.2:

� Optimal wealth, for t 2 [0; T ], is X�
t = B

T
t Et

h
Zt;T I

�
y��tB

T
t Zt;T

�+i.
� Portfolio has decomposition ��t = �mt + �bt + �zt

X�
t �

m
t = E

T
t

�
��T1fIT�0g

�
BTt (�

0
t)
�1
�t (40)

X�
t �

b
t = (�

0
t)
�1
�B (t; T )ETt

�
(X�

T � ��T ) 1fIT�0g
�
BTt (41)

X�
t �

z
t = (�

0
t)
�1
ETt
�
(X�

T � ��T ) 1fIT�0gDt log (Zt;T )
�0
BTt : (42)

� IT � I(y��tBTt Zt;T )

�ETt [�] � Et [Zt;T �] is under forward T -measure.

� Interpretation:

� Mean-variance term �mt : as before

� Long term bond hedge �bt: �uctuations in price of horizon-matching bond

� Forward density hedge �zt : �uctuations in MPR in bond numeraire

� Shift focus from risk relative to short rate to risk relative to LT bond

� Additional remarks:

� Consistent with Preferred Habitat theory

�Modigliani and Sutch

� Investor naturally seeks LT bond with horizon-matching maturity

� Hedges

�First hedge is static hedge (instantaneous �uct. in bond price)
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�Forward density hedge is dynamic hedge (�uct. in opportunity set)

� Corollary 4.1: HARA utility function

U (x) =

(
1

1�R(x� A)
1�R if x � A

�1 if x < A
; R > 0; A R 0: (43)

� When A � 0 optimal asset allocation is ��t = �mt + �bt + �zt with

X�
t �

m
t =

1

R

�
X�
t � ABTt

�
(�0t)

�1
�t

X�
t �

b
t =

�
�
�
X�
t � ABTt

�
+ ABTt

�
(�0t)

�1
�B (t; T )

X�
t �

z
t = �

�
X�
t � ABTt

�
(�0t)

�1
ETt

"
Z��1t;T

ETt
�
Z��1t;T

�Dt log (Zt;T )#0
where � = 1� 1=R.

� When A < 0 portfolio components are as in Theorem 4.1 with

X�
T =

��
y��tB

T
t Zt;T

��1=R
+ A

�+
; ��T =

1

R
(X�

T � A)

and IT �
�
y��tB

T
t Zt;T

��1=R
+ A.

� Power utility (A = 0):

� Knife edge property of log (Breeden (1979))

� Logarithmic investor: myopic

� More (less) RA than log holds (shorts) port. with highest correlation with
LT bd

� More (less) RA than log holds (shorts) portfolio that hedges log (Zt;T )
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� HARA with A > 0: subsistence threshold

� Structure:

�MV dem and forward density hedge proport. to excess wealth X�
t � ABTt

�Bond hedge a¢ ne in X�
t � ABTt with translation factor ABTt

� Explanation:

�Decomposition of wealth:

� Cost of �nancing threshold ABTt
� Excess wealth X�

t � AB

�Portfolio �nancing excess wealth is proportional to X�
t � ABTt

�Portfolio �nancing cost of threshold is hedging port.; proport. to cost
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4.3 Running consumption

�Model:

� Utility of intermediate consumption: u (�; �) : Du � [0; T ]! R

�Strictly increasing, strictly concave, di¤erentiable

�Domain Du = [Au;1) � R with Au positive or negative

� Inada: for all t 2 [0; T ], limc!1 u
0(c; t) = 0, limc!Au u

0(c; t) =1

� Utility of terminal wealth U : DU ! R

�Strictly increasing, strictly concave and di¤erentiable

�Domain DU = [AU ;1) � R

� Inada: limX!1 U
0(X) = 0, limX!AU U

0(X) =1

� Initial wealth condition: x > A+u
�R T

0
Bv0dv

�
+ A+UB

T
0
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� Theorem 4.3:

� Optimal consumption-bequest: c�v = Iu (y��tBvt Zt;v; v)
+ and X�

T = I
U
�
y��tB

T
t Zt;T

�+
� Intermediate wealth satis�es

X�
t =

Z T

t

BvtE
v
t [c

�
v] dv +B

T
t E

T
t [X

�
T ]

� Let Iuv � Iu (y��tB
v
t Zt;v; v) and IUT � I

�
y��tB

T
t Zt;T

�
� Optimal portfolio has decomposition ��t = �mt + �bt + �zt with

X�
t �

m
t =

�Z T

t

Evt
�
��v1fIuv�0g

�
Bvt dv + E

T
t

h
��T1fIUT �0g

i
BTt

�
(�0t)

�1
�t

X�
t �

b
t = (�

0
t)
�1
�Z T

t

�B (t; v)BvtE
v
t

�
(c�v � ��v) 1fIuv�0g

�
dv + �B (t; T )BTt E

T
t

h
(X�

T � ��T ) 1fIUT �0g
i�

X�
t �

z
t = (�

0
t)
�1
�Z T

t

Evt
�
(c�v � ��v) 1fIuv�0gDt logZt;v

�
Bvt dv + E

T
t

h
(X�

T � ��T ) 1fIUT �0gDt logZt;T
i
BTt

�0
�Zt;v is density of forward v-measure

� Volatility �Z (s; v) � �B (s; v)� �s
� �B (s; v)0 � Ds logBvs is bond return volatility

�Evt [�] � Et [Zt;v�] is under forward v-measure, v 2 [t; T ].

� Interpretation:

� Mean-variance term, bond hedge, forward density hedge

� Bond hedge:

�Coupon-paying bond

� Coupon C (v) � Evt
�
(c�v � ��v) 1fIuv�0g

�
at v 2 [0; T )

� Bullet payment F � ETt

h
(X�

T � ��T ) 1fIUT �0g
i
at T
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�Coupon bond price

BTt (C;F ) �
Z T

t

BvtC (v) dv +B
T
t F

� Instantaneous coupon bond volatility (taking coupon as given)

�
�
BTt (C;F )

�
BTt (C;F ) =

Z T

t

�B (t; v)BvtC (v) dv + �
B (t; T )BTt F

�Hedge is positive if c�v � ��v � 0 for v 2 [0; T ) and X�
T � ��T � 0
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� Corollary 4.2: HARA utilities with Au; Ru for u (c; t) and AU ; RU for U(x)

� Assume x � A+u
R T
0
Bv0dv + A

+
UB

T
0

�Portfolio components given by formulas in Theorem 4.3 with

c�v =
�
(y��t)

�1=Ru (Bvt Zt;v)
�1=Ru + Au

�+
; X�

T =
�
(y��t)

�1=RU �BTt Zt;T ��1=RU + AU�+
Iuv � (y��t)

�1=Ru (Bvt Zt;v)
�1=Ru + Au and IUT � (y��t)

�1=RU �BTt Zt;T ��1=RU + AU :
�When Au; AU � 0 portfolio components take the form

X�
t �

m
t =

�
1

Ru

�Z T

t

(�vt � Au)Bvt dv
�
+

1

RU

�
�Tt � AU

�
BTt

�
(�0t)

�1
�t

X�
t �

b
t = (�

0
t)
�1
�Z T

t

�B (t; v)Bvt

�
�u�

v
t +

1

Ru
Au

�
dv + �B (t; T )BTt

�
�U�

T
t +

1

RU
AU

��
X�
t �

z
t = (�

0
t)
�1
�
�u

Z T

t

Evt [c
�
vDt logZt;v]Bvt dv + �UETt [X�

TDt logZt;T ]BTt
�0

� �vt = Evt [c�v] is date t cost in bond numéraire of date v consumption
� �Tt = ETt [X�

T ] is date t cost in bond numéraire of terminal wealth

� �u = 1� 1=Ru, �U = 1� 1=RU .

� Coupon bond hedge:

� Coupon C (v) = �u�vt + Au
Ru
: a¢ ne in cost of date v consumption in bd numéraire

� Bullet payt F = �U�Tt + AU
RU
: a¢ ne in cost of terminal wealth in bd numéraire

� Can have positive coupon hedge �u�vt + Au
Ru
& negative bullet hedge �U�Tt + AU

RU
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4.4 Di¤usion models - implementation

�Model:

� Utility of terminal wealth (no intermediate consumption)

� Di¤usion model:

�Vector of state variables Y

�Evolution of � 0t �
�
�Z (t; T )0 ; Y 0t

�
(
d�Z (t; T ) = � (�t; t) dt+ � (�t; t) dWt

dYt = �
Y (Yt; t) dt+ �

Y (Yt; t) dWt

(44)

with initial conditions �Z (0; T ) and Y0

�Functions � (�; �) ;� (�; �) ; �Y (�; �) ; �Y (�; �) are continuously di¤erentiable
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� Theorem 4.5: (utility of terminal wealth)

� Malliavin derivative of log forward density

Dt logZt;T =
Z T

t

�
dW T

s

�0Dt�Z (s; T ) (45)

where
�
Dt�Z (s; T ) ;DtYs

�
satis�es linear SDE8<: d

�
Dt�Z (s; T )

�
=
�
AZ1 ds+

Pd
j=1 @1�jdW

T
js

�
Dt�Z (s; T ) +

�
AZ2 ds+

Pd
j=1 @2�jdW

T
js

�
DtYs

d (DtYs) =
�
AY ds+

Pd
j=1 @�

Y
j dW

T
js

�
DtYs

(46)

�Coe¢ cients

AZ1 � @1� +
dX
j=1

@1�j�
Z
j ; AZ2 � @2� +

dX
j=1

@2�j�
Z
j ; AY � @�Y +

dX
j=1

�Zj @�
Y
j

� @i�, @i� are gradients with respect to ith component of vector � in �;�

� Forward density

Zt;T � exp
�Z T

t

�Z (s; T )0 dW T
s +

1

2

Z T

t

�Z (s; T )0 �Z (s; T ) ds

�
(47)

under bond numéraire, where
�
�Z (t; T ) ; Yt

�
satis�es(

d�Z (t; T ) =
�
� (�t; t) + � (�t; t)�

Z (t; T )
�
dt+ � (�t; t) dW

T
t

dYt =
�
�Y (Yt; t) + �

Y (Yt; t)�
Z (t; T )

�
dt+ �Y (Yt; t) dW

T
t :

(48)

� Computation:

� Simulate relevant processes directly under forward measure

� Compute expectations by averaging over simulated values
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4.5 Deterministic forward density volatility

� Assumption

� Forward density volatility �Z (t; T ) is a (nonstochastic) function of time

� Forward risk � (t; T ) is deterministic

� Corollary 4.3: (deterministic forward density vol)

� Optimal wealth

X�
t

BTt
=

Z d(U 0(0_A);y��tBTt )

�1
I
�
y��tB

T
t e

1
2
�(t;T )2+�(t;T )z

�
n (z) dz � �

�
y��tB

T
t

�
(49)

d
�
U 0 (0 _ A) ; y��tBTt

�
� 1

� (t; T )

�
log

U 0 (0 _ A)
y��tB

T
t

� 1
2
� (t; T )2

�
(50)

��
�
y��tB

T
t

�
is optimal wealth in bond numéraire

�n (z) is standard normal density

� Inverting � (�) in (49) gives y��tBTt = ��1
�
X�
t =B

T
t

�
� Portfolio

X�
t �

m
t = B

T
t K

�
X�
t

BTt
;� (t; T )

�
(�0t)

�1
�t (51)

X�
t �

b
t = (�

0
t)
�1
�B (t; T )

�
X�
t �BTt K

�
X�
t

BTt
;� (t; T )

��
(52)

X�
t �

z
t = 0 (53)

�K (�; �) � ETt
�
��T1fIT�0g

�
: cost of optimal risk tol. in bd numéraire

K

�
X�
t

BTt
;� (t; T )

�
=

Z d

�
U 0(0_A);��1

�
X�t
BTt

��
�1

�

�
I

�
��1

�
X�
t

BTt

�
e
1
2
�(t;T )2+�(t;T )z

��
n (z) dz

(54)
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� HARA: U 0 (0 _ A) = (�A _ 0)�R and

�
�
y��tB

T
t

�
=

�
y��tB

T
t

��1=R
e�

1
R
� 1
2
�(t;T )2N

�
d
�
(�A _ 0)�R ; y��tBTt

�
+
1

R
� (t; T )

�
+AN

�
d
�
(�A _ 0)�R ; y��tBTt

��
(55)

K

�
X�
t

BTt
;� (t; T )

�
=
1

R

�
X�
t

BTt
� AN

�
d

�
(�A _ 0)�R ; ��1

�
X�
t

BTt

����
(56)

� N (�): cumulative normal distribution function

� Remarks:

� Forward market price of risk deterministic:

�No reason to hedge

�Forward density hedge null

� Components

�Expressed in terms of optimal wealth and model coe¢ cients

�Truncated integrals of risk tolerance w.r.t. to normal random variate

� HARA utility

�Risk tolerance a¢ ne in terminal wealth over domain where it is positive

�Optimal wealth & port. components involve cumulative normal distrib.

�Nonlinear wealth e¤ects in portfolio components
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� Proposition 4.1: (wealth e¤ects)

� Derivative of cost of optimal risk tolerance K (�;� (t; T )) w.r.t. X�
t =B

T
t

K1

�
X�
t

BTt
;� (t; T )

�
=

R d(�)
�1 �

0 (�) � (�)n (z) dz + � (0 _ A)n (d (�)) 1
�(t;T )

K
�
X�
t

BTt
;� (t; T )

�
+ (0 _ A)n (d (�)) 1

�(t;T )

��0 (�) ;� (�) evaluated at I
�
��1

�
X�
t =B

T
t

�
e
1
2
�(t;T )2+�(t;T )z

�
� d (�) � d

�
U 0 (0 _ A) ; ��1

�
X�
t =B

T
t

��
� Impact of wealth on portfolio share components

@�mt
@X�

t

R 0()
�
K1

�
X�
t

BTt
;� (t; T )

�
X�
t

BTt
�K

�
X�
t

BTt
;� (t; T )

��
(�0t)

�1
�t R 0

@�bt
@X�

t

R 0() � (�0t)
�1
�B (t; T )

�
K1

�
X�
t

BTt
;� (t; T )

�
X�
t

BTt
�K

�
X�
t

BTt
;� (t; T )

��
R 0:

� Under the assumptions:

�Absolute risk tol. is decreasing function (�0 (X) < 0)

�Relative risk tol. is increasing function ((� (X) =X)0 > 0)

�MV share �mt decreases with wealth when (�0t)
�1 �t > 0

�Bond hedge share increases with wealth when (�0t)
�1 �B (t; T ) > 0

� Arrow (1965): reasonable model for behavior

� Decreasing absolute risk tolerance

� Increasing relative risk tolerance
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� In particular, if equities and bond with horizon-matching maturity marketed

� (�t�0t)
�1 �t�

B (t; T )= [0; 1]0

� Equity and bond shares

�St =
K
�
X�
t =B

T
t ;� (t; T )

�
X�
t =B

T
t

mS
t (57)

�Bt =
K
�
X�
t =B

T
t ;� (t; T )

�
X�
t =B

T
t

mB
t +

 
1�

K
�
X�
t =B

T
t ;� (t; T )

�
X�
t =B

T
t

!
(58)

with

(�0t)
�1
�t �

"
mS
t

mB
t

#

� Bond held for diversi�cation and hedging

� Equities held exclusively for diversi�cation

� When wealth increases:

�MV part of bond share decreases while hedge part increases (if mB
t > 0)

�Bond increasingly held for hedging; diversi�cation motive weakens

�Bonds-to-equities ratio �Bt =�St increases

� Perspective:

� Flight-to-safety: substitution from stocks to bds during downturns or after
losses

� Analysis shows �ight-to-safety depends on risk attitudes

�Under conditions stated wealth reductions imply decrease in BTE

�Substitution away from bonds and into stocks!

�Conventional wisdom inconsistent with Arrow�s �reasonable�behavioral
postulates
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� Proposition 4.2: (forward risk e¤ects)

� Derivative of K
�
X�
t =B

T
t ; �
�
wrt forward T -risk � has two parts (K2 = K21 +K22)

K21 = �
 Z d(�)

�1
�0 (�) � (�) (� (t; T ) + z)n (z) dz + � (0 _ A)n (d (�))

�
d (�)
� (t; T )

+ 1

�!

K22 = �K1 �
 Z d(�)

�1
� (�) (� (t; T ) + z)n (z) dz + (0 _ A)n (d (�))

�
d (�)
� (t; T )

+ 1

�!

�K21 is direct impact of � (t; T ) keeping ��1
�
X�
t =B

T
t

�
�xed

�K22 is indirect e¤ect through ��1
�
X�
t =B

T
t

�
� Impact of forward risk on portfolio share components

@ (�mt =X
�
t )

@� (t; T )
R 0() (K21 +K22) (�

0
t)
�1
�t R 0

@
�
�bt=X

�
t

�
@� (t; T )

R 0() � (�0t)
�1
�B (t; T ) (K21 +K22) R 0:

� Impact of investment horizon on portfolio share components:

� Keeping wealth in bond numéraire X�
t =B

T
t �xed

� Identical to impact of forward risk

� Intuition: Investor averse to long run risk should shy away from risky long-lived
assets when forward risk increases

� Aversion to forward T -risk

�Negative impact of � (t; T ) on cost of optimal risk tolerance

�K2 = K21 +K22 < 0

� When K2 < 0

�Diversi�cation part of port. shares decreases if (�0t)
�1 �t > 0: risk reduction

�Static hedge part of port. shares increases if (�0t)
�1 �B > 0: enhanced

protection
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� Bond versus equity choice:

� Assume (�0t)
�1 �t =

�
mS
t ;m

B
t

�0
> 0 and K2 < 0

� If long run risk increases:

� Investor reduces fraction of wealth allocated to equities

� Increases (reduces) share in the bond if mB
t < 1 (if mB

t > 1)

�Unambiguously increases BTE ratio

� Aging e¤ects (horizon e¤ects):

� As horizon increases (age decreases) forward risk increases

� Suppose wealth in bond numéraire held constant. Horizon e¤ects are then
same as forward risk e¤ects

� Standard advice:

� Increase BTE when individuals age

�Perception that �stocks are for the long run�

� Siegel (1998)
� Large magnitude of long horizon Sharpe ratios for stocks wrt bds

� Analysis above shows optimal behavior critically depends on preferences

� Investors averse to forward T -risk will actually increase their BTE in
response to increase in risk induced by longer horizon

�Younger investors of this sort will �nd it optimal to tilt their risky allo-
cation toward bonds, not toward equities as recommended
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PART 5: Applications

� Questions of interest:

� Extreme risk aversion:

� Impact on portfolio

�Preferences for risky assets (stocks and bonds)

� Long run portfolios

� Investors caring about distant horizons (pension plans, institutions,...)

�How to invest?

5.1 Extreme risk aversion

� Extreme risk aversion:

� Absolute risk aversion goes to in�nity

� Absolute risk tolerance goes to zero

� (�u(z; v);�U(z))! (0; 0) for all z 2 D and all v 2 [0; T ]

� Extreme behavior can take various forms:

� More intense in certain maturity ranges

� Consumption & bequest preferences provide natural classi�cation of behavior

� Behavior of ratio: �u(z1; v)=�U(z2)
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� Proposition 5.1:

� Assume risk tolerance measures vanish

� (�u(z; v);�U(z))! (0; 0) for all z 2 D and all v 2 [0; T ]

�Ratios of risk tolerance measures

�u(z1; v)

�U(z2)
! k for all z1; z2 2 D and all v 2 [0; T ]

�u(z1; v1)

�u(z2; v2)
! 1 for all z1; z2 2 D and all v1; v2 2 [0; T ]

� for some constant k 2 [0;+1)

� Optimal allocation in the limit:

�Coupon-paying bond with constant coupon C and face value F

C =
xR T

0
Bv0dv +B

T
0 =k

and F =
xR T

0
Bv0dvk +B

T
0

:

� If k = 0 exclusive preference for pure discount bd: (C;F ) =
�
0; x=BT0

�
� If k !1 preference for a pure coupon bond: (C;F ) =

�
x=
R T
0
Bv0dv; 0

�

� Limit habitat preferences are striking

� Natural conjecture: more extreme RA determines preferred instrument

� Reverse holds

�Least extreme drives habitat

�More weight on maturities where risk tolerance greater
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� Reason:

� When absolute risk tolerances vanish investor seeks perfect smoothing

� Preference for certainty: constant consumption and terminal wealth

� With vNM preferences:

�Vanishing risk tolerance implies vanishing elasticity of intertemp. substit.

�Limit preferences, in (C;F ) plane, induce Leontief indi¤erence curves

�Engle curves:

� Relate demand for C;F to income
� Keeping prices BTt and

R T
t
Bvt dv constant

� Slope k

� If k is �nite solution is interior as both income elast of C & F are �nite
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� If k = 0 Engle curves horizontal; income elast of consumption fct. null
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� If k !1 Engle curves vertical; income elast. of bequest fct. null

� Income elasticity behavior explains choice of preferred habitat

� Remark:

� Wachter (2003) special case with utility over bequest and Ito prices

� Finds preferred habitat when relative RA goes to in�nity: pure discount bd
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5.2 Portfolio turnpike theorems: asymptotic portfolios

�Market:

� Preferences: vNM with utility over terminal wealth

� Financial market: equities, long term bonds and money market account"
dSt=St

dBTt =B
T
t

#
=

"
�St � �t
�Bt

#
dt+

"
�St 0

�B (t; T ) %(t; T ) �B (t; T )
p
1� %(t; T )2

#"
dW1t

dW2t

#

��B (t; T ) instantaneous bond return volatility

� %(t; T ) instantaneous correlation between bond and equities return

70



� Proposition 5.1: (Gaussian bond return models)

� Deterministic forward market price of risk ��Z(t; T )

� Limits
lim
T"1

BTt = 0; (P � a:s:) (normal market) (59)

lim
T"1

% (t; T ) = %L (t) 2 (�1; 1) (60)

lim
T"1

�B (t; T ) = �B;L (t) 2 [�1;+1] (61)

(where %L (t) ; �B;L (t) are deterministic)

� If positive part of inverse marginal utility has MD (i.e., I(y��T )+ 2 D1;2) and
marginal utility U 0 varies regularly at in�nity with exponent �RL, i.e.,

lim
x"1

U 0 (ax)

U 0 (x)
= a�R

L

; for all a > 0

then long run optimal portfolio is given by�
�St
X�
t

�
L

� lim
T!1

�St
X�
t

=
1

RL

�
�1t
�St
� 
L(t)�2t

�St

�

�
�Bt
X�
t

�
L

� lim
T"1

�Bt
X�
t

=

8>>><>>>:
sign (�2t)�1 if �B;L (t) = 0

1� 1
RL

if j�B;L (t) j = +1
1
RL

�
�2t

�B;L(t)
p
1��L(t)

�
+ 1� 1

RL
otherwise

where 
L (t) � %L (t) =
q
1� %L (t)2. The long run bond-to-equities ratio is

eLt �

�
�Bt
X�
t

�
L�

�St
X�
t

�
L

=

8>>>><>>>>:
sign

�
�2t
�St

�
� sign

�
�1t � 
L (t) �2t

�
�1 if �B;L (t) = 0�

RL � 1
� �

�1t
�St
� 
L(t) �2t

�St

��1
if j�B;L (t) j = +1

�St

�
�2t

�B;L(t)
p
1�%L(t)2

+RL � 1
��
�1t � 
L(t)�2t

��1
otherwise
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� Assumptions: markets

� Condition (59): normal market - Dybvig, Rogers and Back (1999)

� Condition (60): markets are complete and non-degenerate in the limit

� Condition (61): limit of bond volatilities exists, but may take in�nite values

� Assumptions: preferences

� Regularly varying marginal util. behaves like CRRA as wealth becomes large

� HARA utility: regular variation with coe¢ cient �R at in�nity

U (x) =
1

1�R (x� A)
1�R ; U 0 (x) = (x� A)�R ; A > 0

lim
x"1

U 0 (ax)

U 0 (x)
= lim

x"1

(ax� A)�R

(x� A)�R
= a�R; for all a > 0

� Mixtures of power utilities: regular variation with exponent �R1 at in�niti

U (x) =
KX
k=1

1

1�Rk
x1�Rk ; U 0 (x) =

KX
k=1

x�Rk ; 0 < R1 < ::: < RK

lim
x"1

U 0 (ax)

U 0 (x)
= lim

x"1

PK
k=1 (ax)

�RkPK
k=1 x

�Rk
= a�R1 ; for all a > 0

� Mixtures of HARA: regular variation with exponent �R1

U (x) =
KX
k=1

1

1�Rk
(x� Ak)1�Rk ; U 0 (x) =

KX
k=1

(x� Ak)�Rk ; 0 < R1 < ::: < RK

with Ak > 0; k = 1; :::; K, satisfy

lim
x"1

U 0 (ax)

U 0 (x)
= lim

x"1

PK
k=1 (ax� Ak)

�RkPK
k=1 (x� Ak)

�Rk = a�R1 ; for all a > 0

� Sums, products, compositions of RV functions are RV (Seneta (1976))
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� Portfolio behavior:

� No forward density hedge: MPR in bd numeraire deterministic

� Demand for equities is pure mean-variance

� Demand for bonds depends on bond volatility

�Bond vol null: bond demand goes to in�nity

�Bond vol in�nite: mean-variance demand vanishes, bond hedge remains

�Otherwise: combination of these two motives

� Remarks: relation to literature

� Financial market: covers most models examined for long run behavior

� Long run risk models: Bansal & Yaron (2004), Alvarez & Jermann (2005)

� Portfolio turnpike models:

�Huberman-Ross (1983), Theorem 2 of Dybvig-Rogers-Back (1999)

�Asset returns serially independent and interest rate non-random

� Here interest rates can be random

�Results identify limit portfolio explictly
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