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Why to measure risk /acceptability

We aim at assigning a numerical value to the "risk” of a random
variable Y, or -more generally- to a stochastic process
(Y1,..., Y7) for the following purposes

» to define acceptable profit&loss distributions or profit&loss
processes (from the standpoint of regulators or supervisors);

» to make possible a comparison between alternatives w.r.t.
riskiness (for decision makers);

» to define objectives or constraints in financial optimization

problems, which are meaningful and lead to low complexity
algorithms.
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static portfolio management

Efficient Frontier
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Example: dynamic portfolio management
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> Let (Yy) er be a family of functions in
Lp(2,F,P),1 < p < oo, which is bounded from below. Since
the L, spaces are order complete Banach lattices, there exists
a function Y =inf{Y, : v € I'}, called the infimum (or
sometimes the essential infimum), with the properties
» Y<Y,as forallyerl
» f Z<Y,as forallyel, then Z<Y as.
» Y < F stands for: Y is measurable w.r.t. the o-algebra F,
(Y1,..., Y7T) < F stands for: The process (Yi,..., YT) is
adapted to the filtration F = (F1,...,F7).

> ; denotes a counterintuitive fact or a counterexample
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What is a risk/acceptability measure?

Let (Q, F,P) be a probability space. A mapping

A:Y = Ly(Q,F,P) — R is called acceptability functional

(negative risk functional) if it satisfies the following conditions for

alY,YeY ceR, Ae[0,1]:

(A1) A(Y + ¢) = A(Y) + c (translation-equivariance,
cash-invariance), or more generally

(A1") There is a linear subspace W C L, and a function
Z* € Lg(F) (1/p+1/qg = 1) such that for W € W

A(Y+W) = A(Y)+E(W Z*), (the (W, Z*) translation property)

(A2) AY 4+ (1= N)Y) > XA(Y) + (1 — MA(Y) (concavity),
(A3) Y < Y implies A(Y) < A(Y) (monotonicity).

Georg Ch. Pflug Part I: Unconditional and Conditional Risk Functionals



An acceptability functional A is called
» positively homogeneous if

AAY) = XA(Y), VA>0,Ye)
> version-independent (law-invariant) if

A(Y) depends only on the distribution function Gy (u) =P{Y < u}
Y —Gy

\A(Y) = A{Gy}

Given an acceptability functional A, the mappings
p=—A and D=E-A

are called risk functional and deviation risk functional, respectively.
Coherent risk functionals are negative acceptability functionals
which are positively homogeneous in addition. (Artzner et al.,
1999).
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By the Fenchel-Moreau Theorem, every concave upper
semicontinuous (u.s.c.) functional A on ) has a representation of
the form

A(Y) =inf{E(Y Z) — AT(Z2): Z € Ly}, (1)

where AT(Z) = inf{E(Y Z) — A(Y) : Y € Y} is the conjugate of
A. We call (1) a dual representation and

dom(A*) ={Z : AT(Z) > —oo} the set of supergradients. Notice
that if Z is a supergradient,

A(Y) S E(Y Z) - A¥(2),

i.e. the affine-linear functional Y — E(Y Z) — AT(Z) is a
majorant of A. The Fenchel-Moreau inequality

E(Y Z) > A(Y) + A™(2) (2)

follows.
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The supergradient of A at Yy € dom(A) is
OAYo) ={Z € Ly : E(Yo Z) = A(Yo) + AT(2)}

i.e. the Z, which fulfill the Fenchel-Moreau inequality (2) as
equality. For Z € 0 A(Yo),

A(Y)<E(YZ)-E(YoZ)+ A(Yo) = A(Yo) + E[(Y — Y0)Z].
Remark. If Y € L, the dual representation looks like
A(Y) =inf{Eq(Y) - f(Q): Q € Q}.

Properties of A follow from the dual representation

> A is monotonic, iff dom(A*) C L

» A is positively homogeneous, iff AT takes only the values 0
and —oo

> A has the (W, Z*) translation property (Al'), iff
dom(A+) C W + Z*

» In particular, A is translation-equivariant, iff all Z € dom(A™)
satisfy E(Z) = 1.
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We prove here the last assertion, i.e. the fact that
the (W, Z*)-translation property is equivalent to the property, that
for W e W, A(W)=E(WZ").
Suppose that Z € dom(A™), where AT is the conjugate functional
on Lq

AT(Z) =inf{E(Z,Y) — A(Y): Y € L,}.

This means that Z is a supergradient of A
A(Y) <E(YZ) — AT (2).

For W € W, this implies that

E(WZ*) = A(W) < E(WZ) — AT(Z). This inequality can hold
for all W e W only if E(WZ) = E(WZ*) for all Z € dom(A™),
i.e. dom(AT) C W+ Z*. Then

AY + W) = inf{E[(Y + W)Z] - AT(Z): Z € Lg}
= inf{E[YZ] + E[WZ*]| - AT(Z2): Z € Ly}
= A(Y)+E(WZ*).
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Examples for supergradients

>
L= Yllp] = —sgn (V)Y IPH| Y57
>
O Y151 = —sgn (Y)p| Y|P~
>
O IYI-llpl = Iy <Y P Y
>
O=IIY1-115] = 1y <oppl V[P
Here [Y]- = —min(Y,0).
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Order relations

Definition: Orderings (Fishburn (1980).

Let Y(l),Y(Z) be profit&loss variables, not necessarily defined on
the same probability space.

(i) Y@ dominates Y(1) in the first order sense (in symbol
YO <psp YO, if
E[U(YW)] < E[U(Y®)]

for all nondecreasing utility functions U, for which both
integrals exist.

(i) Y dominates Y(}) in the second order sense (in symbol
y(®) —<SsD Y(z), if

E[U(YW)] < E[U(Y®)]

for all nondecreasing concave U, for which both integrals exist.
Trivially

YW <pep Y implies that Y <s5p Y,
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Figure: Left: the distribution functions G; of Y() (solid) and G, of Y(?
(dashed) Right:the integrated distribution functions G1(x) = [ Gi(t)dt
of Y (solid) and G, of Y (dashed); The relation Y() <f5p Y(?)
holds.
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Figure: Y <ssp Y©) holds, but YY) <£sp Y3 does not hold.
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Coupling

(i) The FSD-coupling: If YY) <£sp Y(2), then one may
construct a pair YV, Y2 of random variables with the same
marginal distributions as Y1), Y@ such that

\7(1) < 57(2) a.s.
(iii) The SSD-coupling. If Y1) <s5p Y(2), then one may
construct a pair YU, Y@ of random variables with the same
marginal distributions as Y1), Y() such that

Y@ >EyW Y@y  as.

(Strassen 1965, Stoyan and Mueller 2002).
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Definition. The version-independent functional A is called
monotonic w.r.t. to FSD, if

YO <rsp YO implies that  A(Y(Y) < A(Y ).
It is called monotonic w.r.t to SSD, if
Y <ssp Y@ implies that  A(Y(M) < A(Y?)

Remark. SSD-monotonicity implies FSD-monotonicity.
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Comonotone coupling and compounding

Y@ and Y@ are comonotone coupled, if
P{Y®D < u, Y@ < v} = min(Gi(u), Go(v)).

(the copula is the upper Fréchet bound).
The compound of Y1) and Y@ is

(1) Y
(1) (2) _ Y wW.pr.
COVLYA) { 4% w.pr. 1 — X
The distribution function of C(Y(1), Y(®) \)is
AG1(u) + (1 — X)Ga(uw).

More generally, let K(-|u) be a Markov kernel (d.f.) and G(u) be a
further distribution function. The compound distribution function
K o G is defined as

(K o G)(v) :/K(v|u) dG(u).
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Notice the difference: The compound variable C(Y (), Y(2) 1/2)
has distribution

1 1
EGl(u) + EGQ(U)
The comonotone average of Y1) and Y@, has quantile function
1 1
267 p) + 56 )
Definition. The functional A is comonotone additive, if

A(YW 4 y@) = A(yM)y 4 A(Y?)

for comonotone Y(1), Y (2,

Definition. The version-independent functional A is compound
convex, if

Awoas/Amewaw
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Conditional risk functionals

Let F1 be a o-field contained in F. A mapping

Ar, o Lp(F) — Ly(F1) is called conditional acceptability mapping
(with observable information F7) if the following conditions are
satisfied for all Y, A € [0,1]:

(CAL) Ax (Y + YD) = Axg(Y)+ YO (predictable
translation-equivariance),

(CA2) Ar(AY +(1=A)Y) = Mz (Y) + (1 - NAx(Y)
(concavity),

(CA3) Y <Y implies Ax,(Y) < Az, (Y) (monotonicity).

We write A, () or A(:|F1), whatever is more convenient.
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Theorem. A mapping Ay, is a conditional acceptability mapping
if and only if for all B € F; the functional Y +— E(Ax (Y)1g) is
an acceptability functional, which has the (L,(F1), 1) translation
property, that is

E(Az (Y + YW)1g) = E(A7 (Y)18) + E(Y(V1p)

for all YO € L,(Fy).

One may apply the Theory of concave mappings with values in
Banach lattices. The extension of the Fenchel Moreau Theorem to
L-valued functionals leads to a representation of the form

Ar(Y) =inf{E(Y Z|F1) — AL (2): Z € 2},

(PhD Thesis of R. Kovacevic).
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Example: The entropic functional

» Primal form
A(Y) = = log Elexp(— V)]
» Dual form
A(Y) = inf{E(Y Z) + iE(Z log Z) 1 E(Z) = 1,Z > 0}
» Conditional form
A(Y|72) = = log Blexp(— Y)|].
» Dual conditional form

A(Y|F1) = inf{E(YZ\]—"l)—i—’lyE(Zlog Z|F1) : B(Z|F) = 1,Z > 0)
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Example: The average value-at-risk

> Primal form. AVeR,(Y) =21 [* G, '(p) dp
AVeRy(Y) = ess—inf(Y).
» Dual form
AVeR,(Y)=inf{E(Y 2) :E(Z)=1,0< Z < 1/a}.
» Conditional form
AVOR,(Y|F1) = sup{X — éIE([Y _XL): X <A}
» Dual conditional form
AVeR,(Y|F1) =inf{E(Y Z|F1) : E(Z|F1) =1,0< Z < 1/a}.

Other names for this functional: conditional value-at-risk
(Rockefellar and Uryasev (2002)), expected shortfall (Acerbi and
Tasche (2002)) and tail value-at-risk (Artzner et al. (1999)). The
name average value-at-risk is due to Follmer and Schied (2004).
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More about the conditional average value-at-risk

The conditional AVeR,(Y|F1) has the following properties:
(i) It is version-independent and maps L;(F) to Li(F1).

(i) It is concave in the following sense: For any F1 measurable A,
0<AL],

AVeR,(A YD + (1 - A) Y| 7))
> AAVeR,(YW|F) + (1 — A)AVeR, (Y| 7).

(iii) For any non-negative, bounded Fi-measurable A
AVeR, (A Y|F1) = NAVeR,(Y|F1).

(iv) If YU < Y2 then AVeR,(YW|F;) < AVeR,(Y?)|Fy).
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(v) If Y < F, then AVeR,(Y|F1) =Y.
(vi) If Fo = (Q,0), then AVeR,(Y|Fo) = AVeR,(Y).
(vii) If a1 < ap, then

AVeR,,(Y|F1) < AVeR,,(Y|F1).

(viii)
AV@Rl(Y|f1) = E(Y‘fl)

(ix) If F1 C Fp, then

AV@RQ(Y|f1) S E[AV@RQ(Y‘fz)’fl] S AV@RQ(E(Y‘fz)’fl).
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Risk corrected expectation |

A(Y) =E(Y)—D(Y), where D is a convex, translation-invariant
functional.
Let h be a nonnegative convex function on R with h(0) = 0 and
h*(u) = sup{uv — h(v) : v € R} be its Fenchel conjugate.

> Primal form. A(Y) =EY —E[h(Y —EY)].

» Dual form. A(Y) = inf{E(Y Z) + Dp-(Z) : EZ = 1}, where

Dp-(Z) = inf{E[h*(Z — a)] : a € R}.
» Conditional form

A(Y|F1) = E(Y|F1) — E[A(Y — E(Y|F1))| 1]
» Dual conditional form A(Y|Fi) =
inf{E(Y Z|F1)+inf{E[h"(Z—-A)|F1] : A<F1} : E(Z|F1) = 1}.

; For every 6 > 0, there are random variables Y1) and Y2
such that YY) <gsp Y but
EY® — §VarY® > EY® — §Vary@.
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Risk corrected expectation Il

> Primal form
A(Y) =EY —inf{E[h(Y — a)] : a € R}.
> Dual form
A(Y) = inf{E(Y Z) + E[h*(1 — 2)] : B(Z) = 1}

where Dp-(Z) = inf{E[h*(Z — a)] : a € R}.
» Conditional form

A(Y|F) =E(Y|F) —inf{E[h(Y — A)|F1] : A F1}.
» Dual conditional form

A(Y|F) =inf{E(Y Z|F1)+E[h*(1-2)|F1] : E(Z]|F1) = 1}.
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Orlicz-type functionals

The Minkowski gauge is defined as
Mp(Y) = inf{a > 0: E[h(¥)] < h(1)}.

» Primal form

» Dual form
A(Y)=inf{E(Y Z) : E(Z2) =1, igf{DZ*(Z —a)} <1}

where D}, (Z) = sup{E(Z V) : E[h*(V)] < h*(1)}.
» Dual conditional form A(Y) =

inf{E(Y Z|71) : B(Z|F1) = 1,
inf{sup{E[(Z — a) V|71] - E[A(V)| 1] < h(1)} < 1}.

Georg Ch. Pflug Part I: Unconditional and Conditional Risk Functionals



Distortion functionals

Distortion functionals were introduced independently as insurance
pricing principles (Deneberg (1989), Wang (2000)) and by Yaari
(1987) (Yaari's dual functionals).

1
~ [ &Mook
0

where Gy is the distribution function of Y.
» Dual form

» Primal form

A(Y)=inf{E(Y Z): E /(b u)) du, ¢ convex , »(0) =

» Dual conditional form A(Y|Fy) =

inf(E(Y Z|71) : B(6(2)|F) < / 6(k(u)) du,  convex , 3(0) = O}
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Making a functional translation-equivariant

The sup-convolution of two functions f and g is defined as
fx g(y) = sup{f(x) + g(y —x) : x e R}.

If f and g are concave, then sois f * g.

Let (YY) a convex functional (an insurance premium principle),
which is not necessarily translation-equivariant. The
translation-equivariant extension (Filipovic) of w([Y]-) is

A (Y) =sup{x —n([Y — x]-) : x € R}.

If 7 has the dual representation
m([Y]=) = sup{E(Y Z) — p(Z) : Z € Ly}, then A has the
representation

Ar =inf{E(Y 2) + p(-2) 1 E(Z) =1,-Z € Lg}.

If 7 is monotonic, then A is isotonic w.r.t. <gsp. If 7 is
positively homogeneous, then A, is also positively homogeneous.
If 7 is compound concave, then A, is compound convex.
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Examples of sup-convoluted acceptability functionals

» m(Y) = cE(Y) for some ¢ > 1. Then A;(Y) = AVeRy..

» Let h be a convex, strictly increasing non-negative function on
R with h(0) =0, h(1) =1 and 0 < h(u) < oo for u # 0. The
Orlicz premium 7, (L) for L # 0 is given as the unique

solution of .
Bfh(oy)] <1

The pertaining sup-convoluted acceptability functional is

Az (Y) =sup{x —mo([Y —x]7) : x € R}.
The negative value
pa(Y) = —Ar (V) =influ+ mo([-Y —u]") : u € R}

is called Haezendonck-Goovaerts risk functional.
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Utility type functional

Let U be a concave, strictly monotonic utility function.
A(Y) = UTHE[U(Y))):
Then A is the certainty equivalent and
D(Y)=EY — A(Y),

is the risk premium, i.e. decision maker with utility function U is
indifferent between Y and the deterministic value A in the sense
that

E[U(Y)] = ULA(Y)].
This type of functionals is translation-equivariant iff
U(x) = —kexp(—yx) + d; k > 0 or U(x) = kx + d. Up to affine
transformations, these are the entropic functionals and the
expectation itself.
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Version-independent conditional functionals

Recall that we consider (Q2, F, P) and a sub-sigma algebra F; of F.

Definition. The nested distribution of a random variable

Y € L,(F) given Fi is the distribution of the conditional
distributions of Y given F7. A conditional acceptability (or risk)
functional A(:|F1) is version independent, if its distribution
depends only on the nested distribution of Y given Fj.

Examples. All presented conditional functionals are version
independent.
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Choquet representation

Definition. The version-independent functional A has a Choquet
representation, if it is representable in the form

1
A(Y) = /0 AVeR,(Y) dm(a),

for some probability measure m on [0, 1].

Proposition. The concave, version-independent positively
homogeneous acceptability functional

A(Y) =inf{E(Y Z) : Z € Z} has a Choquet representation if and
only if it is comonotone additive: The AVeR's are the extremal
elements of the (convex) family of all comonotone additive
acceptability functionals.
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Kusuoka representation

Theorem.(Kusuoka 2001, Fritelli and Rosazza Gianin, 2005). Let
A be concave version-independent acceptability-type functional on
Lp(Q,F,P), 1 <p < oo, where (2, F, P) is non-atomic.

» Condition C1: A is positively homogeneous;

» Condition C2: A is FSD monotonic;

» Condition C3: A is translation-equivariant.

(i) If (C1), (C2) and (C3) are fulfilled, then A has the Kusuoka
representation

A(Y) = inf{/olAV@Ra(Y) dme(a) : G € G}

where {m¢ : G € G} is a family of prob. measures on (0,1].
(ii) If (C1) and (C2) are fulfilled, then A has the representation

A(Y) = inf{/olAV@Ra(Y) dmc(a): G € G}

where {m¢g : G € G} are non-negative measures on (0,1].
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(iii) If (C1) holds, then A has the representation
1
A(Y) = inf{ / AVeR,(Y) dm()
0
1
—/ AVeR;_o(~Y) dm?(a) : G € g},
0
where m(G), m(G), G € G are families of non-negative measures
on (0,1].
(iv) In general, A has the representation

A(Y) = inf{ / AVeR,(Y) dm()

/AV@R( Y) dm?(a) — A{G} : G € G}
0

1 )

where m:’, m:’ are as before and A{G} is some functional
defined on g.
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Remark. The Kusuoka representation is not unique. For instance,

AVeR; = / AVeR,, dds(a) = inf{ / AVGR, dég.y/n(@) 1 n >0}

g If the underlying space has atoms, a Kusuoka representation
does not hold in general. Let Q = {wy, w2} with P{w1) = q,
P{w;} =1 — q. The functional A(Y) = Y(w1) is
version-independent, but has no Kusuoka representation.
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Examples for Kusuoka representations

Example. The mean absolute deviation corrected mean.
1
E(Y) — §E|Y —EY]|

— inf{ [ AVeRu(Y)dm(a):meP©,1]: [ Ldm(v) <1},
(0,1 (0,1) v

where P(0, 1] is the family of all probability measures on (0, 1].
Example. The lower-standard deviation corrected mean.

E(Y)—Std~(Y) =inf{ [ AVeR.(Y)dm(a): me M},
(0.1]

where

= m . M mlv mw) =
M{ ep(o,1]./(0’1)/(0’1) L) () dimw) 1}.
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Example. The standard deviation corrected mean.
E(Y)—Std(Y) = inf{ AVeR,(Y) dmM(«)
(0,up]

- / AVeR1_o(Y) dm@(a) : mV), m® e M},
(u071]

where M is the family of pairs of non-negative measures satisfying

/ dm® 4 / dm® — 1
(u,uo) (uo,1]

and
/ /(0, UO]M dm(l)(v) dm(z)(w)
OUO .
1 — max(v,w) @) o)
<2.
/U07 /uol 1-v)(1—-w) dm'“(v) dm'*”(w) <2
for some ug.
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Properties of acceptability-type functionals

(TE) Translation-equivariant

(Cv) Concave

(FSD) Isotonic w.r.t. first order stochastic dominance/pointwise monotonic
(SSD) Isotonic w.r.t second order stochastic dominance

(PH) Positive homogeneous

(CCX) Compound convex
(Cun Compound linear

expectation
E[Y] (TE) (CV)  (SSD) (PH) (cLny

(concave) utility-type

i B . (sSD) . (ccx)

distortion functionals

f01 G;l(p) dH(p) (TE) (V) (SSD) (PH) (CCX)t

-convolution
P e (TE) (V)  (SSD)  (PH)E  (COXf
average value-at-risk
gAV@R (TE) (cv) (SSD) (A4) (CCX)
value-at-risk
a Ve@aR rs| (TE) - (FSD) (PH) -

Tif H is a concave probability distribution function,
fif 7 has the corresponding property
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Properties of translation-invariant functionals

Translation-invariant functionals D build risk functionals by
A(Y)=E(Y)—-D(Y)

(T Translation-invariant

(CX) Convex
(FSD) E — D is isotonic w.r.t. first order stochastic dominance
(SSD) E — D is isotonic w.r.t second order stochastic dominance
(PH) Positive homogeneous

(CCQ) Compound concave

E[h(Y — EY)] () )
Y ==Yl m @ - eH -
Ity = EYI= s (T)  (CX) (SSD)  (PH) -
BIH(Y — ') @ -
fAER(Y —al:a€RY ) (o) (ssD) - (cco)

FIf h(u) > 0 for u # 0.

Georg Ch. Pflug Part I: Unconditional and Conditional Risk Functionals



The value-at-risk

We define the value-at-risk as VOR,(Y) = G;l(a) with
Gy(u) = P{Y < u} Some people define it as —G, ().

V@R is not concave, not compound convex, not isotonic
w.r.t. SSD, but translation-equivariant, isotonic w.r.t. FSD,
positively homogenous and comonotone additive.

Since the VOR is the basic tool in the Basel Il formulas, this leads
to paradoxic situations.
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Convexification of VOR

The level sets {Y : VOR(Y) > q} = {Y 1 E[}_o q(Y)] < a}
are not convex. Convex inner approximations are given by

{Y :Elk(Y)] < a}

where k is a convex majorant of 1(_ ¢-

kinked linear functions k,(u) = ﬁ[u — a]7: AVeR (Rockafellar
and Uryasev)

exponential functions kp(u) = e?(9=4): Nemirovski and Shapiro
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