
Mindless Fitting? 

8th Winter School on Mathematical Finance

Lunteren,  15 January 2009
 

Piotr Karasinski

email: piotr.g.karasinski@googlemail.com

Mindless Fitting? 

8th Winter School on Mathematical Finance

Lunteren,  15 January 2009
 

Piotr Karasinski

email: piotr.g.karasinski@googlemail.com



2

Introduction

We are required to mark-to-market non-plain, exotic, products consistently with the market-
observed prices of liquid vanilla products.  

Thus for each exotic we must have a one-to-one mapping between vanilla prices and the exotic’s 
price.  Such mapping is called the mark-to-market model as it produces mark-to-market price and 
risk exposure.  Risk management policies (risk limits, desire to minimise volatility of the mark-to-
market P&L) typically compel traders to hedge exotics with vanillas such that the combined risk 
exposure, measured by the mark-to-market model, is close to zero.

In the traditional approach we set the price of an exotic equal to its’ value given by a traditional 
derivatives valuation model that assumes a certain stochastic evolution of the relevant risk factors.  
To fit vanilla prices practitioners often use (are forced to use?) over-parametrised models in which 
risk factor dynamics can be counter-intuitive.  Does this produce a good model, i.e., does hedging 
to such model’s risk exposure result in realised replication costs that is close to the initial exotic’s 
price the model produces?  How can we find an answer to this question?

What are the alternatives?  Can we start with a price of an exotic produced by a standard derivatives 
valuation model, with risk factors’ dynamics that makes sense (who is to judge?), and somehow, 
externally, adjust the price to reflect the difference between market and model prices of relevant 
vanilla options?  Would the resulting mapping produce a hedging model that is better than the one 
based on the traditional approach? 
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FX Implied Volatilities on 16th Nov 06

Expiry FwdFx ATM 25 RR 25 ST 10 RR 10 ST

ON 118.0 8.8% -0.7% 0.2% -1.1% 0.5%

1W 117.9 6.3% -0.6% 0.2% -1.0% 0.5%

1M 117.5 6.5% -0.6% 0.2% -1.0% 0.5%

3M 116.5 6.8% -0.7% 0.2% -1.3% 0.6%

6M 115.2 7.0% -0.9% 0.2% -1.5% 0.8%

1Y 112.8 7.3% -1.0% 0.2% -1.9% 1.0%

2Y 108.7 7.3% -1.5% 0.2% -2.8% 1.3%

3Y 105.1 7.3% -2.0% 0.2% -3.8% 1.3%

5Y 98.6 7.6% -2.9% 0.1% -5.3% 1.6%

7Y 92.7 8.1% -3.6% 0.0% -6.5% 1.9%

10Y 85.8 9.9% -4.6% -0.1% -8.0% 2.0%

15Y 75.9 12.5% -4.8% 0.3% -8.1% 2.6%

20Y 68.0 15.5% -4.9% 0.1% -8.1% 2.2%

30Y 55.4 18.6% -4.9% 0.0% -8.1% 1.9%

25RR (10RR) refer to the level of 25% (10%) delta risk reversals, defined as 
the difference between implied volatilities of 25% (10%) delta calls and puts

 25ST (10ST) refer to 25% (10%) strangles, defined as the average sum of 25% 
(10%) delta calls and puts implied volatilities less ATM volatility.
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Introduction to FX/IR Models

• To price long-dated FX  and FX/IR products on a given currency pair we 
need to jointly model evolution of:

– spot FX rate 
– interest rates for each of the two currencies.

• Why do we need to model rates jointly with spot FX for long-dated FX 
products?

– forward FX rates levels and their volatilities are determined by spot FX and 
level of rates in the two currencies and their respective volatilities

• As a result an FX/IR model must have at least 3 stochastic factors
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The Most Simple FX/IR Model

• The most simple and at the same time the most analytically tractable model we can build 
is a 3-factor model in which:

– spot FX follows the standard one-factor lognormal model
– rates for each of the two currencies follow one-factor normal (Gaussian) mean-reverting model.

  
• In this model forward FX rate follows lognormal process with local volatility function 

that is determined by:
– spot FX volatility 
– basis point volatility of the spread between rates in the two countries
– correlation between changes in spot FX and changes in spread between the two rates 

(“domestic” minus “foreign”).

• As the forward FX rate is lognormal,  the price of a standard European put or call is 
given by the Black-Scholes formula with volatility input that can be easily computed 
from the underlying three-factor model inputs.
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FX Volatility in the Simple Model:  Example I

• The graph below shows implied Black volatility (bottom curve) as a function of time to expiry and local 
volatility (upper curve) of a forward FX contract as a function of time to maturity when:

– spot FX volatility is 10%
– intra-curve rate spread volatility is 100 basis points and 
– correlation between changes in spot FX and changes in rate spread is zero.

The forward FX local volatility decreases with the 
decrease in time to maturity following the upper ‑ ‑
curve.  

The implied volatility for a given expiry is an average 
value (strictly speaking mean-square-root average) of 
the level of forward FX volatlitities for maturities 
between 0 and expiry.

At the 30 year point: the implied FX volatility  at 20%  is twice, and the 
forward FX volatility  at 31.6%  is three times, the size of local spot FX 
volatility.  

Volatility of intra-rate spread is responsible for this effect.
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FX Volatility in the Simple Model:  Example II

• It instructive to see in the graph below what happens to both implied and local 
volatilities of FX forwards from Example I when: 

– we set the spot FX volatility to zero 
– while keeping the intra-curve spread volatility unchanged at 100 basis point:

At 30 year time horizon reducing spot FX volatility from 10% to 0%:

•  lowers implied FX volatility from 20% to 17.3% 
•  lowers local FX forward rate volatility from 31.6% to 30% 
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Cognitive Bias in Model Building

0) ExerValue, HoldValue max(ExerValue 

ExerValue) HoldValue, max(  Date Call aon Bermudan  a of Value





People are obsessed with building a model that matches Exercise Value!   
Why?  Because this value is typically known assuming liquid vanilla 
markets.

In fact we need to predict the difference between HoldingValue and 
Exercise Value and not Exercise Value alone.  

A model that matches vanillas today is not necessarily good at predicting 
the cost of  dynamically replicating the value of Bermudan callability = 
max( HoldValue – ExerValue, 0)

Is it possible that a model that fits vanillas less well than the perfect 
model can actually do better job at predicting  HoldValue – ExerValue?
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Fischer Black Believed that Simple Models are Better!

Quote from Perry Mehrling's book entitled "FischerBlack and the 
Revolutionary Idea of Finance" page 14:

“In a world where nothing is constant, complex models are inherently 
fragile, and prone to break down when you lean on them too hard.  
Simple models are potentially more robust , and easier to adapt as the 
world changes.  Fisher [Black] embraced simple models as his anchor 
in the flux because he thought they were more likely to survive 
Darwinian selection as the system changes.”
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Let’s Think Out-of-the-Box!

Natural Selection and Derivatives Pricing
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Derivatives Modelling and Darwin’s “Natural Selection”

“I once worked for a year or so, for what 
seemed good reasons at the time, as a 
fitter’s mate in a soap factory on the Wirral 
Peninsula, Liverpool’s Left Bank.  It was a 
formative episode, and was also, by 
chance, my first exposure to the theory of 
evolution.

To make soap powder, a liquid is blown 
through a nozzle.  As it streams out, the 
pressure drops and a cloud of particles 
forms.  These fall into a tank and after 
some clandestine coloration and perfumery 
are packaged and sold.  In my day, thirty 
years ago, the spray came through a simple 
pipe that narrowed from one end to the 
other.  It did its job quite well, but had 
problems with changes in the size of the 
grains, liquid spilling through or   worst of 
 all  blockages in the tube.

Those problems have been solved.  The 
success is in the nozzle.  What used to be 
a simple pipe has become an intricate 
duct, longer than before, with many 
constrictions and chambers.   The liquid 
follows a complex path before it sprays 
from the hole.  Each type of powder has 
its own nozzle design, which does the 
job with great efficiency.

(continued)

Food-for-thought on derivatives modelling provided by a quote from Steve Jones’s book

Almost Like a Whale: The Origin of Species Updated (*), Chapter IV Natural Selection, 

(*) Published 1999 by Doubleday 12
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Derivatives Modelling and Darwin’s “Natural Selection”
(continued)

The engineers used the idea that moulds 
life itself: descent with modification.  Take 
a nozzle that works quite well and make 
copies, each changed at random.  Test 
them for how well they make powder.  
Then, impose a struggle for existence by 
insisting that not all can survive.   Many of 
the altered devices are no better (or worse) 
than the parental form.  They are 
discarded, but the few able to do a superior 
job are allowed to reproduce and are 
copied  but again not perfectly.  As 
generations pass there emerges, as if by 
magic, a new and efficient pipe of complex 
and unexpected shape.

Natural selection is a machine that makes 
almost impossible things.”

What caused such progress?  Soap 
companies hire plenty of scientists, who 
have long studied what happens when a 
liquid sprays out to become a powder.  The 
problem is too hard to allow even the 
finest engineers to do what enjoy the most, 
to explore the question with mathematics 
and design the best solution.  Because that 
failed, they tried another approach. It was 
the key to evolution, design without a 
designer: the preservation of favourable 
variations and the rejection of those 
injurious.  It was, in other words, natural 
selection.
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• Before mutation and selection

• After 20 generations of mutation & selection

Darwin on the Shop Floor:  Evolution of a Nozzle (*)

(*) Slide provided by Prof. Steve Jones 14
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Outline

• What Makes a Good Model?

• Foundations of Derivatives Pricing

• Marking-to-Market Non-Plain Products: Traditional Approach

• New Approach to Marking-to-Market Non-Plain Products

• Maths of the New Approach

• Advantages of the New Approach?
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What is a Good Mark-to-Market Model?

Mark-to-Market model has two components

• Term-structure IR model
• The way the IR model is used: model calibration, etc.

Some of the criteria used in judging mark-to-market models 

• Matching prices of reference plain liquid products
• Matching market prices of non-plain products (produced by other banks?)
• Accepted market practice, market standard
• Easy to explain and can be disclosed to wider audiences

– Marketers, Model Validation, Risk Management, Auditors, Regulators, etc.

• Conservatism
• Ease of implementation and cost of running
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What is a good hedging model?

Hedging models has two components

• Term-structure IR model
• The way the IR model is used: model calibration, risk measures against 

which we hedge,  trade-off between local risk and transactions costs, etc.

Criteria used in judging hedging models 

• Doing the best possible job replicating non-plain products
• Capturing value of a non-plain trade
• Trade-off between local risk hedging and transactions costs
• Minimising uncertainty in the realised replication cost

– How can we measure such uncertainty? 
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What Model  Should We Use for Hedging?

• Is hedging to mark-to-market model the best way to replicate non-plain 
products with plain ones?

• If not we should consider using:
– Alternative term-structure models 

• Increasing number of factors, different skew properties, etc. 
– Alternative method of calibration, additional risk measures

• Am I taking model risk if  I hedge to a model is not the same as the model 
I use for marking-to-market?

– My mark-to-market model is likely to report non-zero risk even though my 
portfolio has zero risk according to the hedging model
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Non-Plain Product’s Model Risk

Model-Dependence of Prices

• Prices depend on the terms-structure model used
– Number of curve factors included and rate-level dependence of volatility
– Assumptions about jumps and stochastic volatility

• Prices depend on how a particular model is used
– What we calibrate model parameters to and how
– Mark-to-market methodology based on the chosen model

Risk in Capturing P&L 

• Realised replication cost is uncertain 
– depends on what model we use and how
– the market doesn’t follow any particular model, can have structural changes, etc.
– transactions costs
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Model Risk in Capturing P&L

• How do we know that our models, and the way we use them, will allow us to capture 
the economic value (lock-in P&L) of a non-plain portfolio or a single trade over the 
trade’s/portfolio’s lifetime which sometime may extend to 30 and even 40 years?  

• How can we convince ourselves, and importantly significant others, that Warren 
Buffet’s prophecy (from 2000 Berkshire Hathaway’s annaual report) which says “In 
extreme cases, mark-to-model degenerates into what I would call mark-to-myth” will 
not be fulfilled? 

• In order to build tractable pricing/hedging models we make simplifying assumptions 
about the random behaviour of risk factors that determine the size of our non-plain 
products’ cashflows and cost of replicating these cashflows with plain products.

• Our cumulative experience in building and using models, as well as intuition derived 
from this experience, guide us in choosing models, and the way we use them, and 
provides a level of confidence. 
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Where Do Prices of Liquid Plain Products Come From?

Prices of liquid plain products are impacted by: 
• Supply-and-demand (end-users’ hedging needs and risk-aversion,  risk limits and risk 

appetite of providers, …), overall market liquidity

• Beliefs about future swap curve behaviour (volatilities and correlations, etc) as these beliefs 
can be translated into a term-structure model which produces prices of plain products that 
can be compared with currently observed market prices of those non-plain products.

• Our beliefs about future swap curve behaviour are shaped:
– by swap curve’s past behaviour
– “economic theory”

• Some of the relative value players are fitting parameters in their term-structure models to 
swaption market data and measure relative value by 

– Comparing current levels of such implied parameters against past levels: past 
highs/lows etc.

– Looking at individual swaptions’ current and historical levels of fit residuals.  
– Such relative value measures impact trading decisions and thus feed-back to market 

mid prices.  

• Overall market liquidity and risk aversion is another factor.  During the LTCM crisis the 
implied vols of long-dated swaptions  collapsed.
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• Some of the relative value players are fitting parameters in their term-structure models to 
swaption market data and measure relative value by 

– Comparing current levels of such implied parameters against past levels: past 
highs/lows etc.

– Looking at individual swaptions’ current and historical levels of fit residuals.  
– Such relative value measures impact trading decisions and thus feed-back to market 

mid prices.  

• Overall market liquidity and risk aversion is another factor.  During the LTCM crisis the 
implied vols of long-dated swaptions  collapsed.
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Pricing and Hedging of Non-Plain Products

How much should we charge for an interest rate exotic?  

How should we hedge it? 
• These two questions are obviously inter-related:  

– The price we should charge for an exotic should equal the present value 
of future hedging costs plus a reasonable profit margin. 

• So, how do we go about designing a hedging strategy?   

• Given a hedging strategy, how do we find  the present value of realised 
hedging costs?   

• Will the present value of  realised hedging costs depend on the future 
evolution of  market prices/rates for our yield curve and volatility hedges?  
If so, what is the distribution of potential outcomes? 
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Fundamental Theorem of Derivatives Pricing

When:

All relevant market risk factors can be hedged, i.e., we can hedge yield curve, 
volatility and correlation risk with traded instruments.

We can hedge in continuous time — we can re-hedge as often as we need — without 
incurring transactions cost.

Market risk factors follow a diffusion process.  The instantaneous covariance matrix 
between changes in risk factors’ levels is a known function of time and risk factors’ 
levels.   

A derivative product has a unique price. 

In plain English this means that there exists a unique hedging strategy for which the 
realised cost of replication is path-independent.
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Marking-to-Market Non-Plain Products:

Traditional Approach 
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Marking Non-Plain Products Relative to Plain Ones

• We are required to mark-to-market non-plain products in a way that is 
consistent with mark-to-market prices of plain products

• Thus for each non-plain product we need to design a functional form 

– for the dependence of the product’s mark-to-market price on:

•            valuation date   

•            swap curve

•            parameters that enter into our mark-to-market model for plain products
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Traditional Approach

• We set the non-plain products mark-to-market value to its’ value given 
by a term-structure model

• We calibrate model parameters to a product-dependent set of market 
prices of plain caps/floors and swaptions

– Typical set of model parameters for a one-factor model:  mean-reversion 
speed, parameters entering into the local volatility function, skew parameter.
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Fitting Model Parameters for Bermudans

• Exact fit to a small set of “properly” chosen benchmarks

– Number of fitted parameters equal to the number of benchmarks
– Example: fix mean-reversion speed, fit the local volatility 

function so that we match “diagonal” swaptions with “properly” 
chosen strikes:

• at-the-money
• equal to the underlyer’s swap rate (for Bermudans on plain swaps)
• etc. 

• Least-square fit (could be vega weighted)

– Number of benchmarks  >  Number of model parameters
– Issues with multiple local minima
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Potential Problems with the Traditional Approach

• Overparametrization

• Risk factors’ dynamics that “does not make sense”

• Excessive variability of model parameters

• Proliferation of model calibrations

• Inconsistent risk for plain products we calibrate to and/or hedge with:
– Risk produced by our term structure model could differ from risk produced by the 

plain products’ mark-to-market model 

• Hedging to the “mark-to-model” model may not be the best way of 
capturing economic value.
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New Framework for Marking Non-Plain Products

• We construct a portfolio that consists of a non plain product and so ‑
called “mark-to-market” hedge portfolio of plain products that:
– hedges away sensitivities of the non-plain product’s model price to model 

parameters
– satisfies additional criteria:  “stability” conditions, etc.

• We set the non-plain product’s mark-to-market price equal to:
– the combined model price of the non-plain product and “mark-to-market” 

hedge portfolio
– less the mark to-market price of the “mark-to-market” hedge portfolio‑

• The above framework satisfies, by construction, the requirement that we 
mark non-plain products consistently with market prices of plain 
products.
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Calibrating Model Parameters to Plain Products

• We may prefer to have a small number of model parameters and model 
parameterizations that make economic sense.

• We need to decide which model parameters to keep fixed.  For example, we 
may keep correlations between factor shocks constant.  

• We may want to impose priors on the model parameters we calibrate based 
on historically fitted parameter levels and other criteria.

• We need to decide which specific caps/floors and swaptions to include in 
our calibration set:  we need to pick expiries, underlyers’ tenors, and strikes.

• While we may prefer not to have trade-specific calibration sets, one model 
calibration may not work for all non-plain products.  We hope that it will 
suffice to have a small number of product-group specific model calibrations. 
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Choosing Plain Product Hedges

• We need to decide up-front which plain products to include in the 
mark-to-market hedge portfolio for a given non-plain product.

• The number of plain products we choose could be larger than the 
number of model parameters.

• We fix swaptions’ strike levels, expiry dates and underlier tenors, 
cap strikes and start/end dates.

• For Bermudan swaptions we would include both on-diagonal and 
off-diagonal swaptions in the hedge portfolio.  
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Finding Hedge Portfolio Weights

We find the hedge portfolio weights by requiring that:
  

• We hedge away sensitivities of the non-plain product’s model price to 
model parameters while at the same time we:

– minimize the total portfolio gamma  

– satisfy hedge stability condition, i.e., that the hedged non-plain product 
portfolio’s delta with respect to model parameters is insensitive to small 
curve and model parameter shifts

– satisfy  “other” constraints
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Maths of Mark-to-Market:  Notation
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Maths of Mark-to-Market

• We set the combined time       mark-to-market value of the non-plain 
product and the hedge portfolio equal to the respective model value:

• The mark-to-market value of the non-plain product equals the above 
value       less the mark-to-market value of the hedge portfolio: 
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Decomposing Changes in Mark-to-Market

• Profit-and-Loss attribution plays an important role in managing a 
portfolio of derivative products.  Here is how it works for non-plain 
products  marked to market using our prescription.

• We write the change in mark-to-market value of a non-plain product as 
a sum of three terms: 
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Terms in the P&L Decomposition

• Change in the model value of a non-plain product due to yield curve shift, change in 
model calibration, and passage of time:

• Change in the price adjustment due to change in discrepancy between model and market 
values of  the time       hedge portfolio (unchanged hedge portfolio weights):

• Adjustment to mark-to-market price due to discrepancy between model and market 
values of the hedge added at time       :
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Non-Plain Product’s Delta Risk 
Hedge portfolio based on Parameter Hedging

• Non-plain product’s vega risk is equal to the total derivative of the 
product’s mark-to-market value with respect to volatility parameter 
vector  Vσ
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Hedge portfolio based on Parameter Hedging
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Non-Plain Product’s Vega Risk
Hedge portfolio based on Parameter Hedging

• What is vega risk?

– Risk due to small shifts in parameters entering mark-to-market model 
for plain caps/floors and swaptions

• ATM vols or other vol-type variables,  skew/smile parameters, etc.

• What is the vega risk of  a non-plain product equal to?

– When the “mark-to-market” hedge portfolio is chosen to hedge away 
deltas of  the non-plain product model value with respect to model 
calibration

– The vega risk of a non-plain product’s mark-to-market value equals to:
• negative of  vega risk of the “mark-to-market” hedge portfolio 

plus a small adjustment
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Non-Plain Product’s Vega Risk Formula 
Hedge portfolio based on Parameter Hedging

     Non-plain product’s vega is equal to the partial derivative of 
the product’s mark-to-market value with respect to volatility 
parameter vector  Vσ
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Advantages of the New Approach
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Advantages of the New Approach

• Reduced number of model parameters

• We can have risk factors’ dynamics that makes economic sense

• Reduced variability of model parameters

• Small number of model calibrations

• Better aggregation of risk
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