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Definition of the problem

Examples of multi-asset options

•

(∏d
j=1 S

1
d
j −K

)+

(call on the geometric average of the assets).

•
(∑d

j=1 cjSj −K
)+

, with cj the basket weights (basket call).

• Options on the minimum or maximum of the underlying assets, for example:
(K − maxj Sj)

+, put on the maximum of the underlying assets.
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The CONV-method

General formulation

The method presented falls in the category of transform methods. ⇒ So use methods that
are based on the risk-neutral valuation formula, for options on a single asset:

V (t, S(t)) = e−r(T−t)E [V (T, S(T ))|S(t)] ,

• V is the value of the option

• r is the risk-free interest rate and is assumed to be deterministic here.

• t is the current time and T is the maturity date

• S represents the price of the underlying
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Single asset European option

Solution technique

Option price can be determined directly with numerical integration if probability density is
known.

V (t, x(t)) = e−r(T−t)
∫ ∞

lnK

(
ex(T ) −K

)
f(x)dx,

with x(T ) = lnS(T ) and f(x) the probability density function.
Use a damping function to make the integral square integrable and take the Fourier trans-
form:

ψ(ω) = e−r(T−t)
∫ ∞

−∞

eiωK
∗
∫ ∞

K∗
eαK

∗
(
ex − eK

∗
)
f(x)dxdK∗

=
e−r(T−t)ϕ(ω − (α + 1)i)

α2 + α− v2 + i(2α + 1)v
,

where the characteristic function of the underlying is defined by

ϕ(u) = E

[
eiu lnS(T )

]
.
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Single asset European option

Solution technique

To compute the call price, the inverse Fourier transform has to be computed:

V (t, x(t)) =
e−αK

∗

2π

∫ ∞

−∞

e−iωK
∗
ψ(ω)dω.

The same procedure cannot be done for multi-asset options. The characteristic function of
a log-basket must be known. For standard basket options, quite accurate approximations
can be obtained, only if it can be assumed that the basket self has the same probability
density function as the the underlying assets.

The CONV-method does not rely on such an approximation.
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Multi-dimensional CONV-method

General formulation

In the multi-dimensional version we need to compute:

V (t,x(t)) = e−r(T−t)
∫

Rd
V (T,y)f(y|x)dy,

where x = lnS(t) is a vector of the log-asset prices, y = lnS(T ) and f(y|x) is the
probability density function of the transition of x at time t to y at time T .
Main premise of the CONV method:

f(y|x) = f(y − x).

This holds for several models, such as geometric Brownian motion and, more generally, Lévy
processes, which have independent increments.
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The CONV-method

Fourier-transform

• Reformulate the risk-neutral valuation formula

V (t,x) = e−r(T−t)
∫

Rd
V (T,x + z)f(z)dz

• Truncate the domain and take Fourier transform:

er(T−t)F{V (t,x)}=

∫

Ωd
eiωx

(∫

Ωd
V (T,x + z)f(z)dz

)
dx

=

∫

Ωd

∫

Ωd
eiω(y−z)V (T,y)dyf(z)dz

=

∫

Ωd
eiωyV (T,y)dy

∫

Ωd
e−iωzf(z)dz

The truncation of the domain is needed for two reasons. A multi-dimensional damping
cannot be constructed to make the integral square integrable. Secondly, a truncated domain
is mandatory for the discretization of the integral. Ωd is chosen, such that the error is
negligible.
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The CONV-method

Expression

V (t,x) = e−r(T−t)F−1 {F {V (T,y)} · ϕ(−ω)}

Numerical solution:

• Truncation in asset-space and frequency space

• Use the repeated Trapezoidal rule to approximate the remaining finite integral

• Rewrite the discrete expression in terms of the discrete Fourier transforms

Discrete equation:

V (t,xm) ≈ e−r(T−t)
N−1∑

n=0

{
N−1∑

n=0

{
V̂ (T,yk)W

−n·k
}
ϕ(−ωn)Wm·n

N

}

with WN = e−
2πi
N
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The CONV-method

Algorithm

Numerical algorithm:

• Define the payoff

• Take the multi-dimensional Fourier transform of the payoff

• Multiply it with the characteristic function

• Take the multi-dimensional Fourier transform again

• Discount it with the interest rate.
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The CONV-method

Advantages

• We can use the FFT algorithm which is very efficient

• There is no time integration for European options

• The method is flexible and other characteristic functions can be implemented

• The sparse grid method is applicable to this method as well

• FFT can be easily parallelized ⇒ Sparse grid may not necessary.

• Dividing one of the coordinates in two section dampens the effect of the curse of di-
mensionality
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The CONV-method

Splitting outer transform

We split the double transforms into parts by use of the techniques on which the FFT is
based. Consider the one-dimensional problem. Let M = N/2 and we divide the problem
into a part with the odd frequency points and the even frequency points:

H(m) =
N−1∑

n=0

ϕ(n)Wmn
N

(
N−1∑

k=0

f(k)W−nk
N

)

=
N−1∑

n=0

ϕ(n)Wmn
N F (n) =

=
M−1∑

n=0

ϕ(2n)Wm·2n
N F (2n) +

M−1∑

n=0

ϕ(2n + 1)W
m·(2n+1)
N F (2n + 1)

=
M−1∑

n=0

ϕ(2n)Wmn
M F (2n) +Wm

N

M−1∑

n=0

ϕ(2n + 1)Wmn
M F (2n + 1)

where W 2mn
N = e−

2πim2n
N = e−

2πimn
M = Wmn

M
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The CONV-method

Splitting inner transform 1

The vectors F (2n) and F (2n + 1) are taken from the vector of size N , but it can also be
split:

F (2n) =

N−1∑

k=0

f(k)W−2nk
N =

M−1∑

k=0

f(k)W−2nk
N +

N−1∑

k=M

f(k)W−2nk
N

=

M−1∑

k=0

f(k)W−nk
M +

N−1∑

k=M

f(k)W−nk
M

=

M−1∑

k=0

f(k)W−nk
M +

M−1∑

k=0

f(k +M)W
−n(k+M)
M

=

M−1∑

k=0

f(k)W−nk
M +

M−1∑

k=0

f(k +M)W−nk
M

where we used: W−nM
M = 1
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The CONV-method

Splitting inner transform 2

The vectors F (2n) and F (2n + 1) are taken from the vector of size N , but it can also be
split:

F (2n + 1) =
N−1∑

k=0

f(k)W
−(2n+1)k
N =

M−1∑

k=0

f(k)W
−(2n+1)k
N +

N−1∑

k=M

f(k)W
−(2n+1)k
N

=
M−1∑

k=0

f(k)W−k
N W−nk

M +
M−1∑

k=0

f(k +M)W
−(k+M)
N W

−n(k+M)
M

=
M−1∑

k=0

f(k)W−k
N W−nk

M −
M−1∑

k=0

f(k +M)W−k
N W−nk

M

where we used: W−M
N = −1
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The CONV-method

Splitting results

Combination of this splitting:

H(m) =
M−1∑

n=0

ϕ(2n)Wmn
M

(
M−1∑

k=0

f(k)W−nk
M

)

+
M−1∑

n=0

ϕ(2n)Wmn
M

(
M−1∑

k=0

f(k +M)W−nk
M

)

+Wm
N

M−1∑

n=0

ϕ(2n + 1)Wmn
M

(
M−1∑

k=0

f(k)W−k
N W−nk

M

)

−Wm
N

M−1∑

n=0

ϕ(2n + 1)Wmn
M

(
M−1∑

k=0

f(k +M)W−k
N W−nk

M

)
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The CONV-method

Splitting results

Rearranging:

H(m) =
M−1∑

n=0

ϕ(2n)Wmn
M

(
M−1∑

k=0

(f(k) + f(k +M))W−nk
M

)

+Wm
N

M−1∑

n=0

ϕ(2n + 1)Wmn
M

(
M−1∑

k=0

(f(k) + f(k +M))W−k
N W−nk

M

)
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The CONV-method

General splitting

If we divide each asset in the multi-d setting into 2βi parts, we have:

V (t,xm) =
e−r(T−t)

(2π)d

β−1∑

q=0

W pq
β Wmq

N Dinv
d



ϕβn+qDd






β−1∑

p=0

V̂ T
k+pMW

−qk
N










where

• β = (βi, β2, . . . , βd), p = (pi, p2, . . . , pd) and q = (qi, q2, . . . , qd), so in total there
are 2d sums.

• ϕβn+q = ϕ(−ωβn+q)

• Dd and Dinv
d are the discrete Fourier transform and inverse discrete Fourier transform

of size Mi/βi for each coordinate.
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The CONV-method

Computational procedures

1. Compute the payoff on the tensor-product grid;

2. Multiply the payoff by the function Gk;

3. Take the fast Fourier transform;

4. Multiply the result by the characteristic function;

5. Take the inverse fast Fourier transform of the product;

6. Multiply it by the discount factor.

7. For Bermudan options: Take the maximum of this value and the payoff function at tn.
Repeat the procedure from step 2 until t0 is reached.
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Complexity analysis

Computation of the payoff and multiplying with some additional (complex) factors is a typical
faster procedure than the transform itself and the multiplication with the characteristic
function. We distinguish three portions of time consumption during the solution process of
European options:

• Tpay is the time needed to construct the payoff including the multiplication with the

function Zk and W−qk
N

• Tfour is the time in steps 3 to 6 in the algorithm,

• Tadd is the additional time needed for starting the computation, reading and writing
files. To be assumed negligible.

So: Ttotal = Tpay + Tfour.
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Complexity analysis

Furthermore, we assume:
Tfour = ATpay

Then the total time is now:
Ttotal = Tpay + ATpay

Now, the problem is divided in B parts (again B is a power of two), then each problem has
a computational time of:

Ttotal,split = Tpay +
1

B
Tfour =

A +B

B
Tpay

If Q is the available number of equal CPU’s, then the total time reads:

Ttot,split =

⌈
B

Q

⌉
A +B

B
Tpay

Hence: in the ideal case, Q is a divisor of B.
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Results

Efficiency of the parallelization

d = 4 Call on the geometric average CPU times )
nf Price Error Ratio B=1 B=2 B=4 B=16 A
3 1.962 2.0 × 10−1 5.3 <0.1 <0.1 <0.1 <0.1
4 2.128 3.8 × 10−2 5.4 <0.1 <0.1 <0.1 <0.1
5 2.156 9.3 × 10−3 4.1 0.5 0.2 0.1 <0.1 4.5
6 2.163 2.3 × 10−3 4.0 9.4 4.9 3.0 1.6 6.2
7 2.165 5.8 × 10−4 4.0 164.1 85.1 45.2 25.2 7.1

Maximum grid size: 2nf × 2nf × 2nf × 2nf , hence 228 grid points.
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Results

Climbing in the dimensions

d = 5 Digital put on the geometric average CPU times
nf Price Error Ratio B=4 B=32 A
2 0.81 3.36 × 10−1 1.49 <0.1 <0.1
3 0.32 1.49 × 10−1 2.26 <0.1 <0.1
4 0.40 7.43 × 10−2 2.00 0.2 0.1 4.0
5 0.43 3.71 × 10−2 2.00 1.8 1.1 4.5
6 0.45 1.86 × 10−2 2.00 295.6 91.1 8.7

The CONV-method also works on discontinuous options. Convergence ratio will decrease
to 2. Five dimensional option with 64 grid points in each direction: hence 230 grid points.
The last grid cannot be computed on a computer with only 8 GB of memory and without
splitting.
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Results

Standard and Bermudan basket options

d = 4 European Bermudan
nf Price Error Ratio Price Error Ratio
3 0.38 7.38×10−1 0.61 5.06×10−1

4 0.87 2.51×10−1 2.94 0.53 9.25×10−1 0.55
5 1.05 6.82×10−2 3.67 1.87 3.36×10−1 2.75
6 1.10 1.76×10−2 3.88 1.85 2.88×10−2 11.67
7 1.11 4.51×10−3 3.90 1.84 5.37×10−3 5.36

Bermudan options can be used to approximate American style options via Richardson ex-
trapolation. The irregular convergence pattern for the Bermudan options, is because of the
ten times application of the payoff.
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The CONV-method

Combination with sparse grids

• Sparse grids are needed, when the parts of the problem are still to large for the memory.

• Parallelization of the sparse grids is straightforward

• There are no restrictions on the number of processors. One extra processor leads to a
lower total computational time, because the number of problems is much larger than
the number of processors.

For example, a mimic of the full 4D grid with 211 points per dimension.

Details CPU times
layer complexity of #problems for a total paral. perform.
ℓ a subproblem per layer subproblem for the layer Q=12
17 220 165 0.51 82.5 7.3
16 219 120 0.24 28.8 2.5
15 218 84 0.12 10.1 1.0
14 217 56 0.05 2.88 0.3
Tot 425 124.2 11.1
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6D and 7D option

Combination with sparse grids

6D Put on minimum 6D Put on maximum
ns Price Error Ratio Price Error Ratio
7 27.093 1.43×10−1 0.375 2.33×10−2

8 27.183 9.02×10−2 1.58 0.396 2.13×10−2 1.09
9 27.141 4.21×10−2 2.14 0.412 1.50×10−2 1.42
10 27.158 1.73×10−2 2.43 0.420 8.89×10−3 1.69

7D Put on minimum 7D Put on maximum
ns Price Error Ratio Price Error Ratio
7 26.153 1.22×10−1 0.179 1.45×10−2

8 26.217 6.31×10−2 1.93 0.194 1.50×10−2 0.96
9 26.189 2.72×10−2 2.32 0.206 1.14×10−2 1.31
10 26.203 1.34×10−2 2.02 0.213 7.21×10−3 1.58
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Conclusions

• The CONV method is a powerful and fast method to price European style multi-asset
options

• Jumps can be introduced by choosing another characteristic function

• Parallelization of the CONV-method increases the computational efficiency and decreases
the computational time.

• For options pricing problems with bounded mixed derivatives, the sparse grid method
can also be used to climb in the dimensions.

• For Bermudan options the convergence is irregular in the full grid case and rather slow
in the the sparse grid case. Bermudan options generally do not exhibit a smooth pasting
between continuation value and early exercise payoff.
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