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PART 1: Consumption-portfolio choice
¢ Introduction to standard consumption-portfolio choice problem
e Merton (1971):

— Diffusion models

— Dynamic programming
e Cox & Huang (1989, 1991), Karatzas, Lehoczky & Shreve (1987):

— Ito processes

— Probabilistic methods

¢ Outline

e Dynamic choice problem

¢ Basic valuation principles

e Equivalent static choice problem
e Optimal policies

e Examples



1.1 Consumption-portfolio choice: the diffusion model

¢ Underlying structure
e Finite horizon [0, 7]
e Brownian motion W, d-dimensional
e Information: filtration generated by W: F={F, :t € 0,77}

o Probability space (Q,F, P) - P is physical measure

¢ Financial market
e Risky assets: d stocks. Price of stock i, i =1, ...,d, satisfies
dSie = Sit [(1;(Ye, 1) — 04(Y2, 1)) dt + 04(Yy, t)dW] (1)
— u; expected return, ¢; dividend yield, o; volatility coefficients (1 x d)
— depend on k x 1 vector of state variables Y = (Y1,...,Y;)
— Satisfy integrability conditions

— Matrix ¢ assumed invertible at all times (i.e. all risks are hedgeable)
o Riskless asset

— Money market account: pays interest at rate r(Y;,t)
— r is positive and depends on state variables

— Satisfies integrability condition

¢ State variables: Y = (Y3,..., Y3
e Any variable affecting return components

— Interest rate, market prices of risk, dividend-price ratio, firm size, sales
— Evolution

dY; = ¥ (Vi O)dt + o7 (Y, t)dW, (2)
— ¥ (Y, t) is k x 1 vector of drift coeff., oY (Y}, t) is k x d volatility matrix

— Lipschitz+Growth conditions: existence of unique strong solution



¢ Consumption, portfolios and wealth
e Investor consumes and invests in the different assets available

— Wealth X. Consumption c.
— Portfolio 7: d x 1 vector of wealth fractions in stocks

— Fraction in riskless asset is 1 — 71
e Evolution of wealth:
dXt = (Xt'f’t — Ct) dt + Xtﬂ'; [(,ut - Tt].) dt + O'tth]

e Initial condition X, = z: amount of capital at initial date

e Assume integrability conditions

¢ Preferences
e Time-separable von Neumann-Morgenstern representation

— Consumption-bequest plan (¢, X7) ranked according to

T
E / u(cy, v)dv +U(Xp,T)
0

— Instantaneous utility function u: R, x [0,T] — R

— Bequest (terminal utility) function U: R, — R

— Strictly increasing, strictly concave, differentiable over domains
— Various behavioral assumptions can be embedded in this setting:

x Here assume Inada condition at 0 and oo
* lim. o u'(c,t) =limy .o U'(X,T) = c©

* lim, o u'(c, 1) = limyx oo U'(X,T) = 0 hold for all ¢ € [0, T]



o Example: constant relative risk aversion (CRRA)

1-R

L_cl=F for R#1,R >0 Power utility
u(c,t) =a -
log (¢) for R=1 Log utility

— a, is subjective discount factor; assumed deterministic

— Marginal utility

, c®  for R#1,R >0 Power utility
u (e, t) = ay .
¢ for R =1 Log utility

— Relative risk aversion

R(c)= (e t)e { R for R#1,R>0 Power utility

W (et) )1 for R=1 Log utility
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e Under assumptions above inverse marginal utility functions exist and unique:

— I*: R, x[0,T] — R, solves u/(I*(y,t),t) =y
— IY: R, — R, solves U'(IY (y,T),T) =y
— Strictly decreasing

— lim, o I*(y,t) = lim, o IY(y,T) = oo and lim, .., I“(y,t) = lim, .., IY(y,T) =0

e Example: CRRA

— Inverse marginal utility

~1/R
(%) for R# 1, R >0 Power utility
1 (ya t) = -1
<i> for R=1 Log utility
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Inverse marginal utility function: CRRA
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¢ Dynamic consumption-portfolio choice problem

max B [ /0 " e, 0)do + U(Xp, T) (5)

(Cuﬂ—)XT)

dXt = (rtXt — Ct) dt + Xtﬂ'; [(Mt — Tt]-) dt + Utth] X X() =X
s.t. ¢ >0,t€[0,7], and Xpr>0
X, >0,,t€0,T]

e First eq. describes evolution of wealth given policy (c,7)
e Second captures physical restriction that consumption cannot be negative
e Last constraint is no-bankruptcy condition: wealth cannot be negative

e Optimization over consumption, terminal wealth (bequest) and portfolios



1.2 Valuation principles
¢ State prices
e Market price of risk:

— 0, = o; ' (p, — 1) where 1= (1,...,1)" is d-dimensional vector

— Premia per unit risk (price of Brownian motions) - Sharpe ratios

o State price density (SPD)

£, = exp (—/ (7“5 - %9’598) ds — / H;dWS) ;v € 10,7
0 0

— Stochastic discount factor for valuation at 0 of cash flows received at v

— Marginal cost of consumption at time v

o Conditional state price density (CSPD)

£, = exp (—/ (7"5 + 19;&) ds —/ 9;dWs> = g—”,v € [t,T)
’ t 2 t &

— Stochastic discount factor for valuation at ¢ of cash flows received at v



¢ Valuation

e Stocks

T
St = Et / £t7vadU + gt,TST
t

— Stock price is present value of future dividends

— Dividends are discounted using risk-adjusted rates (implicit in ¢)

e Contingent claim with payoff (f, F)

T
Vi B [ / €, fodv + €, 1 Fr
t

— Price of claim is present value of future cash flows

— Cash flows discounted at same risk-adjusted rate
e Price behavior

— Discounted cum-dividend prices are P-martingales
t T
oSt [ 6D = | [ e.pav + o1
0 0
— Discounted ex-dividend prices are P-supermartingales (assuming D > 0)

T
§iSt = Fi [/ £, Dydv + STST:| > E; [£757]



1.3 Static consumption choice problem
¢ Static budget constraint

e Consumption plan (¢, X7) is budget feasible at x iff

< .

T
E [/0 E,Codv + Ep X

e Budget set is set of consumption-bequest plans satisfying (6)

o Constraint (6) is static budget constraint:

— Constraint on resource allocation, at zero, for all future times, states
— Does not specify manner in which resources transferred over time

— Market completeness ensures required transfers can be made

¢ Static consumption-portfolio choice problem

max E { /O Tu(cv, v)dv + U(Xr, T)}

(CvXT)

[ E [ e codv + §TX] <z
S.T.
¢ >0,t€[0,7] and Xy >0.

o First constraint: static budget constraint
e Second: captures same physical restrictions as in dynamic problem

o Maximization is over consumption-bequest policies (¢, X7)
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¢ Theorem 1.1: ( Cox-Huang (1989, 1991) and Karatzas-Lehoczky-Shreve (1987))

e Suppose (c, 7, X7) solves dynamic consumption-portfolio choice problem. Then,
(¢, X7) solves static problem

o Conversely, suppose (¢, X7) is a solution to the static problem. Then there
exists a portfolio 7 such that (c, 7, X7) solves dynamic problem

¢ Remarks:

e Portfolio = financing (c, Xr) leads to wealth process

T T
EXy =+ B / &, Codv + £TXT1 - F [/ &, Codv + £TXT1
t 0

e Assume cons.-bequest policy saturates budget: £ [ fOT &, Codv + é’TXT} =1

— Then wealth finances exactly PV future consumption at all times

T
§ Xt = Ej {/ §oCodv + fTXT} =LV

+ Wealth is present value of future consumption

x In particular X, = Vi

— Otherwise resources are left over after financing consumption
T
§EXy =&V + <:L' - F [/ & codv + fTXT])
0

e Optimal portfolio

— If (¢, X7) solves static problem, optimal portfolio is Xn'o = ¢'¢/ + X¢'
where ¢ is square integrable process representing martingale

t
= / ¢ dW,.
0

— Martingale representation theorem shows existence of ¢ and =

T T
M, = E, / &, Codv + §TXT} - F [/ &pCodv + Ep X
0 0

— Formula not very explicit. Structure of portfolio?
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1.4 Optimal consumption-bequest policies
¢ Optimality conditions
e Complete market:

— Every state contingent allocation can be attained by some port.
— Investor free to select consumption state by state

— No need to worry about means of transferring wealth across states-time
e State by state optimization: compare marginal cost and benefits

— Marginal benefit of consumption at ¢ is marginal utility «'(c,t)
— Marginal benefit of bequest is U’ (X7, T)

— Marginal cost of consumption at t € [0,7] is SPD

e First order conditions are

i (e,t) = yE, (9)
V(X0 T) = vty (10)
E [ /O €end + 5TXT] <o (11)

¢ Theorem 1.2: Consumption-bequest policy (c*, X3) is optimal for the static prob-
lem (hence the dynamic problem), if and only if there exists a constant y* > 0 such
that (c*, X3, y*) solves (9)-(11)
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¢ Theorem 1.3:
e Optimal consumption and bequest policies
¢ =1"(y&,t),t € [0,17, Xp=1"(y"&r. T)
— where y* is unique solution of non-linear equation
T
o= | [ ar e el e )|
0
e Optimal portfolio
T = X7 (o) 0+ &7 (0}) 7 g1, € (0,7

— ¢* is d-dimensional, square-integrable and progressively meas. process

— uniquely represents P-martingale

T T
M, = E; {/ §cidt + fTX;l - E {/ §eydt + fTX;l :
0 0

e Optimal wealth process
T
X; =B | [ €ttt x| e
t

e Value function

J=E, [/t u([“(y*ft,t),t)dt—l—U([U(y*fT,T),T)} ,t€[0,7]
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1.5 Examples
¢ Examples: constant relative risk aversion
o u(c,t)=aw.(c), U(X,T) = arv, (X)

e a;,t € [0,T] is deterministic process with initial value ay =1

¢ Example 1: Logarithmic utility, bequest functions (unit relative risk aversion)

°® U, (6) = Uy (6) = log (6)

e Optimal consumption, bequest, wealth and value function J* are

( X -1 " -1
= ()" x5

Jf = —log

A

)atmt — F, [ft a, log <§“’) dv+aT10g(

T
v =z'FE [/ a,dt + aT]
0
T
my = (Et |:/ CLtmdt + (lt,T:|)
t

k *
c; = myX,

Ji = (log (my) + log (X)) aym; ' — E; {/T%log(i )varaTlog(itT)}
t tv tT

9l

where

-1

o Alternatively

— m, is marginal propensity to consume out of wealth
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¢ Construction:
e Inverse marginal functions: I*(y,t) = (y/a,)"" and IV (y,t) = (y/ar) ™"

e Candidate consumption-bequest functions:

1 1
o= o) = (22 Xp = 1) = (X2

Gy ar

e Budget constraint multiplier

T
) = B| [ eIt i+ e un 1)
-1 -1
[o() aea()”
0 Ay ar
T
= y'E d
Y {/o a t+aT}

= K

so that

e Demand functions

e rup yE\ x &\
Cv:[(y 61}71)):( a ) = T (_>
v E [fo avdt—l—aT} ay
* -1 -1
Xi = I7(yep T) = (y gT) _ : | (i) |

e Optimal wealth

X; — Et

T * -1 * -1
/t c,, (ya&) dv + &, 1 (%) ]
(e Toorg\ ! Er\
- (%) B[ () erar(GE)
" -1 % -1
= (y gt) E, {/T amdv + at,T} = (y ft) mt_1
a t (o

15




e Feedback policies

— Inverting wealth

we N\ —1
(y_ét) = m X}
Qg

. -1
c; = (y €t> =m X

— Optimal policies

Ay

¢ Remarks:

e Consumption proportional to wealth
e Marginal propensity to consume does not depend on market coefficients (r, )

e Lifecycle behavior:

— Marginal propensity to consume explodes as ¢t — T if no bequest motive

— Want to exhaust all resources as horizon approaches

16



¢ Example 2: Power utility, bequest functions (constant relative risk aversion)

e v.(e)=v,(e)=(1—-R)tel™f R>0

e Optimal policies

where

e Feedback form

i} we \ P T 1/R R
Ti = it (55) @y [ alleg o + alf'els

T R
* — 1/R
Y= R(E [/0 &rat By + ¢hay D

T —1
my = (Et {/ ai@Rﬁﬁvdv + atlépR QT})
¢

c = My Xy

1
Jf = ——
O 1-R

*1—R —R
t agmmy

¢ Consumption behavior:

e Consumption linear in wealth

e Market structure matters: dependence on (r,9)

e Lifecycle behavior:

— Horizon behavior similar to log utility

— But dependence on state
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e Assume constant coefficients 3,r, 6

E, [€],] = exp (— (m“ + %p (1-p) 9’9> (v— t))

B (6] =exo (= (0o 50 (1= 9)08) (0= 0) Zexp (K (0= 1)

2

. (Et uT Qe v+ allF ;4 ) o (% (1= exp (=K (T — 1)) + exp (=K (T — t))) B

Marginal propensity to consume

Marginal propensity to consume out of wealth: CRRA

2 4 6 8 10 12 14 16 18 20
Investment horizon

Figure 1: Marginal propensity to consume (CRRA). Parameter values: § = 0.01, » = 0.06,

6 =0.30
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1.6 Some extensions

¢ Failure of Inada condition at zero
o v/ (0,t) <ocat c=0
e Example: HARA

— u(c,t) = 115 (c+ A with A >0
u' (e,t) = (¢ + A)~" so that v/ (0,t) = AR
— " (c,t) = —R(c+ A)~!

_ w’(et)e _ R(e+A)"Ele c
R(C) - U”(C,t) - (C+A)_R - RC+A
Utility function: HARA Marginal utility function: HARA
3.5 1- F
R=1
3 0.9 R=2
R=4
2.5} 08
0.7¢
2+
= > 0.6
2 15} =
5 3 0.5}
<
2 1} =
S 2 04t
0.5}
0.3}
or 0.2}
-0.5¢ 0.1}
-1 L L ] 0 L ]
-10 0 10 20 -10 0 10 20
Consumption Consumption

Figure 2: Utility and marginal utility for HARA with A = 5.

19



e Inverse marginal utility: 7*(y) =y /% - A

Inverse marginal utility function: HARA
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e Optimal policy: ¢; = max {I* (y*¢,,t),0} = max {(y*ft)fl/R — A, 0}
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¢ Subsistence consumption, intolerance to shortfalls

° lltlhty function
— >
w(e,t) { u(c—s,t) fore>s

—00 forec< s

—s>0

— ' (0,t) = o0
e Example: HARA

— u(c—s,t):ﬁ(c—s)k}% for ¢ > s
— 4/ (¢c—s,t) = (c—s) " so that v/ (0,t) =
—u"(c—s,t)=—R(c— s)fR*l

. R(C) _ _u(c=st)e _ R(c—s) B 1c — R

u’(c—s,t) — (c—s)" T c—s

e Optimal policy: ¢, = I (y*¢,,t) + s

¢ Loss aversion and threshold effects

e Discontinuous derivative at some critical point(s)

e Asymmetric behavrior above and below threshold

21



PART 2: Introduction to Malliavin calculus

¢ Malliavin calculus is a calculus of variations for stochastic processes

e Applies to Brownian functionals: random variables and stochastic processes
that depend on trajectories of Brownian motion

e Malliavin derivative measures impact of small change in trajectory of Brown-
ian motion on value of Brownian functional

e Development of theory:

— Malliavin, Stroock, Bismut,...
— Existence and smoothness of densities
— Reference: Nualart (1995)

¢ Outline

e Definition

e Riemann, Wiener and Ito integrals
e Clark-Ocone formula

e Chain rule

e Stochastic differential equations

22



2.1 Definition

¢ Smooth Brownian functionals
e Space of (smooth) functions: C (R
[ R R
— Infinitely differentiable

— Polynomial growth
e Wiener space generated by d-dimensional Brownian motion W = (W, ..., W)’

— Each state of nature corresponds to a trajectory of BM

— Set of states is space of trajectories
e Let (¢1,...,,) be a partition of [0, 7]

— Sample BM at points of this partition: (W,,,...,W, )

— Construct random variable
F(W) = f (th’ ey th>

— fe Cr (RM)

— F is smooth Brownian functional

¢ Examples: assume W is one-dimensional
o Quadratic function: Wz, 337 | W}
e Any polynomial: Y1 | a,W, 320 (Zszl akWt'j>
e Stock price in Black-Scholes model: (limit of sequence of SBF)

— Sr=Soexp ((p— 20%) T+ cWr)
— Write Sy = f(Wr) with f(z) = Syexp ((u — 3037 + ox)

— S is (limit of) smooth Brownian functional (sampled at one point)

23



¢ Experiment:

e Perturbate trajectoy of BM from some time ¢ onward

e Shift W by ¢ starting at ¢, where t;, <t < t,,, for some k=1, ...

Brownian motion

0.5

0.4

0.3

0.2

0.1

-0.1

-0.2

Brownian trajectory and perturbation

0.2

0.4 0.6 0.8 1 1.2
Time intenval
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¢ Malliavin derivative of smooth Brownian functional (assume d = 1)

e MD at ¢ of F is change in F due to a change in path of W starting at ¢
e MD of F at t is defined by

af (W, 1y ooi(t1), oo, W, 1y ooi(tn
DE(W) = F (Wi 4 100 1)05 A TI())) 12)

. F(W+ 51[t,oo[) - F(W)
= lim

e—0 £

(13)

— where 1 o is indicator of [t,00) (i.e., 1j;(s) = 1 for s € [t,00); 0 otherwise)

— Compact notation

DFW) =Y 0if Wiy oo, Wy ooy Wi,) Lo (1) (14)

j=1

where 9;f is derivative of f with respect to j* argument of f

e MD of Fis DF(W) = {D;F(W) :t € [0,T]}
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¢ Example: Black-Scholes model
e Recall Sy = f(Wy) with f(z) = Soexp (1 — 30%)T + ox)
e Direct application of definition gives
DSt = Of(Wr)ljeo(T)
= oSpexp ((u — %UQ)T + UWT> Lt oo(T) = 071y o0)(T)
o Malliavin derivative is derivative with respect to Wy:
— Perturbation of path of W from ¢+ onward affects Sy only through Wi

e Malliavin derivative at t of S,

DSy = 05,1 jt,00((V)

Stock price trajectory
115 T T T T T T T T T

110+ v

105 R

Stock price

100 g i

95 1 1 1 1 1 1 1 1 1
0 0.2 0.4 0.6 0.8 1 12 14 1.6 1.8 2

Time
Malliavin derivative at time t=1 of stock price process

30

=1
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Malliavin derivative at t

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
Time
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¢ Multidimensional case: d > 1

e MD of F at t is now 1 x d-dimensional vector D,F = (Dy,F,...,DyF)
e i'" coordinate D, F' measures impact of perturbation in W; by e starting at ¢

o If t;, <t <t can write one-dimensional definition for this derivative

DitF — Z%” (th-'-aWtk;---;th)1[t,oo[(tj) (15)

J=k

— where 0f/0x,; is derivative with respect to i* component of j* argument
of f (i.e. derivative with respect to Wi,)

e MD of F is DF(W) = {D,F(W) : t € [0,T]}; d-dimensional (row) stoch. proc.

¢ Domain of Malliavin derivative operator

e MD exists for F € D2

e Completion of set of smooth Brownian functionals in norm

where |D.F|* =3, (DyF)?.
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2.2 Malliavin derivatives of Riemann, Wiener, Ito integrals
¢ Wiener integral F(W) = [ h(t)dW;, where h(t) is fct of time and W is one-dim.
e Integration by parts: F(W) = h(T)Wp — fOT Wdh(s)

e Application of definition gives

T
FW +elyo) — F(W) = h(T) (Wr+elpoo(T)) — [ (W +elpoi(s)) dh(s)
0

~ <h(T YW —/ W,dh( s))
= h(T)elyoo(T) — / €1jt,00((8)dh(s)
- [ o)
<h /Tdh )
h(t)

t).

!

= £

I
™

= £

so that . .
D,F(W) = lim W + elpeo) = £W) _ h(t) (16)

e—0 g

e Conclusion: D,F = h(t)

— MD of F at t is volatility h(t) of stochastic integral at ¢

— Measures sensitivity of random variable F to Brownian shock at ¢
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¢ Random Riemann integral with integrand depending on path of BM

o F(W) = [ hyds where h, progressively measurable

e MD
D =ty TV L) = FOT)
_ llj’% OT (hs(W + 51[75,600[) — hS(W)) g5 — /tT Dih.ds
¢ Ito integral
o F(W) = [ hy(W)dW,
e MD

T
DtF — ht +/ DthSdWS
t

¢ Malliavin derivatives of Wiener, Riemann, Ito integrals depending on multi-
dimensional BM defined in same way (component by component)
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2.3 Clark-Ocone formula
¢ Clark-Ocone formula:

e Any random variable F € D*? can be decomposed as

F— B[P+ / "B FLaw,

e Martingale closed by F € D'? (i.e. M, = E;[F]):

— Take conditional expectations

— M, = E[F| + [, E,[D,F]dW,

¢ Remark

e Results can be used to show MD and conditional expectation commute
e For martingale M, = E, [F] Malliavin derivative is D,M, = E, [D,F]

e Equivalently, D,E, [F] = E, [D,F)

30
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2.4 Chain rule of Malliavin calculus
¢ In applications often need MD of function of path-dependent random variable

e Chain rule also applies in Malliavin calculus

¢ Let G = g(F) where

o = (F,.., F,) is vector of random variables in D'?
e ¢ is a differentiable function of F with bounded derivatives
e Malliavin derivative of G = g(F) is

dg
a.fCi

D,G =Dyg(F) =Y - (F)D,F;
=1

where g—i(F) is derivative relative to the i** argument of ¢.
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2.5 Stochastic differential equations
¢ Suppose state variable Y; follows diffusion process
o dY; = ¥ (Y,)dt + o¥ (V;)dW; where Y, given

— Assume W one dimensional
— Integral form
t t
Vi=Yor [ wY i+ [ oV (vydw.
0 0

e Taking Malliavin derivative on each side gives, for s >t ,
DY, = DY+ / ouY DyY,dv + / oY DY, dW, + o(V;)
t t
= / oY DY, dv + / 0¥ DY, dW, + o(Y;)
t t

where second equality follows from D,Y; = 0

e Conclusion: MD follows linear SDE
A(DLY.) = [0 (Vo)ds + d0” (Y.)dW.] (D))
subject to initial condition lim,_; D;Y, = o¥ (V})

e Solution

D,Y, = D;Y; X exp ( /t S (W(Yv) = % (6’0Y(Yv>)2) dv + /t S ﬁay(Yv)de)

¢ Multidimensional case:

o If 0¥ (V}) is 1 x d vector (W is d-dimensional BM) same arguments apply

e Obtain (18) subject to initial condition lim, ., D,Y; = o(V;)

— 9o¥ (V) = (007 (Y,), ..., 00Y (Y,)) is row vect: deriv. of components of oY (V)

e MD DY, is 1 x d row vector D,Y, = (DY, ..., Dy Ys)
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PART 3: Optimal portfolios

¢ Determination of optimal portfolio (financing the consumption-bequest policy)

e Ocone and Karatzas (1991): Clark-Ocone formula

e Detemple, Garcia, Rindisbacher (2003): diffusion models - implementation

¢ Outline:

e Optimal portfolio formula
e Special cases and examples
e Implementation

e Example
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3.1 The portfolio formula

¢ Summary:
e Optimal portfolio uniquely given by
Ximi =X (o) 0+ &7 (o) 6 (19)
— ¢* is d-dimensional process representing martingale

MtEEt[Fﬂ_E[FIt]

T
Fp= / €t + 60X
0

— (¢*, X}) as given in Theorem 1.3
e For explicit formula it suffices to identify ¢* in terms of primitives (r,0,u, U, T)

e Malliavin calculus is instrumental: Clark-Ocone formula

¢ Derivation:
e Assume F; € D'?

e Clark-Ocone formula gives
o7 = B, [(DF7)] (20)

e Using rules of Malliavin calculus,
T
D = Do [ &I+ &)

T

= [ DG ) D (1 e )

t

T

= [ ) o e ) Dy

+ (IY(y*er, T) + v &r0, 1Y (y*e1, T)) Diyp

T

= / Z*(y &y, )D€ dv + Z7 (y" &, T) Diy (21)

where 9,1%(y*¢,,v), 0,1V (y*&p, T) are derivatives of I(y*¢,,v), IV (y*¢y, T) with re-
spect to first argument
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e MD of SPD: for all v > ¢

D, = Dyexp (— / ' <rs + %9;95) ds — / ' e;dws) definition of SPD
0 0

v 1 v .
= ¢, x D, (—/ (7“5 + 59;93) ds — / diWS) chain rule
0 0

= —¢, (/ (Dyrs + 0. D40, ds +/ (dW,) D, + 9;) MD of Riemann, Ito int.
t t

—¢, (H;, +0;) def. of H,, (22)

e Malliavin derivatives of r, 6
— Chain rule: D;r, = 0r (Y;,s) DY, and D0, = 90 (Y, s) D,Y,

— Where D,Y, is derivative of solution of SDE

d
o (s,Ys)ds + Y do) (s,Y.)dWig

i=1

dD;Y, = DiYs; DiYy = Uy(ta Yt) (23)

+ Here 0f (V) is 1 x k-gradient of function f with respect to Y

e Substituting (20)-(22) into (20) and (19)
T /
6 = ( / 20 € 0D o+ 2 e TIDE,

e 0, (How + 00 do + Z° (" Em T)Ep (Hup + eo]

o = X[ (o) O+ (o) gt
= X/ (o))" 6,

T
o) E, [ [ 240 €0, (o 0 o+ 2576 T (i + 90}

T
_ [X:—Et [ / Z“<y*a,,v>5t,vdv+ZU<y*sT,T>@,TH (o),

T
) E, [ [ 2 v oo+ 27 T)@,THt,T] .
t
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e Finally
T
X: — by {/ Zu(y*fmv)gt,vdv + ZU(y*gTvT)gt,T]
t

T
= -k U y 0,1 (Y€, )€, v +y*5Tay[U(y*£T7T)§t,T:|
t
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¢ Theorem 3.1:

e Optimal portfolio has decomposition X;7; = X; [x}, + 75,] where

T
:ﬂ—it = _Et / y*gvay[u(y*fvvv)gt,vdv+y*€Tay[U(y*€Ta >§tT:| (Ut) 1975
t
_ [ / €T (¢ v) dv+ €, TV <X;,T>] (o)1 6, (24)
Xiwy = (o) B { / Z'(y sv,v>st,th,vdv+ZU<y*5T,T>st,THt,T]
t

T
) [ [ €t =T @) Hodo 6 (X5 = TV (35 7) Ht,T}%)

e MD of state variables, DY, satisfies SDE(23)

o I (ct,v),IY (X3,T) are absolute risk tolerance measures
U (X,T)
U (X,T

F“(C,U)E—M v (X,T)=—

u’ (c,v)’

N

— Ewvaluated at optimal consumption-bequest

¢ Remarks: two motives for investment
e First motive:
— Tradeoff risk 0o’ vs expected excess return p—rl: (¢/) 60 = (00') " (u—r1)
— Underlies mean-variance demand

— Originally identified by Markowitz (1952)

— Still at core of practical implementations and financial advice
e Second motive:

— Hedging motive: prompted by stochastic fluctuations in opportunity set
(interest rate and market price of risk)

— Underlies demand component 7,
— Identified by Merton (1971)

— Important aspect of optimal dynamic asset allocation policies
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3.2 Special cases and examples
¢ Deterministic opportunity set (r,6 deterministic)

e Malliavin derivatives D,r, = D0, = 0. Hedging demand vanishes X3, =0

e Investment demand reduces to mean-variance term
g -1
Ximl, = B, { | eur @ o+ g 0.1 )0
t

e Irrespective of preferences

e Coefficient in MV demand is cost of optimal risk tolerance

¢ Stochastic opportunity set (r,0 stochastic)

e Dynamic hedging motive becomes relevant
e Signing hedges:

— Suppose condition [(¢}) " Hy,], >0 for all v € [¢t,T]

— Hedging increases (decreases) holdings of asset i if risk tolerance exceeds
(falls below) consumption and bequest

* As ¢t —T"(cf,v) <0 and X3 —TY (X%, T) <0
x Can be restated in terms of relative risk aversion (Breeden (1979))

*

* u [k Cy u

Cy — r (Cvuv) = m (R (Cvav) - 1)
__ X7

- RU(X},T)

— Condition on H;, applies, in particular for IRH in one risky asset model

X;“ -7 (X;v T) (RU (X;U T) - 1)

+ if interest rate negatively impacted by innovations, and

+ the stock market returns positively affected by innovations
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¢ Constant relative risk aversion (Example 2) with subjective discount factor
a; = exp (—3t) where 3 is a constant

e Optimal consumption policy ¢ = (y*¢,/a,) "% and X3 = (y*¢p/ap) /R
e Optimal portfolio X;7; = X} [r%, + 75,] where

o), (26)
E, [ftT & UatléRHt pdv + &) Tai/TRHt,T}

E; [ft &t Ua%Rdv + & Tal/R]

* * _
t T =

Ty == X7p (o) (27)

with p=1-1/R
e Details:

— Consumption-bequest functions: ¢ = (y*¢,/a,)" V% and X; = (y*&p/ar)~VE
— Substituting I'* (¢*,v) = ¢;/R and TV (X%, T) = X;/R in portfolio gives

o 1 T e 1,
Ximy = EEt [/ 5t,vcudv + ft,TXT] (0'2) ' 0, = EXt 0,
t

T
Xy, = —p(o)E, [ [ i+ at,TX;;Ht,T}
t
T we \ —1/R . ~1/R
' Et / ft,v (y é-v) Ht,'udv + £t,T (y 5T) Ht,T]
t Ay ar

N -1/R ~ T ¢ ~1/R ¢ -1/R
= — (y_€t> p(o‘;) 1 t / gt,v (ﬂ) Hmdv—i—ftT ( tT> Ht,T]
t Qt ag T

Qg
e “1/R B T n R
= — (—t> p(oy) ~ Er {/ 5tuat<) Htvdv+€tTat/7‘ Ht,T] :
t

Qy

— Constant y* eliminated by using wealth

T
X' = B [ / ét,vc:dvmjx;}
* *1 *
/5(ﬁ) o +5tT( 5T) ]
a ar
—1/R
= <y ft) {/ §tva2<)RdU+§tTatl/TR}




to deduce

(fot) R X7
— - T 1/R 1/R
Gt Ey [ft gtp,uat,i dUWLfZTat,/T

e Properties:

— Portfolio linear in wealth

— Fraction of wealth invested depends on state (r,0)
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3.3 Implementation

¢ Computation of optimal portfolios:

e Structure of portfolios as conditional expectations suggests Monte Carlo

e Several possibilities for implementation: here method using formula above

e Monte Carlo Malliavin derivatives method - MCMD (DGR (2003))

e Two cases: depending on whether y* is known or not

¢ Case 1: known multiplier

o Write X735, = — (o))" E¢[Gyr] where Gyr = G¢p + GI, With
Gi, = / §10Z1 (Y &y v) Hypdv and Gip = §orZo(y &, T)Hy .
t

e Write RV in hedges as joint system V,, = (Y, D;Y;, K, H; s, GS), Where

v 1 v
K, = / (rs + 50;&) ds +/ 0. dW,
t t

HQ’UE/ 0T(K9,3)Dt§/;ds—l—/ Qgﬁe(n,s)Dths—I—/ dW! - 00(Ys, s)D;Y,
¢

t t

51&,1; = exp (—Ki,)

e By Ito’s Lemma
dK; , = <7“3 + %9;93) ds + 0. dW,

dH; , = 0r(Ys, s)D,Y,ds + (AW, + 0(Y;, s)ds) 90(Ys, s)D,Y,
ng,s = gt,szl (y*gsa S)Ht,sds
and (Y, D,Y,) satisfy SDEs

dY, = p* (Yy, t)dt + ¥ (Y, t)dW,

d
dDY, = |9 (s,Y,)ds + Y 00} (5,Y.)dWis| DYy, DY, = 0" (1,Y)).

i=1
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e Simulate M trajectories of V using (29)-(31), (32)-(33)

— Select discretization scheme (e.g., Euler, Milshtein, ...): N points in [0, 7]
— Simulate M trajectories of W along discretization. Construct traject. v
— Get M estimates {thl L5 € [t,T]} ,i=1,..,M of trajectories {V,,:s € [t,T]}
— From terminal values of simulated proc. construct M estimates of G, r
— Averaging over these M values produces estimate of hedging demand

M

S 1 N,i
Xiny = —(0y) M Z Gt,T
i=1

¢ Case 2: y* is unknown. Use two stage procedure:

e Stage 1: calculate y* by simulation-iteration

— Fix candidate multiplier y

— Based on this choice simulate (Ko, F§,) where F¢, = [ &,1(y€,,v)dv
— Obtain estimate of cost of consumption by taking average

— If budget constraint fails raise y and repeat. Else reduce y

— Repeat to desired precision

e Stage 2: proceed as described above

¢ Various schemes can be used to accelerate stage 1 (Newton-Raphson,...)

42



3.4 Example
¢ Model:
e One stock and riskless asset

e State variables (r,0)

e Constant relative risk aversion

¢ Evolution of opportunity set
dry = k(T — 1) (1 + ¢, (T — rt)2’7r) dt — o] dW;, ro given

df; = (“9@ —0) + ug(rtﬁt)) dt + og(6,)dW;, 0y given,

where W is one dimensional

pitr) = 6= r)0+00 (1 (G171 ))

0,+ 06,

9 9 1—7y10 Y26
Ug(@t):(fg(el—{-et)%g (1— ( Lt t) ) .

0, + 0,

e Coefficients

- (K/T7 Fa ¢7’7 Ney Ory Yy R, 57 N, 00, Hlv 0u7 Y10, ’729) are ConSta’ntS
— (ky,T, Ko, 0;,0,) are positive, and 0 € (—6,,0,,)

— Brownian motion W is unidimensional

¢ Remarks:

¢ Interest rate process:

— Mean reverting with constant elasticity of variance (NMRCEV), 2+,

— Nonlinear speed of mean reversion: ¢, (7 — ;)"
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e Market price of risk process:

— Mean reverting with hyperbolic elasticity of variance
— Interest dependence in drift (MRHEVID)

— Elasticity
( 0,4 )1—’710
X 0;+0.,
e(r) = _291 T Y16 — Y20(1 — 710) : orin 177,
- 9l+9u

Process stays between bounds

Basticity of variance \olatility
10 T T T T T T T T T 0.08 T

0.07

0.06 -

0.051

0.041

0.031

0.02

0.01

L ! L L L L L L 0 1 1 1 1 1 1 1 1 1
0.2 -01 0 0.1 0.2 0.3 04 05 06 07 0.3 -02 -01 0 0.1 02 03 04 05 06 07

Market price of risk Market price of risk

¢ Malliavin derivatives

thrv = (g

0
gy (ro)dt — —Ur(m)de> Dyry,  Dyry = 0" (1)

or

0 0 0
thQU = (%M@(Tv, ev)d’U + %O’g(ev)de) ,Dt‘g’u -+ ENG(T’U’ QU)IDtT,UdU; ,Dtet = 0'9(015)

¢ Parameter values (see DGR 2003)
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¢ Implementation: portfolio components - risk aversion and horizon effects

Portfolio Mean-variance demand
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¢ Dynamic behavior of portfolio components
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PART 4: Optimal Portfolio and Bonds

¢ Alternative decomposition of portfolio

e Unobserved short rate: substitute information in term structure
e Portfolio behavior for long horizons: long run risk factors
e Portfolio and bond pricing models

¢ Detemple-Rindisbacher (2006)

¢ Outline

e Forward measure

e Optimal portfolio: utility of terminal wealth
e Optimal portfolio: intermediate consumption
¢ Diffusion models: implementation

e Deterministic forward density
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4.1 Bond pricing and forward measure
¢ Forward measure:

e Pure discount bond with maturity T > ¢ has price: Bf = E; [¢, ;]

e State price density in bond numeraire

bir  _bur
Ei[&r]  BY

Zt,T =

- Zt,T > O and Et [Zt,T] - 1

— Use as density of new measure
e Forward T-measure

— dQ]= Z,rdP
— Equivalent to P

— Zr is forward T-density
— Geman (1989), Jamshidian (1989)

¢ Pricing in bond numeraire
e Claim with payoff Y; has price

§ir

bty
A

V(t) = By [&0Yr] = By [§01] By = B/ E/ [Yr]

— El'[| = E,[Z,1"] is expectation under Qf

e Price in bond numeraire

V(1)

= = B[ [Vi] = B[ Zyr Vi)
t

e Density Z,r is stochastic discount factor

— Converting future cash flows into current values measured in bond units

48



¢ Theorem 4.1:

e The conditional state price density at time ¢ is &, = B{ Z, r

e The forward T-density is

T 17
Zyr = exp </ oZ (s, T) dW, — 5/ o? (5, T) 07 (s,T) ds) (38)
¢ ¢

— Volatility o7 (s,T) = o (s,T) — 0,

— 0B (5,T) = D,1log BT is vol. of return on discount bond with maturity T

¢ Decomposition of SPD: ¢, = B Z, r. T'wo parts

e Bond price

¢ Risk-adjusted SDF: applies to risky cash flows in bond numeraire

¢ Forward density formula:
e Volatility —o? (-, T)=0. — o2 (-,T)
— MPR in bond numéraire: forward market price of risk

e Cumulative standard deviation of the growth rate of the forward density

1/2

S(4T) = ( /t Uo7 (5.TY o7 (.T) ds> | (39)

— Measures risk to horizon T, in forward density

— ¥ (t,T) is forward T-risk or forward risk
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4.2 Optimal portfolio and long term bonds
¢ Theorem 4.2:
o Optimal wealth, for t € [0,7], is X7 = BT'E, [Zt,TI (y*gtBtTZtT)jL].

e Portfolio has decomposition 7} = 7" + 7¥ + 77

Xl = Ef [Mlg,0)] BY (1) 0, (40)
Xt = (o) o (4, T) Ef (X5 = T%) Lipsoy] BY (41)
X = (01) " B [(X7 = T5) 1up=0yDi log (Zo7)) BT (42)
— Ir=1(y*¢,Bl' Z, 1)
— EI'[] = E;[Z;r -] is under forward T-measure.

¢ Interpretation:

e Mean-variance term 77: as before
e Long term bond hedge 7: fluctuations in price of horizon-matching bond
e Forward density hedge #7: fluctuations in MPR in bond numeraire

e Shift focus from risk relative to short rate to risk relative to LT bond

¢ Additional remarks:
e Consistent with Preferred Habitat theory

— Modigliani and Sutch

— Investor naturally seeks LT bond with horizon-matching maturity
e Hedges
— First hedge is static hedge (instantaneous fluct. in bond price)
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— Forward density hedge is dynamic hedge (fluct. in opportunity set)

¢ Corollary 4.1: HARA utility function

Tele—AE ifr>A

U)={ TARE=A BE=4 Rso0,420. (43)

<
—00 ifr<A

e When 4 > 0 optimal asset allocation is 7} = 7" + 7% + 77 with
*_m 1 * -1
Xim't = R (Xt - ABtT) (Uz/t) 0

X;ab = (p (X7 — ABT) + ABF) (o)) o” (1,T)

p—1

Z
LT Dt IOg (Zt,T>

Ximi=p(X; — ABY) (o))" Ef W
t 4T

where p=1-1/R.

e When A < 0 portfolio components are as in Theorem 4.1 with

" " —1/R + . 1 .
X = ((eB 2r) "+ 4) . Th= 5 (X5 -4)

and ]T = (y*é-tBtTZt,T)_l/R + A.

¢ Power utility (A4 =0):
e Knife edge property of log (Breeden (1979))
e Logarithmic investor: myopic

e More (less) RA than log holds (shorts) port. with highest correlation with
LT bd

e More (less) RA than log holds (shorts) portfolio that hedges log (Z; 1)
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¢ HARA with A > 0: subsistence threshold
e Structure:

— MV dem and forward density hedge proport. to excess wealth X; — ABF
— Bond hedge affine in X; — AB! with translation factor ABT

¢ Explanation:

— Decomposition of wealth:

x Cost of financing threshold ABT
x Excess wealth X; — AB

— Portfolio financing excess wealth is proportional to X; — AB]

— Portfolio financing cost of threshold is hedging port.; proport. to cost
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4.3 Running consumption
¢ Model:
e Utility of intermediate consumption: w(-,-): D, x [0,7] — R

— Strictly increasing, strictly concave, differentiable
— Domain D, = [A,,) C R with A, positive or negative

— Inada: for all ¢ € [0, 7], lim, .o /(c,t) = 0, lim._, 4, u'(c,t) = 0
o Utility of terminal wealth U : Dy — R

— Strictly increasing, strictly concave and differentiable
— Domain Dy = [Ay, o) C R

— Inada: limy .., U'(X) =0, limx_, 4, U'(X) = o0

e Initial wealth condition: » > A} ( s Bgdv> + A Bl
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¢ Theorem 4.3:
o Optimal consumption-bequest: ¢ = I* (y*¢, B¢ Z;,,v)" and X5 = IV (y*¢,B Zir) "
o Intermediate wealth satisfies
T
X; = [ BrEY i) o+ BIET (X
t
o Let I = I"(y*¢,By Zy,v) and 1Y = I (y*&, B Z )

e Optimal portfolio has decomposition 7} = 77" + 7t + 77 with
T 1
xiwr = ([ B [Ctgsso) Bido+ B [T B7) (0070
t
L T
Xt = (0})” ( / o (t,v) BYE} [(¢; —T5) L=y dv+ 0" (t,T) Bl Ef [(X;: ) 120} >
t

T
X = (o))" ( / EY [(¢} = T%) 120y Dy log Zi,] Bidv + EY [(X* [5) 1501 D1 log Z T} B >
t

— Zy, 1s density of forward v-measure
x Volatility o7 (s,v) = o (s,v) — 0,
x 0P (s,v) = D,log B! is bond return volatility

— EY[] = E;[Z;,] is under forward v-measure, v € [t,T).

¢ Interpretation:

e Mean-variance term, bond hedge, forward density hedge

e Bond hedge:

— Coupon-paying bond
x Coupon C (v) = E} [(¢; — %) Lims0] at v € [0,7)
+ Bullet payment F = EF [(X; —T%) 1{#20}} at T
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— Coupon bond price
T
Bl (O, F) E/ B'C (v)dv+ BI'F
t
— Instantaneous coupon bond volatility (taking coupon as given)
T
o (B (C,F)) B} (C,F) —/ o (t,v) B'C (v)dv +o® (t,T) Bl F
t

— Hedge is positive if ¢t —T'* >0 for v € [0,7) and X3 — T >0
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¢ Corollary 4.2: HARA utilities with A,, R, for u(c,t) and Ay, Ry for U(z)
o Assume z > A} [\ Bydv + AfBY
— Portfolio components given by formulas in Theorem 4.3 with
= (e ™ B2 e a) T X = (wre) ™™ (B Zu) ™+ Ag)

I:)L = (y*gt)—l/Ru (BZ)Zt,v>_1/Ru + Au and Ijl“] = (y*gt)_l/RU (BtTZt,T)_l/RU + AU~

— When A,, Ay > 0 portfolio components take the form
*_m 1 g v v 1 T T 1
U t U

_ r 1 1
Xint = (o))" (/ o (t,v) BY (puH;’ + R_A”) dv +a? (t,T) Bf (pUHtT + R—AU>)
t U U

!/

T
Xt = (02)71 (pu/ E} [e;Dilog Zy | By dv + pp BT [ X3:D, log Zy ) BtT)
t

x 11V = EY [¢¥] is date t cost in bond numéraire of date v consumption
« 17 = EF' [X;] is date ¢ cost in bond numéraire of terminal wealth
* py=1—1/Ry, py =1—1/Ry.

¢ Coupon bond hedge:

e Coupon C (v) = p, 117 +£2: affine in cost of date v consumption in bd numéraire
e Bullet payt F = p, 11 + g—g: affine in cost of terminal wealth in bd numéraire

e Can have positive coupon hedge p,II7 + 4+ & negative bullet hedge p, 117 + ;‘—Z
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4.4 Diffusion models - implementation
¢ Model:

e Utility of terminal wealth (no intermediate consumption)

¢ Diffusion model:

— Vector of state variables YV

— Evolution of ¢, = (¢Z (t,T)'.Y})

{ do” (t,T) = @ ((;, t) dt + A ((y,t) AW, (44)

dY; = p¥ (Y, t)dt + oY (Y, t) dW,

with initial conditions o7 (0,7) and Y

— Functions @ (-,-),A(-,-), 1Y (-,-),0" (-,-) are continuously differentiable
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¢ Theorem 4.5: (utility of terminal wealth)

e Malliavin derivative of log forward density
T
Dilog Z;r = / (dWT) Dyo? (s,T) (45)
t
where (D,0” (s,T),D,Y;) satisfies linear SDE

d (Dyo? (5,T)) = (Alzds +3 alAde};) D,o? (5,T) + (Agds +3, aQAde};) DY,
d(D,Y,) = (AYds +30 aa;”dW};) DY,
(46)

— Coefficients

d d d
AL =010+ dho?, AT =00+ dhjo?, A =0p" +) ofo0)

j=1 j=1 j=1
— 0;®, 0;A are gradients with respect to i» component of vector ¢ in &, A

e Forward density
g Z / T 1 g Z I _Z
Zym = exp o? (s, T) dW; + 5/ @ (s,T) 07 (s,T)ds (47)
t t
under bond numéraire, where (o7 (¢t,7),Y;) satisfies

{ do? (t,T) = (@ (G t) + A (Cpot) 0 (1,T)) dt + A (G t) AW, 8)

dY, = (p¥ (Yo, t) + 0¥ (Yo, t)o? (t,T)) dt + 0¥ (Y, t) dW.

¢ Computation:

e Simulate relevant processes directly under forward measure

e Compute expectations by averaging over simulated values
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4.5 Deterministic forward density volatility
¢ Assumption

e Forward density volatility o7 (¢,T) is a (nonstochastic) function of time

e Forward risk ¥ (¢,T) is deterministic

¢ Corollary 4.3: (deterministic forward density vol)

e Optimal wealth

Xi AU OvA) y&. B ) T I T)24+24.T T
5= T(ye Bl o () e = x (yE BT (49)
¢

—00

1 UovA 1
d(U (0vA),y*&B) = ST <log ﬁ — 52 (t,T)z) (50)

— x (v*¢,B]') is optimal wealth in bond numéraire

— n(z) is standard normal density

— Inverting y () in (49) gives y*¢,Bf = x~* (X} /B])

e Portfolio

X _
Xirr = BUK (35 0.1)) (00 (51)
t
_ X
Xirt = (@) 0 .1) (X0 - BTk (hs e ) (52
t
X =0 (53)

— K (-,-) = E] [I3141,501]: cost of optimal risk tol. in bd numéraire

X! d<U/(OVA)’X_1(%;>> 1 (XN iserresen)-
K(B—:T,E(t,T)>:/ F(I(X (B:T)w (t’)+(t’)))n(2)dz

- (54)
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¢ HARA: U'(0v A) = (~Av0) " and
X(&BY) = (yeBI) /e ma=t N <d ((—A v 0)~, y*ftBtT> + %E (t,T)>
+AN <d ((—A Vo) R, y*ftBtT>> (55)

(oen) 4 (-l ) o

e N (-): cumulative normal distribution function

¢ Remarks:
e Forward market price of risk deterministic:

— No reason to hedge

— Forward density hedge null

o Components

— Expressed in terms of optimal wealth and model coefficients

— Truncated integrals of risk tolerance w.r.t. to normal random variate

e HARA utility

— Risk tolerance affine in terminal wealth over domain where it is positive
— Optimal wealth & port. components involve cumulative normal distrib.

— Nonlinear wealth effects in portfolio components
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¢ Proposition 4.1: (wealth effects)

e Derivative of cost of optimal risk tolerance K (-, % (¢,7)) w.r.t. X;/BT

n(2)dz +T 0V A)n(d () gl

(1)

X B OING
K (BT’M T)) K<X_T 5 (t, T))+(ovA)n<d(->>#

t,T)

~ I"(),T () evaluated at 1 (! (X;/Bl) =D +200):)

e Impact of wealth on portfolio share components

ony X X7 X7 S
Thzoe (1 (Freen) 3ok (FREen)) e nZo

awt -

e Under the assumptions:

— Absolute risk tol. is decreasing function (I" (X) < 0)
— Relative risk tol. is increasing function ((T'(X)/X)" > 0)
— MYV share 7" decreases with wealth when (o)™ 6, > 0

— Bond hedge share increases with wealth when (o)™ o® (t,T) >

¢ Arrow (1965): reasonable model for behavior

e Decreasing absolute risk tolerance

e Increasing relative risk tolerance
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¢ In particular, if equities and bond with horizon-matching maturity marketed
o (00)) o (t,T)=[0,1)
e Equity and bond shares

K (X:/BtTaE (taT>)

s _ s
Ty = X /BT m; (57)
' Xt /B ' X /B

with
S
! *10 = mt
(Ut) t [ mtB ]
e Bond held for diversification and hedging

e Equities held exclusively for diversification

¢ When wealth increases:

— MV part of bond share decreases while hedge part increases (if m? > 0)
— Bond increasingly held for hedging; diversification motive weakens

— Bonds-to-equities ratio =2 /7% increases

¢ Perspective:

e Flight-to-safety: substitution from stocks to bds during downturns or after
losses

e Analysis shows flight-to-safety depends on risk attitudes
— Under conditions stated wealth reductions imply decrease in BTE

— Substitution away from bonds and into stocks!

— Conventional wisdom inconsistent with Arrow’s “reasonable” behavioral
postulates
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¢ Proposition 4.2: (forward risk effects)

e Derivative of K (X;/BF, ) wrt forward T-risk ¥ has two parts (K, = Ka + Ko)

—00

() '
Ko = — </ OTC)EET)+2)n(2)dz+T 0V A)n(d()) <Ecét(72f) i 1>>

—00

d() )
Ko = — K, x (/ T()(S@T)+2)n(z)dz+ (0V A n(d(-) (Eit( )T> +1)>

— Ko is direct impact of X (¢,T) keeping x~! (X;/B]) fixed

— K is indirect effect through = (X;/B})

— Impact of forward risk on portfolio share components
O(m"/X7) >
9T (1, T) <

0 (mt/X}) 1
DTy 20 0o (1) (o Kom) 20

— Impact of investment horizon on portfolio share components:

0 <— (K21 + KQQ) (02)_1 9t z 0

+ Keeping wealth in bond numéraire X; /B! fixed
+ Identical to impact of forward risk

¢ Intuition: Investor averse to long run risk should shy away from risky long-lived
assets when forward risk increases

e Aversion to forward T-risk

— Negative impact of X (¢,T) on cost of optimal risk tolerance

— Koy= Ko+ Koy <0
e When K, <0

— Diversification part of port. shares decreases if (¢})~" 6, > 0: risk reduction

-1

— Static hedge part of port. shares increases if (¢})" ¢ > 0: enhanced

protection
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¢ Bond versus equity choice:
o Assume (o))" 0, = [mf,mP]' >0 and K, <0
e If long run risk increases:

— Investor reduces fraction of wealth allocated to equities
— Increases (reduces) share in the bond if m? <1 (if m? > 1)

— Unambiguously increases BTE ratio

¢ Aging effects (horizon effects):

e As horizon increases (age decreases) forward risk increases

e Suppose wealth in bond numéraire held constant. Horizon effects are then
same as forward risk effects

e Standard advice:

— Increase BTE when individuals age
— Perception that “stocks are for the long run”
+ Siegel (1998)
+ Large magnitude of long horizon Sharpe ratios for stocks wrt bds

e Analysis above shows optimal behavior critically depends on preferences

— Investors averse to forward T-risk will actually increase their BTE in
response to increase in risk induced by longer horizon

— Younger investors of this sort will find it optimal to tilt their risky allo-
cation toward bonds, not toward equities as recommended
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PART 5: Applications

¢ Questions of interest:
e Extreme risk aversion:

— Impact on portfolio

— Preferences for risky assets (stocks and bonds)
e Long run portfolios

— Investors caring about distant horizons (pension plans, institutions,...)

— How to invest?

5.1 Extreme risk aversion
¢ Extreme risk aversion:

o Absolute risk aversion goes to infinity
e Absolute risk tolerance goes to zero

o (I'y(z,v),Ty(2)) — (0,0) for all z € D and all v € [0,T]

¢ Extreme behavior can take various forms:

e More intense in certain maturity ranges
o Consumption & bequest preferences provide natural classification of behavior

e Behavior of ratio: I'y(z1,v)/Ty(22)
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¢ Proposition 5.1:
e Assume risk tolerance measures vanish

— (Tu(z,v),Ty(2)) — (0,0) for all z € D and all v € [0,T]
— Ratios of risk tolerance measures
[y(z1,v)
PU(ZQ)

Fu(zlv Ul)
Fu(z2> /02)

+ for some constant & € [0, +00)

— k forall 21,20 € D and all v € [0, 7]

— 1 for all 21,2, € D and all vy, vy € [0, 7]

e Optimal allocation in the limit:

— Coupon-paying bond with constant coupon C and face value F

C=— * and F=— .
Jy Bydv+ B /k Jy Bydvk + Bf

xZ

— If k = 0 exclusive preference for pure discount bd: (C,F) = (0,z/B{)
— If k — oo preference for a pure coupon bond: (C,F) = (m/ [ Bydo, 0)

¢ Limit habitat preferences are striking

e Natural conjecture: more extreme RA determines preferred instrument

¢ Reverse holds

— Least extreme drives habitat

— More weight on maturities where risk tolerance greater
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¢ Reason:

e When absolute risk tolerances vanish investor seeks perfect smoothing
e Preference for certainty: constant consumption and terminal wealth

e With vINM preferences:

— Vanishing risk tolerance implies vanishing elasticity of intertemp. substit.
— Limit preferences, in (C, F) plane, induce Leontief indifference curves
— Engle curves:

+ Relate demand for C, F to income
x Keeping prices B! and ftT BPdv constant

x Slope k

e If %k is finite solution is interior as both income elast of ¢ & F are finite

udget Constraint

[*]
=1

0 20 40 B0 80 100 120
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e If £ =0 Engle curves horizontal; income elast of consumption fct. null
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o If k — 0o Engle curves vertical; income elast. of bequest fct. null

udget Constraint
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¢ Income elasticity behavior explains choice of preferred habitat

¢ Remark:

e Wachter (2003) special case with utility over bequest and Ito prices

e Finds preferred habitat when relative RA goes to infinity: pure discount bd
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5.2 Portfolio turnpike theorems: asymptotic portfolios

¢ Market:

e Preferences: vINM with utility over terminal wealth

¢ Financial market: equities, long term bonds and money market account

s
o} 0

oB(t,T)o(t,T) oB(t, T)+\/1— o(t,T)?

ds,/S,
B}/ B}

AWy
AWy

— 0B (t,T) instantaneous bond return volatility

— o(t,T) instantaneous correlation between bond and equities return
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¢ Proposition 5.1: (Gaussian bond return models)

e Deterministic forward market price of risk —o?(¢,T)

e Limits
%m Bl'=0,(P—a.s.) (normal market) (59)
lim o (1.T) = 0" (1) € (=1,1) (60)
%m B (t,T) = oP*(t) € [~00, +0] (61)

(where o" (), 0" (t) are deterministic)

e If positive part of inverse marginal utility has MD (i.e., I(y*¢;)* € D'?) and
marginal utility U’ varies regularly at infinity with exponent —R~, i.e.,

. U (ax) _RL
] —
oo U ()

forall a >0

then long run optimal portfolio is given by

S S
i . Ty 1 01 Lo 2t
=1 =— | —< — t)—
<‘:(;)L T X RF (Uts 7 )Uts)

sign( ¢) X if oBL(t)=0
B B .
<7Tt*) L if lo™ ()] = +oo
A o e - +1— 2 otherwise
RE\ B0 /1—pb (D) L(t 1 pL(t RL

where v% (t) = 0% (t) /1/1 — o (t)*. The long run bond-to-equities ratio is

b sign (%) X sign (9” — L) Hgt) X 00 if oBL(t)=0
<& —1
ef = <X;)L = (RL - 1) (%t - 'YL(t)%) if ’UB’L (t)| = +o0
( Z)L o? <aB - \9/”1 = =+ RY — 1> (61 — WL(t)Qgt)_l otherwise
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¢ Assumptions: markets

e Condition (59): normal market - Dybvig, Rogers and Back (1999)
e Condition (60): markets are complete and non-degenerate in the limit

o Condition (61): limit of bond volatilities exists, but may take infinite values

¢ Assumptions: preferences

e Regularly varying marginal util. behaves like CRRA as wealth becomes large

e HARA utility: regular variation with coefficient —R at infinity

U(x) = (z—A" U@ =@-A" A4>0

! A —R
im U (az) = lim M =a % foralla>0

e Mixtures of power utilities: regular variation with exponent —R; at infiniti

K

1

U($)221_ka17Rk> U'(x)=> o, 0<R<..<Rg
h=1 P

Ry

, K — Ry
li U<a$):hmM:a_ , foralla>0

mTIo% U/ (J?) zToo Z?:l :[;*Rk

e Mixtures of HARA: regular variation with exponent —R;

K K
1 _ _
U(x):zl_Rk (=A™, U(x)=) (z—A)™™, 0<Ri<..<Rg
k=1 k=1
with A, >0,k =1,..., K, satisfy
/ K _ —Ry,
lim U (az) = lim L= (07 = Ay) =a ™, foralla>0

BT @ AR A

e Sums, products, compositions of RV functions are RV (Seneta (1976))
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¢ Portfolio behavior:

e No forward density hedge: MPR in bd numeraire deterministic
e Demand for equities is pure mean-variance

e Demand for bonds depends on bond volatility

— Bond vol null: bond demand goes to infinity
— Bond vol infinite: mean-variance demand vanishes, bond hedge remains

— Otherwise: combination of these two motives

¢ Remarks: relation to literature

¢ Financial market: covers most models examined for long run behavior
e Long run risk models: Bansal & Yaron (2004), Alvarez & Jermann (2005)

e Portfolio turnpike models:

— Huberman-Ross (1983), Theorem 2 of Dybvig-Rogers-Back (1999)

— Asset returns serially independent and interest rate non-random
e Here interest rates can be random

— Results identify limit portfolio explictly
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