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Multi-period risk functionals

Let Y = (Y1, . . . ,YT ) be an income process on some probability
space (Ω,F , P) and let FF = (F0, . . . ,FT ) denote a filtration
which models the available information over time, where
F0 = {∅,Ω}, FT = F , Ft ⊆ Ft+1 ⊆ F , and Yt is Ft measurable
for every t = 1, . . . ,T . Let Y ⊆ ×T

t=1L1(Ω,F ,P) be a linear space
of income processes Y = (Y1, . . . ,YT ), which are all adapted to FF .
Definition. A multi-period functional A with values A(Y ;FF) is
called multi-period acceptability functional, if satisfies

(MA0) Information monotonicity. If Y ∈ Y and Ft ⊆ F ′t , for all t,
then

A(Y ;F0, . . . ,FT−1) ≤ A(Y ;F ′0, . . . ,F ′T−1).

(MA1) Predictable translation-equivariance. If W ∈ Y such that
Wt is Ft−1 measurable for all t, then

A(Y + W ;FF) =
T∑

t=1

E(Wt) +A(Y ;FF).
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(MA2) Concavity. The mapping Y 7→ A(Y ;FF) is concave on Y for
all filtrations FF .

(MA3) Monotonicity. If Yt ≤ Ỹt holds a.s. for all t, then

A(Y ;FF) ≤ A(Ỹ ;FF).

(MA1)∗ (π,W)-translation-equivariance. There exists a linear
subspace W of ×T

t=1L1(Ω,Ft−1,P) and a linear continuous
functional π : W → R such that

A(Y + W ;FF) = π(W ) +A(Y ;FF)

holds for all W ∈ W, Y ∈ Y and all filtrations FF .

Special cases are the predictable translation equivariance (MA1),
the weak translation equivariance (W consists only of constant
functions) or
the first period translation equivariance (W consists of all F1

measurable functions).
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Version independence in multi-period risk measuring

We identify filtrations with equivalence classes (by bijection) of
tree processes.
Definition. ν is a tree process, iff the σ-fields generated by νt

form a filtration (an increasing sequence of σ-fields).

We assume that the filtration FF is generated by a tree process ν
(with values in a Polish space) and that the scenario process
Y = (Y1, . . . ,YT ) is adapted to it. We call

(Y ,FF) resp. (Y , ν)

a process-and-information pair. Notice that there are functions ft
such that

Yt = ft(νt) a.e.
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Artzner’s Example

A fair coin is tossed three times. The payoff process
Y = (Y1,Y2, Y3) is

Y1 = 0; Y2 = 0;

Y3 =

{
1 if heads is shown at least two times
0 otherwise

We compare this process to another payoff process

Ỹ1 = 0; Ỹ2 = 0;

Ỹ3 =

{
1 if heads is shown at the last throw
0 otherwise
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Equivalence

Definition. Two process-and-information pairs (ξ, ν) and (ξ̄, ν̄)
(which are defined on possibly different probability spaces) are
equivalent, if there are bijective measurable functions kt such that

(i) kt(ν̄t) has the same distribution as νt .

(ii) ξ̄t = ft(kt(ν̄t)) a.s. t = 1, . . . , T ,.

The following diagram illustrates the notion of equivalence.

νt ν̄t

ξt = ft(νt) ξ̄t = ft(kt(ν̄t))

kt
¾

@
@

@@R? ?
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Nested distributions

Let (Ξ, d) be a Polish space, i.e. complete separable metric space
and let P1(Ξ, d) be the family of all Borel probability measures P
on (Ξ, d) such that

∫
d(u, u0) dP(u) < ∞ for some u0 ∈ Ξ.

For two Borel probabilities, P and Q in P1(Ξ, d), let d(P ,Q)
denote the Kantorovich distance

d(P, Q) = inf{E[d(X ,Y )] : X ∼ P, Y ∼ Q}
= sup{

∫
h(u) dP(u)−

∫
h(u) dQ(u) : |h(u)− h(v)| ≤ d(u, v)}

d metrizises the weak topology on P1. On finite probability spaces,
d can be found by solving a linear optimization problem.
P1 is a complete separable metric space (Polish space) under d .
Iterate the argument: P1(P1(Ξ, d), d) is a Polish space, a space of
distributions over distributions (i.e. what Bayesians would call a
hyperdistribution).
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Illustration of the Kantorovich distance

P
1

P
2
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If (Ξ1, d1) and (Ξ2, d2) are Polish spaces then so is the Cartesian
product (Ξ1 × Ξ2) with metric

d1,2((u1, u2), (v1, v2)) = d1(u1, v1) + d2(u2, v2).

For a scenario process with values in Rm1 × Rm2 × · · · × Rmt , we
consider some metric dt on Rmt , which makes it Polish (it needs
not be the Euclidean one). Then we define the following spaces

ΞT :T = (RmT , dT )

ΞT−1:T = (RmT−1 × P1(ΞT :T , dT ), dT−1,T ) = (RmT−1 × P1(RmT , dT ), dT−1,T )

ΞT−2:T = (RmT−2 × P1(ΞT−1:T , dT−1,T ), dT−2,T−1,T )

= (RmT−2 × P1(RmT−1 × P1(RmT , dT ), dT−1,T ), dT−2,T−1,T )

...

Ξ1:T = (Rm ×P1(Ξ2:T , d2,...,T ), d1,...,T )
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Definition. A Borel probability distribution P on Ξ1:T is called a
nested distribution of depth T . (see also Vershik, 1995)
For any nested distribution P, there is an embedded multivariate
distribution P. The projection from the nested distribution to the
embedded distribution is not injective. Notation for discrete
distributions:

probabilities:
values:

[
0.3 0.4 0.3

3.0 1.0 5.0

] [
0.4 0.3 0.3

1.0 5.0 3.0

] [
0.1 0.2 0.4 0.3

3.0 3.0 1.0 5.0

]

Left: A valid distribution. Middle: the same distribution. Right:
Not a valid distribution
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Examples for nested distributions
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0.2 0.3 0.5

3.0 3.0 2.4[
0.4 0.2 0.4

6.0 4.7 3.3

] [
1.0

2.8

] [
0.6 0.4

1.0 5.1

]




The embedded multivariate, but non-nested distribution of the
scenario process can be gotten from it:




0.08 0.04 0.08 0.3 0.3 0.2

3.0 3.0 3.0 3.0 2.4 2.4
6.0 4.7 3.3 2.8 1.0 5.1



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Version independence

Let Y = (Y1, . . . ,YT ) be a stochastic process adapted to the
filtration FF = (F1, . . . ,FT ). The functional A(Y ;FF) is called
version-independent, if it depends only on the nested distribution P
generated by the pair (Y ;FF).

(Y ;FF) - P
@

@@R ?
A(Y ;FF) = A{P}
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Construction of multi-period risk functionals

(a) Separable multi-period acceptability functionals:

A(Y ;FF) :=
T∑

t=1

At(Yt),

where At are single-period acceptability functionals. They
(MA1)’, (MA2) and (MA3), but do not depend on FF .

(b) Scalarization:
A(Y ;FF) := A0(s(Y ))

where A0 is a (single-period) acceptability functional and
s : Y → L1(Ω,F ,P) a mapping satisfying concavity,
monotonicity and s(Y1 + r ,Y2, . . . ,YT ) := s(Y1, . . . , YT ) + r
for all Y ∈ Y and r ∈ R. Such functionals satisfy (MA1)′′,
(MA2) and (MA3), but do not depend on FF (Eichhorn and
Roemisch). Examples:
(i) s(Y ) =

∑T
t=1 Yt .

(ii) s(Y ) := mint=1,...,T
∑t

τ=1 Yτ .
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(c) Separable expected conditional (SEC) multi-period
acceptability functionals:

A(Y ;FF) :=
T∑

t=1

E(At(Yt |Ft−1))

where At(· |Ft−1), t = 1, . . . , T , are conditional
(single-period) acceptability functionals. They satisfy
(MA0)–(MA3). The dual representation is
∑T

t=1 E[At(Yt |Ft−1)]

= inf{∑T
t=1 E[YtZt ]−

∑T
t=1 E[A+

t (Zt |Ft)] : Zt ¢ Ft ,
Zt ≥ 0,E(Zt |Ft−1) = 1}

=
∑T

t=1 inf{E[YtZt ]− E[A+
t (Zt |Ft) : Zt ¢ Ft ,

Zt ≥ 0,E(Zt |Ft−1) = 1}.
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Remark. If A(Y ;FF) is SEC functional, then also its conjugate of
A+(·;FF) is SEC. A(Y ;FF) is information-monotone, iff A+(·;FF)
is information-monotone. A(Y ;FF) is information-monotone, if all
At ’s are compound convex.
Proof. If At is compound convex and Ft ⊆ F ′t , then

A(Y |Ft) ≤ E[A(Y |F ′t)|Ft ].

Taking the expectation on both sides, one gets

E[A(Y |Ft)] ≤ E[A(Y |F ′t)].
Example. (Multi-period Average Value-at-Risk )

mAV@Rα(Y ;FF) :=
T∑

t=1

E(AV@Rα(Yt |Ft−1))

= inf

{
T∑

t=1

E(YtZt) : 0 ≤ Zt ≤ 1

α
,E(Zt |Ft−1) = 1, t = 1, . . . , T

}

The multi-period AV@R is information-monotone.
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Multiperiod polyhedral risk measures

It is a natural idea to introduce acceptability and risk functionals
as optimal values of certain stochastic programs.
Definition. (Eichhorn and Roemisch, 2005)
A multi-period functional A on ×T

t=1Lp(Ft) is called polyhedral if
there are kt ∈ N, ct ∈ Rkt , t = 1, . . . ,T , wtτ ∈ Rkt−τ ,
t = 1, . . . ,T , τ = 0, . . . , t − 1, (convex) polyhedral sets Vt ⊂ Rkt ,
t = 1, . . . ,T , such that

A(Y )=sup

{
E

[
T∑

t=1

〈ct , vt〉
]∣∣∣∣

vt ∈ Lp(Ft ;Rkt ), vt ∈ Vt ,∑t−1
τ=0〈wt,τ , vt−τ 〉 = Yt , t = 1, . . . , T

}
.

There exist multi-period polyhedral acceptability functionals
satisfying (MA0), (MA1)* (first period translation equivariance),
(MA2), (MA3), (strictness, positive homogeneity).
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Multi-period polyhedral acceptability functionals preserve linearity,
decomposition structures and stability properties of multi-stage
stochastic programming models.
Examples.

(a) Multi-period average value-at-risk mAV@R.

(b) A(Y ) := AV@Rα(
∑t(·)

τ=1 Yτ ), where t(·) is uniformly
distributed on {1, . . . ,T} and independent of (Yτ )

T
τ=1, is

polyhedral (Eichhorn).

(c) A(Y ) := AV@Rα(mint
∑t

τ=1 Yτ )

These acceptability mappings satisfy (MA0), (MA1*), (MA2),
(MA3) and positive homogeneity.
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A stylized dynamic optimization problem: multi-stage
inventory control

Suppose that the demand (say for grapefruits) at times
t = 1, . . . ,T is given by a random process ξ1, . . . , ξT . The grocery
shop has to place regular orders one period ahead. The costs for
ordering one piece 1. If the demand exceeds the inventory plus the
newly arriving order, the demands has to be fulfilled by rapid
orders (which are immediately delivered), for a price of ut > 1 per
piece. Unsold grapefruits may be stored in the inventory, but a
fraction 1− `t is storage loss. The selling price is st (st > 1) and
the final inventory KT has a value of `TKT .
Let Kt be the inventory volume right after all sales have been
effectuated at time t. Let xt be the order size at time t. We have
that K0 = 0 and Kt = [`t−1Kt−1 + xt−1 − ξt ]

+; t = 1, . . . , T . The
shortage at time t is Mt = [`t−1Kt−1 + xt−1 − ξt ]

−; t = 1, . . . ,T .
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These two equations can be merged into

`t−1Kt−1 + xt−1 − ξt = Kt −Mt ; Kt ≥ 0, Mt ≥ 0. (1)

The profit of the whole operation is

H(x0, ξ1, . . . , xT−1, ξT ) =
T∑

t=1

stξt −
T−1∑

t=0

xt −
T∑

t=1

utMt + `TKT .

The problem is to maximize the expected profit

Maximize E
[ T∑

t=1

(stξt − xt−1 − utMt) + `TKT

]

subject to xt ¢ Ft for t = 1, . . . ,T ;

and subject to (1).

Notice that E[
∑T

t=1 stξt ] does not depend on the decisions and
can be removed from the optimization problem.
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The optimum value m∗ of this problem is

m∗ =
T∑

t=1

utE(−ξt) +
T∑

t=1

(ut − 1)E[AV@Rβt (ξt |Ft−1)]

with βt = (ut − 1)/(`t − 1). The optimal order sizes xt are given
by the Values-at-Risk xt = V@Rβt+1(ξt+1|Ft)− `tKt . with
Kt = [V@Rβt (ξt |Ft−1)− ξt ]

+.
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Example: dynamic portfolio management
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An efficient frontier using the (negative) multiperiod AV@R as risk
functional
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Minimal filtrations and randomized decisions

Not all process and information pairs allow a representation as a
nested distribution.




0.5 0.5

0 0[
0.5 0.5

0.0 1.0

] [
0.5 0.5

0.0 1.0

]







1.0

1.0[
0.5 0.5

0.0 1.0

]




Left: Not a valid nested distribution. Right: A valid one

Definition. A filtration is called minimal, if it is generated by the
process of conditional subtrees. Pνt=u.
If a decision is different for identical conditional trees, it may be
interpreted as a random decision.
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Main Results

Theorem A process-and-information pair is minimal, if and only if
the tree process is equivalent to the process of conditional nested
distributions.

Theorem Two minimal process-and-information pairs are
equivalent, if and only if they induce the same nested distribution.
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Illustration

process-and-information equivalence class

?
injective

nested distribution

?
injective

embedded multivariate distribution

minimal process-and-information equivalence class

?
6bijective

nested distribution

?
injective

embedded multivariate distribution
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An optimal prediction problem.

(adapted from Heitsch et al. (2006).
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In the nested distribution notation

Pε =




1.0

0


0.5 0.5

2 + ε 2[
1.0

1

] [
1.0

3

]







⇒ P0 =




1.0

0


0.5 0.5

2 2[
1.0

1

] [
1.0

3

]







.
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First stage optimal decision Second stage optimal decision
x0 = 2 + ε/2 x1(2 + ε) = 1

x1(2) = 3
Not equi-continuous in ε

In standard notation, the tree looks as




1.0

0


0.5 0.5

2 + ε 2[
1.0
1

] [
1.0

3

]






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

1.0
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

1.0
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1.0
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




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Now, viewing the solution as a function of the standard tree
process, one gets

First stage optimal decision Second stage optimal decision

x0 = 2 + ε/2




1.0

0


1.0

2 + ε[
1.0

1

]






7→ 1




1.0

0


1.0

2[
1.0

3

]






7→ 3

Equi-Lipschitz in ε w.r.t. d ′
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Randomized decisions in financial optimization

The basic question is: May randomized decisions outperform
nonrandomized ones in financial optimization?

­­¡¡
¢¢¡¡ The answer is yes.

Example. We want to maximize the following functional

A(Y ) =

{
E(Y ), if V@R0.1(Y ) ≥ 10
−∞, otherwise.

Here V@R0.1(Y ) is the 10%-quantile of Y .
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a1 x

a2 y
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c2

Y = 3x + 12

Y = −x + 10

Y = 3y + 12

Y = −y + 10

Left: The optimal value is A(Y ) = 11. Right: The randomized
decision gives a better optimal value of A(Y ) = 11.1.
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An Example with concave objective

Example. Let A(Y ) = −E|Y − EY |. A is concave, but not
compound convex. Let ξ ∼ U[0, 1] and let

H(x1, x2, ξ) =

{
x1 + 1lξ≤x2 if 0 ≤ x1 ≤ 1; 0.1 ≤ x2 ≤ 0.9
−∞ otherwise

The decision which maximizes A[H(x1, x2, ξ)] is: x1 arbitrary and
x2 = 0.1 or 0.9. The objective value is -0.18. If randomization is
allowed, one may choose x1 = 0 and x2 = 0.9 with probability 1/2
and x1 = 1 and x2 = 0.1 also with probability 1/2. This gives the
better value of -0.1 for the objective function.
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We consider a multi-stage stochastic optimization problem of the
form

max{A[H(x0, Y1, . . . , xT−1, YT )] : x ¢ FF},
where Y = (Y1, . . . ,YT ) is a random scenario process,
x = (x0, . . . , xT−1) is the sequence of decisions,
H(x0,Y1, . . . , xT−1,YT ) is the profit function and
A is a version-independent acceptability functional.

Recall that a version independent A(·|F1) is called compound
convex , if for all Y ∈ domA

A(Y ) ≤ E [A(Y |F1)] .

Theorem. Suppose that the probability functional A is compound
convex. Then the solution of the above problem can always be
chosen as nonrandom, i.e. randomized decisions cannot
outperform nonrandomized ones.
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Distances between nested distributions

It is equivalent to speak about nested distributions or about
equivalence classes of minimal process-and-information pairs. Since
a nested distribution is a distribution on the Polish space Ξ1:T , the
notion of Wasserstein distance makes sense. If P and P̃ are two
nested distributions on Ξ1:T , then the distance d(P̃,P) is well
defined. This distance makes sense, even if one process is discrete
and the other is not.
Proposition. Let P resp. P̃ be two nested distributions and let P
resp. P̃ their multivariate projections. Then d(P , P̃) ≤ d(P, P̃).
Proposition. The multi-period AV@R

mAV@Rα(ξ1, . . . , ξT ;F0, . . . ,FT1) =
T∑

t=1

E[AV@Rα(ξt |Ft−1)]

is a version-independent and the mapping P 7→ mAV@Rα(P) is
Lipschitz, more precisely,

|mAV@Rα(P)−mAV@Rα(P̃)| ≤ (1/α)d(P, P̃).
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