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Discrete hedging

In option pricing models, the hedging strategy is usually
computed as a function of stock price (greek) or in feedback
form, which means that it varies continuously, and often has
infinite variation.

Continuous rebalancing is unfeasible: in practice, the strategy
Ft is replaced with a discrete strategy, leading to a
discretization error.

The simplest choice is F n
t := Fh[t/h], h = T/n.

This discretization error has only been studied in the case of
continuous processes.

Two main approaches: weak convergence (CLT for hedging
error) and L2 convergence
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Discrete hedging: the complete market case

Bertsimas, Kogan and Lo ’98 introduced an asymptotic
approach allowing to study discrete hedging in continuous
time.

Suppose
dSt = µ(t,St)dt + σ(t,St)dWt

and we want to hedge a European option with payoff H(ST ) using
delta-hedging Ft = ∂C

∂S .
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CLT for hedging error

The discrete hedging error is defined by

εn
T = H(ST )−

∫ T

0
F n

t dSt

Then εn
T → 0 but the renormalized error 1√

h
εn
T converges to

√
1

2

∫ T

0

∂2C

∂S2
σ(t,St)

2dW ∗
t ,

where W ∗ is a Brownian motion independent of W .

Hedging error decays as
√

h.

It is orthogonal to the stock price.

The amplitude is determined by the gamma ∂2C
∂S2
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Approximating hedging portfolios

Hayashi and Mykland ’05 interpreted the discrete hedging error as
the error of approximating the “ideal” hedging portfolio

∫ T
0 FtdSt

with a feasible hedging portfolio
∫ T
0 F n

t dSt

• This makes sense in incomplete markets
Suppose F and S are Itô process:
dFt = µ̃tdt + σ̃tdWt and dSt = µtdt + σtdWt . Then

1√
h
εn
t ⇒

√
1

2

∫ t

0
σ̃sσsdW ∗

s ,

(
σ̃t =

∂2C

∂S2
σ(t,St)

)

where εn
t :=

∫ t

0
(Ft − F n

t )dSt .

• Weak convergence of processes in the Skorokhod topology on
the space D of càdlàg functions
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L2 hedging error for continuous processes

Result by Zhang (1999): for call/put options, the L2 hedging
error converges to the expected square of the weak limit.

lim
n→∞

1

h
E [(εn

T )2] =
1

2
E

[∫ T

0

(
∂2C

∂S2

)2

σ(s,Ss)
4ds

]
.

The constant may be improved by an intelligent choice of
rebalancing dates (Brodén and Wiktorsson ’08) but the
convergence rate cannot be improved.

See also related results by Gobet and Temam (01) and Geiss
(02), (06), (07).
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Hedging in incomplete markets

Incomplete market: exact replication impossible.

Hedging is now an approximation problem.

Industry practice: sensitivities to risk factors

Delta =
∂C (t,St)

∂S
: infinitesimal moves, hedge with stock

Gamma =
∂2C (t,St)

∂S2
: bigger moves; hedge with liquid options

Quadratic hedging: control the residual error

min
F

E

(
c +

∫ T

0
FtdSt − Y

)2

All these strategies require a continuously rebalanced portfolio.
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Discretization error in presence of jumps

Our idea: study the discretization error

εn
t :=

∫ t

0
(Ft− − F n

t−)dSt

in presence of jumps in the underlying and the hedging strategy.

Approximation error of the Lévy-driven Euler scheme: Jacod
and Protter (98), Jacod (04)

Related results in the approximation of quadratic variation by
realized volatility

X 2
T = X 2

0 + 2

∫ T

0
Xt−dXt + [X ,X ]T

Limit theorems for the approximation error of quadratic
variation: Jacod (08).
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Model setup: Lévy-Itô processes

Xt = X0 +

∫ t

0
µsds +

∫ t

0
σsdWs +

∫ t

0

∫

|z|≤1
γs(z)J̃(ds × dz)

+

∫ t

0

∫

|z|>1
γs(z)J(ds × dz).

• J: Poisson random measure with intensity dt × ν
• µ and σ are càdlàg (Ft)-adapted
• γ: Ω× [0,T ]× R → R is such that (ω, z) &→ γt(z) is
Ft × B(R)-measurable ∀t and t → γt(z) is càglàd ∀ω, z ;

γt(z)2 ≤ Atρ(z),

∫

|z|≤1
ρ(z)ν(dz) < ∞

with ρ positive deterministic and A càglàd (Ft)-adapted.
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Model setup

The stock price S is a Lévy-Itô process with coefficients
µ, σ, γ;

The continuous-time strategy F is a Lévy-Itô process with
coefficients µ̃, σ̃, γ̃.

The agent uses the discrete strategy F n
t := Fh[t/h] instead of

the continuous strategy Ft .

Peter Tankov Discrete hedging in models with jumps



Introduction
Weak convergence

L2 convergence
Specific strategies and pay-offs

Model setup
The asymptotic error process
Proof of the weak convergence

Weak convergence: the normalizing sequence

The normalizing factor need not be equal to 1/
√

h.
Suppose F and S move only by finite-intensity jumps. If there is
only one jump between ti and ti+1,

∫ ti+1

ti

Ft−dSt =

∫ ti+1

ti

F n
t−dSt

Therefore P[εn
t *= 0] = O(1/n) and

1

hα
εn
t → 0

in probability ∀α > 0.
More generally, if S and F are Lévy-Itô processes without diffusion
parts,

1√
h
εn
t → 0

in probability uniformly on t.
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Weak convergence

The discretization error satisfies

1√
h
εn
t →

√
1

2

∫ t

0
σs σ̃sdW ∗

s +
∑

i :Ti≤t

∆FTi

√
ζiξiσTi

+
∑

i :Ti≤t

∆STi

√
1− ζiξ

′
i σ̃Ti−.

W ∗ is a standard BM independent from W and J,
(ξk)k≥1 and (ξ′k)k≥1 are two sequences of independent N(0, 1),
(ζk)k≥1 is sequence of independent U([0, 1])
(Ti )i≥1 are the jump times of J enumerated in any order.
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Remarks on convergence

The hedging error 1√
h
εn
t converges weakly in

finite-dimensional laws but not in Skorohod topology.

The discretized error process 1√
h
εn
h[t/h] converges in Skorohod

topology to the same limit.
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Idea of the proof

Main tool: if (X n) and (Y n) are two sequences of processes such
that

sup
t
|X n

t − Y n
t | → 0 in probability

and X n → X weakly then Y n → X weakly.
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Idea of the proof

Step 1 Remove the big jumps

Step 2 Remove the small jumps

Step 3 Now we can write

St = S0 + Sd
t + Sc

t + S j
t

Sd
t =

∫ t

0

(
µs +

∫
γs(z)ν(dz)

)
ds

Sc
t =

∫ t

0
σsdWs

S j
t =

∫ t

0

∫
γs(z)J(ds × dz)

and Ft = F0 + F d
t + F c

t + F j
t .
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Idea of the proof

The leading terms in the hedging error are

1√
h

∫
(F c

t − F c,n
t )dSc

t →
√

1

2

∫ t

0
σs σ̃sdW ∗

s

1√
h

∫
(F j

t − F j ,n
t )dSc

t =
∑

i

∆FTi

1√
h

∫ r(Ti )

Ti

σsdWs

→
∑

i :Ti≤t

∆FTi

√
ζiξiσTi

1√
h

∫
(F c

t − F c,n
t )dS j

t =
∑

i

∆STi

1√
h

∫ Ti

l(Ti )
σ̃sdWs

→
∑

i :Ti≤t

∆STi

√
1− ζiξ

′
i σ̃Ti−.
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Discretization error in presence of jumps

In finance it is more common to measure risk by an L2

criterion, therefore in this work we want to study the rate of
convergence of E [(εh

T )2] to zero.

Surprising result: Even in the most simple cases, the L2 error
does not converge to the expected square of the weak limit if
there are jumps both in S and in F .
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L2 convergence: example

Suppose
Ft = St = Nt ,

with Nt a Poisson process with intensity λ. Then

P

[∫ T

0
(Nt− − Nh[t/h])dNt *= 0

]
= O (h)

and therefore h−αεh
T → 0 in probability for all α > 0. However

lim
n→∞

E

[(
1√
h

∫ T

0
(Nt− − Nh[t/h])dNt

)2
]

=
λ2T

2
.
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Model setup: the stock price process

Let St = eXt , where X is a Lévy process with characteristic
triple (a, ν, b), such that E [S2

t ] < ∞ and denote

A := a2 +

∫

R
(ez − 1)2ν(dz), φt(u) = E [e iuXt ]

There exists an equivalent martingale measure Q under which
X is again a Lévy process with triple (a, ν̄, b̄) and we denote

Ā := a2 +

∫

R
(ez − 1)2ν̄(dz), φ̄t(u) = EQ [e iuXt ]
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Model setup: the strategy

Assume the continuous-time hedging strategy F is a Lévy-Itô
process

Ft = F0 +

∫ t

0
µudu +

∫ t

0
σudWu +

∫ t

0

∫

R
γu−(z)J̃(du × dz),

where J̃ is the compensated Poisson random measure of
jumps of X .

The rebalancing dates are equally spaced: Ti = hi and we
denote l(t) = sup{Ti ,Ti < t} and r(t) = inf{Ti ,Ti ≥ t}
The agent uses the discrete-time strategy Fl(t) instead of the
continuous-time strategy Ft .
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The general limit theorem

Choose a function ρ(h) with limh↓0 ρ(h) = 0 and assume that

h

ρ(h)
E

[∫ T

0
S2

t (r(t)− t)

(
µ2

t +

∫

R
γ2

t (z)ν(dz)

)
dt

]
h→0−−−→ 0.

Then lim
h↓0

1

ρ(h)
E

[(
εh
T

)2
]

= lim
h↓0

A

ρ(h)
E

[∫ T

0
S2

t (r(t)− t)

(
σ2

t +

∫

R
γ2

t (z)e2zν(dz)

)
dt

]

whenever the limit in the right-hand side exists.
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The regular regime

Let the assumption of the theorem be satisfied and suppose

E

[∫ T

0
S2

t

(
σ2

t +

∫

R
γ2

t (z)e2zν(dz)

)
dt

]
< ∞

Then it is easy to see that

lim
h↓0

1

h
E

[
(εn

T )2
]

=
A

2
E

[∫ T

0
S2

t

(
σ2

t +

∫

R
γ2

t (z)e2zν(dz)

)
dt

]
.

Therefore the best possible convergence rate in this setting,
obtained for regular strategies, is ρ(h) = h. However, worse rates
may arise in the presence of irregular pay-offs.
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Idea of the proof

For simplicity, suppose that S is a P-martingale.

Define an auxiliary probability measure P2 by

dP2

dP
|Ft =

e2Xt

etψ(−2i)
, ψ(u) = log Ee iuX1 .

Under P2, the proces W (2)
t = Wt − 2at is a standard

Brownian motion and

J̃(2)(dt × dz) = J̃(dt × dz)− dt × (e2z − 1)ν(dz)

is a compensated Poisson random measure.
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Idea of the proof

The hedging error satisfies

1

ρ(h)
E

[(
εh
T

)2
]

=
1

ρ(h)
E

[(∫ T

0
(Ft− − Fl(t))dSt

)2
]

=
A

ρ(h)
E

[∫ T

0
(Ft− − Fl(t))

2S2
t dt

]

=
A

ρ(h)

∫ T

0
etψ(−2i)EP2

[(Ft− − Fl(t))
2]dt

≈ A

ρ(h)

∫ T

0
dt etψ(−2i)EP2

[∫ t

l(t)
σsdW (2)

s +

∫ t

l(t)

∫
γs−(z)J̃(2)(ds dz)

]2

=
A

ρ(h)

∫ T

0
dt etψ(−2i)EP2

[∫ t

l(t)

(
σ2

s +

∫

R
γ2

s (z)e2zν(dz)

)
ds

]
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Idea of the proof

Using integration by parts and switching back to the probability P,

A

ρ(h)

∫ T

0
etψ(−2i)EP2

[∫ t

l(t)

(
σ2

s +

∫

R
γ2

s (z)e2zν(dz)

)
ds

]
dt

=
A

ρ(h)

∫ T

0
dt EP2

[
σ2

t +

∫

R
γ2

t (z)e2zν(dz)

] ∫ r(t)

t
esψ(−2i)ds

=
A(1 + O(h))

ρ(h)
E

[∫ T

0
S2

t (r(t)− t)

(
σ2

t +

∫

R
γ2

t (z)e2zν(dz)

)
dt

]
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Fourier transform option pricing

We consider a European option with pay-off G (ST ) at time T and
denote by g its log-payoff function: G (ex) ≡ g(x). Suppose that
there exists R ∈ R such that

g(x)e−Rx has finite variation on R,

g(x)e−Rx ∈ L1(R),

EQ [eRXt ] < ∞ and

∫

R

|φ̄T−t(u − iR)|
1 + |u| du < ∞.

Then

C (t,St) := EQ [G (ST )|Ft ] =
1

2π

∫

R
ĝ(u + iR)φ̄T−t(−u − iR)SR−iu

t du,

where

ĝ(u) :=

∫

R
e iuxg(x)dx
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The strategies

The delta hedging strategy is given by

Ft =
∂C (t,St)

∂S
=

1

2π

∫

R
ĝ(u + iR)φ̄T−t(−u − iR)(R − iu)SR−iu−1

t du.

The quadratic hedging strategy minimizes

EQ

[(
G (ST )− C (0,S0)−

∫ T

0
FtdSt

)2
]

.

and is given by

Ft =
d〈C ,S〉Qt
d〈S ,S〉Qt

=
1

2π

∫

R
ĝ(u + iR)φ̄T−t(−u − iR)SR−iu−1

t Υ(u)du

where Υ(u) =
ψ̄(−u − i(R + 1))− ψ̄(−u − iR)− ψ̄(−i)

ψ̄(−2i)− 2ψ̄(−i)
.
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European options

For all parametric models found in the literature, both for
delta hedging and the quadratic hedging the convergence
takes place in the regular regime:

lim
h↓0

1

h
E

[(
εh
T

)2
]

=
A

2
E

[∫ T

0
S2

t

(
σ2

t +

∫

R
γ2

t (z)e2zν(dz)

)
dt

]
.

The limit can be evaluated via Fourier transform as a
3-dimensional integral.
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Digital options: delta hedging

Assume a non-zero diffusion component or a stable-like
behavior of small jumps: the Lévy measure ν has a density
satisfying

ν(x) =
f (x)

|x |1+α
, lim

x→0+
f (x) = f+, lim

x→0−
f (x) = f−

for some constants f− > 0 and f+ > 0.

Let the pay-off function be given by G (ST ) = 1ST≥K .

If α ∈ (1, 2], for delta hedging the discretization error satisfies

lim
h↓0

1

ρ(h)
E

[(
εh
T

)2
]

= ADpT (log K ),

with ρ(h) = h1−1/α, where D depends only on α, f+ and f−.
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Digital options: quadratic hedging

Same assumptions as for delta hedging.

If α ∈
(
0, 3

2

)
, for quadratic hedging the convergence takes

place in the regular regime:

lim
h↓0

1

h
E

[(
εh
T

)2
]

=
A

2
E

[∫ T

0
S2

t

(
σ2

t +

∫

R
γt(z)e2zν(dz)

)
dt

]
.

If α ∈
(

3
2 , 2

]
, the discretization error satisfies

lim
h↓0

1

ρ(h)
E

[(
εh
T

)2
]

=
AQ

Ā2
pT (log K )

with ρ(h) = h
3
α−1, where Q depends only on α, f+ and f−.
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Comparison of delta and quadratic hedging

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0
−0.2
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0.8

1.0

1.2

alpha

be
ta

Delta
Quadratic

Convergence rate of the expected squared discretization error to
zero as function of the stability index α for a digital option. The
rate is given by ρ(h) = hβ, where β is plotted on the graph.
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Numerical illustration
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Quadratic hedging.
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Delta hedging and quadratic hedging.
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Convergence of the discretization error to zero for hedging a digital
option in the CGMY model. Left: quadratic hedging. Right: delta
hedging vs. quadratic hedging.
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Concluding remarks

Combined with recent results of C. Geiss and E. Laukkarinen
(talk by C. Geiss at SPA’09), our findings allow to exhibit the
non-equidistant rebalancing strategy allowing to recover the
optimal rate 1

n in the irregular case.

For pure-jump processes, the convergence rate may be
improved beyond 1

n by taking suitable random rebalancing
dates (work in progress).
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