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Outline

@ How to measure risk?

@ Convex risk measures in a one-period setting (static)
@ Dynamic convex risk measures

@ in a multiperiod setting
@ in a continuous time setting
@ Convex risk measures in continuous time may be interpreted as
limits of certain compound one-period convex risk measures.

@ Extending discrete-time risk measures like AVOR, the
semi-deviation and the Gini risk measure to continuous time
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Let € be a fixed set of scenarios. A financial position is described
by a mapping X : Q — R where X(w) is the discounted net worth
of the position at the end of the trading period if the scenario

w € Q is realized. What is the risk of X?
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Value at Risk

One notion of risk used by banks and insurances is Value at Risk
(V@R). For the cdf Fx of the random variable X define

g5 (s) = inf{x € R|Fx(x) > s}.
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Value at Risk

One notion of risk used by banks and insurances is Value at Risk
(V@R). For the cdf Fx of the random variable X define

g5 (s) = inf{x € R|Fx(x) > s}.

Then for fixed a € (0, 1] the Value at Risk of X to a level «a is
defined by

Risk(X) = VOR,(X) = —qx(a) = inf{m € R|P(X+m < 0] < a}.

In other words V@R, (X) is the minimal amount of money | have
to add to my position X such that with a probability greater than
1 — « | will not encounter any losses.
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Axiomatic approach: static (one-period) convex risk

measure (Artzner, Delbaen, Heath (1999), Follmer,
Schied/Frittelli, Rosazza Gianin (2002))

Let (22, F, P) be a probability space and suppose that the set of all
possible payoffs is given by L>(Q2, F, P). A mapping

p: L>(Q,F,P) — R, is a convex risk measure if it has the
following properties:

Normalization: p(0) =0

o Translation Invariance: p(X + m) = p(X) — m for all m € R
@ Monotonicity: If X <Y a.s., then p(X) > p(Y)

@ Convexity: p(AX + (1 —=A)Y) < Ap(X) + (1 — X)p(Y) for
0<A<L1

Lower-Semicontinuity: If (X,) is a bounded sequence which
converges to X a.s. then

p(X) < Iimninfp(X,,).

(]
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Typical examples for one-period risk measures are
@ Average Value at Risk:
1 e
AVORY(X) = —/ VORNX)d\, « < (0,1].
@ Jo

If the distribution of X is continuous
AVOR(X) = E[-X|X < gx(a)].
@ Semi-deviation risk measure:
)‘7
St p(X) = E[-X]+A|(X=E[X])-|lp, A€[0,1], p € [1,00).

@ Gini risk measure:

VOX) = QS;JEP{EQ[—X] — %C(Q\P)}, 6>0

ctar) - 5[(%2 1]
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Dynamic risk measures

Given (2, F, (Ft), P). Let | be the set of time instances in which
the agent is allowed to udate his risk. We call a family of
mappings ps.¢ : L°(F:) — L®(Fs), s,t € | and s < t, a dynamic
risk measure if it has the following properties for X, Y € L>®(F;):
o Normalization: ps:+(0) =0
@ Monotonicity: If X <Y, then ps+(X) > ps+(Y) as.
® Fs-Translation Invariance: ps (X + m) = ps +(X) — m for all
m € L>®(F)
o Fs-Convexity:
Ps.t(AX + (1= A)Y) < Aps.e(X) + (1 = A)pe(Y) for all
X € L®(F,) such that 0 < \ < 1
o Fs-Lower-Semicontinuity: For any F;—adapted bounded

sequences X, converging a.s. to X we have
ps,t(X) < liminf, ps ¢(Xn) as.
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Dynamic risk measures

If T is the time horizon of our model, ps 7 is often denoted by ps.
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Dynamic risk measures

If T is the time horizon of our model, ps 7 is often denoted by ps.
o Time-consistency: for X, Y € L®(F;) ps ¢+(X) < psr (Y) ass.
for some s’ with t > s’ > s, implies ps +(X) < ps¢(Y) a.s.
see for instance Delbaen (2003) or Barrieu and El Karoui (2005).

Using time-consistency you can show that for every bounded
Fi—measurable X

ps,t(X) = ps,7(X) = ps(X),

i.e., ps;t = ps|L°°(F¢) and thus the whole family (ps.¢)s ¢c/ is
uniquely determined by (ps)se;-
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Duality in a discrete setting

Suppose that we are in a multiperiod discrete setting, i.e.,
I ={to,t1,..., txy where0=tp <ty <... <ty =T.
For i =0,...,k — 1 define the set of one-step transition densities

Dfi = {gt,’+1 € L}l—(}—tiﬂ) ‘ E[&iﬂ‘ft,’] =1 a-s-}'

We identify a probability measure Q with its density &, , € Dy,.
Suppose that p¢, ¢, 1 L>(Fy,,) — L*°(F%) is a one-period risk
measure.
Define the penalty function on Dy, of a one-period risk measure
Ptitipq as

Pt t;
¢fi o (Q) = &ss SupXELOO(fti+1){EQ[_X|fti] — Ptitin (X)}
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Every sequence § € Dy, X Dy, X ... X Dy, induces a
P-martingale

r
ve — ) I & ifr=ita
tr j=i+1

1 if r<i
. dQ* €
and a probability measure Q¢ by P = M3-. Set
D = Dy X Dy X ... X Dy,_,. For £ € D define
qﬁgt"’t"“(Qf) - qﬁfit"’t"“ (&t,,)- Then from Cheridito and Kupper
(2006), we obtain the following representation.

Proposition

Suppose that (ps)ses is a discrete-time risk measure. Then

k—1
Pt t;
pt;(X) = esssupgep EQ[_ X — E by JH(Q)‘}—&-]'
J=i
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Dynamic risk measures in continuous time

Now suppose that / = [0, T], i.e., the risk manager is allowed to
update his information at any time. Risk Modelling can then be
done using Backward Stochastic Differential Equations (Barrieu
and El Karoui (2005)).

BSDE = backward stochastic differential equation

Definition of a BSDE

Assume that we have a d-dimensional Brownian Motion

(W}, ..., WZ) on a filtered probability space (Q,F, (F:), P) where
(F:) is the standard filtration. Let g: [0, T] x 2 x RY — R be a
function such that

@ z— g(t,w,z) is convex for every fixed (t,w) € [0, T] x Q

o for every fixed z € RY, (t,w) — g(t,w, z) is progressively
measurable

@ there exists a K > 0 with |g(t,w,z)] < K(1+|z|?) a.s.
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The solution of a BSDE with driver g(t,w, z) and terminal
condition X € L>°(F7) is a pair of (suitably integrable)
progressively measurable processes (Y:, Z;) with values in R x RY,
which satisfy

T T
Yt:X+/ g(s,Zs)ds—/ Z.dW,, telo,T].
t

t

Let Y&(—X) be the solution (Y;) of the BSDE with driver g and
terminal condition —X. Define

pE(X) = Y7 (=X).

Then p# is a dynamic risk measure!
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Framework: Risk measures in discrete time

Setting: For fixed N let B{V/ be independent Bernoulli random
variable with

} 1
P[va7,:1] p[BNI:_l]:E;jzl,...,d,NEN,
I=1,...,N. Let

RN4(t;) ,/ ZBN,, ti=iT/N, i=1,.,N, j=1,..d

and constant on the intervals [t;, tj+1). Let
RN(t)) = (RNY(t)), ..., RV(t:)).

Denote by FN = (FN)o<:<7 the filtration generated by the
random walk.

Assume that there exists a standard Brownian motion W; such that

sup |RN(s) — Wi — 0in L2
0<s<T
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A robust way of measuring risk in discrete time

Definition

For a collection of one-period risk measures (Ft’l.v),-:o“,,,k_l with
N

. F .. .
penalty functions (qbtl.t' )i=0,...k—1 We define its (tilted) robust
extension as

P00 = supB"[-X - S 6p) (14 uYB) A7)
Jj=i

where for every bounded, FN-adapted process p, PH" is the
measure under which R{Y — 37, _, pf/ Atj11 is a martingale.

Goal: Start with one-period risk measures Ft’l,V like AVOR,
semi-deviation etc.

— Define the robust extension in discrete time.

— Extend it to continuous time by convergence.
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Proposition

Suppose we are given a collection of one-period risk measures
(Ft,,-v)l'ZO,...,k—l' For z € Rd, M e R let

gN(ti,z, M) = ( zBN

tit1

~ M)

Then for every XN € L>°(FN) there exists a process ZV and a
martingale MN orthogonal to RN such that

py (XM =—xN+ N g5, 2l MY )t - 1)
t<t;<T

- > ZY(RY, — R — (M{ — M.

t<tj<T
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Convergence Theorem for discrete-time risk measures to
continuous-time risk measures

Let g be a driver function such that for every z € RY :

E[ sup ‘gN(t,z,O) —g(t,z)|2} N=2 .
0<t<T

Then there exists a continuous-time dynamic risk measure
(Ps)se[o,T] such that for every sequence of discrete payoffs X"
which converge in L? to a continuous-time payoff X we have

N—oo .
sup g (X") = pe(X)| "=70 i L2

Moreover, p is the solution of a continuous-time BSDE with
terminal condition —X and driver g.
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Examples of discrete-time risk measures extended to

continuous time: semi-deviation

Suppose that the one-period risk measures are given by the
semi-deviation:

The robust extension of semi-deviation converges to p;, where for
any terminal condition X, (p:(X), Z;) is the solution of

T T
pe(X) = —-X +/ g(Zs)ds —/ ZsdW;
t t

with g(z) defined by

g(z) = )\(zid( Z (—l)k’z’)p>1/p, z=(z,...,z9) e RY.

I=1,...,d, ke{1,2}
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Examples of discrete-time risk measures extended to

continuous time: Average Value at Risk

Suppose that the one-period risk measures are given by
Average Value at Risk:
Let

xi(z) = i-th largest element of the set
{(—D)R2 + .+ (=D e {1,2},1=1,...,d}

The robust extension of AV@R converges to p;, where (p¢(X), Z¢)
is the solution of the BSDE with terminal condition —X and driver

1 2o —1y 1 P
g(z) = —E<X2d—[2da1+1 (a - %) + od Z de—j+1(z))-
j=1

In particular, if a < 1/29 we have

g(z)=|al+|z|+ ...+ |z4|
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Examples of discrete risk measures extended to continuous

time

Suppose that the one-period risk measures are given by the Gini
risk measure: Define

1
,(z):Sup{/e{zd,...,l}\forauje{zd,---,/}: T+ 1-g)
d 2d
7 4(2) 1 2ile)
=i N7 H d < - o - .
2d+1_l+><J(z)an 07+ 1-1) 2d+1_/+Xl 1(2)}
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The driver for the BSDE of the extension of the Gini risk measure
to continuous time is given by

d
1 1 Z_?:I(z) xi(z)

82 = i i) T @110
24 2 d
g (EE0) 2 i xF(2)
2 294+1—1(2) 2 J
J=1(2)
for z=(z!,...,29) € RY. In the special case that d = 1 we get
2| - = if |z > 1/6
g(z) = ] 2 -
522, if |z] < 1/6.
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