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Optimal stopping of Lévy processes

Consider a d-dimensional Lévy process X = (Xt)t≥0, with
characteristic exponent ψ and generating triplet (A, ν, γ),
which means

E

(

eiz.Xt

)

= exp[tψ(z)], z ∈ R
d,

where

ψ(z) = −1

2
z.Az + iγ.z +

∫

(

eiz.x − 1 − iz.x1{|x|≤1}
)

ν(dx),

the matrix A = (Aij) is the covariance matrix of the
Brownian part, the measure ν on R

d\ {0} is the Lévy
measure of X, which satisfies

∫

(|x|2 ∧ 1)ν(dx) <∞, and γ is
a vector in R

d.
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Given a bounded and continuous function f on R
d, we

introduce

uf (t, x) = sup
τ∈T0,t

E (f(x+Xτ )) , (t, x) ∈ [0,+∞) × R
d,

where T0,t is the set of all stopping times with values in
[0, t]. We want to characterize uf as the unique solution
of a variational inequality.
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Given a bounded and continuous function f on R
d, we

introduce

uf (t, x) = sup
τ∈T0,t

E (f(x+Xτ )) , (t, x) ∈ [0,+∞) × R
d,

where T0,t is the set of all stopping times with values in
[0, t]. We want to characterize uf as the unique solution
of a variational inequality.

Denote by L the infinitesimal generator of X. The
operator L can be written as a sum L = A + B, where A
is the local (differential) part and B is the non-local
(integral) part.
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For g ∈ C2
b (Rd), we have

Ag(x) =
1

2

d
∑

i,j=1

Ai,j
∂2g

∂xi∂xj
(x) +

d
∑

i=1

γi
∂g

∂xi
(x),

and

Bg(x) =

∫

ν(dy)
(

g(x+ y) − g(x) − y.∇g(x)1{|y|≤1}
)

,

where ∇g denotes the gradient of g.
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For g ∈ C2
b (Rd), we have

Ag(x) =
1

2

d
∑

i,j=1

Ai,j
∂2g

∂xi∂xj
(x) +

d
∑

i=1

γi
∂g

∂xi
(x),

and

Bg(x) =

∫

ν(dy)
(

g(x+ y) − g(x) − y.∇g(x)1{|y|≤1}
)

,

where ∇g denotes the gradient of g.

The local part Ag can be defined in the sense of
distributions if g is a locally integrable function.
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We will show that Bg can be defined in the sense of
distributions if g is bounded and Borel measurable.
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We will show that Bg can be defined in the sense of
distributions if g is bounded and Borel measurable.

If O is an open subset of R
d, we denote by D(O) the set

of all C∞ functions with compact support in O and by
D′(O) the space of distributions on O. If u ∈ D′(O) and
ϕ ∈ D(O), 〈u, ϕ〉 denotes the evaluation on the test
function ϕ of the distribution u. Note that if u is a locally
integrable function on O,

〈u, ϕ〉 =

∫

O
u(x)ϕ(x)dx.
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We will show that Bg can be defined in the sense of
distributions if g is bounded and Borel measurable.

If O is an open subset of R
d, we denote by D(O) the set

of all C∞ functions with compact support in O and by
D′(O) the space of distributions on O. If u ∈ D′(O) and
ϕ ∈ D(O), 〈u, ϕ〉 denotes the evaluation on the test
function ϕ of the distribution u. Note that if u is a locally
integrable function on O,

〈u, ϕ〉 =

∫

O
u(x)ϕ(x)dx.

And the partial derivatives of u are defined by

〈 ∂u
∂xj

, ϕ〉 = −
∫

O
u(x)

∂ϕ

∂xj
(x)dx.
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Introduce the adjoint operator B∗ of B. For ϕ ∈ C2
b (Rd),

let

B∗ϕ(x) =

∫

(

ϕ(x− y) − ϕ(x) + y.∇ϕ(x)1{|y|≤1}
)

ν(dy), x ∈ R
d.
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Introduce the adjoint operator B∗ of B. For ϕ ∈ C2
b (Rd),

let

B∗ϕ(x) =

∫

(

ϕ(x− y) − ϕ(x) + y.∇ϕ(x)1{|y|≤1}
)

ν(dy), x ∈ R
d.

For the next Proposition, we will use the following
notations.

||D2ϕ||∞ = sup
x∈Rd

sup
|y|≤1

∣

∣

∣

∣

∣

∣

d
∑

i=1

d
∑

j=1

yiyj
∂2ϕ

∂xi∂xj
(x)

∣

∣

∣

∣

∣

∣

,

B1 =
{

y ∈ R
d | |y| ≤ 1

}

.
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Proposition 1 If ϕ ∈ D(Rd), the function B∗ϕ is continuous
and integrable on R

d, and we have

||B∗ϕ||L1 ≤ 1

2
||D2ϕ||∞λd(K +B1)

∫

B1

|y|2ν(dy) + 2||ϕ||L1ν(Bc
1),

where K = suppϕ and λd is the Lebesgue measure.
Moreover, if g ∈ C2

b (Rd), we have

〈Bg, ϕ〉 =

∫

Rd

g(x)B∗ϕ(x)dx.

For g ∈ L∞(Rd), the distribution Bg can be defined by setting

〈Bg, ϕ〉 =

∫

Rd

g(x)B∗ϕ(x)dx, ϕ ∈ D(Rd).

Some option pricing problems in exponential Lévy models – p. 8/31



We can now characterize the value function uf of an
optimal stopping problem with reward function f as the
solution of a variational inequality. Note that in the following
statement ∂tv + Lv is to be understood as a distribution.
Theorem 2 Fix T > 0 and let f be a continuous and
bounded function on R

d. The function v defined by
v(t, x) = uf (T − t, x) is the only continuous and bounded
function on [0, T ] × R

d satisfying the following conditions:

1. v(T, .) = f ,

2. v ≥ f ,

3. On (0, T ) × R
d, ∂tv + Lv ≤ 0,

4. On the open set {(t, x) ∈ (0, T ) × R
d | v(t, x) > f(x)},

∂tv + Lv = 0.
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Proof

Continuity of (t, x) 7→ uf (t, x) = supτ∈T0,t
E (f(x+Xτ )).

The process (Ut = v(t, x+Xt))0≤t≤T is the Snell
envelope of the process (Zt = f(x+Xt))0≤t≤T .
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Proof

Continuity of (t, x) 7→ uf (t, x) = supτ∈T0,t
E (f(x+Xτ )).

The process (Ut = v(t, x+Xt))0≤t≤T is the Snell
envelope of the process (Zt = f(x+Xt))0≤t≤T .

Therefore, (Ut)0≤t≤T is a supermartingale, and, if

τ∗ = inf{t ∈ [0, T ] | Ut = Zt},

the stopped process (Ut∧τ∗)0≤t≤T is a martingale.
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Proof

Continuity of (t, x) 7→ uf (t, x) = supτ∈T0,t
E (f(x+Xτ )).

The process (Ut = v(t, x+Xt))0≤t≤T is the Snell
envelope of the process (Zt = f(x+Xt))0≤t≤T .

Therefore, (Ut)0≤t≤T is a supermartingale, and, if

τ∗ = inf{t ∈ [0, T ] | Ut = Zt},

the stopped process (Ut∧τ∗)0≤t≤T is a martingale.

Note that τ∗ is the exit time from the open set {v > f}
for the process (t, x+Xt)0≤t≤T .
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Given x ∈ R
d and an open subset U of R

d, define

τx
U = inf{t ≥ 0 | x+Xt /∈ U}.
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Given x ∈ R
d and an open subset U of R

d, define

τx
U = inf{t ≥ 0 | x+Xt /∈ U}.

If g is a bounded continuous function on R
d, the

following conditions are equivalent
1- For every x ∈ R

d, the process (g(x+Xt∧τx
U
))t≥0 is a

supermartingale.
2- The distribution Lg is a nonpositive measure on U .
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Given x ∈ R
d and an open subset U of R

d, define

τx
U = inf{t ≥ 0 | x+Xt /∈ U}.

If g is a bounded continuous function on R
d, the

following conditions are equivalent
1- For every x ∈ R

d, the process (g(x+Xt∧τx
U
))t≥0 is a

supermartingale.
2- The distribution Lg is a nonpositive measure on U .

For recent results on viscosity solutions, see Barles and
Imbert (Ann. IHP 2008).
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The American put price
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The American put price

In an exponential Lévy model, the price (St)t∈[0,T ] of the
risky asset is given, under the pricing measure, by

St = S0e
(r−δ)t+Xt,

where r > 0 is the interest rate, δ ≥ 0 the dividend rate,
and X = (Xt)0≤t≤T is a real Lévy process, with
generating triplet (σ2, ν, γ), such that (eXt)0≤t≤T is a
martingale.
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The American put price

In an exponential Lévy model, the price (St)t∈[0,T ] of the
risky asset is given, under the pricing measure, by

St = S0e
(r−δ)t+Xt,

where r > 0 is the interest rate, δ ≥ 0 the dividend rate,
and X = (Xt)0≤t≤T is a real Lévy process, with
generating triplet (σ2, ν, γ), such that (eXt)0≤t≤T is a
martingale.

The martingale property for eXt is equivalent to the
following conditions:

∫

{|x|≥1} e
xν(dx) <∞ and

σ2

2
+ γ +

∫

(

ex − 1 − x1{|x|≤1}
)

ν(dx) = 0.
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Using this condition, the infinitesimal generator L of the
process (X̃t = log(St/S0)) can be written as follows. For
g ∈ C2

b , we have

Lg(x) =
σ2

2

∂2g

∂x2
(x) +

(

r − δ − σ2

2

)

∂g

∂x
(x) + Bg(x),

where

Bg(x) =

∫

ν(dy)

(

g(x+ y) − g(x) − (ey − 1)
∂g

∂x
(x)

)

.

Note that, as in the general setting, Bg can be defined in the
sense of distributions for g ∈ L∞(Rd).
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The value at time t of an American put with maturity T and
strike price K is given by

Pt = P (t, St),

with,
P (t, x) = sup

τ∈T0,T−t

E(e−rτf(Sx
τ )), (1)

where Sx
t = xeX̃t = xe(r−δ)t+Xt and f(x) = (K − x)+ .

It follows from (1) that x 7→ P (t, x) is convex and that
t 7→ P (t, x) is non-increasing.
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Define
P̃ (t, x) = P (t, ex), (t, x) ∈ [0, T ] × R.

We have

P̃ (t, x) = sup
τ∈T0,T−t

E(e−rτ f̃(x+ X̃τ )),

where f̃(x) = f(ex) = (K − ex)+.

Theorem 3 The distribution (∂t + L − r)P̃ is a nonpositive
measure on (0, T ) × R, and, on the open set
{(t, x) ∈ (0, T ) × R | P̃ (t, x) > f̃(x)}, we have
(∂t + L− r)P̃ = 0.
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The exercise boundary
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The exercise boundary

We assume that one of the following conditions holds

σ 6= 0, ν((−∞, 0)) > 0 or
∫

(0,+∞)
(x ∧ 1)ν(dx) = +∞.
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The exercise boundary

We assume that one of the following conditions holds

σ 6= 0, ν((−∞, 0)) > 0 or
∫

(0,+∞)
(x ∧ 1)ν(dx) = +∞.

Under this assumption, we have

∀t ∈ [0, T ), ∀x ∈ [0,+∞), P (t, x) > 0.
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The exercise boundary

We assume that one of the following conditions holds

σ 6= 0, ν((−∞, 0)) > 0 or
∫

(0,+∞)
(x ∧ 1)ν(dx) = +∞.

Under this assumption, we have

∀t ∈ [0, T ), ∀x ∈ [0,+∞), P (t, x) > 0.

We now define the critical price at time t ∈ [0, T ) by

b(t) = inf{x ≥ 0 | P (t, x) > f(x)}.
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The exercise boundary

We assume that one of the following conditions holds

σ 6= 0, ν((−∞, 0)) > 0 or
∫

(0,+∞)
(x ∧ 1)ν(dx) = +∞.

Under this assumption, we have

∀t ∈ [0, T ), ∀x ∈ [0,+∞), P (t, x) > 0.

We now define the critical price at time t ∈ [0, T ) by

b(t) = inf{x ≥ 0 | P (t, x) > f(x)}.

Note that b(t) ∈ [0,K). It can be proved that b(t) > 0.
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Since t 7→ P (t, x) is nonincreasing, the function t 7→ b(t)
is nondecreasing.
We obviously have P (t, x) = f(x) for x ∈ [0, b(t)) and
also for x = b(t), due to the continuity of P and f . We
also deduce from the convexity of x 7→ P (t, x) and the
fact that P (t, x) > 0 that

∀t ∈ [0, T ), ∀x > b(t), P (t, x) > f(x).
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Since t 7→ P (t, x) is nonincreasing, the function t 7→ b(t)
is nondecreasing.
We obviously have P (t, x) = f(x) for x ∈ [0, b(t)) and
also for x = b(t), due to the continuity of P and f . We
also deduce from the convexity of x 7→ P (t, x) and the
fact that P (t, x) > 0 that

∀t ∈ [0, T ), ∀x > b(t), P (t, x) > f(x).

In other words, the continuation region C can be written
as

C = {(t, x) ∈ [0, T ) × [0,+∞) | x > b(t)}.
The graph of b is called the exercise boundary or free
boundary.
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Theorem 4 The function t 7→ b(t) is continuous on [0, T ).
The following result characterizes the limit of the critical
price b(t) as t approaches T . This extends and clarifies
recent results of Levendorski (2004). See also Yang, Jiang
and Bian (2006), Bayraktar, Xing (2008).
Theorem 5 If

∫

(ex − 1)+ν(dx) ≤ r − δ, we have

lim
t→T

b(t) = K.

If
∫

(ex − 1)+ν(dx) > r − δ, we have limt→T b(t) = ξ, where ξ
is the unique real number in the interval (0,K) such that
ϕ(ξ) = rK, and ϕ is the function defined by

ϕ(x) = δx+

∫

(xey −K)+ν(dy), x ∈ (0,K).
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The smooth fit property

The continuity of the derivative (with respect to the
underlying stock price) of the American put price is a
well known property in the Black-scholes model, called
the smooth fit property (see also Zhang (1994) and
Bayraktar (2007) for jump-diffusions). In the context of
exponential Lévy models, this property may no longer
be true.
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The smooth fit property

The continuity of the derivative (with respect to the
underlying stock price) of the American put price is a
well known property in the Black-scholes model, called
the smooth fit property (see also Zhang (1994) and
Bayraktar (2007) for jump-diffusions). In the context of
exponential Lévy models, this property may no longer
be true.

In the case of perpetual American options, Alili and
Kyprianou (2004) proved that a necessary and sufficient
condition for smooth fit is that the point 0 is regular with
respect to the set (−∞, 0) for the process
X̃t := (r − δ)t+Xt, which means that P(τ0 = 0) = 1,
where

τ0 = inf{t > 0 | X̃t < 0}.
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In the case of finite horizon, it can be proved that regularity
implies smooth fit (G. Peskir, cf. Bather (1970)). It follows
that the smooth fit property is satisfied by the American put
in an exponential Lévy model, if the underlying Lévy
process has infinite variation.
Let f : R → R be a bounded and Lipschitz continuous
function. Define

v(t, x) = sup
τ∈T0,T−t

E
(

e−rτf(x+Xτ )
)

, 0 ≤ t ≤ T,

where X is a real Lévy process. Assume there exists
b : [0, T ) 7→ R such that for every t ∈ [0, T ), we have

v(t, x) > f(x) ⇔ x > b(t).
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Proposition 6 Assume that 0 is a regular point with respect
to the set (−∞, 0) for the process X and that f is of class
C1 in a neighborhood of b(0). Then, the function x 7→ v(0, x)

is differentiable at x = b(0) and
∂v

∂x
(0, b(0)) = f ′(b(0)).

Proposition 7 Consider an exponential Lévy model, in
which the generating triplet of the Lévy process is given by
(σ2, ν, γ). Suppose σ2 = 0, and

∫

(|x| ∧ 1)ν(dx) <∞.

If r − δ −
∫

(ey − 1)ν(dy) < 0, smooth fit holds for
American put options with finite maturity.

If r − δ −
∫

(ey − 1)+ν(dy) > 0, smooth fit does not hold.

Note that γ0 := r − δ −
∫

(ey − 1)ν(dy) is the drift of the Lévy
process X̃t = log(St/S0).
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Proof of the second part of the Proposition

It follows from the variational inequality that, for x > b(t),

γ0x
∂P

∂x
(t, x)+

∫

(P (t, xey) − P (t, x)) ν(dy)−rP (t, x) = −∂P
∂t

(t, x).

Therefore, at x = b(t),

γ0x
∂P

∂x
(t, x) ≥ r(K − x) −

∫

(P (t, xey) − P (t, x)) ν(dy)

= r(K − x) −
∫

(−∞,0)
x(1 − ey)ν(dy)

−
∫

(0,+∞)
(P (t, xey) − P (t, x)) ν(dy).

Note: P (t, ·) is nonincreasing and γ0 = r− δ−
∫

(ey − 1)ν(dy)
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Hence (for x = b(t))
(

r − δ −
∫

(ey − 1)ν(dy)

)

∂P

∂x
(t, x) +

∫

(−∞,0)
(1 − ey)ν(dy) ≥ 0,

so that

∂P

∂x
(t, x) ≥ −

∫

(−∞,0)(1 − ey)ν(dy)

r − δ −
∫

(ey − 1)+ν(dy) +
∫

(−∞,0)(1 − ey)ν(dy)

> −1,

if r − δ −
∫

(ey − 1)+ν(dy) > 0.
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Discrete vs continuous supremum
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Discrete vs continuous supremum

Consider a real Lévy process X with generating triplet
(σ2, ν, γ), with

∫

|x|≥1 |x|ν(dx) <∞. Let

Mt = sup
0≤s≤t

Xs, M
(n)
t = sup

k=0,1,...,n
Xkt/n, n ∈ N.

We want to study the difference

Mt −M
(n)
t .
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Discrete vs continuous supremum

Consider a real Lévy process X with generating triplet
(σ2, ν, γ), with

∫

|x|≥1 |x|ν(dx) <∞. Let

Mt = sup
0≤s≤t

Xs, M
(n)
t = sup

k=0,1,...,n
Xkt/n, n ∈ N.

We want to study the difference

Mt −M
(n)
t .

References (Brownian motion): Asmussen, Glynn,
Pitman (1995), Broadie, Glasserman, Kou (1999).
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Spitzer’s identity

Theorem 8 (Spitzer) Let Y1, . . . , Yn be iid integrable real
random variables. Denote

S0 = 0, Sk =
k
∑

i=1

Yi, k = 1, . . . , n.

We have

E

(

max
k=0,...,n

Sk

)

= E

(

max
k=1,...,n

S+
k

)

=
n
∑

k=1

1

k
ES+

k .

For an integrable Lévy process X, we have

E

(

sup
0≤s≤t

Xs

)

=

∫ t

0

E(X+
s )

s
ds.
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Proof

Induction on n. Denote Mn = maxk=0,...,n Sk. We have

EMn = E
(

Mn1{Sn>0}
)

+ E
(

Mn1{Sn≤0}
)

= E
(

Mn1{Sn>0}
)

+ E
(

Mn−11{Sn≤0}
)

.

On the other hand

E
(

Mn1{Sn>0}
)

= E max (Y1, Y1 + Y2, . . . , Y1 + . . .+ Yn)1{Sn>0}
= E [Y1 + max (0, Y2, . . . , Y2 + . . .+ Yn)]1{Sn>0}

= E
(

Y11{Sn>0}
)

+ E
(

Mn−11{Sn>0}
)

=
1

n
E
(

Sn1{Sn>0}
)

+ E
(

Mn−11{Sn>0}
)

=
1

n
ES+

n + E
(

Mn−11{Sn>0}
)

.
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Proposition 9 1. We have

E

(

Mt −M
(n)
t

)

= O(1/
√
n).

2. If σ = 0,

E

(

Mt −M
(n)
t

)

= o(1/
√
n).

These estimates are essentially optimal (cf. Brownian
motion and stable processes).
In some cases (jump-diffusion), an expansion up to o(1/n)
can be established.
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Proof

Assume for simplicity that (Xt) is a martingale, and let
δ = t/n. We have, using Spitzer’s identity, and the estimate
EX+

t ≤ C
√
t,

EMt − EM
(n)
t =

∫ t

0

EX+
s

s
ds−

n
∑

k=1

EX+
kδ

k

=
n
∑

k=1

∫ kδ

(k−1)δ

EX+
s

s
ds− EX+

kδ

k

=

n
∑

k=2

∫ kδ

(k−1)δ

EX+
s

s
ds− EX+

kδ

k
+O(

√
δ)

Note that X+
t is a submartingale, so that EX+

s ≤ EX+
kδ for

(k − 1)δ ≤ s ≤ kδ.
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Hence

EMt − EM
(n)
t =

n
∑

k=2

∫ kδ

(k−1)δ

EX+
s

s
ds− EX+

kδ

k
+O(

√
δ)

≤
n
∑

k=2

EX+
kδ

(

∫ kδ

(k−1)δ

ds

s
− 1

k

)

+O(
√
δ)

≤ C
n
∑

k=2

√
kδ

(

1

k − 1
− 1

k

)

+O(
√
δ)

≤ C
√
δ

∞
∑

k=2

1

k3/2
.

Note that, if σ = 0, we have lim
s→0

EX+
s√
s

= 0.
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Weak convergence of normalized error

Theorem 10 Let X be a Lévy process with generating
triplet (σ2, ν, γ). Assume σ > 0 and ν finite. For a fixed t > 0,

the sequence
[√

n(Mt −M
(n)
t ),Mt

]

n∈N

converges in

distribution to (σ
√
tW,Mt), where W and Mt are

independent and W is given by

W = min
n=0,±1,±2,...

R(U + n),

where U is uniform on (0, 1) and (R(t))t∈R is an independent
two-sided version of a three-dimensional Bessel process.
In the case ν = 0, this result is due to Asmussen, Glynn and
Pitman (1995).
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Continuity correction

The previous result can be used to derive continuity
correction formulas for lookback options in the same way as
in Broadie, Glasserman, Kou (1999). To demonstrate this,
consider a lookback put option in an exponential Lévy
model (with r = δ = 0)

V = E

(

S0e
MT − S0e

XT

)

, Vn = E

(

S0e
M

(n)
T − S0e

XT

)

.

Then we have (under the assumptions of the previous
theorem and integrability conditions)

V = Vn

(

1 + β1σ
√

T/n
)

+ S0β1σ
√

T/n+ o(1/
√
n),

where β1 = E(W ) = − ζ(1/2)√
2π

.
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