GALOIS REPRESENTATIONS FOR EVEN GENERAL SPECIAL
ORTHOGONAL GROUPS

ARNO KRET AND SUG WOO SHIN

ABSTRACT. We prove the existence of GSpin,,,-valued Galois representations corresponding to
cohomological cuspidal automorphic representations of certain quasi-split forms of GSO2,, under
the local hypotheses that there is a Steinberg component and that the archimedean parameters
are regular for the standard representation. This is based on the cohomology of Shimura
varieties of abelian type, of type DY, arising from forms of GSOa,. As an application, under
similar hypotheses, we compute automorphic multiplicities, prove meromorphic continuation of
(half) spin L-functions, and improve on the construction of SOs,-valued Galois representations
by removing the outer automorphism ambiguity.
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INTRODUCTION

Inspired by conjectures of Langlands and Clozel’s work [Clo90] for the group G = GL,,
Buzzard-Gee [BG14, Conj. 5.16] formulate the following version of the Langlands correspon-
dence (in one direction) for an arbitrary connected reductive group G over a number field F'.
Let Ar denote the ring of adeles over F. Write G (resp. “G) for the Langlands dual group
(resp. L-group) of G over Q,. When g € *G(Qy), let gss denote its semisimple part.

Conjecture 1. Let ¢ be a prime number and fix an isomorphism v: C = Q,. Let 7 be a cuspidal
L-algebraic automorphic representation of G(Ar). Then there exists a Galois representation

Pr = Py Gal(F/F) - LG(@Z)v

such that for all but finitely many primes q of F (excluding q|¢ and those such that mq are
ramified), the G-conjugacy class of p(Frobg)ss € “G(Qy) is the Satake parameter of mq via ¢.

The conjecture of Buzzard-Gee is more precise (and does not assume cuspidality). They
describe the image of each complex conjugation element and ¢-adic Hodge-theoretic properties
of pr. Moreover they predict [BG14, Conj. 5.17] that the compatibility holds at every q coprime
to £ such that 7y is unramified. In fact p.(Frobg), instead of its semisimple part, appears in their
conjecture. While pr(Frobg) is expected to be always semisimple, this seems to be a problem
of different nature and out of reach. Thus we state the conjecture with pr(Frobg)ss.

For most recent results on Conjecture 1 for GL,, (in the regular case), we refer to [Schl5,
HLTT16] and the references therein. Arthur’s endoscopic classification [Art13] (see [Mok15,
KMSW] for unitary groups)1 provides a crucial input for constructing Galois representations as
in the conjecture for symplectic, special orthogonal, and unitary groups by reducing the question
to the case of general linear groups. When the group is SOs,,, however, such an approach proves
only a weaker local-global compatibility up to outer automorphisms (see (SO-i) in Theorem 6.3
below), falling short of proving Conjecture 1 (even under local hypotheses); we will return to
this point as an application of our main theorem.

Our goal is to prove Conjecture 1 for a quasi-split form G* of GSOs,, over a totally real field
under certain local hypotheses, as a sequel to our work [KS16] where we proved the conjecture
for GSp,,, under similar local hypotheses. The group GSOg, is closely related to the classical
group SOay, just like GSp,,, is to Sp,,,, but the similitude groups may well be regarded as non-
classical groups. An important reason is that the Langlands dual groups of GSOg,, and GSp,,,,
namely the general spin groups GSpiny, and GSpin,, ;, do not admit standard embeddings
(into general linear groups of proportional rank). This makes the problem both nontrivial and
interesting.

To be more precise, we set up some notation. Let F' be a totally real number field, and
n € Z>3. Let GSOg, denote the connected split reductive group over F' which is the identity
component of the orthogonal similitude group GOsg,. (See §2 below for an explicit definition.)
Our setup depends on the parity of n:

(n even) E = F, and G* = GSOay, (the split form over F),
(n odd) FE is a totally imaginary quadratic extension of F', and G* is a non-split quasi-
split form of GSOay,, relative to E/F (explicitly given as (8.4)).

We write GSOJ;T{ F for the F -group G in either case. The setup is naturally designed so that

there are Shimura varieties for (an inner twist of) Resg/oG™*. In particular G*(F}) has discrete
series at every infinite place y of F.. (Indeed G*(F}) has no discrete series if we swap the parity
of n above.) There is a short exact sequence of F-groups

1 SOYT — gsol/F M g, 1,

IThe endoscopic classification is conditional in the following sense. At this time, the postponed articles [A25],
[A26] and [A27] in the bibliography of [Art13] have not appeared. The proof of the weighted fundamental lemma
for non-split groups has not become available yet either.
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where SO, / is a quasi-split form of SOsg,, defined similarly as GSO, Ef F, and sim denotes
the smuhtude character. It is convenient to use the version of L-group relative to E/F, with
coefficients in either C or Q:

LG* = G* x Gal(E/F) = GSpin,,, x Gal(E/F),

where the nontrivial element of Gal(E/F) acts non-trivially on GSpin,,. (This identifies “G*
with GPing, if [E : F] = 2.) An important feature of the (general) spin groups GSpin,,
(m € Z>9) is their spin representation spin,,: GSpin,, — GLgm/2;. In case m is even, this
representation is reducible and splits up into a direct sum spin,, = spin! @ spin_ of two
irreducible representations of dimension 2l™/21=1 These representations spinff1 are called the
half spin representations. Two other important representations are the standard representation
and the spinor norm (see Lemma 3.1 for pr°)

std: GSpin,, 5 SO — GLyn, and A: GSpin,, — GL;.

If m is odd, spin is faithful. In the even case m = 2n, none of the representations spin™, spin—, std,
or N is faithful, but spin is faithful.

Let m be a cuspidal automorphic representation of GSO,

hypotheses on 7, where |sim| denotes the composite GSO; /F(F ®qR) = o (FRR)* x I RZ,:

L/ F(AF) Consider the following

(St) There is a finite F-place gg; such that mg, is the Steinberg representation of
G*(Fys,) twisted by a character.
(L-coh) ma|sim|™™~1/4 is ¢-cohomological for an irreducible algebraic representation
§ = @y:rescéy of the group (Resp/G*) ®q C = [, peyc(G* ®@py C).
(std-reg) The highest weight of £, viewed as a cocharacter of G* = GSpin,,, (C), is mapped

to a regular cocharacter of GLg, under the standard representation GSpin,,, —
GLay,.

In (L-coh), ‘¢-cohomological’ means that the tensor product with £ has nonvanishing relative
Lie algebra cohomology in some degree (§1 below). Condition (L-coh) implies that = is L-
algebraic. The other two conditions should be superfluous as they do not appear in Conjecture
1. Condition (St) plays an essential role in our argument, and would take significant new ideas
and effort to get rid of. We assume (std-reg) for the reason that certain results for regular-
algebraic self-dual cuspidal automorphic representations of GLy, N > 2, are missing in the
non-regular case. However we need less than (std-reg) for our argument to work. The necessary
input for us to proceed without (std-reg) is formulated as Hypothesis 6.10, which we expect to
be quite nontrivial but within reach nonetheless. Thus we assume either (std-reg) or Hypothesis
6.10 in the main theorem, hoping that (std-reg) will be removed as soon as the hypothesis is
verified.

Let Spaq = Sbad(7) denote the finite set of rational primes p such that either p = 2, p ramifies
in F', or mq ramifies at a place q of F' above p. The following theorem assigns an /-adic Galois
representation to 7 for each prime number ¢ and each isomorphism ¢: C = Q,.

Theorem A. Assume that 7 satisfies conditions (St) and (L-coh). If (std-reg) does not hold
for w, further assume Hypothesis 6.10 (for an SOagy,(AR)-subrepresentation of w). Then there
exists, up to G-conjugation, a unique semisimple Galois representation attached to m and ¢

pr = pr.: Gal(F/F) — LG~
such that the following hold.

(A1) For every prime q of F not above Spaq U{L}, px(Frobg)ss is G*-conjugate to 1§, (Frobg),
where ¢, is the unramified Langlands parameter of mg.
(A2) The composition

r°

Gal(F/F) 53 LG* % S0, (Q,) x Gal(E/F)
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corresponds to a cuspidal automorphic SOfn/F(AF)—subrepresentatz'on m
in that pr°(py(Frobg)ss) is SO2,(Qy)-conjugate to the Satake parameter of ﬂg via ¢ at

every q not above Spaq U {€}. Further, the composition
Gal(F/F) 3 La* X GL,(Q))

corresponds to the central character of m via class field theory and ¢.
(A3) For every q|¢, the representation prq is de Rham (in the sense that r o pr 4 is de Rham

> contained in

for all representations r of @*) Moreover
(a) The Hodge-Tate cocharacter of prq is explicitly determined by . More precisely,
for ally: F — C such that vy induces q, we have
NHT(pﬂ',qa Ly) = LNHodge(fy) + n(n41)5im'
(We still write sim to mean the cocharacter of GSpin,,, dual to sim : G* — Gyy,.
See §1 below for the Hodge—Tate and Hodge cocharacters ugt and MHodge-Q)
(b) If mq has nonzero invariants under a hyperspecial (resp. Iwahori) subgroup of G*(Fy)
then either prq or a quadratic character twist is crystalline (resp. semistable).
(c) If £ & Spaq then prq is crystalline.
(A4) For every v|oo, pr, is odd (see §1 and Remark 12.6 below).
(A5) The Zariski closure of the image of pr(Gal(F/E)) in PSOs, maps onto one of the
following four subgroups of PSOaqy,:
(a) PSOQn,
(b) PSOq,—1 (as a reducible subgroup),
(¢) the image of a principal SLg in PSOq,, or
(d) (only when n = 4) Go (embedded in SO7 C PSOg) or SO7 (as an irreducible
subgroup via the projective spin representation).
(A6) If p': Gal(F/F) — LG* is another semisimple Galois representation such that, for al-
most all finite F-places q where p' and pr are unramified, the semisimple parts p'(Frobg)ss
and pr(Frobg)ss are conjugate, then p and p’ are conjugate.

As explained below Conjecture 1, the existence of Galois representations
(0.1) P Gal(F/F) — SO, (Q,) x Gal(E/F)

in a weaker form is known for any cuspidal automorphic representation 7 of SOfn/ F

(AFp) sat-
isfying (coh®), (St°), and (std-reg®) (these conditions are variants for SOfn/ ' see Section 6),
and possibly a larger class of representations though we have not worked it out. The main
ingredients are Arthur’s transfer [Art13, Thm. 1.5.2] from SOQEn/F(AF) to GLa2,(Ar), and col-
lective results on the Langlands correspondence for GLg,(AF) in the self-dual case. Statements
(SO-1)—(SO-v) of Theorem 6.3 in the text summarize what we know about p,»,. A main draw-
back of Theorem 6.3 is that the conjugacy class of each p_, (Frobg)ss is determined only up to
Ogy-conjugacy, rather than SOy,-conjugacy.
Using Theorem A we can upgrade Theorem 6.3 and remove this “outer” ambiguity (coming

from the outer automorphism) as long as 7” can be extended to a cohomological representation

m of GSOJZE;/ F o Ifris ¢-cohomological then £ must satisfy condition (cent) of §9, so a necessary
condition for such a cohomological extension to exist is the following condition (which is void
for F = Q):

(cent®) the central character {£1} = pp(Fy) = C* of m, at y € Vi is independent of y.
Theorem B. Let n° be a cuspidal automorphic representation of SOJQEH/F(AF) satisfying (cent® ),
(coh®), (St°), and (std-reg®). Then Conjecture 1 holds (for every £ and ). The associated Galois

representation p_, is characterized uniquely up to SO2,(Qy)-conjugation.

2More precisely, the Hodge cocharacter is a half-integral cocharacter, but the sum on the right hand side makes
it integral. The two cocharacters are well-defined only up to conjugacy, but the formula makes sense because sim
is a central cocharacter.
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See Theorem 13.1 below for a precise and stronger statement. The crux of the argument
lies in showing that 7 extends to an automorphic representation 7 of GSO;En/ F(AF) satisfying
conditions of Theorem A. As Theorem A has no outer ambiguity, this yields Theorem B.

Theorem B offers a new perspective on the local Langlands correspondence for quasi-split
forms of SO9, over p-adic fields. By localizing the theorem at finite places, we get a candidate
for the correspondence, not just up to Og,-conjugacy as in [Art13]. More precisely, let H denote
a quasi-split form of SOs, over a p-adic field k, assumed to be split if n is even. Then we can
find E/F as above (depending on the parity of n) and a prime q of F' such that Fy; ~ k and

SOQER/ f ~ H. If o is an irreducible discrete series representation of H (k) then a candidate for
the ﬁ—parameter for o is described by the following procedures.

(1) Find 7 satisfying (cent®), (coh®), (St°), and (std-reg®) such that wg ~ 0.

(2) Obtain p,» from Theorem B (which relies on Theorem A).

(3) Take WD(pzs |1y, ), which can be viewed as an L-parameter for H (k).

The globalization in (1) is possible by a standard trace formula argument proving the limit
multiplicity formula. See §1 below for the definition of WD. The L-parameter resulting from
the above is in the Ogy,-orbit of the L-parameter in [Art13] by Theorem 6.3 (SO-i), but could a
priori depend on various choices. It is an interesting problem to relate the global construction
here to the purely local constructions by Kaletha [Kall9,Kal] and Fargues—Scholze [FS]. In fact
all this can be mimicked for GSOs, in place of SOs,, using Theorem A rather than Theorem
B, so a similar question may be asked in the GSOs,-case.

As another application of Theorem A, we compute the automorphic multiplicities m() for

certain automorphic representations m of GSOQEn/ F(A F).

Theorem C. Let 7 be a cuspidal automorphic representation of GSO;L/F(AF) satisfying (L-

coh), (St) and (std-reg). Then we have m(w) = 1.

In fact we also prove that m(7°) = 1 for cuspidal automorphic representations 7° of SOfn/ F(A F)
such that (coh®), (St°) and (std-reg®) hold, and this serves as a prerequisite. Arthur’s multiplic-
ity formula [Art13] determines the multiplicity of 7 up to an outer automorphism orbit, but
notice that we compute the honest multiplicity. To refine Arthur’s formula, we utilize potential
automorphy results [BLGGT14] combined with an L-function argument. The point is to rule
out the case where stdp; is reducible but the transfer of © to GLa, is cuspidal (see Proposition
14.1). To compute m(m) for GSOQEJF we rely on Theorem A and a result of Bin Xu [Xul8] to
show that m(w) = m(n°) for 7° C 7 a well-chosen SOQEn/ F(A F)-subrepresentation.

Our final application is meromorphic continuation of the (half) spin-L functions. Let 7 be a
cuspidal automorphic representation of GSOQEH/ F
S. To make uniform statements, define a set

- {+,—}, ifniseven (thus E = F),
{0}, ifnis odd (thus [E : F] = 2),

(AFp) unramified away from a finite set of places

with the understanding that spin? = spin. The partial (half-)spin L-function for 7 away from
S is by definition

1
(0.2) LS(S,W,SpiHG) = | | = ,
oy det(1 — g, *spin®(¢, (Froby)))

where q, := #(Op/p) and ¢, is the unramified L-parameter of m,. Consider the following
hypothesis for L-parameters ¢, at infinite places y.

€ E e,

(spin-reg) spin®(¢r,) is regular for every infinite place y of I and every € € e.
Then (spin-reg) implies (std-reg) when n > 3. This hypothesis ensures that spin®(p,) has dis-
tinct Hodge—Tate weights. Our construction and Theorem A allow us to apply the potential
automorphy theorem of Barnet-Lamb—Gee-Geraghty—Taylor [BLGGT14] to the weakly com-
patible system of spin(p;) (as ¢ and ¢ vary). Thereby we obtain the following.
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Theorem D. Assume n > 3. Let w be a cuspidal automorphic representation of GSOETL/F(AF)
satisfying (L-coh), (St) and (spin-reg). Then there exists a finite totally real extension F'/F
(which can be chosen to be disjoint from any prescribed finite extension of F in F) such that
spin€ o pW]Gal(F/F,) is automorphic for each € € ¢. More precisely, there exists a cuspidal auto-

morphic representation 11 of GLign /| (Apr) such that
o for each finite place q' of F' not above Spaq, the representation 1~ 'spin€ o prlw,, s

q
unramified and its Frobenius semisimplification is the Langlands parameter for II,,
e at each infinite place y' of F' above a place y of F, we have ¢ne, |w,. =~ spin® o ¢, |we.
Yy

In particular the partial spin L-function L (s, m,spin€) admits a meromorphic continuation and
is holomorphic and nonzero in an explicit right half plane (e.g., in the region R(s) > 1 if ™ has
unitary central character).

We now give a sketch of the argument for Theorem A. For simplicity, we restrict the discussion
here to n even to put ourselves in the split case, and assume F' = Q to simplify notation. We
also ignore all character twists in the following sketch and keep the isomorphism ¢ : C ~ Q,
implicit. (See the main text for correct twists.)

The basic idea is to construct p, and prove its expected properties by understanding what
should be spin™ o p,, spin~ o p,, std o pr, and A o p;. One already has access to std o p, via
Arthur’s endoscopic classification and known instances of the global Langlands correspondence.
The seemingly innocuous N o p, is not so trivial but can be understood from the first two. We
realize spin™ o p, and spin~ o p; in the cohomology of suitable Shimura varieties; this is the
port of embarkation. In fact p, would not be recovered from spin* o p,, spin~ o p,, stdo p,, and
N o p, in general due to essential group-theoretic difficulties (e.g., GSpin,,, is not acceptable in
the sense of [Lar94,Lar96]), but condition (St) mitigates the matter. Another important role of
(St) is to remove complexity associated with endoscopy.

Our Shimura varieties are associated with an inner twist G/Q of the split group GSOsz,
(unique up to isomorphism) which splits at all primes p # pst, and whose derived subgroup is
isomorphic to the quaternionic orthogonal group SO*(2n) over R (which is not isomorphic to
SO(a, b) for any signature a + b = 2n). Concretely G(R) is isomorphic to the group GSO, (R)
in §8 below.

The group G admits two abelian-type Shimura data (G, X¢) with € € {4, —}, corresponding
to the two edges of the “fork” in the Dynkin diagram of type D,, (see Section 9). These two
Shimura data are not isomorphic. (The analogous Shimura data are isomorphic via an outer
automorphism when n is odd; see Lemma (ii) below. Even then, we distinguish the two data as
the outer automorphism changes isomorphism classes of representations.)

Let 7 be as in Theorem A. Using a trace formula argument, we transfer 7w to a £&-cohomological
cuspidal automorphic representation 79 of G(A) with isomorphic unramified local components
as 7 such that 7¥ is Steinberg at a finite prime. Let py™° be the Gal(Q/Q)-representation on
the 7%>-isotypical part of the (semisimplified) compact support cohomology of the f-adic local
system L¢/Sh(G, X*®) attached to . Conjecturally the two representations pgh’s should realize
spin® o p up to semi-simplification (and up to a twist and a multiplicity that we ignore), in the
non-endoscopic case. In particular, if ¢, : Wg, — GSpiny,,(C) is the unramified L-parameter

of m, at a prime p # ¢ where , is unramified, then ,07Srh’E

Gal(@, /Qy) ought to be unramified and
satisfy

(0.3) Tr (Frobl, p3"°) = Trspin®(¢n, (Froby)’) € Q,,  j > 1.

Employing Kisin’s results on the Langlands—Rapoport conjecture [Kis17] and the Langlands—
Kottwitz method for Shimura varieties of abelian type in the upcoming work of Kisin—Shin—
Zhu [KSZ], we prove (0.3) for almost all p.

Let 7 C 7w be an irreducible cuspidal automorphic SOg,(A)-subrepresentation. From the
aforementioned weaker version of Conjecture 1 for SOs,,, we construct (see Theorem 6.3 below)

Pt Gal(@/Q) — SO02,(Qy).
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such that

(0.4) P (Froby)ss ' pr(¢, (Froby)) € SOo,(Qy),

for all primes p # ¢ where 7’ is unramified. Here % indicates 02,(Qy)-conjugacy, and pre :

GSpin,,, = SO, is the natural surjection.
We expect p, to lift p_», (up to outer automorphism) and to sit inside Pt = p7Srh’+ @ p;qrh’_
as illustrated below. By spin we mean the unique projective representation of SOsg, that the

projectivization of spin factors through.

P SOZH(QE)? PGLan (Qp).

We deduce from (0.3) and (0.4) that the outer diagram commutes, after a conjugation if neces-
sary. In fact this is not straightforward because two PGLan-valued Galois representations need
not be conjugate even if they map each Frob, into the same conjugacy class for almost all p.
We get around the difficulty by using a classification of reductive subgroups of SOs,, containing
a regular unipotent element by Saxl-Seitz [SS97]. This is applicable since (St) tells us that the
image of p_, contains a regular unipotent element. As a consequence, the Zariski closure of the
image of p_, is connected mod center. If it is connected, we have the commutativity of (0.5)
after a conjugation, and it follows that there exists p, completing the diagram. If the Zariski
closure is connected only mod center, then we need a variant of (0.5) as explained in §10. A
similar group-theoretic consideration shows that p, is characterized up to isomorphism by the
images of Frobenius elements at almost all primes, cf. (A6).

Having constructed p,, we verify that p, enjoys the expected properties. Let us focus here
on (Al). By construction,

spin(pr (Froby)ss) ~ spin(¢x, (Froby)), for almost all p.

The key point is to refine this, or break the symmetry, by showing the same relation with spin™
and spin~ in place of spin (cf. proof of Proposition 10.5 below) with the help of (0.3). Roughly
speaking, we are in a situation

p™F @ p¥ ~ spinTpr @ spin~ pr

and want to match the + and — parts. The problem is easy enough if spin®p, ~ spin~p, as
there is little to distinguish. If spin™p; ¢ spin~ p, then the idea is that the 4+ and — parts do
not overlap at sufficiently many places (by a Chebotarev type argument) to match the + and —
parts unambiguously. If spin™ p, and spin~ p, are irreducible, it is quite doable to promote this
idea to a robust argument. In general, e.g., when the image of p,_, is Zariski dense in a principal
PGLy mod center, spin®p, and spin~p, are highly reducible. We deal with the intricacy by
brute force via explicit group-theoretic computations (Case 3 in the proof of Proposition 10.3).
This finishes the sketch of proof for Theorem A.

Structure of the paper. The paper splits roughly into four parts consisting of Sections 1—
8 (preparation), Sections 9-12 (the core argument), Sections 13-15 (applications), and the
appendices. Let us go over these parts in more detail. In Sections 1-5 we define (variants of)
orthogonal groups and spin groups along with subgroups containing regular unipotent elements
and the outer automorphism. We define the spin groups and their spin representations through
root data as well as Clifford algebras by fixing the underlying quadratic spaces, and clarify the
relationship between them. The former is natural in the context of Langlands correspondence
whereas the latter has the advantage that various maps are determined and diagrams commute
on the nose and not just up to conjugation. In Section 6 we construct Galois representations for
certain cuspidal automorphic representations of quasi-split even orthogonal groups. This relies
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on Arthur’s book [Art13] and the known construction of automorphic Galois representations,
but a few extra steps are taken to get the information that we need later on. In particular

we study what happens to the Steinberg representation under Arthur’s transfer from SO;ER/ Fto
GLgy, (this relies on Appendix B). In Section 7 we list a number of basic results on comparing

representations of SOg{  with those of GSOJ;T{ F Section 8 discusses properties of the real points

of GSOQEn/ F and introduces certain global inner forms G of GSOfn/ F. The core argument starts
in Section 9, where we take the cohomology of Shimura varieties associated with two Shimura

data (G, X¥) to find two Galois representations p,Srh’i attached to 7 as in the main theorem.

In Section 10 we construct a GSpin,,,-valued Galois representation p, of Gal(F/E) from paE
and p_,. This representation is not quite the one of Theorem A: The image of Frobenius under
pr is controlled only outside an unspecified finite set of primes, and moreover p, should be
extended to a representation of Gal(F/F). The two problems are resolved in Sections 11 and
12 respectively. We emphasize that neither of these arguments is formal, the first one relies on
Bin Xu’s work [Xul8] and the second on a subtle global argument. The proof of Theorem A is
also completed in Section 12. Sections 13-15 present applications of our main theorem to the
construction of Galois representations for SOQET{ F, automorphic multiplicity, and meromorphic
continuation of (half)-spin L-functions.

Acknowledgments. SWS is partially supported by NSF grant DMS-1802039 and NSF RTG
grant DMS-1646385. AK is partially supported by an NWO VENI grant.

1. NOTATION AND PRELIMINARIES

We fix the following notation.

e n>3isan integer.3

When X is a square matrix, &7/ (X) denotes the multi-set of eigenvalues of X.

When A is a multi-set with elements in a ring R with r € R, then r - A := {rala € A}.

For n € Zg, write A®™ for the multi-set consisting of a € A whose multiplicity in A"

is n times that in A.

e F'is a number field. (In the main text, F' is a totally real field with a distinguished
embedding into C.)

e Or is the ring of integers of F.

Ap is the ring of adeles of F, Ap := (F @ R) x (F ® Z).

If S'is a finite set of F-places, then A% C Ap is the ring of adeles with trivial components

at the places in S, and Fs := [[,cq Fo; Foo := F ®@gR.

If q is a finite F-place, we write gq for the cardinality of the residue field of q.

If S is a set of prime numbers we write S for the set of F-places above S.

If p is a prime number, then F, := F' ®q Q).

¢ is a prime number (typically different from p).

Qy is a fixed algebraic closure of Qg, and ¢: C = Qy is an isomorphism.

For each prime number p we fix the positive root p'/?2 € Ry € C. From ¢ we then

obtain a choice for p'/2 € Q,. If ¢ is a power of p, we obtain similarly a preferred choice

¢'/? in Qg and in C.

o ' =T := Gal(F/F) is the absolute Galois group of F.

e For a finite extension E of F in F, write I'g := Gal(F//E) and 'g/p := Gal(E/F).

o, = ', := Gal(F,/F,) is (one of) the local Galois group(s) of F at the place v,
Wpg, C I'y is the corresponding Weil group.

e For each F-place v, choose an embedding ¢, : F < F,,, which induces I', < I that is
canonical up to conjugation.

¢ V., := Homg(F,R) is the set of infinite places of F'.

3We should mention that if n < 3, there are exceptional isomorphisms of GSO2, (and its outer forms) to
other simpler groups; for instance for n = 3 the Shimura varieties that we obtain are (closely related to) Shimura
varieties for unitary similitude groups, in particular more general results are already known.
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e ¢, € I' is the complex conjugation (well-defined as a conjugacy class) induced by any
embedding F < C extending y € Vuo.

o If S is a finite set of F-places, write I'r g for the Galois group Gal(F(S)/F') where
F(S) C F is the maximal extension of F' that is unramified away from S. If S is a set
of rational places we write I'p g :=I'p gr.

e Irob, at a finite prime q of F' means the geometric Frobenius element in the quotient of
I'y by the inertia subgroup, or the image thereof in I'r,g. (The image in I'r g depends
on the choice of ¢4 but its conjugacy class is independent of the choice.)

e When G is a connected reductive group over F, write Gand LG = GxT r for the Lang-
lands dual group and the L-group, respectively (with coefficients in C or Q,, depending
on the context). If G splits over a finite extension E/F in F then GxT g/F denotes the
L-group with respect to F/F. (Namely such a semi-direct product is always understood
with the L-action of I'g,r on CA}) Often we use LG to mean G x FE/F.4

e When H is a reductive group over Q,, we also use H to mean the topological group
H(Qy) by abuse of notation. This should be clear from the context and not leading to
confusion.

e When F' is a p-adic field and G is the set of F-points of a reductive group over F', we
write St for the Steinberg representation of G' (defined in [BW00, X.4.6] for instance).
Moreover, we write 1¢ for the trivial representation of G. In certain cases, when G is
clear, we write St = St or 1 = 1g. We also write sometimes St,, for Stqr,, (r) (in case
F is clear from the context).

e If G is an algebraic group over a field, we write Z(G) for its center (as a group scheme
over the same field).

Fix G and E/F as above. We introduce some notions on the Galois side. By an (¢-adic)

Galois representation of I'p (with values in GxT E/ F), we mean a continuous homomorphism
(for a fixed E/F as above)
which factors through I'r g for some finite set S and commutes with the obvious projections
onto I'g/p. Similarly we define a Galois representation with the source I'y and/or with values
in “G(Q,). Two Galois representations are considered isomorphic if they are conjugate by an
element of G(Q). We say that p as above is (totally) odd if for every real place y of F, the
following holds: writing Ad for the adjoint action of G on Lie G(Qy), the image of ¢, under
the composite
T, =T % LG(@Q) 2 GL(Lie G(Qy))

has trace equal to the rank of the derived subgroup of G. (Compare with [Gro].)

An “G-valued Weil-Deligne representation is a pair (r, N') consisting of a morphism

T WFq — G(@g) X FEp/Fq
which has open kernel on the inertia subgroup and commutes with the canonical projections

onto I'g, ), and a nilpotent operator N € Lie G(Q,) such that Adr(w)N = |w|N, where
|- | : Wg, — ||lg/|” is the homomorphism sending a geometric Frobenius element to ||q||; here
llall € Zso denotes the norm of q. The Frobenius-semisimplification (r*°, N') is obtained by
replacing r with its semisimplification. We say (r, N') is Frobenius-semisimple if r = 7.

Let p: Tp — G (Q)) xTg /r be a Galois representation. Write p for the prime of £ induced
by tq : F < Fy. Then the restriction (via ¢,)

plry: Try — G(Qy) » I'g,/r,
gives rise to an “G-valued Weil-Deligne representation WD(plrg,) = (r,N) (well-defined up
to é(@g)—conjugacy). The construction follows from the case of G = GL,, by the Tannakian

4This is harmless for us as the inflation map induces a bijection of isomorphism classes of ¥G-valued Galois
representations when I'g, is replaced with I'r in the semi-direct product.
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formalism via algebraic representations of é(@g) % ', /r,- (The case g|¢ is more subtle than
q 1 ¢. In the former case, a detailed explanation is given in the proof of [KS16, Lem. 3.2], where
G is denoted by H. In loc. cit. I'g, /, is trivial but the same argument extends.) When q 1 ¢, one
can alternatively appeal to Grothendieck’s ¢-adic monodromy theorem to construct WD(p|p Fy ).

A local L-parameter ¢ : Wg, x SU(2) — @(@4) X I'g,/F, 1s associated with a Frobenius-
semisimple “G-valued Weil-Deligne representation (r, N) given by the following recipe:

ms(e( ) w0 D)

This induces a bijection on the sets of equivalence classes of such objects [GR10, Prop. 2.2]. In
practice (where only equivalence classes matter), we will use them interchangeably.

We introduce some further notation and conventions in representation theory. If 7 is a
representation on a complex vector space then we set v := 7T®(C7L@g. Similarly if ¢ is a local L-
parameter of a connected reductive group G so that ¢ maps into “G(C) then ¢¢ is the parameter
with values in “G(Qy) obtained from ¢ via ¢. If G is a locally profinite group equipped with a
Haar measure, then we write H(G) for the Hecke algebra of locally constant, complex valued
functions with compact support. We write H@Z(G) for the same algebra, but now consisting of

Qy-valued functions. We normalize every parabolic induction by the half power of the modulus
character as in [BZ77, 1.8], so that it preserves unitarity.

Let G be a real reductive group, K a maximal compact subgroup of G(R), and K =K.
Z(G)(R). Let & be an irreducible algebraic representation of G over C. An irreducible admissible
representation of G(R) is said to be &-cohomological if H(Lie G(C), K, 7 ®c §) # 0 for some

i > 0. If this is the case, we associate a Hodge cocharacter (well-defined up to G-conjugacy) as
in [KS16, Def 1.14]:

/*LHodge(g): Gm — a

Let L be a finite extension of Qy. Let H be a connected reductive group over Q,, and
p: Gal(L/L) — H(Q,) a continuous morphism. If p is Hodge Tate with respect to each
i: L — Q, we define a Hodge Tate cocharacter over Q, (well-defined up to H-conjugacy)
as in [KS16, Def 1.10]:

/LHT(p,i) Gy — H.

We recall the following lemma that can be easily deduced from the Chebotarev density
theorem, as it will be needed in §10. The density of a set S consisting of primes of F' is defined
to be the limit d(S) = lim, o0 an(S)/an(F), where a,(F') is the number of primes q with
bounded norm ||q|| < n and a,(S) is the number of q € S with ||q|| < n [Ser97, Sect. 1.2.2].
Depending on S, the limit d(S) may or may not exist — in the former case, we say S has density
d(95), and otherwise we leave the density undefined.

Lemma 1.1. Let S be a finite set of F-places, where F is now any number field. Let G/Q,
be a linear algebraic group and let r: T's — G(Qy) be a Galois representation. Write H for the
Zariski closure of the image of r. Let X C G be a strict, closed subvariety that is invariant by G
conjugation and such that dim(X) < dim(H). Then the set of F-places q ¢ S with r(Frobg) € X
has density 0.

Proof. Replacing G by H, we may assume that r has Zariski dense image in G and H = G. As
moG is finite, we may, after passing to an open subgroup of I', assume that G is connected. Let
 be the Haar measure on I' with total volume 1. Then Y = 7~!(X) is a measurable subset (it
is closed, hence measurable), with boundary of measure 0, and Y is stable under I'-conjugation.
By the Chebotarev density theorem the set of places q ¢ S such that Froby € Y has measure
equal to u(Y) (See, e.g., [Ser97, I-8 Cor. 2b]). If p(Y) > 0, then Y contains a translate of an
open subgroup U of I'. Thus the image of I" lies in [I" : U]-translates of X, contradicting the
assumption that G is connected. U
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2. RooT DATA OF GSOg,, AND GSpiny,

Let GOg2,/Q be the algebraic group such that for all Q-algebras R we have

602 (1) = {g € GLua(R) | Jsimtg) € g+ ;1) g =simio)- ;1) }-

(in the above formula 1, is the n x n identity matrix.) The group GOg, is disconnected; its
neutral component GSOg,, C GOy, is defined by the condition det(g) = sim(g)". The groups
GOgy,, GSOg, are split and defined by a quadratic form of signature (n,n). An element ¢ of the
diagonal torus Tggo C GSOsy, is of the form

t = diag(t;)?", = diag(t1,ta, ..., tn, tot] oty ... totnt), to := sim(t)

hence Taso ~ G by sending t to (to,t1,...,t,). We identify X*(Taso) = D (Z - e; and
X.(Taso) = @iy Z- e} accordingly. We let Bgso be the Borel subgroup of GSOs), of matrices
of the form

(2.1) g= <61 c,j;ltél)’ A€ Bqgr,, BeM,, B'=—-B and c¢=sim(yg),
where Bgr, C GL,, is the upper triangular Borel subgroup. (To see that this is indeed a
Borel, notice that any block matrix g = (é lB)) with C' = 0 is of the above form if and only if
g € GSOy,, and moreover the displayed group is solvable of dimension n? + 1).

We realize the split forms of even (special) orthogonal groups in GOg,/Q. Namely we write
Ogy, (resp. SOgy,) for the subgroup of GOy, (resp. GSOg),) where sim is trivial.

Lemma 2.1. The root datum of GSOs, with respect to Baso is described as follows.
(i) The set of roots (resp. coroots) consists of £(e; —e;) and £(e; +ej—ep) (resp. £(ej —ej)
and (e +ef)) with 1 <i<j<n.
(i1) The positive roots are {e; + €j — eg}1<icj<n U {€; — €j}1<icj<n and the positive coroots
{ef £ €] i<icjcn.
(1ii) The simple roots are ay = €1 — €a, ..., Qp—1 = €p—1 — €, and Oy = €1 + €, — €p.
(iv) The simple coroots AV are of = €5 — e}, ay = €5 — €k, ..., a1 =ei_ —ei, and
) =el | +ek.
Remark 2.2. The root datum of SOq,, is described similarly. Putting Tgo := Tgso NSO, and
Bso := Baso NSOz, we have Tso = {t € Taso : to = 1} as well as X*(Tso) = @f_€; - Z
and X, (Tso) = @} ,ef - Z. To describe (positive or simple) roots and coroots, we only need to
formally set eg = 0 in the lemma above.

Proof. The standard computation for SOsg, as in [FH91, 18.1] can be easily adapted to GSOg,,.
O

We define the following element®

(2.2) 9= — € Ogp.
Pl
10

Since det(¥°) = —1 we have ¥° ¢ SOg,. We write §° € Aut(GSOa,) for the automorphism
given by 9°-conjugation.

Lemma 2.3. The automorphism 0° stabilizes Bagso and Taso, and acts on Taso by
(tost1, .o tn) = (to b1, - tno1, oty ).

Furthermore 0°(c;) = i fori <n —2, 60°(ap—1) = o, and 0°(a,) = ap_1.

SWe put the minus sign for ¥° to make it compatible more easily with 9 € GSpin,,, to be introduced later.
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Proof. By a direct computation, 0°(Tgso) = Tagso and 6°(Bgso) = Baso. Since 6° only
switches t, and t9, = tot,, 1 its action on Tqgo is explicitly described as in the lemma. Thus
0°(e;) = e; for 1 <i<n—1and 6°(e,) = ep — ey, from which the last assertion follows. O

We define GSpiny,, to be the Langlands dual group (gO\gn over C (or later over Q, via
t: C ~ Q). That is, GSpin,,, is the connected reductive group over C, equipped with a Borel
subgroup Baspin and a maximal torus Tgspin, Whose based root datum is dual to the one of
GSOy,, that we described above. In particular

Xi(Taspin) = X*(Tgso) and X" (Taspin) = X«(Taso)-

Via the identification X*(Tgso) = Z"*!, we represent elements s € Taspin a8 (50,51, - - 5n)-
In Section 3 we will also define an explicit model of GSpin,,, over Q using Clifford algebras.

Lemma 2.4. There is a unique 6 € Aut(GSpin,,) that fizes Tgspin, Baspin, switches ;4

and «), leaves the other o) invariant, and induces the trivial automorphism of the cocenter of
GSpiny,. We have 62 =1 and on the torus Tgspin the involution 0 is given by

(2.3) (80,815 -+,5n) = (S0Sn,S1,-- -5 Sn—1, sr_ll).

Proof. We have 0(ej —ej ) =ef —ej; (1<i<n)andb(e,_; —e

)=-¢e;_;+e;. Thus

(2.4) Oej)=e; (1<i<n) and 6(e,) = —e,.
The center of GSOs, is the image of Gy, > z +— (22, 2,...,2) € Taso. The dual map is
(2.5) Taspin = Gm,  (S0,51,..-,8n) — 5351 ce 8.

Thus 0(2ef+ef+---+ef) =2ef+ei+---+ek, s00(2ef) —el = 2ef+e and 0(ef) = ej+e. O
Lemma 2.5. We have Z(GSpiny,) = {(s0,...,8n) : 51 = s3 = -+ = s, € {x1}}, which
is isomorphic to Gy x {£1} via (so,...,$n) — (S0,51). In the latter coordinate, 0(sg,s1) =
(s0s1,51)-

Proof. Let s € Tgspin- Then s € Z(GSpiny,,) if and only if a¥(t) = 1 for all ¥ € AY. From

Lemma 2.1(4ii) we obtain s;/s;+1 =1 (i < n—1), and s,—15, = 1. Hence s € Z(GSpin,,,) if
and only if s; = --- = s, € {£1}. By (2.3) we get 0(so, s1) = (s051,51). O

The Weyl group of GSO3,, (and GSpin,,,) is equal to {£1}"' x &,,, where {£+1}" is the group
of a € {£1}" such that [[] a(i) = 1. The action of Wggo on Tago is determined by

(2 6) o - (to,tl, R ,tn) = (t07t0*117 .. .tgfln) oce6,
' a-(to,t1,. .. tn) = (to,tot]  toty sts, ..o tn) a=(=1,—1,1...,1) € {£1}™".

We define, for € € {£1} the following cocharacter

1,1,...,1,1) ife=(-1)n . \
=0 a {El 1,...,1 0; if & = (—1§n+1 € 2" = X.(Taso) = X*(Taspin)-

Then . is a minuscule cocharacter of GSOg, with (aj,ue) = 1 if and only if i = n (for
e=(-1)") andi=n—1 (for e = (—1)"*1).

Definition 2.6. For ¢ € {+,—}, define the half spin representation spin® = spins,, to be the
irreducible representation of GSpin,,, whose highest weight is equal to p. in X*(Tgspin). By
the spin representation of GSpin,, we mean spin := spin™ @ spin~.

These representations will be realized explicitly via Clifford algebras. Our sign convention is
natural in that spin™ (resp. spin~) accounts for even (resp. odd) degree elements. See (4.2) and
Lemma 4.1 below.
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Under the action of the Weyl group the minuscule g, has 2"~ ! translates. Thus the half spin

2n71

representations have dimension , and more precisely the weights of spinggl)n are

(2.8)

Taspin 3 (80,81, - -+ 8n) = (80 IE

) € 7" = X, (Tgso) = X (Taspin)
iU ucp g, nyalpu

(

_1\n+1
and spin2n1) has similar weights, except that the cardinality of U is now required to be odd.
By computing the #-action on weights, we verify that (see Lemma 4.4 for an explicit intertwiner)

spinT 0# ~ spin~ and spin~ 0 ~ spin™.

Lemma 2.7. The kernel Z¢ of spin® is central in GSpin,,, and finite of order 2. The non-trivial
element z. of Z¢ equals (g,—1) € Gy, x {£1}. The spin representation of GSpiny,, is faithful.

Proof. Since GSpin,,, is simple modulo the center, the kernel Z¢ C GSpin,,, must be central.
The central character is the restriction of pi.: Tggpin — Gm to the center Z(GSpiny,,) C Taspin-
Let s = (so,51,...,5n) = (a,b) € Z(GSpiny,,) C Taspin. Then (see proof of Lemma 2.5)

5081 Sp, = ab™ ife=(-1)"
2.9 =
( ) :U'E(S) {5081 Sy = ab™ ! ife= (_1)77,—&—1'

The first assertion follows by considering the 4 different cases where n even or odd and € = +1.
For the second point, it suffices to observe that Zt N Z~ = {1}. O

3. CLIFFORD ALGEBRAS AND CLIFFORD GROUPS

We recall how GSpin,,, is realized using the Clifford algebra and define a number of fundamen-
tal maps such as isq: GSping,,_; — GSpin,,, and the projection GSpin,,, — GSOs,. We also
give a concrete definition of outer automorphisms of GSpin,,, and GSOs,, that are compatible
with each other via the projection map. Our main reference is [Bas74], which introduces Clifford
algebras over arbitrary commutative rings (with unity). Other useful references are [Bou07, §9]
and [FH91, §20].

Let V' be a quadratic space over Q with quadratic form @, giving rise to the groups O(V),
GO(V), SO(V) and GSO(V). The Clifford algebra C(V) is a universal map V' — C(V') which
is initial in the category of Q-linear maps f: V — A into associative Q-algebras A with unity
14 such that f(v)? = Q(v) - 14 for all v € V. (See [Bas74, (2.3)] or [Bou07, §9.1].)

We define (z,9) := Q(z+y)—Q(x)—Q(y) for z,y € V, and similarly (z,y) = (z+y)?—22—y?
for z,y € C(V). In particular (z,y) measures if x and y anti-commute in C(V):

(3.1) (x,y)) =(x+y)? —2> -y =azy+yz e C(V).

The map V' — C(V) induces a map V' — C(V)°PP (sending each v € V' to the same element),
where C'(V)°PP is the opposite algebra. The latter factors through a unique Q-algebra map
B: C(V) — C(V)°PP. It is readily checked that 52 is the identity on C(V). By the universal
property 3 is the unique involution of C (V') that is the identity on V.

The universal property also yields a surjection from the tensor algebra

P vl o).
deZZO
Define C* = C(V)* (resp. C~ = C(V))7) to be the image of ®gez.,VE*? (resp. Baez.,VE*H1)
so that C(V) = C(V)t @ C(V)~. In fact the discussion of Clifford algebras so far works when
V is replaced with a quadratic space on a module over an arbitrary commutative ring, in
a way compatible with base change: in particular if R is a (commutative) Q-algebra then
C(V®gR)=C(V)®qgR [Bou07, §9.1, Prop 2|. By scalars in C'(V ®qg R) we mean R times the
multiplicative unity. We keep using § to denote the main involution of C'(V ®q R).
The Clifford group GPin(V') is the Q-group such that for every Q-algebra R,

GPin(V)(R) = {z € C(V &g R)* : 2(V ®g R)z™' =V ®g R, z is homogeneous},
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where homogeneity of z means that © € C(V ®q R)® for some sign €. The special Clifford group
GSpin(V) is defined similarly with C* in place of C. The embedding of invertible scalars in
C(V ®q R) induces a central embedding

(3.2) Gy, — GSpin(V).

Since zfB(x) € R for x € C(V ®q R) by [Bas74, Prop 3.2.1 (a)], we have the spinor norm
morphism

N: GPin(V) = G, x = xf(x)

over Q. (The involution in loc. cit. differs from our 8 by C(—1p) in their notation, so our N
does not coincide with their N, but N’ and N have the same kernel.) Evidently, composing N
with (3.2) yields the squaring map.

Define Spin(V') by the following exact sequence of algebraic groups:

1 — Spin(V) — GSpin(V) N G — 1.

Lemma 3.1. The following are true.

(i) The map pr° = pry: GPin(V) — O(V), = — (v — zva™") is surjective for n even, and
pr®: GPin(V') — SO(V) is surjective when n is odd.
(ii) We have ker(pr®) = Gy, via (3.2).
(i4i) pr: GPin(V) — GO(V), x + (v zvB(x)) is a surjection, and sim o pr = N2

(iv) The map pr factors as GPin(V) (brA0) O(V) x GLy mult GO(V'), where the latter is the
multiplication map. The map (pr°, N') has kernel {+1} (scalars in C(V)) and image
O(V) x GLy (resp. SO(V) x GL1) for n even (resp. odd).

(v) The multiplication map Spin(V') X G,,, — GSpin(V) is a surjection with kernel {£+(1,1)},
where {£1} — Spin(V') via (3.2).

Proof. (i) The surjectivity can be checked on field-valued points. This is proved in [Bou07, §9.5,
Thm. 4].

(ii) As V C C(V) generates the Clifford algebra, the identity zvz~! = v implies zyz~! =y
for all y € C(V'), and the analogue holds for C(V ®qg R) for Q-algebras R. Thus ker(pr°)(R)
consists of invertible elements in the center of C'(V ®g R). Let W C V be an isotropic subspace.
Then C(V ®q R) ~ End(A\(W ®qg R)) as super R-algebras by [Bas74, (2.4) Thm.], so the center
of C(V ®q R) is R, implying that ker(pr®) = Gy,.

(ii1) We observe that pr(z) preserves V: as z(V ®g R)z™! =V ®g R and z(z) € R* imply
that z(V ®q R)B(x) =V ®q R. Moreover pr(z) € GO(V) as

(3.3) Q(zvB(z)) = zvB(x)zvh(z) = N(2)*Q(v).

Moreover pr and pr° coincide on Pin(V'), so (S)O(V) is in the image of pr. On the other
hand, N is seen to be surjective by considering scalar elements, telling us that the image of pr
also contains Gy, (scalar matrices in GO(V')). Since Gy, and (S)O(V') generate G(S)O(V), the
surjectivity of pr follows. The equality sim o pr = A2 follows from (3.3).

(iv) The first part follows from pr(z)(v) = zvB(x) = zve~tzp(z) = pro(z)(v)N(z) when
x € GPin(V') and v € V. The second part is easily seen from (i) and (ii).

(v) This readily follows from the preceding points. O

If V is odd dimensional then SO(V) x {£1} = O(V), and the group GO(V) is connected.
For convenience we define GSO(V) := GO(V) in this case. If dim(V) is even, then O(V)
(resp. GO(V)) has two connected components but does not admit a direct product decomposi-
tion into O(V') (resp. GSO(V)) and {£1}.

Assume that we have an orthogonal sum decomposition ¢: Wi @ Wo = V of non-degenerate
quadratic spaces over Q. As super algebras we have ([Bas74, (2.3)] or [Bou07, §9.3, Cor. 3,
Cor. 4])

C(Pi C(Wl)@)C(Wg) :> C(V), w1<§>w2 — wWiw3.
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By definition, the algebra given by & on the left side has underlying vector space C(W;)®@C(Ws)
and product
(a®D) - (c@d) := (—1)*FeacRbd,
if a,c € C(W1), b,d € C(Ws) are homogeneous elements of degree kg, ky, ke, kg € Z/2Z. The
sign is there to make C,, compatible with products since be = (—1)*kecb in C(V).
In fact C, intertwines the involution 8 on C(V') with the involution

B C(W)RC(Wa) = C(W1)EC(Wa),  f'(aBb) = (—1)*" 51 (a) @2 (D),

for homogeneous elements a € C(W7), b € C(W3) of degree kg, ky € Z/27Z, where (1, 3y are
the involutions of C'(W;) and C(W2) (see below (3.1)). To verify that 3 is compatible with
B', observe that 8 on C(V) restricts to /31, S2 via the obvious inclusions C(W;) < C (V) and
C(W3) < C(V) induced by Wi C V and Wy C V (since S acts as the identity on both W and
Ws), and use the property that 81, B2, and 8 are preserving degrees. It follows that

B(ab) = B(b)B(a) = (—=1)*" 5(a)B(b) = (—1)** 51 (a) B2 (b).
Lemma 3.2. The mapping C, induces a morphism GSpin(W7) x GSpin(Ws) — GSpin(V).

Proof. We check that the image of Cy is in GSpin(V'). Let g € GSpin(W1), h € GSpin(Ws).
Note that C,(g®h) = gh € CT(V). Let wy + wy € V with w; € W;, i = 1,2. To verify that
gh € GSpin(V), since homogeneous elements of even degree commute with each other if they
are perpendicular, we see that

gh(wy + wo)h ™!

g ' =gwig ! + hwh Tt € V.

O
Write
G(Pin(W1) x Pin(Wy)) := {(g,h) € GPin(W1) x GPin(W) | N(g) = N(h)},
G(O(W1) x O(W2)) :={(g, h) € GO(W1) x GO(W2) | sim(g) = sim(h)}.
Lemma 3.3. The diagram
GSpin(W;) x GSpin(W2) ——  GSpin(V)
Pryy, XPriy, i ipr?/
SO(W1) x SO(Wa) —1"2__ s0(v)
commutes, where iy, w, s the block diagonal embedding.
Proof. Immediate from the computation in the proof of the preceding lemma. O

In later chapters we will carry out explicit computations. It will then be convenient to work
with fixed bases and quadratic forms. For this reason we now fix quadratic forms on the vector
spaces Vo, = C?" and Va,_1 = C?"~1. We take the following quadratic forms:

Qon: T1Tp41 + T2Tpi2 + ... + T2, ON c
(3.4) Qon—1: Y1Ynt1 + -+« + Yn—2Y2n—2 + y%n—l on C*"71.

Using them, we write SO,, = SO(V,,), GSO,, = GSO(V,,), and likewise for O,,, GO,,, for
m = 2n and m = 2n — 1. This is identical to the convention of §2 for m even. Similarly we
write pry, ; = pry, , and pry, = pry, .

Now we claim that GSpin(V5,,) is isomorphic to GSpin,,, of §8 that is, the Clifford algebra
definition is compatible with the root-theoretic definition as the Langlands dual of GSOq,.
(An analogous argument shows that GSping,,_; is dual to GSps,_».) As this is a routine
exercise, we only sketch the argument. First, pr® restricts to a connected double covering
Spin(Vy,) — SO(V,,,) ([FHI1, Prop. 20.38]), which must then be the unique (up to isomorphism)
simply connected covering. This determines the root datum of Spin(V},). From this, we compute
the root datum of GSpin(V;,) via the central isogeny Spin(V,,) x G,, — GSpin(V;,) of Lemma
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3.1. Finally when m = 2n, we deduce that the outcome is dual to the root datum of GSOg,, in
Lemma 2.1. Therefore GSpin(Va,,) is isomorphic to GSpin,,, of §8. Henceforth we identify

(3.5) GSpin(Va,) = GSpiny,,.
In fact we may and will choose Baspin and Tgspin to be the preimages of Bgo and Tgo via

pr° : GSpin,,, — SOg,. subgroups of GSpin(Va,). We fix pinnings of GSpin,,,, GSOs,, and
SOgy, (which are I'p-equivariant if (Va,,, Q2,) is defined over F') compatibly via pr and pr°.

Lemma 3.4. Via (3.5), the central embedding of scalar matrices cent® : G, — GSOq, and
sim : GSOg,, — Gy, are dual to N : GSpiny,, — G,, and the central embedding cent : G,, —
GSpin,,, of (3.2), respectively.

Remark 3.5. The dual map of cent® was made explicit in (2.5). According to the present lemma,
(2.5) gives an explicit formula for N restricted to Tgspin.

Proof. Write ZV for the identity component of the center of GSpin,,,, consisting of (sg, 1, ...,1)
with sg € G, in the notation of Lemma 2.5. The dual of sim : GSOs,, — G,, is calculated as the
central cocharacter G, — Z° C GSpin,,,, z — (2,1, ...,1). The inclusion cent : G,, — GSpin,,,
identifies G,, with Z°. Thus cent is dual to sim.

Both A o cent and sim o cent® are the squaring map on G,,,. Using the hat symbol to denote
a dual morphism, we see that

—

N o cent = cent® o sim = cent® o cent
and that they are all equal to the squaring map. It follows that N is dual to cent®. O
We have the morphism of quadratic spaces

@ (C2n717 QQn—l) — (CQ’R, QQn)a Y= (yh Y2,y Yn—1,Y2n—1,Yn, Yn+1, - - - 7y2n—1)-
Indeed, Q2np = Q2n—1 as readily checked. We have the complementary embedding:

xr =0 k #n,2n

""C—C?», wu~—z wh
4 v, e zp = (=1)*™u  if k=nor k= 2n.

Write U := ¢/(C) = (e, — eap,) - C for the image. The induced quadratic form on U is then

a- (e, — ea,) — —a?. This gives us an orthogonal decomposition of quadratic spaces C?"* =

C?"~13U. Let PO,, to denote the adjoint group of O,,. The decomposition induces morphisms
(cf. Lemmas 3.2, 3.3)

istd := Cy i GSping, | x GSpiny — GSpiny,,,
iStd = iCQn—l,C: Ogn,1 X 01 — Ogn, and
(36) istd = PO2y—1 — POap,

where igq is induced from igq: GSping,,_; X GSpin; — GSpin,,, - PSOs,, C POg,. By Lemma
3.3, we have pr® oigq = ig4 © (Pr5,_1 X Pry)-
Let 12,-1, 1y denote the identity map on C?"~1 U. Then (cf. (2.2))
1n—1

= 9° € Og,.

s (—12n—1,10) = — i

Fix -1 € G, = Z(GPiny,). Define
(3.7) vi=+v-1- istd(lc(CWL*l)@(en —ea)) = V—1(en — €2,) € GPing,\GSpiny,,.
Lemma 3.6. We have
(i) prs, (V) = 9° and ¥? = 1.
(ii) The conjugation action of ¥ (resp. ¥°) fizes the subgroup istq(GSping,_, X GSpin;) C

GSpiny,, via isq (resp. SO2,—1 x SO1 C SO2, via igy) and induces the identity auto-
morphism on that subgroup.



GALOIS REPRESENTATIONS FOR EVEN GENERAL SPECIAL ORTHOGONAL GROUPS 17

(i1i) The conjugation action of 9 (resp. 9°) defines the outer automorphism 6 of GSpiny,,
(resp. 6° of GSO2, ) in Lemmas 2.3 and 2.4.

Proof. (i) Let w1 € C>*~! and wy := e, — ez, € U. All of wy,ws,? have degree 1 in C(C?").
In either C(C?") or C(U), we have w3 = Qo,(w2) = —1 and 92 = —w3 = 1. Thus Jw9~ ! =
—w199~! = —w; and Yw¥ ™! = wy. Hence prs, (¥) = 9°.

(i) This is obvious for ¥°. The conjugation by ¥ is the identity on C*(C?"~!) and C*+(U),
since ¥ L C?*~! and C*(U) is commutative, respectively. The assertion for ¢ follows.

(éi1) This is true by definition for #°. Since # and the conjugation by ¢ act trivially on the
center of GSpin,,,, it suffices to check that their actions are identical on the adjoint group. This
reduces to the fact that 6° is given by the ¥°-conjugation, as 6 and 6° (resp. ¥ and ¥°) induce
the same action on the adjoint group (thanks to part (i)). O

We have fixed pinnings of GSpin,,,, GSO2y,, and SOg,, compatibly via pr. They are fixed by
6 € Aut(GSpin,,) and 0° € Aut(GSOay,). It is easy to see that 6 and 6° induce automorphisms
of based root data, which correspond to each other via duality of the two based root data. Thus
letting E//F be a quadratic extension of fields of characteristic 0, and GSOfn/ F an outer form
of GSOg,, over F with respect to the Galois action I'g/p = {1,c} = {1,0}, we can identify

L(GSOE/Ty = GSpiny,, » {1, c} = GPingy,

where the semi-direct product is given by cgc™! = 6(g). (Of course ¢ = ¢71.) The second

identification above is via ¢ — ¥. Similarly, for SOQEnF an outer form of SOg, with respect to
Lg/p={l,c} = {1,0°}, we have

LSOE/T) =80y, % {1,¢} = 0 via c> 0°.

Let us describe the center Z(Spiny,,) of Spin,,, = Spin(Va,) explicitly as this is going to be
useful for classifying inner twists of (quasi-split forms of) SOsg, and GSOg, in §8. In what
follows, we identify Z(GSpiny,,) = {(s0,s1) : so € Gy, s1 € {£1}} as in Lemma 2.5 and write
1,—1 for (1,1),(1,~1) € Z(GSpiny,).

Lemma 3.7. Let (4 be a primitive fourth root of unity. We have Z(Spinsy,, ) C Z(GSpin,,,) via
Tspin C Taspin explained above. Moreover, the following are true.
(i) If n is even, Z(Spiny,) = {1,—1,zy,2_} and is isomorphic to (Z/2Z)?. If n is odd,
Z(Spiny,,) = {1,—1,(,—¢ = ¢~} and is isomorphic to Z/AZ, where ¢ = (C4,—1).
(ii) The action of 0 is trivial on {1,—1} and permuting {z4,z_} (resp. {(,—C}).

Proof. We have Z(Spin,,,) = Z(GSpin,,,) N Spiny,, = {z € Z(GSpin,,,) : N(z) = 1}, where N is
described by (2.5) (Remark 3.5). It follows from Lemma 2.5 that

Z(Sping,) = {(s0,51) : sg = s},

which is alternatively described as in (i). Assertion (ii) is also clear from that lemma. O

4. THE SPIN REPRESENTATIONS

We recall the definition of the spin representations defined using the Clifford algebra, and
show that they coincide with the representations that we defined in Section 2 in terms of root
data.

Consider the quadratic space Vi, := C?" from (3.4) with standard basis {e, .., e2,} and
quadratic form Qa,. Define Wa, := @7 ,Ce; and W}, = @, . ,Ce;. We often omit the
subscript 2n to lighten notation, when there is no danger of confusion. Since W is isotropic we
obtain a morphism A W = C(W) < C(V). Through this injection we view W as a subspace
of C(V). The subspace AW is a left C(V)-ideal, whose C(V')-module structure is uniquely
characterized by the following:

e we W CV acts through left multiplication,
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e and w' € W/ C V acts as

T
(4.1) w'(wy Awg A= Awp) = (=1 w! wi) (wy Awg A+ AT A Awy),
i=1
onwi A---Aw, € N"W C AW.
The subspaces A™W := Nieozy W and A™W = ;o o5 W are stable under C*T(V). By
restriction we obtain the spin representations -

(4.2) spin: GPing, — GL (/\ W) and spin®: GSpin,,, — GL </\iW) .

In (4.5) and (4.6) below, we will choose (ordered) bases for AW and AT W coming from
{e1,...,en} to view spin and spin® as GLgn and GLgn-1-valued representations, respectively.
We had another definition of spin® as the representation with highest weight p. (Definition 2.6),
e € {+,—}. Let us check that the two definitions coincide via (3.5).

Lemma 4.1. The highest weight of the half spin representation spin® of GSpiny,, on \°W is
equal to pic.

Proof. We may compare j. and the highest weight of spin® after pulling back along Spin,,, x
Gy, — GSpiny,,. They coincide on Spin,,, by [FH91, Prop. 20.15] and evidently restrict to the
weight 1 character on G,,. The lemma follows. U

Let us introduce a bilinear pairing on A W which is invariant under the spin representation
up to scalars. Let pr, : AW — C denote the projection onto A" W, identified with C via
e1 A+ Aey — 1. Write 7 : AW = AW for the C-linear anti-automorphism wy A - - - w,
wy A ---wq for r > 1 and wy, ..., w, € W. Define

(W1, 1b2)) := pry,(r(din) Atia), i,y € W

Lemma 4.2. The pairing ( , ) is nondegenerate; it is alternating if n = 2,3 (mod 4) and
symmetric ifn = 0,1 (mod 4). The restriction of (, ) to AT W (resp. N\~ W) is nondegenerate
if n is even, and identically zero if n is odd. We have

(4.3) ((spin(g)un, spin(g)we)) = N (g) (w1, w2)), g € GPing,(C), n,ws € /\ w.
In particular, we have spin® ~ (spin=1"¢)Y @ N/

Proof. The first two assertions are elementary and left to the reader. The last assertion follows
from the rest. For the equality (4.3), we claim that

(4.4) (cin,ii2)) = ((tin, Ble)in)), ¢ € C(V), in, iz € \W.
Since GPing, C C(V), this implies (4.3) as

((spin(g)w1, spin(g)ie)) = (w1, spin(B(g)g)w2)) = B(g)g(w1,w2)).

It remains to prove the claim. The proof of (4.4) reduces to the case ¢ € V, then to the two
cases ¢ € W and ¢ € W’ by linearity. In both cases, (4.4) follows from the explicit description
of the C'(V)-action as in (4.1). Indeed, (4.4) is obvious if ¢ € W. When ¢ € W', it is enough to
show that for 0 <r,s <n,1<i1 < - <, <n, 1 <j1 < <js<n,and 1 <k <n,

T(ensr(ein Ao Aei)) Alejy Ao ANej) =7(eiy Ao Aei) A(ensr(ej Ao Aej,)) .

(This implies (4.4) by taking pr,.) The equality is simply 0 = 0 unless k = ro = sp for some
1<rg<randl<sg<s. In the latter case, the equality boils down to

(—1)0te; A A€ N Nep Nejp N Aej = (—1)%He; A--iAey, Nejy A= Nej N Aej,

which is clear. The proof is complete. O
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We also discuss the odd case. Equip Va,_1 = C?**~! with standard basis {f1, ..., fon_1} and
quadratic form Q2,—1 of (3.4). As in [FH91, p. 306], we decompose

Vo1 :=C* =Wy, 1 @ Wi, 1 @ Uy,

where Wo,,_1 = @?;f@fi, Wi | = @?2;2(3]2, and Us,_1 := Cfo,_1. Again we omit the
subscript 2n — 1 when it is clear from the context. Then W and W’ are (n — 1)-dimensional
isotropic subspaces, and U is a line perpendicular to them. As in the even case, each of A\ W
and AT W can be viewed as a subspace of C(V) and has a unique structure of left C'(V)-module
where:

e we W CV acts on )\ W through left multiplication,

e w' € W CV acts as in (4.1) (cf. [FHI1, 20.16]),

e fo,_1 acts trivially on AT W and as —1 on A~ W.

Consider the bijection

~ AT wi A--- ANwp Aey, 7 odd
P /\Wgn_1—>/\ Waon, wl/\~~-/\wa—>{ ! " "

w1 N - AN wy, T even.

Lemma 4.3. For all g € GSpiny,,_, and all w € \ Way,_1 we have igq(g)(w) = ¥(gw), where
ista(g) and g act by spin™ of GSpin,,, and spin of GSpiny,,_4, respectively.

Proof. We keep writing W = Wo,,—1, W/ = W}, U = Us,,—1. We identify Vo, = (W o U @
W' @ U? via Wa,, = W @ Ut and W), = W' @ U? with U! = Ce,, and U? = Ceyy,, mapping the
basis of W (resp. W) onto the first n — 1 elements in the basis of Wa,, (resp. W4, ). This also
gives the embedding V5,1 C Vo, with U diagonally embedded in U Lo U2 (0 fan—1 maps to
en + €2,), as in the formula below (3.4).

There is an obvious embedding (™ : AW — AW @ U'). We also have 1= : AW —
AW @ U by (1) Ae,. Both o+ and ¢~ are C(W @ W')-equivariant, by using that left and right
multiplications commute and that e, is orthogonal to W & W'. Furthermore, .~ intertwines the
fan—1-action on A~ W, which is by multiplication by —1, and the e, +eg,-action on AT (WaU?),
since w A e, = —e, Aw if w € A7 W and since W L eg,, with respect to Q2.

Now we claim that 1 is CT(W & W' & U)-equivariant, which implies the lemma by restricting
from CT(W @ W' @ U) to GSpin,,,_;. It suffices to verify equivariance of 1) under CT(W & W)
and C~(W @ W) ® fop_1. But ¢ is tt on AT W and :~ on A\~ W. Thus the claim is deduced
by putting together the equivariance in the preceding paragraph. O

Lemma 4.4. Let 9 € GPing, be the element from (3.7). We have Nt Wap = N Way,, 2 — dz.
We have spin™ o § = spin~ wia this isomorphism, i.e., 9(spin™ (g)x) = spin~(8(g))Jz for each
g € GSpiny,,.

Proof. Henceforth we omit the symbol A for the wedge product in Wa,,. Consider v = ey, - - - e, €
/\+W2n, with k1 < kg < ... < k, and r is even. Then

Yo =+v—=1(enek, - - €k, — € - €, -+ €k,) € /\ Wap,
where eg,, acts by (4.1). Thus the isomorphism follows from the following computations.

0, k. =n,
enekl “ e ekr f—
€k1 U ek7-6n7 kT‘ 7& n)

T
i1 - _ekl e ekr—l’
€onChy ** * Ck, = E (=1)"*eon, ex;)en, - - €x -+ - €k, = {
=1

n
The last assertion comes down to showing that Jgax = 0(g)dx, where 9g,0(g)9 € C(V) act
through the C(V)-module structure on & € A\ Wa,. But this is clear since (g) = 9gd~". O

Consider the basis {by} of A\ Wa,, with
(4.5) by = (—1)#U€k1 “€ytr€Ck, € /\ Waon,
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where U = {k; < ko < --- < k,} ranges over the subsets of {1,2,...,n}. The U of even size
form a basis for /\+W2n; and the U with odd size form a basis for \~ Wa,. Order the by for U
odd, and the by for U even in such a way that the ordering of {by }|1/|.cven COTTEsponds to that
of {bu }|:0ad Via by + Yby/v/—1. Then these orderings of the by gives us two identifications
+ ~ - ~

(4.6) GL (/\ Wgn) % QLyp1 and GL (/\ Wgn) % GLgn 1,
such that the following proposition holds.
Proposition 4.5. The following diagram commutes

GSpiny,,

Tstd spint
6

spin

GSPIHQn—l GL2TL—1

GSpiny,,

Proof. This follows from Equation (4.5), Lemmas 4.3, and (proof of) Lemma 4.4. O

5. SOME SPECIAL SUBGROUPS OF GSpin,,

In this section, the base field of all algebraic groups is an algebraically closed field of char-
acteristic 0 such as C or Q,. We begin with principal morphisms for GSpin,,,_; and GSpin,,.
(See [Pat16, Sect. 7] and [Gro97,Ser96] for general discussions.) The following notation will be
convenient for us. Denote by

jreg: Gm X SL2 — GSpingn_l

the product of the central embedding G,, — GSpin,,,_; and a fixed principal SLy-mapping.
Note that jieg has the following kernel®

(-1, (5" 5))), ifn(n—1)/2 is odd,
(4, (5%, ifn(n—1)/2 is even.
We write Gy C GSping,,_; for the image of jreg. The group Gy, is isomorphic to GLg if
n(n+1)/2 is odd, and to Gy x PGLg otherwise. Using igsiq from (3.6), we define
'ireg = Z'std o jreg3 Gm X SL2 — GSpinzn.
We also introduce the maps
E =Ado jreg: PGL2 — PSOQn_]_ and ireg = Zsﬁ o %: PGL2 — PSOQn,
where Ad: SOg,, — PSOg, is the adjoint map. (Of course Ad induces SO2,_1 5 PSOs,,—1 when
pulled back via i%_,.)7

reg-

The spin representation of Spin; is orthogonal ([KS16, Lem. 0.1]), yielding an embedding

spin : Spin; < SOsg.

Fixing a non-isotropic line in the underlying 8-dimensional space, the stabilizer of the line in
Spin; is isomorphic to a group of type Ga, cf. [GS98, p.169, Prop. 2.2(4)]. Thereby we obtain
an embedding jspin : G2 < Spin;. Alternatively, an embedding Go — Spin; can be obtained
via octonion algebras. The conjugacy class of jspin is canonical (i.e., independent of choices)
by [Chel9, Prop. 2.11]. Denote by

ispin : G2 — Sping

6T0 see this, one can use Proposition 6.1 of [Gro00], where the SLa-representations appearing in the composition
SLo 2% GSpiny, ; 2 GLyn—1 are computed.

"When denoting the group standing alone, we prefer SO2,—1 to PSO2,_1. When thinking of a projective
representation or a subgroup of PSQOg,, we usually write PSOgy,—1.
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the composite istq © Jspin- The restriction of spin® : Sping — GLg via ispin is isomorphic to
1 ®std, where 1 and std are the trivial and the unique irreducible 7-dimensional representation,
respectively. (This is easy to see by dimension counting, as the other irreducible representations
have dimension> 14.)

Lemma 5.1. The representation spin : Spin, — SOg is Og-conjugate to 6°spin but not locally
conjugate (thus not conjugate) as an SOg-valued representation.

Proof. Evidently spin and 6°spin are Og-conjugate since ° = Int(¢°) with 9° € Og. Let
Tspin C Sping, Tso C SOs, and Tgr, € GLg be maximal tori such that spin(ZTspin) C Ts0
and std(7s0) C Tgr- (In this proof, Tso need not coincide with that of §2.) Without loss of
generality, we may assume that 0°(Ts0) = T50. Let Qspin, 250, Qg1 denote the corresponding
Weyl groups. Fix an isomorphism Tgpin ~ G3, and accordingly X+ (Tspin) = {(a1,a2,a3) € 73}.
Then we have group morphisms

X (Topin) B X.(Tso) ™ X (Ter).
As we know the weights of the spin representation, we know that
std(spin(ai, a2, a3)) € Qar(ai* + a3® + a3? 1 g; € {£1}).
(The Qgr-orbit of tuples is simply an unordered tuple.) When aq, az, ag are distinct, the right

hand side breaks up into exactly two {2go-orbits, which are permuted by 6°. It follows that
spin(t) and 6°(spin(t)) are not SOg-conjugate for t = (¢, t2, t3) € Tspin with distinct 1, to,t3. O

Proposition 5.2. Let n > 3. Let H C PSOa, be a (possibly disconnected) reductive subgroup
(over C or Q) containing a regular unipotent element. Up to a conjugation by an element of
PSOgy,, the following holds (in particular H is connected in all cases):

(1) if n > 4, then H = PSOsy,, H = isa(PSO2,—1), or H = i16s(PGL3);
(2) if n = 4, then H is either as in (1), H = spin(SO7), H = 6°spin(SOr)), or H =
Z'spin(CTY2)~
If H C SOgy, is a (possibly disconnected) reductive subgroup containing a reqular unipotent
element, then H ¢ H c HY . Z(SOay,) with HY surjects onto H C PSOs,, as in the list above.

Proof. We start by proving the assertion on H. We employ the classification of maximal reduc-
tive subgroups of SOy, containing a regular unipotent element in [SS97, Thm. B], where only
(i)(a) and (iv)(a)(e)(g) are relevant to us. Then one of the following holds up to conjugation:®
o H =S09,.
e H is a reducible subgroup of GLy, via std: H? is either i%4(SO25,—1), ireg(PGL2), or
n =4 and ig; (G2).
e H is an irreducible subgroup of GLo, via std: n = 4 and H? = spin(Spin;) or HO =
6°spin(Spiny).
opin(G2) and ireg(PGL2) appear in (iv)(a) and (iv)(e) of loc. cit. as a maximal
reductive subgroup of i%,;(SO2,—1). When n = 3, SOg is isogenous to SLy and the above list
can still be deduced from loc. cit.

In fact it is not immediately clear from [SS97, Thm. B] that H can be conjugated in SOgy,
to one of the subgroups above, so let us explain this point. The case H = SOy, is trivial. In
the last case, loc. cit. tells us that H° is conjugate to std(spin(Spin;)) in GLg. Since Og is
acceptable, we see that H? is Og-conjugate to spin(Spin;) so the result follows. In the second
case, what loc. cit. gives us is that either H? embeds in SO»,, via a principal PGLg-morphism or
in a way that std(H") decomposes the underlying 2n-dimensional space into irreducible spaces
of dimensions 2n—1 and 1. In the former case, this is a special case of [GR10, Prop. 2.2] (when p
and (lyy are trivial) since regular nilpotent elements are all conjugate in the Lie algebra (of H?).
In the SOo,,_1-case, HY is the stabilizer of a non-isotropic line in the underlying 2n-dimensional

Here the cases @

8The statement of [SS97, Thm. B] is not entirely clear on whether the list describes H % or H. We interpret
it as the former since that is what their proof shows. For instance, regarding (i)(a) of their theorem, a maximal
reductive subgroup of type Bn—1 in SO2y, is 10t ig,q(SO2n—1) but Z(SO2x) X igq(SO2n—1), which is disconnected.
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quadratic space. Since non-isotropic lines are in a single SOs,-orbit, we can conjugate H® to
i%q(SO2,—1) by making H 0 stabilize a particular non-isotropic line. In the remaining G-case
with n = 4, we may assume H° C ieq(SO7) by the preceding argument. Since Ga-subgroups of
SOy are conjugate by [Chel9, Prop. 2.11], we are done.

Now that we have justified the above list, let us proceed to identify H. There is nothing to do
when H = SOg,,. In the second case, std(H) is contained in a parabolic subgroup of GLo,, with
Levi component GLg,—1 X GL1. By reductivity std(H ) is contained in GLg,_1 x GL1, and it is an
irreducible subgroup. We see that H C H :=424(SO2,,—1) X Z(SO2y,), and by Schur’s lemma,
the centralizer of HY in H* is Z(SOa,). Since H° has no nontrivial outer automorphism, the
conjugation by each h € H on H° are inner automorphisms. Thus there exists i’ € H? such
that h'h~! centralizes HC. It follows that H C H® x Z(SOa,). In the last case, the centralizer
of HY in SOy, is Z(SOs,) again by Schur’s lemma, with no nontrivial outer automorphism for
HP. As in the second case, we deduce H* ¢ H ¢ H° x Z(SOay,).

Finally the assertion on H is implied by the description of its preimage in SOo,,. (]

Lemma 5.3. Let r: I' — GSpiny, (Q) be a semisimple representation containing a reqular

unipotent element in its image. Let x: ' — @EX be a character and € € {+,—}. If x ® spin‘r ~
spin‘r then x = 1.

Proof. Write 7 : ' — PSO02,(Q,) for the projectivization of r. By Proposition 5.2 we can
distinguish between two cases for the Zariski closure of the image of 7 in PSOa, (Q,). If the
Zariski closure of 7 is either PSOay,, i5q(PSO2,-1), or (when n = 4) spin(SOy), then r is
strongly irreducible, and the statement follows from [KS16, Lem. 4.8(i)]. In the remaining cases,
we may assume that the Zariski closure of Im(7) i iyeg(PGL2) Or igpin(G2). Then Im(7) C
i5td (SO2,-1(Qp)) so Im(r) is contained in @Q-points of GSpin,, Z(GSpiny,) (which is the
preimage of igq(SO2,—1) in GSpin,,,). Then we show y = 1 by the argument exactly as in
Cases (i), (ii), (iv) in the proof of [KS16, Lem. 5.2], noting that spin® restricts to spin on
GSpin,,, ;. O

Let H be a (possibly disconnected) reductive group over Q,. Two Galois representations
ri,re : I — H(Q,) are weakly conjugate if their restrictions to an open subgroup of I' are
conjugate. We say that H is weakly acceptable if the following holds true: if two Galois rep-
resentations r1,7o : I' = H(Q,) are locally conjugate then they are weakly conjugate. Recall
from [KS16, Lem. 4.4, Prop. B.1] that Oy, is acceptable.

Proposition 5.4. Let H be one of the following algebraic groups SOy, GSpiny,,, SO2, X'/, GSpiny,, X
g r, where g p acts through 6° or 0 in the semi direct products. We write HO for the neutral
component of H. Let

ri,re: Dp — H(Qy)
be semisimple Galois representations such that

e 11 and ro are locally conjugate and
e the Zariski closure of r1(I') contains a regular unipotent element.

Then r and o are H-conjugate.

Proof. We first look at the case where H = SOs,. Write 71,7 : I' — PSO2,(Q,) for the
projectivizations of ri,ry. Since Os, is acceptable, 1 and ro are conjugate by an element of
02,(Qy). In particular the Zariski closure of 75(I') also contains a regular unipotent element.
Thus the Zariski closures of 71 (I") and 72(T") in PSOy,, are conjugate to each other by Proposi-
tion 5.2. This is clear possibly except when 71(I") and 72(T') are conjugate to spin(Spin;) and
6°spin(Spin;) respectively, or vice versa. However Lemma 5.1 tells us that r; and ro cannot be
locally conjugate in that case.

Conjugating r2 by an element of SO, (Q,), we may assume that the Zariski closures are equal,
to be denoted by I. Then [ is one of the algebraic subgroups of PSOs, in Proposition 5.2. Fix
an element w € Og,(Q,) such that r; = Int(w) o rq, so that Int(w) induces an automorphism
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of I. There are now two cases by Proposition 5.2 (excluding spin(SO7) and its §°-conjugate as
explained above): either (A) I = PSOg,, (B) I is SOg;,—1, G2, or PGLs.

Case (A). If r; has Zariski dense image in SOy, then there exists q such that r(Frobg)
and gri(Frobg)g~! are not outer conjugate. Thus r2(Frobg) = gri(Frobg)g™' leads us to a
contradiction.

Case (B). We have Out(I) = {1}, so Int(w) is an inner automorphism of I. Multiplying
w by an element of I C PSOg,, we may assume that Int(w) is trivial on I. Thus we may
assume 71 = To. Then 71 = x7y for some x: I' = Z(SO2,(Qy)) = {#1}. As r1(T') has a regular
unipotent element in its Zariski closure, std o r1 is irreducible or decomposes as a sum of a
1-dimensional representation with a 2n — 1-dimensional representation. By [KS16, Prop 4.9],

x = 1.

Now consider H = SOg,, % FE/F. Let 71,72 for the composites of rq,ro with the surjection
H — PSO2, x'g/p. As in the SOg,-case, we may assume that the Zariski closures of 71 (I") and
72(T'") in PSO2, x I'g/p are equal. Let I denote this algebraic group. Then I C PSO2, x I'g/p
contains a regular unipotent and surjects onto I'g/p. Therefore either (A)” I = PSOg;, x '),
or (B)’ I is PSOy,-conjugate to”

(51) PGL2 X FE/Fa G2 X FE/Fa or SOgn_l X FE/F

The last three groups have the property that Out(/) = 1. Arguing as in Cases (A) and (B)
as above, we find that r; and ry are SOs,(Qy)-conjugate. (In case (B)’, even though I is
disconnected, the point is that an inner automorphism of I can be written as the conjugation
by an element in the neutral component of I.)

We now treat the GSpiny,,-case. Write r7, r5 for the composition of 7, ro with pr° : GSpin,,, —
SOgy,. Then r] and r5 are conjugate by the SOg),-case treated above. Hence we may assume that
19 = xr1 with a continuous character x : I' — Q, , where @, = ker(GSpin,,, (@) — SO2,(Q,))
via Lemma 3.1 (ii). Since r1 and y ® r1 are locally conjugate by the initial assumption, we have

spin®(ry) ~ spin®(x ® r1) ~ x ® spin®(r1), e € {£1}.

It follows from Lemma 5.3 that y = 1.

Finally, consider the group GSpiny, X I'g/p. By the GSpiny,-case above, we may assume
that r1|r, = r2|r,. (Strictly speaking, we proved the SOg,-case and GSpin,,-case for I' = I'f,
but the proof goes through without change for I'g.) Writing 77 := pr®or; for i = 1,2, we
have r{|r, = 75|r,. By the preceding argument, we deduce that r{ = 5. On the other hand,
r1|r, = r2|r, implies that r; ~ ro or r; ~ ry ® x by Example A.6, with x as in that example.
If 71 >~ r2 ® x then we should have r{ ~ 75 ® xg/p for xg/r : I'r = I'g/p = {£1}, but this is a
contradiction as in the proof of case (B) above (or by Example A.5). Therefore rj >~ 7. O

6. ON SOs,-VALUED GALOIS REPRESENTATIONS

In this section we construct Galois representations associated with automorphic representa-
tions of even orthogonal groups over a totally real field F. More precisely, we will derive a
weaker version of Conjecture 1 for such groups from the literature. Let either

o F=F or
e F be a CM quadratic extension of F.

In the latter case write ¢ for the nontrivial element of I'p/p := Gal(E/F). Write SOQEn/ F for

the split group SO9, if E = F, and the quasi-split outer form of SOy, over F relative to E/F
otherwise. To be precise, in the latter case,

(6.1) 02/"(R) := {g € GLan(E @F R) | ¢(g) = 9°99°, ' (L '5)g = (L 5)}

INote that indeed 0(SO25,—1) = SO2,—1 and 6 is trivial on SO2,_1, so these semi-direct products make sense
(and are in fact direct products).
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for F-algebras R, and SOfn/ £ is the connected component where det(g) = 1. We can extend

the standard embedding std : SOg;,(C) < GL2,(C) to a map (still denoted std)

(6.2) std : £(SO5/F) = $09,(C) x T/ = Gl (C),
whose image is SO, (C) if E = F and O9,(C) if E # F. More precisely, when E # F, we fix
the extended map std by requiring ¢ — ¥°. (We defined Og,, explicitly in the last section, and
¥° was given in (2.2).)

Let 7 be a cuspidal automorphic representation of SOfn/ F(AF). The following will be key
assumptions on 7. (Recall from §1 that Stgo g5, denotes the Steinberg representation.)

(coh®) 7’ is cohomological for an irreducible algebraic representation £ = RyeVeo SZ of SOzEn/ I;®(C.

(St°) There exists a prime qg;, of F' such that ﬂ'gSt ~ St50,qs, UP tO a character twist.
Condition (coh®) implies that 7° is C-algebraic in the sense of Buzzard-Gee [BG14, Lem. 7.2.2],

thus also L-algebraic as the half sum of positive (co)roots is integral for SO;EH/ F (St°), charac-
ters of SOfn/ F(FqSt) are exactly the characters factoring through the cokernel of Spinfn/ F(FqSt) —

SOQEn/ F(FqSt). Such characters are in a natural bijection with characters of F,< /(F.< )?, since
the group of such characters is classified by H'(Fyg,, {£1}).
E/F

Write Tso := Taso M SOz, over C and choose the Borel subgroup containing Tso in SO,/
as in the preceding section. For each y € V4, the highest weight of fz gives rise to a dominant

cocharacter A({Z) € X.«(Tso). Let (ZSWZ : Wk, — LSOQEn/ " denote the L-parameter of TI'Z assigned

by [Lan89]. Recall std : SO, < GLg, denotes the standard embedding. We also consider the
following conditions:

(std-reg®) std o ¢WZ|WF is regular (i.e., the centralizer group in GL2,(C) is a torus) for
Y

every ¥y € Voo.
(disc-00) If n is odd then [E : F] = 2. If n is even then E = F.

When (coh®) is satisfied, imposing (std-reg®) amounts to requiring that std o )\(fg) is a regular
cocharacter of GLa,. Since E is either F' or a CM quadratic extension of F', condition (disc-00)
is equivalent to requiring SOQEn/ F(Fy) to admit discrete series at all infinite places y of F' (or
equivalently, to admit compact maximal tori).

When q is a prime of F, write qﬁwzz Wg, — LSO;En/ F for the L-parameter of ﬂg as given

by [Art13, Thm 1.5.1]. (By the Langlands quotient theorem, Wz is the unique quotient of an

induced representation from a character twist of a tempered representation on a Levi subgroup.
Apply Arthur’s theorem to this tempered representation.) Note that ¢_, is well-defined up to
q

the outer action automorphism action when q does not split in E/F.
Let Unr(wb) denote the set of finite primes q of F' such that ¢ is unramified in £ and Wz
is unramified. In this case, the unramified L-parameter qbﬂg is determined (up to SOz, (C)-

conjugacy, not just up to outer automorphism) by the Satake isomorphism.
Thanks to Arthur, we can lift 7” to an automorphic representation of GLa,,.

Proposition 6.1 (Arthur). Assume that ©° satisfies (St°). Then there exists a self-dual au-
tomorphic representation  of GLay, (Ar), which is either cuspidal or the isobaric sum of two
cuspidal self-dual representations of GLap—1(Ar) and GL1(Afr), such that

(Ar1) wg is unramified at every q € Unr(n”), and ¢z =~ stdo ¢ﬂ5'
q

(Ar2) TrgSt ~ Ston,—1 B 1 up to a quadratic character of GLay,(AFR).
(Ar3) ¢ 4 ~stdo ¢, at every F-place v.

If ©° satisfies both (St°) and (coh®) then we furthermore have
(Ar4) 7r§, and TI'Z are tempered for all infinite F'-places y.
If @ has properties (coh®), (St°), and (std-reg®), then the following strengthening holds:
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(Ar4)+ 7r§, and 7T1b] are tempered for all F-places v.

Proof. Consider 7” satisfying (St°). For notational convenience, we assume WzSt ~ Stg0,q¢; (DOt

just up to a quadratic character twist) as the general case works in the same way. By [Art13,
Thm. 1.5.2] (using the notation there),'” we have a formal global parameter ¢ (as in [Art13, 1.4])

such that ” appears as a direct summand of a member of II(¢)). (It is a direct summand since

b
qst

(b4, ). Proposition B.1 implies that 1ge, = st qq,» where s is defined above the proposition.
Thus

(6.3) Ust,as, ~ YStan—1,as D V19500

where ¢, ;g5 (r€Sp. Y14, ) denotes the A-parameter for the Steinberg (resp. trivial) rep-
resentation Sto,—1 of GLop_1(Fyg,) (resp. GL1(Fyg,)). It follows that either i) = 7% or ¢ =
Wf Eﬂﬁf , where 7%, wf , and W;# are cuspidal self-dual automorphic representations of GLqy, (AF),
GLa2n—1(Ar), and GL1(AF), respectively. (In particular only the trivial SU(2)-representation
occurs in the global parameter +.) In the second case, we take 7% to be the isobaric sum of

W# and 7T:2# . Now (Ar2) follows from (6.3). We define ¢q € @(SO%%) as the restriction of
Py € @(805{2) from Lg, x SU(2) to Lg,. Then Properties (Arl) and (Ar3) with ¢, in place
of (bﬂ_z are part of Arthur’s result already cited.

To complete the proof of (Arl) and (Ar3), it suffices to verify that ¢, = ¢, in ®(Gp,). In
the notation of [Art13] (between Theorems 1.5.1 and 1.5.2), ¢, gives rise to

e a F,-rational parabolic subgr(zup P, C G, with a Levi factor M,,
e a bounded parameter ¢y, € ®(M,),
e a point A in the open chamber for P, in X.(M,)r, ®z R,

the discrete L?-spectrum is semisimple.) In particular 72  is a direct summand of a member of

such that ¢, comes from the A-twist ¢ps, » of ¢ar,. (This is the counterpart of the Langlands
quotient construction for L-parameters.) The statement of [Art13, Thm. 1.5.2] tells us that 7

is a subrepresentation of the normalized induction Indgf{}j)(av, ») for some o, € I1(M,), where

oy,x denotes the A-twist of o, since w'f) appears in the packet of 1, in loc. cit. According to the
same theorem, Indgf{l’;v))(av, ») must be completely reducible since it appears in the L2-discrete

spectrum. This means that 7, is irreducible and the Langlands quotient of Indg(fP ))(O'v’ ) (thus

v FU
E) is isomorphic to the latter). Since the formation of Langlands parametrization is compatible
with the Langlands quotient, it follows that ¢, is the L-parameter of 772, namely that ¢, = ¢_».
It remains to check (Ar4) and (Ar4)+. Assume (coh®) in addition to (St°). Thanks to

(Ar3), n* is L-algebraic since L-algebraicity is preserved by std. Applying [Clo90, Lem. 4.9

b
v
v ).

to 7% ® | det ]1/ 2 if 7# is cuspidal, and ﬂ% and 7r2# otherwise, to deduce that W# is essentially
tempered at all y|oco. Since 77 is self-dual, ﬂf are a fortiori tempered. Now suppose furthermore
that 7TZ has property (std-reg®). Then 77 is regular L-algebraic. Arguing as above but applying

[Carl2, Thm. 1.2] to 7% at finite places, in place of [Clo90, Lem. 4.9] at infinite places, we

deduce (Ard)+. Finally, whenever i/ is tempered (for finite or infinite v), this implies that 1,
is bounded, hence that 7’ is tempered by [Art13, Thm. 1.5.1]. O

Corollary 6.2. Assume that n is even (resp. odd) if E = F (resp. if E # F). If n° satisfies

(St°) and (coh®) then 7TZ is a discrete series representation for every infinite place y.

Proof. Note that the parity condition exactly guarantees that SOfn/ F(Fy) contains an elliptic

maximal torus at infinite places y, so that it admits discrete series. In this case, a tempered

IOE.gA &)(SOQEH/;E‘) means the set of isomorphism classes of L-parameters for SOi{;q modulo the action of

the outer automorphism group Outs,(G) as defined in [Art13, 1.2]. Similarly II(-) denotes a packet consist-
ing of finitely many isomorphism classes of representations up to the same outer automorphisms. By abuse of
terminology, a representation will often mean the outer automorphism orbit of representations in this proof.
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&-cohomological representation is a discrete series representation by [BW00, Thm. I11.5.1]. Thus
the corollary follows from (Ar4) of the preceding proposition. O

Continue to assume (St°) and (coh®) for 7°. For each infinite place y of F, write qﬁﬂg : Wg, —
LS80y, for the L-parameter of WZ as given by [Art13, Thm 1.5.1]. Let us describe ¢W5\Wf
Yy

explicitly. The half sum of positive coroots pso € X«(Tso) is equal to (n — 1)e1 + (n — 2)ez +
-+ ep—1. Fix an R-isomorphism F'; ~ C once and for all, so that we can identify ny =C*.

Possibly after SOfn/ F((C)—conjugation, we have (as following from the construction of discrete
series L-packets in [Lan89, p.134])

(6.4) O (2) = (2/2)P50NED) 2 e Wy |

We noted that 7” is both L-algebraic thanks to (coh®). Then Conjecture 1 predicts the
existence of an LSOQEn/ F_valued Galois representation attached to 7°. When (std-reg®) is also
assumed (in addition to (St°) and (std-reg®)), Theorem 6.3 below proves the conjecture modulo
outer automorphisms in that (SO-i) is weaker than what is predicted. (This is to be upgraded
by (SO-i+) in §13; also see Remark 13.2.) The proof is carried out by reducing to the known
results for 7# on GLay,.

Theorem 6.3. Let ° be a cuspidal automorphic representation of SOJQE?{F(AF) satisfying (coh®),

(St°), and (std-reg® ). Then there exists a semisimple Galois representation (depending on v)

Prp = Prv: Tr = 802, (Qp) X Ty,
whose restriction to I'r, at every F-place q|¢ is potentially semistable, such that the following
hold.
(SO-i) For every finite F-place q (including q|¢),

t _
6y X WD (pyor,, )5

(80-ii) Let q € Unr(n®). If q 1 £ then P> q s unramified at q, and for all eigenvalues o of
std(p,» (Frobg))ss and all embeddings Q, — C we have |a| = 1.

out

(S0-iii) For each q|¢, and for each y: F' — C such that vy induces q, we have pur(pm g, ty) ~
L Hodge (gb’ y) .
(SO-iv) If mq is unramified at q|¢, then p. , is crystalline. If mq has a non-zero Iwahori fized
vector at q|¢, then Prb q is semistable.
(SO-v) Assume (disc-0o). Then p,» is totally odd. More explicitly, for each real place y of F
and the corresponding complex conjugation ¢, € I'r (well-defined up to conjugacy),

diag(1,...,1,—1,....,—1,1,...,1,—1,...,—1), n : even,
N N — N N——
P b(C ) -~ n/2 n/2 n/2 n/2
Ay diag(1,...,1,—1,...,—1,1,1,...,1,=1,....—1,1) x ¢, n: odd.
—— N—— —— N——

(n—1)/2 (n—1)/2 (n—1)/2 (n—1)/2
Condition (SO-i) characterizes p,», uniquely up to Oz, (Qy)-conjugation.
b

o0
the inverse map, where j denotes the usual element of the real Weil group. Thus (SO-v) and
(6.4) imply Buzzard—Gee’s prediction on the image of complex conjugation in [BG14, Conj.
3.2.1, 3.2.2]. When n is odd, we also observe that (SO-v) is equivalent to

Remark 6.4. Since 7 is a discrete series representation, the conjugation by qb,rz (7) on Tgo is

pos(cy) ~ diag(1,....1,—1,....,—1,a,1,..,1,-1,...,—1,a ) e, VaeQ,.
S—— —— =
(n—-1)/2 (n—1)/2 (n—1)/2 (n—1)/2

Remark 6.5. Without (St°), an analogous theorem can be proved only under (coh®), with or
without assuming (std-reg), but in a weaker and less precise form. The strategy is similar:
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transfer 7” to an automorphic representation of GL2,,(AF), which is an isobaric sum of cusp-
idal self-dual automorphic representations, and apply the known results on associating Galois
representations.

Remark 6.6. If we assume (coh®) and (St°) but not (std-reg®), then a congruence argument
(e.g., using [GK19]) would allow one to prove only a weaker version of the theorem. Namely
a standard method would show (SO-i) only up to semisimplification, but that would not be
enough to translate (St°) into the property of p_, having a regular unipotent element in the
image. (Compare with Corollary 6.7 below.) As a result, our main argument would not go
through.

Proof of Theorem 6.3. Let 7 be as in Proposition 6.1 so that

Case 1: 7% is cuspidal, or

Case 2: % = 7Tf& EBT(;E , with ﬂ# (resp. 7T:2# ) a cuspidal automorphic representation of GLa,—1(Afp)
(resp. GL1(AR)).

As in the proof there, we know that 7# is L-algebraic.

In Case 1, consider the C-algebraic twist IT := 7f ® | det ](1*2”)/ 2 is (C-algebraic, which is
regular by (std-reg), and essentially self-dual (“essentially” means up to a character twist).
Applying the well-known construction of Galois representations (see [BLGGT14, Thm. 2.1.1]
for a summary and further references) to I, we obtain a semisimple Galois representation (recall
I' =T'r by convention)

pr i I' = GL2n (Qy),
satisfying the obvious analogues of properties (SO-i) through (SO-v) for GLg,, with prp and
GLa, in place of p_, and Ogy; call these analogues (GL-i), ..., (GL-vi). By ‘obvious’, we mean
for instance that (GL-ii) is about the eigenvalues of pri(Frobg) having absolute value 1. We also
spell out (GL-i), which states that

)= il

In particular, for all finite places q t £ where II is unramified,

(6.6) p11(Frobg)ss ~ 1y, g aet (12012 (Frobg) ~ 164 (Frobg) ~ ustd (g, (Frobg)).

(6.5) L¢H®| det |(1=2n)/2 ™ WD(PH|FFq

Since each ﬂf is self-dual, we see that pr is self-dual. By (Ar2) and (6.5) at q = qs; as well as
semisimplicity of pr, we see that either

e pr is strongly irreducible!!, or
e prr = p1®Dps for self-dual strongly irreducible subrepresentations p; and po with dim p; =
n — 1 and dim ps = 1.

(To see the strong irreducibility, as opposed to irreducibility, notice that the restriction of py
to an open finite-index subgroup of I' still contains a regular unipotent of GLa,—1 X GL; in the
image.) Either way, it follows from [BC11, Cor. 1.3] that every irreducible constituent of pry is
orthogonal in the sense of loc. cit. (As we are in Case 1, apply their corollary with n = | -[?"~1,
in which case n)(c¢) = —1 in their notation.)

Now we turn to Case 2. Take II; := W#]det |17 and Tl = W#. Each of II; and Il is
cuspidal, regular C-algebraic, and essentially self-dual, so the same construction yields pr, and
pr,, which are 2n — 1 and 1-dimensional, respectively. Then put pr := pm, @ pr,. As before,
(GL-i), ..., (GL-v) hold true for pr;. Moreover an argument as in Case 1 shows that pr, and
pi1, are self-dual and orthogonal. It follows from (Ar2) and (6.5) at v = qgs¢ that pr, and pr,
are strongly irreducible.

From here on, we treat the two cases together. Since prr is self-dual and orthogonal, after
conjugating pr; by an element of GL2,(Q,), we can ensure that pr(I') C O2,(Q,). Write

Pt I — Ogn(@g>

Hwe call a Galois representation strongly irreducible if its restriction to any open subgroup is irreducible.
See [KS16, Def. 3.2] for details.
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for the O2,,(Qy)-valued representation that pry factors through. (In case pry is reducible, we even
have pri(T') C (Og,-1 x O1)(Qy).) Let us check that this is the desired Galois representation
and deduce properties (SO-i) through (SO-v) from (GL-i) through (GL-v).

We start with the case £ = F. Then ¢ (Frobg) € SO2,(C) in (6.6), so we deduce via
the Chebotarev density theorem that p_, has image in SO2,(Q,). Note that (GL-ii) is the
same statement as (SO-ii). The Hodge-theoretic properties at ¢ in (SO-iii) and (SO-iv) may
be checked after composing with a faithful representation, so these properties hold. One sees
from [KS16, Appendix B| (for Og,) that (GL-i) implies (SO-i). (Alternatively, one can appeal
to [GGP12, Thm. 8.1].) The assertion on the cocharacters in (SO-iii) also follows (GL-iii) that
the two cocharacters become conjugate in GLg,. Finally (GL-v), namely the (total) oddness
of std(p,»), tells us that std(p,s(cy)) € GL2,(Qy) has eigenvalues 1 and —1 with multiplicity n
each, for every y € Voo. As p(cy) € SO2,(Qy) has order 2, we have

cy) ~diag(1,...,1,—1,...,—1,1,...,1,—1,...,—=1), ay,+b,=n, ay,b, €Z>g.
P (Cy) g( ) y T Uy ys Uy >0

Ay by Ay by

So (GL-v) implies that a, = b,. (This is possible as n is even.) From this, one computes the
adjoint action of p_,(cy) on Lie SO2,(Q;) to be —n. (A similar computation is done in the proof
of [KS16, Lem. 1.9] for GSps,,.) Thus p,» is totally odd.

It remains to treat the case £ # F'. In this case, the standard embedding SO2,(Q,) x5 /P
GLap X g/ p identifies SOgp, (Q)) xTg /F = 02,(Qy). The composition of p_, with this isomor-
phism is still to be denoted by p,». Since Pt (Frobg) € O2,(C)\SO2,(C) (resp. qb”zb; (Frobg) €
SO2,(C)) in (6.6) when q is inert (resp. split) in E by the unramified Langlands correspondence,
we see that

Pt T = S02,(Qp) ¥ Ty
commutes with the natural projections onto I'g/p. (By continuity it suffices to check the
commutativity on Frobenius conjugacy classes.) Thus p,, is a Galois representation valued in

L(SOY/T). Properties (SO-i) through (SO-iv) follow from (GL-i) through (GL-iv) in the same
way as for the £ = F case. Here is a proof of (SO-v). When n is odd, we have

(6.7) stdp(cy) ~ diag(l,...,1,-1,...,—1)
N e
n n
(6.8) ~ diag(l,...,1,—1,...,—=1,1,...,1,—1,...,—1) - std(c) in GLa,(Qy).
N e e e, e e,
n—1 ntl n—1 ntl
2 2 2 2

(Recall that std(c) = ¥° is the 2n x 2n permutation matrix switching n and 2n.) Therefore

ppoley) ~ diag(l,...,1,—1,..,—1,1,...,1,—1, ..., —1) x ¢ in £SO, (Qy).
1 1 1 —+1
n—1 n+1l n—1 n+l
2 2 2 2

From this, it follows that the adjoint action of p,,(c,) on Lie SO, (Qy) has trace equal to —n.
Hence p_, is totally odd. O

The following corollary allows us to apply Proposition 5.2 to identify the Zariski closure of
the image of p_».

Corollary 6.7. In the setup of Theorem 6.3, the image of pr (thus also p»(Cg) contains a
reqular unipotent element of SO2,(Qy).

out

Proof. Suppose that qg; { £. Then L¢7rg ’qu ~ WD(p |FFq)F'SS by (SO-i). Since (;Swz contains
St St
a regular unipotent element in the image, so does WD(p_» |qu ). Therefore p_»|r &, Das a regular

unipotent in the image. If gs¢|¢ then the same is shown following the argument of [KS16,
Lem. 3.2]. O
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The next corollary is solely about automorphic representations, but proved by means of Galois
representations. Interestingly we do not know how to derive it within the theory of automorphic
forms. The corollary is not needed in this paper (except in Remark 14.2) as (disc-oco) will be
imposed in the main case of interest.

Corollary 6.8. Let ©° be a cuspidal automorphic representation of SOfn/F(AF) satisfying

(coh®), (St°), and (std-req®). If (disc-o0) is false (i.e., n is odd and E = F, or n is even
and [E : F] = 2), then ©# in Proposition 6.1 (the functorial lift of ©° to Gla,) is the isobaric
sum of cuspidal self-dual automorphic representations of GLayp—1(Ar) and GLi(Af).

Proof. Fix a real place y of F'. Up to conjugation, we may assume that

P (cy) = diag(ty, ooy tn, £ 5, ooy 1) X ¢y,
where the latter ¢, means its image in I'g/p; so std(c,) = 1 if E = F and std(c,) = 9° if
[E : F] = 2. The proof of Theorem 6.3 shows that std(p,»(c,)) € GLa,(Qy) is odd for every real
place y. That is, std(p,»(cy)) has each of the eigenvalues 1 and —1 with multiplicity n. It is
elementary to see that this is impossible when (disc-00) is false. Indeed, if n is odd and E = F,
then the number of 1’s on the diagonal of p_(c,) is obviously even (so cannot equal n). If n is
even and [E : F| = 2, this is elementary linear algebra. O

Remark 6.9. The corollary suggests that in that setup, n° should come from an automorphic
representation on Spy,,_o(Af), where Sp,,,_5 is viewed as a twisted endoscopic group for SOQEn/ F

(see the paragraph containing (1.2.5) in [Art13]).

If we assume (coh®) and (St°) but not (std-reg®), then some expected properties to be needed
in our arguments are not known. We formulate them as a hypothesis so that our results become
unconditional once the hypothesis is verified. (In the preceding arguments in this section,
(std-reg®) allowed us to apply the results on the Ramanujan conjecture and construction of
automorphic Galois representations for regular algebraic cuspidal automorphic representations
of GL,, which are self-dual.)

Hypothesis 6.10. Assume (disc-oc). When ©° satisfies (coh®) and (St°) but not (std-reg°),
the following hold true.

(1) TFg is tempered at every finite prime q where 7

q _
(2) There exists a semisimple Galois representation p.» : T'r — SO2,(Qq) x I'g/p satisfying

(SO-i) at every q where 7Tz is unramified as well as (SO-iii), (SO-iv), and (SO-v).
Moreover p»(I'r) contains a regular unipotent element.

s unramified.

The hypothesis readily implies (SO-ii) for p,,. We expect that this hypothesis is accessible
via suitable orthogonal Shimura varieties. If one is only interested in constructing the GSpin,,,-
valued representation p, without proving its ¢-adic Hodge-theoretic properties, then (SO-iii)
and (SO-iv) may be dropped from the hypothesis.

Remark 6.11. Corollary 6.7 (or the above hypothesis, if (std-reg®) fails) tells us that the Zariski
closure of p_,(I'r) belongs to the list of subgroups of SOg,, in Proposition 5.2. In the list, the
PGL2, G2, and PSOg,_1 cases can only occur when (std-reg®) is not satisfied. Since PGLg and
Go are contained in PSOg,_1 (up to conjugation), we only need to observe this for PSOg,,_1.
In this case, ,uHT(pﬂb’q,Ly) of Theorem 6.3 must factor through i2,; : SO2,-1 < SO2,, thus
cannot be regular as a cocharacter of GLa,. By (SO-iii) of the theorem, std(imodge(€”,y)) is
not regular either, contradicting (std-reg®). This observation can be used to skip Cases 2 and 3
in the proof of Proposition 10.3 when (std-reg®) is assumed.

7. EXTENSION AND RESTRICTION

Let 7 be a cuspidal automorphic representation of GSOQEn/ F(AF). In this section we study

irreducible subrepresentations 7° C 7 and compare the conditions (St), (coh) on 7 with (St°)

and (Coh®) on 7°.
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Lemma 7.1. Let q be a finite place of F where E/F is unramified. Let m be an irreducible

admissible representation of GSOE/F(Fq), and let ™ C 7w be an irreducible subrepresentation.

Then (St) holds for w if and only if (St°) holds for 7°.

Proof. Write G = GSOE/ (Fy) and Go = SOE/F( Fy).

(<) Write G’ = GSpmM/F( Fy) and G, = SpanT{F(Fq). By abuse of notation, write Go/GY, :=
coker(pr : G, = Gp) and likewise for G/G’. These are finite abelian groups. We claim that
any smooth character Gy — C* can be extended to a smooth character G — C*. Since such
characters factor through Go/G{ and G/G’, respectively (see e.g., [KS, Cor. 2.6]) the claim
would follow once we verify that Go/G{, — G/G’ is injective. So let gy € Gy and suppose
that go = pr(g) for g € G. Then 1 = sim(go) = sim(pr(g)) = N(g)? by Lemma 3.1 (iii). If
N(g) = —1 then we replace g with zg using z € Zgspin such that N'(z) = —1 (in the coordinates
of Lemma 2.5, choose z = (1,—1) if n is odd, and z = ({4, —1) if n is even); so we may assume
that AV (g) = 1. But this means that go is trivial in Go/G{. The claim has been proved.

Thanks to the claim, we may assume 7’ = Stg,. Write B = T'N C GSO, / for a Borel
subgroup (see below (8.4)). We write By, Ty, Ny for the intersections of B, T, N Wlth Gy. Then
No = N, and the space of Np-coinvariants in 7|g, is the same as the N-coinvariants. In
particular we have the composition

(Stao)ne = 1(0B,) C Ny — 7N |13-

The image of 1(dp,) in 7y is a one-dimensional vector space V that is T stable, on which T'
acts by some character x with |7, = 0p,. As dp extends dp,, we may write x = dp - £, where
¢ is a character of T'/Ty. The projection map mn — 1(6p€) now yields

(7.1) 0 # Homy (my, 1(65€)) = Homeg (7, Ind$ (65€)).

Let n: G/Gger — C* be a character of the cocenter so that T/Ty — G/Gger — C* coin-
cides with ¢. Then Ind$(6p¢) = Ind$(65)n, and we find from (7.1) an equivariant mapping
' — Ind%¥(65). As the representation Ind$ (dp) has the Steinberg as a unique irreducible
subrepresentation, 79~ ~ Stg.

(=) Assume m = Stg. As before we have 7y, — wn|r, = 165" |1,). As 05t |n, = 5;;,
m contains the Steinberg representation of Gy. On the other hand, m has a nonzero fixed
vector for an Iwahori subgroup I of GG, and so every irreducible Gy submodule has a nonzero
Go-Iwahori fixed vector as well. By Clifford theory, 7|, is semi-simple. Each semi-stable
representation 7 of 7|g, has 70 ~ (75,)70 where TS C Tp is a the maximal compact subgroup
(Casselman [Cas80, Prop. 2.3]), and Iy := GpN 1. Thus St¢ is irreducible as Go-representation.
As 7|g, contains the Steinberg representation of Gy, it is thus isomorphic to the Steinberg
representation. U

Lemma 7.2. Let m be an irreducible admissible representation of GSOE/F(R) with central
character wy. Let @ be an irreducible SOE/F( R) subrepresentation. Let & be an irreducible
E/F

. Then:

(1) The representation m is essentially unitary if and only if 7 is unitary.

(2) The representation m is a discrete series representation if and only if 7’ is a discrete
series representation.

(3) Assume 7 is essentially unitary. Then 7 is &-cohomological if and only if 7 is &-

algebraic representation of GSOQn/F, and & its pullback to SO,

cohomological and w, = wgl, where we is the central character of § on Z(GSOJ;{F)(R)

Proof. Write G = GSOE/F( R) and Gy = SOE/F( R).

(1). = is obvious. <: Assume 7° is unitary. We may assume wy = 1. Choose a Hermitian
form h(-,-) on 7, extending the Gg-equivariant one on 7°. Choose representatives {g1, ..., gr}
for the quotient G/F Gy and define P/(-,-) = >°7_; h(gi-,gi"). Then A'(-,-) is a G-equivariant
Hermitian form on 7.
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(2). This follows directly from the characterization of discrete series representations through
the L2-property (modulo center) of their matrix coefficients.

(3). This is implied by Salamanca-Riba [SR99, Thm. 1.8] that a unitary representation
is cohomological if its central character and infinitesimal character coincides with that of an
algebraic representation. O

8. CERTAIN FORMS OF GSOs,, AND OUTER AUTOMORPHISMS

In this section we introduce a certain form of the split group GSOs, over a totally real
field F, to be used to construct Shimura varieties. We start by considering real groups. Let
GOP', OP' SO PSOP and GSOPL' be the various versions of the orthogonal group defined
by the quadratic form z3+a3+- - -+23, on Q?". Consider the matrix J = ( i) € GSOP'(R).
We define the group GSOgy, over R to be the inner form of GSO;ﬁtR defined by J. Thus, for all

R-algebras R we have
(8.1) GSO9,(R) = {g € GSOP(C@r R) | JgJ ' = g}.

For g € GSOSY' (C @R R) we have ¢*Jg = sim(g)J if and only if JgJ~! = g, and thus GSOg,, (R)
is the group of matrices g € GLsg,(C) preserving the forms

(8.2)

;v%—i—x%—l—--sz%n
—T1Tpt1 + Tpt1T1 — T2Tpt2 + TptoT2 — + - — TpTop + T2pTh

up to the scalar sim(g) € R* (the scalar is required to be the same for both forms), and such
that ¢ satisfies the condition det(g) = sim(g)".

In a similar way we define the inner forms GOf,,S04,, 04, PSO7, of SO;E;, O;I;)Lt, PSO;‘;’;.
Then SO, (R) is the real Lie group which is often denoted SO*(2n) in the literature (e.g., [HelO1,
Sect. X.2, p. 445]). Note that SOg,(R) is not isomorphic to any of the classical groups SO(p, q),
where 2n = p+ ¢ (see [Kna02, thm 6.105(c)]). The group SO(p, q) with 2n = p+ ¢ is quasi-split
if and only if |n — p| < 1, giving rise to two classes of inner twists (recall that SO(p, ¢) and
SO(p’, ¢') lie in the same inner class if and only if p = p’ mod 2). The group SOy, and hence
the group GSOy,, is not quasi-split since SO3, is not isomorphic to any group of the form

SO(p, ).
We pin down the isomorphisms

Cx: GSOP'(C) 3 G802, (C), g X 19X, X =(}1),

1 —1

(8.3) GSOSP'(C) = GSO9,(C), g+ (9,7 gJ) € GSO2,(C)* = GSO4,(C® C).

Lemma 8.1. (i) The group GSO3, is an inner form of GSO(n,n) if n is even, and an
outer form otherwise.
(ii) Ezplicitly,
A, B € M,,(C) such that
Q04 (R) = (;%g) € QLon(C) |A*A + B'B = X - 1,, (where \ = sim(g) € CX)
A'B=B"A
(iii) The groups SO3,(R), O3, (R) are connected and |mo(GSO3,, (R))| = 2.
(iv) The mapping

67 GSOy,(R) — GSOZ,(R), ¢g= (—Aﬁg) = TgT™ = (% _ZB)

for T =1i-(9}) € GO4,(R) is an automorphism of GSOY,, over R. It is outer if and
only if n is odd.

(v) The groups SOQJn and GSOgn have an outer automorphism defined over R if and only if
n is odd.

(vi) The groups SO'(R) and GSOP' (R) are connected.
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Proof. (i). The group SO, is an inner form of SO;‘;:R and the compact form lies in the split
inner class if and only if n is even.

(ii). Let g = (4 ) € GLgn(C). Write A = sim(g). We compute
=9l () (EE) = (280 e (FF) =B =9=(5%)
0
1

A B A B 10 At _B' B\ _ [ AtA+B'B A'B-B'A
(—§Z> ( BA) A1) = A1) = (Bt a >< §Z>_<BtAth§BtB+ZtZ ’
These identities are equivalent to the stated conditions on g.

(iii) By [Zha97, Cor. 6.3], det (_%g) > 0 for all A,B € M,(C). By Lemma 8.1(i) any

g € 04,(R) has det(g) > 0 and thus det(g) = 1. Thus OF,(R) = SO7, (R). By [Kna02,
prop 1.1.145] the group SOy, (R) (and hence Og,(R)) is connected. The similitudes factor sim
equals z — 2?2 on R C GSOy,(R). In particular GSOZ,(R) — R*/R%, has connected kernel
R%, x SO¥,(R). Hence m(GSOZ,(R)) ~ R*/RX,

(iv) We have T'T = —1 and JTJ~! = J, so indeed T € GOy, (R). As sim(T) = —1 and
det(T) = i>"(—1)" = 1, we have sim(T)" # det(T) if and only if n is odd.

(v) By the example in (iv) we may assume n even. Any R-automorphism 6 € Aut(GSOg,,)
is given by 6: g — YgY ! for some Y € GO{,(C). Replacing Y with tY for some t € C*
we may assume that sim(Y) = 1 (as 6 does not change, it is still defined over R). Write
o: GO'(C) — GOPY(C) for the automorphism g +— JgJ 1, so that GOZ,(R) = GOSP' (C)7=id,
As 0 is defined over R,

o

0(og) = ab(g ) Vg € GO3,(C),
and therefore YJ-5-J- Y"1 = JY.5.Y J L soY 'JWWJ.-Gg=g-Y J'YJ. Thus
A-YJ=JY  forsome )\ € Z(GSOy,(C)) =C*.
We have Y'Y = 1, so we compute as follows using J*J = 1:
1= =W WY DIAT Y T) = X2(JYTY T) = N2
Therefore A € {£1}. If A = 1 then Y € 04,(R) = SO,(R), and 6 is inner. If A = —1 then
o(Y) = —Y. Thus o(iY) =Y and Y’ = iY € 04,(R) = SOJ,(R). Thus 6 = (g~ Y'gYV" 1) is
inner.

(vi) Tt is standard that SOP*(R) is connected. Let us show that GSOSY(R) is connected from
this. The multiplication map SO (R) x RX — GSOP"(R) has connected image since SOS"(R)
meets both connected components of R*. So we will be done if we check the surjectivity. This
is equivalent to the injectivity of H*(R, {#1}) — H'(R,SOS?" x GL;), which follows from the

fact that there is no g € SOCpt((C) with g71g = —1. (Via h = /—1g, the latter is equivalent to
non-existence of h € GLg,(R) with h'h = —1, which is clear.) O

Now we turn to the global setup. Let n and E/F be as in §6 and impose condition (disc-00)
from now on. In analogy with the SOs,-case, we introduce a quasi-split form G* of GSOs,, over
F. Concretely, if n is even, we take the split form G* := GSOgy, r (or simply GSOg,,). If n is odd,
we fix an imaginary quadratic extension E/F and let G* be the quasi-split form GSOJ;T{ 1; of
GSOgp, r (up to F-automorphism) given by the 1-cocycle Gal(E/F) — Aut(GSOz, ) send-
ing the nontrivial element to #° = Int(¥°). Since ¥° € Og,(F), this cocycle comes from
the Aut(SOgzy, g)-valued cocycle determining SOan as an outer form of SOs,, thus we have

SOE/F GSOQETL/F. Concretely, in analogy with (6.1),
(8.4) GSOy/"(R) = {g € GLan(E@r R) | c(g) = 9°99°, g' (2 5 )g = M, ). det(g) = A"},

and GOL/T(R) is defined by removing the condition det(g) = A". We write G* = GSOL/" in
both cases, understanding that E = F' if n is even, for a streamlined exposition. In both cases,
we have an exact sequence

(8.5) 1 — So&/*

— GSOY 5 G — 1,
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where the similitude map GSOL/"" — G,, is the usual one if E = F, and g — X in (8.4) if

E+F.
Write ()P for the Pontryagin dual of an abelian group. By [Kot86, Thm 1.2] we have for
each F-place v a map'?

Qy H' (FIH G:d) - 7"'O(Z(G:d)rv)D7
which is an isomorphism if the place v is finite (but not if v is infinite). Note that é;\d is
isomorphic to Spin,,, (C), on which I' acts non-trivially via Gal(F/F) and 6 (resp. trivially) if
n is odd (resp. even).

Lemma 8.2. We have
(Z/27Z)* n is even
Z(Gr )" ~{Z/2Z  nis odd, v is non-split in E/F
YAZYA n is odd, v is split in E/F

Proof. This follows from Lemma 3.7. U

By [Kot86, Prop. 2.6] and the Hasse principle from [PR94, Thm. 6.22] we have an exact
sequence of pointed sets

—

(8.6) 1= HY(F,GLy) — @D HN(F,, Giy) % mo(Z(Gry)")P — 1.

Since Z(é;\d) is finite, we may forget mo(-) in (8.6) and the proof of the lemma below.
Lemma 8.3. There exists an inner twist G of G* such that for all F-places v # qst, we have

GSOJ,p, V=Y
(8.7) Gy = GSOP' 1 v € Vao\{Yoo}
G*FU Ujfooav?é%t-

This inner twist G is unique up to isomorphism if n is even or v is split; otherwise there are
two choices for G.

Proof. Put

(8.8) Qgg, = 0y (G803, 5, ) — D au(GSO5 e ) € (Z(Gyy)")”.
V£ Yoo

By duality, the inclusion Z(é’;)F C Z(éii)r” induces a surjection (Z(@)F”)D — (Z(@)F)D.
Hence we can choose some invariant aqg, € (2 (éz\d)FV)D mapping to the expression on the right
hand side of (8.8). Let Ggg, be the inner twist of G* over Fyg, corresponding to aqg,. Then,
by (8.6) the collection of local inner twists {Gy }places v cOmes from a global inner twist G/F,
unique up to isomorphism. Conversely any G as in the lemma satisfies aqq, (G) = aqq, by (8.6).
Therefore the number of choices for G equals the number of choices for aqg,, which can be
computed using Lemma 8.2. (]

Remark 8.4. The group Gy, in the lemma is never quasi-split, regardless of the parity of [F' : Q).
It is always a unitary group for a Hermitian form over a quaternion algebra. This corresponds
to the “d = 2 case” in [Art13, §9.1]. In this case the rank of Gy, is roughly n/2 (see [Art13] for
precise information).

Lemma 8.5. There exists an outer automorphism 0% of G* defined over F' coming from the
conjugation by an element of Ofn/F(F) — SOJQE,{F(F) (In particular, the latter is nonempty.)
The integer n is odd if and only if there exists an outer automorphism of G over F' that induces

0% (up to inner automorphism) via inner twisting G ~ G*F'

12This map has been computed explicitly by Arthur [Art13, Section 9.1] for all possible inner forms of classical
groups.
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Obviously 0* is well-defined up to inner automorphism. Henceforth we will fix an F-automorphism
0* of G (resp. 0 of G if n is odd) as above.'® Evidently 6* (resp. 6 if n is odd) induces 6° on
GSOg2,,c (defined below (2.2)) up to inner automorphism under every embedding F' — C.

Proof. The proof is straightforward for G*. Indeed, the conjugation by ¥° € OQEn/F(F) —

SOfn/ F(F ) is such an automorphism, where ¥° is the matrix as in (2.2).

We deal with the case of G. If such an automorphism exists then clearly n is odd by
Lemma 8.1. From now we assume n is odd. Write G” for the kernel of sim: G — G,. If
6 is an outer automorphism of G” defined over F, then 6(zz) := 20(z) (z € G,z € G°) pro-
vides an extension of  to G. In particular it is enough to prove the lemma for G°. We have a
short exact sequence of group schemes over F

1 — Inn(G’) = Gaqg — Aut(G®) = Out(G*) = Z/27Z — 1.

(For the latter equality, notice that the I'-action is necessarily trivial on the order 2 group
Out(G®)(F).) The associated long exact sequence over F and its localization over F, yield a
commutative diagram:

AUt(G)(F) — 7,27 —°—> H'(F, Gya)

| l |

AW (G)(E,) —— 227 2= HY(E,, Gaa),

where § and §, denote the connecting morphisms. We need to prove that 6(—1) is trivial, or
equivalently that d,(—1) is trivial for all v, by the Hasse principle for adjoint groups.

We know that &, (—1) is trivial if G%, is quasi-split (since Ogy, (F,) —SOs,(F,) and OQE;/F” (Fy)—
SOJQET’Z’ /Fo (F,) are nonempty by the earlier part of this proof) or if v is a real place (by Lemma 8.1
at v = Yoo and the fact that O(2n,R) — SO(2n,R) is visibly nonempty at v # yoo). Therefore
ay(0y(—1)) = 0 for v # gs¢. So it remains to see aygg, (dgg, (—1)) = 0.

On the other hand, the exact sequence (8.6) holds for G” in place of G**, thus 3, a, (3,(—1)) =

0 in Wo(Z(éa\d>F)D. It follows that oy, (dqs, (—1)) maps trivially under the restriction map
(8.9) (7(Gaa) ™s)” = (Z(Gaa)")”.

This implies oqg, (dqs, (—1)) = 0 if the above map is an isomorphism. This is the case unless
G'*b is non-split but G;gt is split (see Lemma 8.2). In the latter case, we can globalize Fy, to
a totally real field F’ with a finite place q’ such that Fé, ~ Fy,, and globalize GEISt to an inner
form G” of the split group SOs,, over F’ such that Gf]b, ~ GZSt and such that G” is quasi-split at
all finite places away from ', and either compact or SO4, at each real place. Such a G” exists
by adapting the proof of Lemma 8.3. (We have switched the base field from F to F’ to possibly
increase the number of real places to kill the obstruction to the existence of G’ b.) Applying the
preceding argument to G”, we have g, (0q5, (—1)) mapped trivially under the analogue of (8.9)
for G” at ¢', which is now an isomorphism. We conclude that g, (64, (—1)) = 0. O

Remark 8.6. It may be possible to directly show that dqq, (—1) vanishes by choosing an explicit
model for G, and proving the analogue of Lemma 8.1 at qs;. We have circumvented this via
the Hasse principle.

9. SHIMURA VARIETIES OF TYPE D) CORRESPONDING TO spin™
We introduced an inner form G of a quasi-split form G* of GSOs,, over a totally real field F'.

The groups G and G* are equipped with outer automorphisms 6 and 6* over F. We are going

I3As introduced in §2, 6 also denotes an automorphism of GSpin,,,. It will be clear from the context which
group @ is acting on.
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to construct Shimura data associated with Resp/qG by giving an R-morphism Resc/gGn —
(Resp/pG) @g R. We define

—yl, z1,
xly, diag(yl,—1, —y)

diag(—yl,-1,9) xly, '
We will often omit 1,, in the cases similar to the above if a matrix is clearly 2n x2n in the context.
Recall the cocharacters py,pu_ from (2.7). They are outer conjugate as . = 9°u_(9°)~! (but
not inner, cf. (2.6)).
Lemma 9.1. Lete € {+,—}.

(i) Consider the inclusion of C* in (C ®g C)* = C*CG2UC/R) indered by the identity mor-

phism ide/r € Gal(C/R). Then Cxheclox = pe-

(i) The complex conjugate morphism he: z +— he(Z) is GSOg,(R)-conjugate to hi(—qyne-

Proof. In the proof, put ¢ = (—1)". (4). Recall Cx from (8.3), which induces GSO3, (R) —
C .

GSOPY(C) £ GS0s,(C). The morphism Cx h. equals z +yi — (mtyl 0 ) The holomorphic

T—Yi

h 1y S — GSOL,, o +yir < oln yl”)

h(_l)n+1 : S — GSOQJn7 x + yl — (

part of this morphism is z — (§9), which is g.. Then h. = ¥°h_.9°, where ¥° is as in (2.2).
Write 9¢ = (_120"—1 ?) Note that Cx(w®) = 9°, so ¥°-conjugation becomes ¥°-conjugation
under C'x. As ¥° swaps e and p_., we obtain Cxh_c|cx = p—e.

(ii). Write z = z + yi € C. Using Lemma 8.1 we compute

he(z) = @ ;?J) = Thy ()T = 07 he(2) ~ hy(2) € GSOZ (R).

The proof for h_. is the same. U
Lemma 9.2. Let ¢ € {+,—} and put K. := Centgoy (g)(he). The following hold.

(i) Let C* act on Lie GSO,(R) via Ad o h.. Then only the characters z v 271%Z, z v 1,
and z — 22" appear in the representation Lie GSO4,, (R) of C*.

(i) The involution Ad h.(i) is a Cartan involution of PSOy,,.

(iii) Ky and K_ are GSO3, (R)-conjugate.
Proof. For (i) and (ii), we only treat the case of e = (—1)" as the argument for —¢ is the same.
Let z = x + yi € C and consider the left-multiplication action of the matrix h.(z + iy) =
(2, %) on My, (C). The matrix (%, ) is conjugate to (zﬂ/i ) via (§ ;). Thus, for
this left multiplication only the characters z and Z appear in My, (C). Similarly, for the right
multiplication, only the characters z and Z appear. Hence for the conjugation action only the
characters 22!, Zz~! and 1 appear in M, (C). Since Lie GSO{,(R) is contained in Ma, (C) via
the standard representation, (i) is true for h.(z). Since J~! = h.(i) the inner form of GSO3,
defined by h.(7) is the compact modulo center form GSO;‘;:R, so part (ii) follows.

T—Yt

Let us prove (iii). The adjoint mapping Ad: GSOg, — GSOQJmad is surjective on R-points
by Hilbert 90. Clearly Ad(K.) C CentGSO.QJn,ad(R)(hg).7Write he = Ad o h.. The Lie al-
gebra Lie(K.) (resp. the Lie algebra of CentGSOg d(R)(hg)) is the (0,0) part of Lie(GSO{,)
(resp. Lie(GSOQJmad)) via he, in the sense of [Del79]. In particular

ad: Lie(K.) — Lie (Centhogmd(R) (he))

is surjective. Since CentGSOQJ d(R)(hE) is connected by [Del79, proof of Prop. 1.2.7], we have
Ad(K,) = CentGSOéf L(®) (hs). The latter is the identity component of a maximal compact

subgroup by loc. cit. so Ad(K_) and Ad(K,) are conjugate in GSO‘QImad(]R). Since K, =

Ad~1(Ad(K.)) and since Ad is surjective on real points, we lift a conjugating element to see
that K, and K_ are conjugate in GSO3,, (R). O
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Let X¢ be the G(R)-conjugacy class of the morphism

(9.1) h¥: S = (Respyg@)r, 2 (he(2),1,...,1) € [] G,
V€V
where the non-trivial component corresponds to the place vs. Then p = (pe,1,...,1) €

X.((Resp/gG)c) = Xi(GSOgnc)V> is the cocharacter attached to h.. The reflex field of
(Resp/G, X¢) means the field of definition for the conjugacy class of y, as a subfield of C.

Lemma 9.3. Let ¢ € {£1}. Then
(i) The pair (Resp;oG, X¢) is a Shimura datum of abelian type.
(i) The Shimura data (Resp/oG, X ™) and (Resp,oG, X ™) are isomorphic if and only if n
s odd.
(iii) If F # Q, the Shimura varieties attached to (Resp/qG, X) are projective.
(iv) The refiex field of the datum (Resp/qG, X®) is equal to E, equipped with an embedding
Too : B — C extending y : F — C.

Remark 9.4. No Shimura data arise from the “opposite” case, namely when n is even and G* is
a non-split outer form GSOfn/ 1;, or when n is odd and G* is the split GSOy,, r, as the group

G*(F) and its inner forms do not admit discrete series in that case.

Remark 9.5. When F' = Q, the Shimura datum (G, X¢) can be shown to be of Hodge type but
we do not need this fact.

Proof. (i) Clearly, (Resp/gG)aa has no compact factor defined over Q, which is one of Deligne’s
axioms of Shimura datum. The remaining two axioms follow from Lemma 9.2, and hence
(Resp/gG, X¢) is a Shimura datum. In the terminology of Deligne [Del79], (G, X¥) is of type
DH. By [Del79, Prop. 2.3.10], a datum (G, X) of type D}! is of abelian type if the derived group
of G¢ is SO, c. (Not all Shimura data of type D]ZH1 are of abelian type.)

(ii) If n is even then every automorphism of G X p F,, is inner at each real place v of F. This
together with Lemma 8.1 implies that no automorphism of Resg/qG carries X * onto X . Now
suppose that n is odd. By Lemma 8.5 there exists an outer automorphism 6 € Aut(G) defined
over F. We have 6, = g07¢g~!, for some g € GSO04,(R). In particular Resp/qgf defines an
isomorphism of Shimura data (Resp/oG, X ) = (Resp/oG, X ).

(41) If F # Q there exists some real place y., € Vo of F different from y,. Since Gy is
compact modulo center, G is compact modulo center as well, and hence the associated Shimura
varieties are projective by Bailey-Borel [BB64, Thm. 1].

(iv) Assume that n is odd (thus [E : F] = 2). Suppose that o € Aut(C/Q) stabilizes
the conjugacy class of pu. Since o(u) ~ p we have 0(Yoo) = Yoo, S0 0 € Aut(C/F) with
respect t0 Yoo : F' < C. If o is non-trivial in Gal(E/F), then Lemma 9.1 (iii) tells us that
o(p) ~ (p—g,1,...,1), which is not GSOq,(C)-conjugate to . Thus o is trivial on F (embedded
in C extending y.o). Conversely, if o € Aut(C/E), then o(p) = pu. Hence the reflex field is E.
When n is even (thus E = F), the preceding argument shows that the reflex field is F'. (]

We introduce the following notation. Let ¢ € {+, —}.

Taking an algebraic closure of E in C via 24 : E < C, we fix F = E < C.

We fix an isomorphism G ®p AR ~ G* @p A7

Z is the center of G.

§ is an irreducible algebraic representation of (Resg/oG) Xq C.

¢ (Fee)
3

is the set of isomorphism classes of (irreducible) discrete series representations

of G(F) which have the same infinitesimal and central characters as £V.
K¢, is the centralizer of h® in G(F).
For irreducible admissible representations 7o, of G(Fy), put

n(n—1)

(9.2) ep (Too ® &) = Y (—1)"dim H' (Lie G(Fuo), K&oi Too ® )
=1
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Let 7 be a cuspidal automorphic representation of G (Ap) such that
e (St) at a finite place qg; and (std-reg) are satisfied, and
o 7! is é&-cohomological.
The latter requirement implies via (the proof of) [KS16, Lem. 7.1] the following condition:

(cent) there exists an integer w € Z, called the weight, such that for every infinite F-place y|oco
the central character of { @ Fy is of the form C* > x — z®.

Let A(7") be the set of (isomorphism classes of) cuspidal automorphic representations 7 of
G(Ap) such that

F)
(i) Tqg ~ wESt ® 6 for an unramified character § of the group G(Fy,),
( 1) 00, qst ~ Wuv 7CISt and

(iil) Too is §—coh0mological.
Define a rational number af(7%) by
(9.3) a¥(nf) = (=) VRN N m(r) - ep® (1o ® 6,

TEA(H)
where m(7) is the multiplicity of 7 in the discrete automorphic spectrum of G, and
G(Fo n—

(9.4) Noo = I [mo (G (Foo) /2(Fuo)) | = 21 -2,
where we know |m0(G(Fs)/Z(Fx))| = 2 from Lemma 8.1 (iii) and (vi).
Lemma 9.6. The groups Kt and K are G(Fy)-conjugate. In particular o™ (n%) = a™ (7).

Henceforth we will write a(r?) € Q for the common value of a®(7%).

Proof. The yso-components of KT is K., which are conjugate to each other by Lemma 9.2. The
components of KE at the other real places y equal G(F,) ~ GSOS"(R), which is connected.
Therefore K and K are connected and G(F,,)-conjugate. It then follows that ep™ (10 ® &) =
ep ™ (Too ® &) for all 7. Thus a™ (%) = a~(n%). O

Since condition (cent) holds, we can attach to £ an f-adic sheaf £,¢ on Sh as in [KS16, below
Lem. 7.1] and [Car86, Sect. 2.1, 2.1.4]. We have a canonical model Shj over E for each
sufficiently open compact subgroup K C G(AY) and a distinguished embedding E C F. We
take the limit over K of the étale cohomology of with compact support

H(Sh?, Lig) := lim HY(Shi x5 F, Lig),
K

equipped with commuting actions of 'y = Gal(F/E) and G(A¥). The two groups act con-
tinuously and admissibly, respectively. Write Hé(Sh*}(,Ebg)ss for the semisimplification as a
I'e x G(AY)-module. (No semisimplification is necessary for the G(A%)-action if F # Q, in
which case Shy is projective. This can be seen from the semisimplicity of the discrete L2-
automorphic spectrum via Matsushima’s formula.)

We construct Galois representations of I'g by taking the (7°°-isotypic part in the cohomology
as follows. We consider 7,79 € A(ﬂ'h) are equivalent and write 7 ~ 7 if 77° ~ 75°. Let
A(n?) /~ denote the set of (representatives for) equivalence classes. Let 7 € A(n?). Define

HZ(ShE, L‘g) [LTOO] = HOHIG(A%O) (LTOO, Hé(ShE, ﬁLg)SS),

(9.5) pore = (—pnin bz R Z )'HL(Sh?, L¢)[er™].

TeA(mh)/~ =0

A priori pi?’s is an alternating sum of semisimple representations of I'g, thus a virtual repre-
sentation (but see Theorem 9.7 below). Fix a sufficiently small compact open subgroup

K = H K, C G(AF) such that (mH)K £ g,
qtoo



38 ARNO KRET AND SUG WOO SHIN

and also such that K is hyperspecial whenever 7r5| (or equivalently 7q) is unramified. Let Shaq

be the set of rational primes p for which either
*p=2,
e Resp/qG is ramified, or
o K, = Hq‘p K, is not hyperspecial.

We write S{;d (resp. S@d) for the F-places (resp. E-places) above Shaq. We apply the Langlands—

Kottwitz method at level K to compute the image of Frobenius elements under pi};’a at almost
all primes.

Theorem 9.7. There exists a finite set of rational primes ¥ containing Spaq, such that for all
p not above X and all sufficiently large integers j, we have

(9.6) Tr S0 (Frob)) = wa(x®) """/ Tt (spin® (6, )) (Froby).

Moreover the summand of (9.5) is nonzero only if i = n(n — 1)/2. In particular the virtual

She

representation p i 18 a true representation,

shim

Proof. We mimic the proof of [KS16, Prop. 8.2] closely. Note that our p u’ corresponds to p5
there. Another difference is that we use ¥ to denote a set of primes of Q (not F or E). We
suppose that F' # Q so that our Shimura varieties are proper. The case F' = Q will be addressed
at the end of proof.

Let foo = N!fe, where f¢ is the Euler-Poincaré (a.k.a. Lefschetz) function for & on G(Fx)
as recalled in [KS16, Appendix A], so that

Tr Too (foo) = Ntep(Too ® €) = IZ Yo dim HY (g, Koo Too @ £).
Choose a decomposable Hecke operator fodst = []

gas, Ja € H(G(AZ™) ) K%t) such that
for all automorphic representations 7 of G(Ap) with 7oK # 0 and Tr 7o (foo) # 0 we have

1 if ToquSt ~ Wu70075ISt

0 otherwise.

Tr 7.007CISt(fOO7UISc) — {

This is possible since there are only finitely many such 7 (one of which is 7). Let fqs: be a
Lefschetz function from [KS16, Eq. (A.4)]. There exists a finite set of primes ¥ D Spaq U {¢}
such that f, is the characteristic function of K, (which is hyperspecial) for every p’ not above
3. We fix 3 and f°9¢ as above.

In the rest of the proof we fix a prime p not above ¥ U {¢}. Write q := pN F, and p for the
rational prime below p. To apply the Langlands—Kottwitz method, we need an integral model
for Sh® over Op,. Thus we choose an isomorphism ¢, : C = @p such that the valuation on @p
restricts to the p-adic valuation via (2 : E < Q,. (Recall 24 from Lemma 9.3 (iv).) The
(Resp /QG)(@p)—conjugacy class of tpp : Gy, — (Resp /QG)@,, is defined over Ej,.

For j € Z>1, let fzgj ) denote the function in the unramified Hecke algebra of G(F},) constructed
in [Kot90, §7] for the endoscopic group H = G*, which is isomorphic to G over Fj, = F ®g Q,.
(This is the function h,, in loc. cit. We take s and t;’s on p.179 there to be trivial, so that h), is

the image of ¢; under the standard base change map on p.180.) The L-group for (Res r0G)E,
(with coefficients in C) can be identified as

L(RGSF/QG)EP = ( H @) X FEP’
aGHom(F,@p)

where ', acts trivially on the factor for o = ¢pyoo. (The Galois action may permute the other
factors via its natural action on Hom(F, Q,) but this does not matter to us.) The representation
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of “(Res r/QG) E, of highest weight ¢, is the representation (spin, 1, ...,1). Here spin® is on the
factor for o = 1pyee, Where we identify

via LpTeo

GSO

G XFo @p = GSOQEJF XFo @p 2n,@p7

(in the ambient group GLon(E ®p Q) ~ GL2,(Q,) X GL2,(Q,) of the left hand side, we
project onto the ¢,z -component) thus identify G = GSpiny,, on the ¢,ys-component. Now let
7p = [Iyp T be an unramified representation of G(F},) = (Resp/@G)(Qp) =[]y, G(Fy), and

denote by ¢, : Wg, — L(Res r/0G)q, its L-parameter. Then the ¢)yo-component of ngP|WEp

is given by ¢, ‘WEP' All in all, we can explicate [Kot84, (2.2.1)] in our setup as'*

9.7) Te 7, (£9) = g~/ *Tr (spin® (6, ) (Froby)).

As in the proof of [KS16, Prop. 8.2] (where our féj ) is denoted by hg "), the Lefschetz functions
foo and fqq, allow us to simplify the stabilized Langlands-Kottwitz formula [KSZ, Thm. 11.3.9]
(recalled in [KS16, Thm. 7.3]) and obtain a simple stabilization of the trace formula for G; the
outcomes are formulas (8.5) and (8.6) of [KS16]. Combining them, we obtain

(9.8) T (f P fy % Froby, He(Sh®, Lig)) = Tapn (FPf fo), > L.
Note that f, is the characteristic function of the hyperspecial subgroup K, = Hp|p K,. Following
the argument from Equation (8.7) to (8.10) in [KS16], we compute
_ ; Ny (9.7 in(n— ) ;
(9.9) o~ Tx (Frobi, po9) = a(r®) T mi (£9) 2 ()" "~/ 1y (spin(6,.)) (Froby).
Let us show that piﬁl’g is a true representation by showing we have only contribution to

pi};’a from the middle cohomology. Since Shf is projective for each K, the action of Frob, on

H!(Shg, L¢) is pure of weight —w + 4, see Deligne [Del80, Cor. 3.3.6]. The argument of Part
(2) of [KS16, Lem. 8.1] (replacing Lemma 2.7 in the proof there with Proposition 6.1 for SOg;,)
implies that 7y|sim|"/? = 7r5|sim|w/ 2 is tempered and unitary. Combining with (9.9) we conclude
that H.(Sh, £¢)[t7>°] = 0 unless i = n(n — 1)/2.

Finally, the case F' = Q is handled via intersection cohomology as in the proof of [KS16,
Prop. 8.2]. Thus we content ourselves with giving a sketch. For each 7 € A(7?), one observes
as in [KS16, Lem. 8.1] that H’(Sh®, £¢)[¢7°°] is isomorphic to the (7>-isotypic part of the
intersection cohomology as I'g-representations. The point is that 7°° does not appear in any
parabolic induction of an automorphic representation on a proper Levi subgroup of G(Ar). (If it
does appear, then restricting 7 from G to isometry group G” (A) and transferring to a quasi-split
inner form G* = SOfn/ F Via [KS16, Prop. 6.3], we would have a cohomological automorphic
representation 7 of G*b(A) with a Steinberg component that appears as a constituent in
a parabolically induced representation. Then the Arthur parameter for 7 cannot have the
shape described in Proposition 6.1, leading to a contradiction.) The rest of the proof of [KS16,
Prop. 8.2] carries over, via the analogue of part 2 of [KS16, Lem. 8.1] (the latter is proved using
temperedness (Ar4)+ of Proposition B.1 in place of [KS16, Lem. 2.7] if (std-reg) is assumed;
otherwise the temperedness is built into Hypothesis 6.10), bearing in mind that the middle
degree is n(n — 1)/2 for us (which was n(n + 1)/2 for the group GSps,,). O

Corollary 9.8. Let % be as above. If T € A(n?) then

(1) Too belongs to the discrete series L-packet H?(F"O),

/ _ / ' G(Fso)
(2) 71! € A(r%) and m(T) = m(r>°7.,) for all 7., € 1T .
Moreover a(n?) = 2 oreA(nt)jn TUT) € L.
1A word on the sign convention is appropriate here. The sign of [Kot84, (2.2.1)] was flipped on [Kot90, p.193],
meaning that the highest weight —ippu should be used in (9.7). This was caused by the arithmetic vs geometric

convention for Frobenius. However the sign of 4 was changed when going from [Kot90] to [Kot92], to be consistent
with [Del79]. Thus it is correct to use a representation of highest weight ¢,p after all.
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Proof. This is the exact analogue of [KS16, Cor. 8.4, Cor. 8.5] and the same proof applies. The
last equality is not explicitly stated there, but follows easily from the other parts of the corollary
and Theorem 9.7. Indeed, we rewrite (9.3) as

at(nf) = (~1)"TVENGE Y Y mrT @1 )ep® (th, @ €)

TEA(H)/~ Téoel_[?

and observe that m (7 ® 72.) = m(7) and ep™ (1), ® £) = (=1)""V/2|74(G(F)/Z(Fx))| for
every ... O

Proposition 9.9. Assume that F # Q. For each embedding x : E — C and € € {£1}, writing
yo for the F-place below x, we have
prr (P24, 1) ~ g gy © SPIN® 0 <MHodge(fyo) + wsm)-

Proof. We have a fixed embedding F < C restricting to 2o : £ C C. We can reduce to
the case © = xo, by Milne-Shih’s proof of Langlands’s conjecture on conjugation of Shimura
varieties [MS82, Thm. 0.9]. To see this, choose an automorphism 7 € Aut(C) such that
T = T and 7 fixes a special h and u = pp as in loc. cit. Consider the conjugate Shimura
datum D = ("*(Resp/gG), ™" (X?)). The point is that D is isomorphic to (Resp/G’, X"*),
where G’ is given as in Lemma 8.3 except that 1y, is replaced with the real place of F' induced
by x, and X" is constructed from G’ by the recipe earlier in this section. The reflex field of D
is T(20(E)) = z(E) C C, that is, x plays the role of £ when working with D. Thus we are
indeed reduced to the setup of x = x by replacing (Resp /oG, X¢) with D.

Henceforth we suppose © = z,,. We introduce some notation. Let p be a prime of E above ¢,
and o : E < Q, an embedding inducing the p-adic valuation. Let r be a Galois representation
of I'g on a Q-vector space. Write Dggr (1) for the filtered Qy-vector space associated with
7|rg, with respect to o (as on [HT01, p.99]). Define HT () to be the multi-set containing each
j € Z with multiplicity dim gr/(Dqg (r)). (So the cardinality of HT,(r) equals dim p.) When
a € Z~o and A is a multi-set, we write A®? to denote the multi-set such that the multiplicity
of each element in A®? is @ times that in A.

Write A(§) = {A(§y)}yjc for the highest weight of £ = ®,c&,. In the basis of §2 for
X*(Taso) = Xu(Taspin) = Z™L, we write &, and the half sum of positive roots p for GSOgy, as

)\(é-yo) = (a(]aa’la "'7an); al Z as 2 ttt Z |CLn| > 07
p = (—nn-1)/4,n—1,n—-2,..,1,0).
Here |a,| > 0 comes from (std-reg). Let &7¢(n) denote the collection of subsets of {1,2,...,n}

whose cardinality is even if e = (—1)¢ and odd if e = (—1)**1. Put

(bo, by, ..., bn) (ao, ar+n—1l,aa+n—2,...;an-1+1, an)
= A(£yo)+ﬂ+(n(n_1)/47070770)7

which equals prodge (&2) + %sim. Via the description of weights in the representation spin®

in (2.8), the lemma amounts to the assertion that

(9.10) HT,, (p20) = {bo +3 b
el

Ga(r?)

Ie ﬂe(n)}

We prove this assertion following the argument in [HT01, pp.99-104] partly based on [Fal83].
Let us set up some more notation. Write Sh% (C) for the complex manifold obtained from Sh
by base change via z¢ : £ — C, and EZOP for the topological local system on Sh% (C) coming
from . Writing K¢ (Lemma 9.2) as K° = [[, K, we have K = K, and K = Gp, ~ GSOS
for y # yo. Restricting hg to S¢ = Gy, ,c X Gy, ¢, We obtain a cocharacter p° : G, c — Kg. We
also have a parabolic subgroup @ C Gc¢ with Levi component K¢ as [Fal83, p.57] (such that
the Borel embedding goes into G(C)/Q). Fix an elliptic maximal torus T, C K¢ and a Borel
subgroup B C G¢ contained in Q. Let R (resp. R;.) denote the set of positive roots of Th,
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in B (resp. Q). By R~ we denote the set of roots of T, in the opposite Borel subgroup. Note
that |R;.| = dim Shy = n(n—1)/2. Write Q for the Weyl group of T\, ¢ in G¢, and ¢ for the
subset of w € {2 such that wA is B N Kg-dominant whenever A\ € X*(T,) is B-dominant. Write
pe € X*(T) for the half sum of all B positive roots, and define w * A := w(\ + pg) — pg for
A € X*(Tx). We parametrize members of the discrete series L-packet HgG(F”) as {m(w)|w € Onc}
following [Har90, 3.3]. (Our m(w) is m(wA,wR™) in their notation.)

An irreducible representation Vy of K& of highest weight A € X*(T) gives rise to an auto-
morphic vector bundle, to be denoted SA Define a complex

K= @ Eonl-1(w)

wEan

where the summand means that &, is placed in degree I(w). For j € Z, let Q,.(j) denote the

WHA

subset of w € Q¢ such that the composition G, 5 T % G,y equals z — 2. This defines a
grading on K$ with

ng (K3) = @ Ewsn|—
UJEQDC()

We apply the comparison theorem of [DLLZ, Thm. 1.1, Thm. 5.3.1] to our compact Shimura
varieties,

817 Dgp s (H'(Shy 7, Lug)) = grl H'(Shy (C), ﬁ?’p)

(The two theorems here tell us that DdR’LmO(HZ(ShKF, étz@p)) ~ H(Shg c,arV ) compatible

with filtrations, in their notation for coeflicient sheaves. The latter space is isomorphic to
H'(Shg(C),V ) by the classical Riemann—Hilbert. Their Vg and gV are our £L,¢ and
P

EEOP; their p is our £.) Using this isomorphism in place of the isomorphisms in the first display
of [HTO01, p.102], we obtain the following isomorphisms via Faltings’s dual BGG construction
(as in the third display from the bottom on p.102 and the third and fourth displays from the
bottom on p.103 of loc. cit.):

(9.11) g Dapao (H' (Shye 7, Lig)) ~ H'(Shi (C), g%K3) ~ @D H'“(Shi(C), Eunn),
WEnc ()

equivariant with respect to the Hecke correspondences. For k € Zsq, write H*(Sh(C), &)
for the direct limit of H¥(Shg(C),&,.») over all sufficiently small open compact subgroups
K. This is an admissible G(AY)-module. Since F' # Q, our Shimura varieties are compact.
From [Har90, §3] we have,

H*(Sh(C), Euer) = @D m(r)7™ @ H" (Lie Q, K*, Too ® Vipsa)-

We pass to the 7%°-isotypic parts to obtain
H*(Sh(C), Eu) 7] = @ m(7™ @ 74 ) H (Lie Q, K*, 74, ® Visa),

7-oo

where the sum runs over irreducible unitary representations of G(Fy). By [Har90, Thm. 3.4],
the cohomology on the right hand side is nonvanishing exactly when 7. = 7(w) and k =

lwR*™ N R |, in which case it is one-dimensional. In that case 7., € HS(E’O) in particular, so
m(7° ® 72,) = m(7) by Corollary 9.8.
Our case of interest is when k = i — [(w). Since l(w) = |[RT NwR™|, we see that i — [(w) =
lwRT N R| if and only if i = |R}.|. Therefore taking the direct limit of (9.11) over K and
restricting to i = |R{.| = n(n — 1)/2, we obtain

S (Shy, L)) = Y ()

dim grj Dap,a (
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Summing over 7 € A(n?)/~, we see that the multiplicity of j in HT,,, (piﬁle) equals

a(7®) - [Qne(5)].

To conclude (9.10), it remains to prove the following claim: that |[Q,c(j)] is precisely the number
of ways j can be written as by + > _,.; b; with I € Z¢(n).

Let us prove the claim. For I € &¢(n), let wr denote the action on (tg,t1, ..., tn) € X*(Taso)
by t; = —t; for every i € I and to — to + >,y ti. The association I +— wr allows us to identify
ZP€(n) = Quc. The cocharacter p° is described (up to the action of the Weyl group of K¢) as

2+ (2,2,,.00,2,2) € X*(Tgso) if e = (=1)" and 2 + (2, 2,...,2,1) if ¢ = (=1)"*!. From this,
we can compute that if A = (ag, a1, ..., an) then (wy* ) o puf(z) = %0+ Lier(@+(=9))  The claim
follows. O

10. CONSTRUCTION OF THE GSping,-VALUED (GALOIS REPRESENTATIONS

We continue in the setting of §8 and §9. The goal of this section is to attach GSpin,,,-valued

Galois representations of I'p to automorphic representations of G* = GSOJQE,L/ F . The main input
is the cohomology of Shimura varieties studied in the last section. Throughout, we assume
F # Q as we rely on Theorem 9.7. Write std: GSpin,, (C) — GL2,(C) for the composite of
pr: GSpin,,, = GSOg,, and the inclusion GSOg,, C GLay,.
Let 7 be a cuspidal automorphic representation of G*(Ar). Let ¢, denote the L-parameter
of m, for y € V. Throughout this section, we assume that
(St) for some finite F-place qgs; the local representation g, is isomorphic to the
Steinberg representation up to character twist,

(coh) the representation 7., is cohomological for some representation § of (Resy/G*)®q
C (then ¢ satisfies condition (cent) by [KS16, Lem 7.1] as before).

Write G* := SOQEn/ Fecaor (see (8.5)) and choose 7” a cuspidal automorphic representation
of G*(Ap) in |G (ap) (see [LS19]). We observe that 7” satisfies conditions (St°) and (coh®)
of §6 thanks to Lemma 7.1 and 7.2. We assume either Hypothesis 6.10 for #°, or the following
analogue of (std-reg®) for 7:

(std-reg) stdo @ry\wﬂ is regular at every y € V.
If (std-reg) is imposed on 7, then (std-reg®) follows from (std-reg) and (coh®). By [Lan89, §3,
(iv)], we have that ¢, , = pr®o ¢r, at each y € Voo. We can also see (std-reg®) from this and
(std-reg).
Thanks to Theorem 6.3 if (std-reg) is assumed, or instead by Hypothesis 6.10, we have a
Galois representation

pﬁb: ]'_‘F7Sbad - SOQ“(@Z) X Gal(E/F)a

whose restriction to I'g g, , satisfies
(10.1) P (Froby)ss % 16y (Froby) € SO2,(Qy),

for all E-places p ¢ SE . Here % indicates Ogp-conjugacy (instead of SOg,-conjugacy).

Let H C SOg, denote the Zariski closure of the image of p» : I'pg — S02,(Q,). By
Proposition 5.2, either H is connected or H = H® x Z(SOs,). Therefore we can find a Galois
character

n: T E,S — {:l:l}
such that n®p_, has Zariski dense image in H°, where ® is taken via {£1} = Z(SO3,). (Choose
n = 1if H = H°.) The element 2z, € Z(GSpin,,) of Lemma 2.7 is a lift of —1 € Z(SOa,),
satisfies zi =1, and acts by the scalar € under spin® for both ¢ € {£}. Let

n: FE,S — {]-aZJr}
denote the unique lift of 7.
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Recall that G is an inner form of G* = GSOfn/ F giving rise to the Shimura data (Resp/q, X +)

studied earlier. By [KS16, Prop. 6.3], there exists a cuspidal automorphic representation 7f of
G(Ap) such that

e 7 is unramified at every place outside of Spaq,

ESt is an unramified character twist of the Steinberg representation,

° wio is £&-cohomological.

® T

Theorem 9.7 yields representations pS?’E for € € {1} such that
(10.2) Sh’E(Frob Yoo ~ tqp" % (i, 0 SPIn® (¢hr, (Froby)) € GLg_gn-1(Qy).
We define pa™* := p° u ¢ for e € {#} and
= pht e (ne g,
Then 2" is a I'g g-representation of dimension a,2", where a, := a(r?). We set
spin(-) i= spin* () ® (n @ spin™ ()

when the input is a GSpiny,-valued Galois representation or a local L-parameter, and write
i s i
spin (-) for the a-fold self-direct sum of spin(-). (So spin = spin if n = 1.) We have

(10.3) P (Exoby)ss ~ 1y "~ spin” (¢, (Froby)) € GLy, 2 (@)
for all finite E-places p not above some fixed finite set of places S O Spaq-
Proposition 10.1. There exists a continuous semisimple representation

pg: I'g,s — GSpin,, (Qy)
such that we have
(10.4) VpéS: sp1n(p7T (Froby)s ) ~ Lqp spm(gbﬂp (Froby)) € GLan (Qy),
(10.5) Vp ¢ Spaq : pr®p< (Froby )ss A pr °¢r, (Froby) € SO, (Qy).

Proof. When * is a map (resp. an element), we use ¥ to denote the composition with the adjoint
map (resp. the image under the adjoint map) that is clear from the context.

The representation spin®: GSpiny, — GLg, 2n (resp. spin®~: SOg, — PGL,, 2n) extends to
the group GPiny, (resp. O2y,). Consider the diagram

p3"
/\
(106) Gal(@/@) GSp1n2n (QE)CPT> GLa n (QZ)
| |
P SOQn(QZ)Sp#) PGLq, 27 (Qy).

At each prime p of E not above S, we obtain from (10.1) that
SPI (18 ) (Frobp)ss) ~ (5D (7 & 6, (Froby))
(10.7) = spin® ((n® gi)mrp)(Frobp)) ~ pSh(Froby)ss € PGLq, 20 (Qy).

Recall that n ® p,» has connected image. So (10.7) implies, via [KS16, Prop. 4.6, Ex. 4.7], the
existence of g € GLg, 2n(Qy) such that

pA'Siﬂ_h = g(Spil’laTr (77 & pﬂ_b)) _1: FE7S — PGLaﬂ_Qn (@f)

Replace p" by g7 1p5"¢g so that ﬁ?rh = spin®" (n ® p,»). From Diagram (10.6) we deduce that

T E,s) Cpr* (@ pp)(TE,s)) C GSpiny, (Q),
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where GSpiny,, is viewed as a subgroup of GLg,2n via spin®". That is, there exists a represen-
tation p¢: I'p g — GSpiny, (Q,) such that
spin® (p€) = 2 and pr°pC =n®@p.

Define p¢ := 7 ® p¢. Then it follows that

o Gn o

spin  (p9) =72 and pr°pl = p.
Thanks to (10.1) and (10.3), p¢ satisfies (10.5) and (10.4). The proof is complete. O

Remark 10.2. The bottom row in (10.6) cannot be replaced with PSOs,. (If it did, since p,.»
has connected image in PSQOs, by Proposition 5.2, the argument above would work without

introducing the n-twist.) For instance, observe that GSpin,, P8 GLyn — PGLgn does not
factor through PSOs,, since spin™ and spin~ have different central characters.

We can refine (10.4) by separating spint and spin~, which is a key intermediate step towards
the main theorem. Our argument is quite delicate and sensitive to the underlying group-theoretic
structures.

Proposition 10.3. For allp ¢ S and € € {+, =}, conjugating pC by an element of GPiny, if
necessary, we have the following.

(10.8) VpéS: spinpC (Froby )gs ~ ng(n_l)/4spin5¢ﬂp (Froby) € GLgn-1(Qy),
(10.9)  Vp ¢ Shaa : pr°p¢ (Froby)ss % tpr° i, (Froby) € SO2,(Qy).

Proof. The assertion (10.9) follows from (10.5) (and it is invariant under conjugation by an
element of GPing,). The main thing to prove is (10.8). For simplicity, write p := p¢, p° :=
propg, and a := a,. Recall from §1 that we often write Gy to mean Go(Q,) when Gy is
a reductive group over Q,. Moreover we assume p ¢ S throughout, without repeating this
condition. (When applying the Chebotarev density theorem, we can always ignore finitely many
places.) From (10.4) we have

_ . - (&)
(10.10) P @ (n® p™7) ~ (spintp @ (n @ spinp)) ™.

Write Z := Z(GSpin,,) and H for the Zariski closure of im(p°) in SOg,. Then H con-
tains a regular unipotent element by Corollary 6.7. We will divide into three cases based on
Proposition 5.2.

Case 1. spinp¢ is irreducible for both € € {+, —}. This happens when H? is SO2,,, i%4(SO2,-1),
or spin(Spin;) (possibly after conjugation in GSpiny,,). If spinp ~ n ® spin~p then it is clear
from (10.10) that pS"* ~ n®@ pS~ ~ (spinTp)®* ~ (n ® spin~p)®?, the proposition follows
from (9.7). Henceforth assume that spin™p % n ® spin™p.

We claim that spin®p(v)ss is regular in GLgn—1 on a density 1 set of 4y € I'. Define X T
to be the subset of h € H(Q,) such that the semisimple part of spﬁﬂh) is non-regular in
PGLgn-1. Then X is Zariski-closed and conjugation-invariant in H. To show H # X, take
H C GSpiny,, to be Spin,,,, isq(Sping, ), or spin(Spin;) in the three cases, respectively, so
that H surjects onto H. Then the restriction of spin® via H GSpiny,, is an irreducible
representation with distinct weight vectors. (When H = izq(Sping, ;), the restriction is the
spin representation of Spiny,,_; by Proposition 4.5.) So some element of H maps to a regular
element of GLgn—1 under spin®. It follows that some element of H maps to a regular element
of GLgn-1; in particular H # X and thus dim X' < dim H. Therefore the set of v such that
p°(7) ¢ X has density 1 according to Lemma 1.1, and in this case spin™ p(7)ss = spin™ (p°(7)ss)
is regular. The claim is verified.

Given a square matrix g, let &7 (g) for the multi-set of its eigenvalues. Since spintp %
7 ® spin~ p, there exists v € I' such that

e spin*p(y) has distinct eigenvalues,
o &V (spinp(y)) # &V (n(y)spin~p(v)).
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In particular there exists an eigenvalue « of spin™ p(y) which is not an eigenvalue of 1(~y)spin™ p(7).
Then « appears as an eigenvalue with multiplicity a, on the right hand side of (10.10). We

know from (9.7) that each eigenvalue of pS"* and n ® p>~ appears with multiplicity divisible

by ar. Thus «a is an eigenvalue of either pS™+ or n ® pS™~ but not both. This implies, together

with (9.7) and the irreducibility of spinp, that (i) (spin™p)®? ~ pSh* and (spin~p)®¢ ~ pSh—

or (ii) (spin*p)®* ~ n® p>"~ and (spin~p)®? ~ n® p>+. In case (i) we are done. If (ii) occurs,

replace p with  ® (9p9~1), where ¥ € GPing, is as in (3.7). (Here im(n) = {£1} is viewed

as the subgroup of ker(pr®) = Gy,.) Then (10.5) remains valid because the conjugation by ¥ is

absorbed by ¥ and because pr° (n) = 1. We are done in Case 1.

Case 2. When H? = i 4(G2) and n = 4. Then p factors through (p1,p2) : Tgs — G2(Q) x
Z(Qy) via igpin : G2 — GSping, and p; has Zariski dense image in G3. Thus the 7-dimensional
representation std(p;) is irreducible. Let w, : Z(Q,) — Q, denote the central character of
spin®. Both w, and w_ restrict to the weight 1 character on Z°(Q,) = Q,, and w, /w_ is the

nontrivial quadratic character of Z/Z° ~ {1, zy }. Since spin® restricts via ispin to std @1 on Go
(observed in §5), we can rewrite (10.10) as (omitting ® for character twists)

(10.11) PP @ np™T = ((std(p1) ® 1) @ (wip2 ® nw—ps)) ™.

Let X be the subset of g € Go(Q,) such that either of the following fails:

e &Y (std(g)) is multiplicity-free,

o —&Y (std(g)) N&EY (std(g)) is empty.
(Here —A for a multi-set A means the new multi-set obtained from A by taking additive in-
verses.) Then X is a proper Zariski-closed subset in Gy that is conjugation-invariant.'® By
Lemma 1.1, we have a density one set of places p such that p;(Froby) ¢ X. Let us divide into
two sub-cases.

Case 2-1. wypy = nw_po. Then (10.11) becomes

(10.12) PP @ mp™ T~ ((std(p1) ® wip2) B wypa) ¥

Fix a prime p such that p;(Frob,) ¢ X. We have a multiplicity-free eigenvalue o # 1 of
stdp1 (Froby)wy p2(Froby). Then « is an eigenvalue with multiplicity 2a in the right hand side
of (10.12), thus also in the left hand side. If o has multiplicity a for each of p>* (Froby,) and
n(Froby)p®~ (Froby), then each of p>F and 7o~ contains stdp; ® wps with multiplicity
exactly a. Since dim pS"* = dimnpS"~, each of the two representations contains w, py with
exact multiplicity a as well. That is,

Pt 2 pSh T~ ((stdpr @ wpe) B wip)®?,

implying (10.8). Now let us exclude the case that the multiplicity of « is not a, for either
P+ (Froby) or n ® pS~ (Froby). If it were the case, the multiplicity would be 2a, for one and
0 for the other. In particular, one of the two representations would be the direct sum of one-
dimensional representations only. However the total dimension of (10.11) is 16a, whereas the
total dimension of one-dimensional representations is 2a, contradicting dim pS"* = dim pS"— =
8a (with n = 4).

Case 2-2. wipy # nw—_p2. Then there exists a place p such that p; (Froby) ¢ X and w, pa(Froby) #
nw—p2(Froby). The latter implies that wy pa(Froby) = —nw_pa(Froby). Again let o # 1 be a
multiplicity-free eigenvalue of stdp;(Froby)wpa(Froby). The condition pi(Froby) ¢ X tells us
that « is not an eigenvalue of stdp; (Froby)nw_pa(Froby). Hence a is an eigenvalue with multi-
plicity a in the left hand side of (10.11) evaluated at Frob,. Arguing as above, up to replacing
p with n(9p9~1), we have o appearing as an eigenvalue with multiplicity a in pSh’Jr(Frobp)
but not as an eigenvalue of 7o~ (Frob,). We deduce that pS™* > (stdp; ® wyp2)®® and

15, explicitly see that X is proper and closed, fix a maximal torus T" of G2 and an isomorphism T >~ G, X G,
with simple roots (b,c) — b%c, b3c. If the semisimple part of g is conjugate to (b,c) € T then &% (std(g)) :=
{1,b,b7 1 be, b~ et bPe, b2,
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npo ™ O (stdpy @ nw_p2)®%. In the latter, we can cancel out 7. Reading off the central char-
acters of pS™¢ from (9.7), we can fill in the one-dimensional representations uniquely to obtain

pSh’6 ~ ((stdp1 @ wep2) B wspz)@hr ) ec{+ -}

It follows that (10.8) holds true.
Case 3. When HY = ireg(PGL2). We see from the first paragraph of §5 that if,, : PGLg X

reg
Z(S02;,) <= SOgy, pulls back via pr® : GSping,, — SOgy, t0 ireg : H1 x Hy < GSpin,,,, where
{GLQ, n(n —1)/2 is odd,
1

Hy ={1,2.},
PGLy x Gy, n(n—1)/2 is even, 2= {l 2}

such that H; is the preimage of PGLy via pr°. By assumption, p factors through a unique
representation

(p1,p2) : T — H1(Qp) x Ha(Qy).
Now p(Froby)ss € ireg((H1 x H2)(Qy)). By (10.5), conjugating ¢r,(Froby) if necessary, we
may assume that (pr@y, (Froby) € pro(ireg((H1 x H2)(Qy))). (A priori the latter holds up to

the outer automorphism 6, but note that 6 acts as the identity on the image of 4.c5.) Taking
the preimage under pr, we see that

Lpr, (Froby) € ireg(H1(Qy) x Ha(Qy)).
For p ¢ S, define b ,, by, € Hi (Qy) and by, € H5(Qy) by

17p7
. —1)/4 )
h;’p := pi(Froby)ss for i = 1,2, ng(n )/ ¢ (mp) (Frobp) = dreg( /1/,p7 gyp).
We need not know whether A, b’ . are uniquely determined by ¢, (Froby,) up to conjugation.
Lpr1%2,p P P
This does not affect the argument below.)
Now we observe that the composition spinoiyeg: Hi X Hy — GLgn-1 for € = + (resp. € = —)

is (Spin o jreg, 1) (resp. (spin o jieg, sgn)), where sgn is the sign character Ha(Q,) — {£1}. (On
the Hy-factor this is a direct calculation. On Hj, since iyeg : Hy X Ho — GSpin,,, factors through
istd : GSping,,_; < GSpin,,,, it follows from the fact that the half-spin representations restrict
to the spin representation via isq.) To simplify notation, define

np := 1(Froby), Py := spin®(p(Froby)ss), pgh’E = po¢(Froby)ss, p ¢ S.
Recall that psh’e ~ g O Greg ’1’7p, ’2’7,3). By the computation of spin® o i,eg, we have
(10.13)
P~ spin(jreg(hy.,), Pt~ iq 0 spin(jreg (Y ),

{nppp‘ ~ Spin(freg (M} ,))mpsgn(hi ), {nppfh’_ ~ g 0 Spin(Jreg(h7 ))psgn(hy ).
When g1, 92 € GLgn—1, write g1 B g2 € GLan for the image of (g1, ¢g2) under the block diagonal
embedding. Comparing this with (10.10) evaluated at Froby, we see that

pp Bippy  ~ SPIN(jreg(R) ) B SPIN(jreg (h] ) mpsen(hy )
(10.14) ~ Spin(jreg(hlll,p)) H3 Spin (Jreg ( i’,p))ﬁpsgn( /2/,p)-
To make a computational argument with eigenvalues, consider the surjection
SLy x G,,, - H;

whose kernel is the diagonally embedded {1} if n(n —1)/2 is odd, and {(£1,1)} if n(n —1)/2
is even. Given hy € Hy, choose a lift hy € SLg x G,, and an element (diag(c, ¢™'), A) € SLy x Gy,
conjugate to }NlLss. Let h; € PGL2 be the image of hy. Suppose that hj g is conjugate to the
image as diag(b, 1) in PGLy. (Thus b is well-defined up to taking inverse.) Then we have an
explicit description (cf. [Gro00, Prop. 6.1, §7] for the latter)

(10.15) EV (std(ipeg(h1))) = {b*72,0*"73, b, 1,1},
(10.16) EV (spin(jreg(h1))) = {A-CZEW z—:iE{j:l}}.
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Let X be the subset of hy € H1(Q,) such that, in terms of b, ¢ assigned to hi s as above,
(X1) b™ =1 for some integer m # 0 with |m| <2(n + 1), or
(X2) ¢™ =1 for some integer m # 0 with |m| < 2"+1n2,

Then X is a proper Zariski closed subset of Hy that is invariant under conjugation. Appealing

to Lemma 1.1, we see that there is a density one set of places %, disjoint from S, such that if
p € 71 then b}, ¢ X. Since (X2) is false when p € 24, we see from (10.13) and (10.16) that

—EV(pg)NEV (pg) =0,  pe D

(If the intersection were nonempty, Ac! = —\¢/ with |i|, [j| < n(n — 1)/2. This would imply
™ =1 for |m| < 2n(n —1).) We know from (10.9) that ifeg(ﬁllm)sgn(hé’p) o iﬁeg(ﬁl”p)sgn(hg’p)

in SOgy,. Pick ¥/',0" € Gy, (well-defined up to taking inverses) such that E/Lp,ﬁ,{’p are conjugate
to the images of diag(¥’, 1), diag(b”,1) in PGLg. By (10.15), we have an equality of multi-sets

sgn( /2713) i {[)/,271727 b/’2n73, - b/7 17 1} — sgn( /2/7'3) . {b//,271727 b//,2n73’ s b//, 1, 1}.
For p € 24, neither b’ nor b” can be an m-th root of unity for 1 < m < 2"1n? as (X1) is

false. Then it is an elementary exercise to verify that sgn(hs,) = sgn(h3,) and that b” =¥’ or
v = b1, Thus Ellﬁp ~ Elll’p in PGLy. We summarize the findings:

(10.17) Ry, ~hy, and hh,=hy,,  pe.
We divide into two sub-cases.
Case 3-1. n = sgn o py. Then for almost all p,

npsgn(hy,,) = n(Froby)sgn(pz(Froby)) = n(Froby)? = 1.
By (10.13), spin™p =~ nspin~p. We also have nysgn(hy,) =1 at p € 2y since hhy,, = hy . Hence
Pt ~ ppSh— by (10.13). Going back to (10.10), it follows that

poF o g o (spinTp) ¥ ~ (nspin~p) .

We complete the proof of (10.8) by (10.2).

Case 3-2. 17 # sgno py. Then 7 - (sgn o p2) is a nontrivial quadratic character, so there is a
density 1/2 set of primes %, /5 such that for p ¢ S,

_L pe -@1/27
mpsgn(h ) =
’ 2P L p& Dy
When p € 71 but p ¢ 7/, we are in a situation similar to Case 3-1. As before, we have
Sh, Sh,— . . _
(10.18) Po Mgy T ~dalpl) ~ia(mepy ), PE D, pEDrpUS.

For p € 215 N 71, we have mysgn(hy,,) = mpsgn(hy,) = —1. Applying Lemma 10.4 below
to (10.14) (taking ([b], A), ([c],6) to be lifts of hf ,, hY,; we have [b]2 ~ [c]? from (10.17)), and
comparing with (10.13), we deduce that

(D) oo "~ dalpy) and mppy ™ ~ ia(mppy ), or
(i) Mooy ~ialpy) and pp " ~ da(nppy ).
Only one of the two occurs at each p since no eigenvalue is shared between the + and — parts.
The main remaining point is to show that only (i) holds for all p € 2, ,,N %1, or only (ii) holds.
To this end, consider the irreducible representation S~V := (Sym™"~V) id) of SLy x G,,. It
descends to a representation of H; via SLg X G,, — H; (see §5). By the highest weight reason,
S™n=1) appears in spin o Jreg With multiplicity one. Hence

dimg;, Homp ((S™™ Y 1) o (p1, pa2),spintp) = 1.
By (10.10), (S™™= 1), 1) o (p1, p2) appears in pS"*t or npS™~; we may assume that this is the

case for pStT, replacing p with n(9p9~1) (thus changing (p1, p2) to (np2 ® p1, p2)) if necessary.
Then spin* p and pS™* both contain (S™™~1), 1) 0 (p1, p2), so py and pgh’Jr share an eigenvalue.
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On the other hand, no eigenvalue is shared between pgh’Jr and nppsh’_, and between p,‘f and
nppp - Therefore we must have case (i) at all p € ;5 N ;. Together with (10.18), this implies
that pSP+ ~ i, o spintp and pS~ ~ i, o spin~p. Given this, (10.8) follows from (10.2). O

The following combinatorial lemma was used in the above proof. For a € @Z , write [a] :=
diag(a,a!) € SLy(Qy). Recall we have the maps

SLy % GSpiny, _; % GlLgn 1.

Lemma 10.4. Let ([b], \), ([c],6) € SLg x Gy,,. Assume that [b]? ~ [c]> and that b™ # 1 for any
integer m with |m| < 2"*t1n?. If moreover's

=&V (Aspin(Jreg([b]))) U €7 (Aspin(jreg((0])))

(10.19) = —& YV (0spin(Jreg([c]))) U &Y (0spin(jreg([c])))
then &Y (Aspin(Jreg([b]))) = € - &V (0spin(jreg([c]))) with e =1 or e = —1.

Proof. By scaling A, 1 and by replacing ¢ with ¢~! if needed, we may assume that § = 1 and
that b = ¢ or b = —c. Multiplying all elements on both sides, we deduce that A" = 1. Recall
that &7 (Aspin(jreg([0]))) is explicitly described by (10.16).

Assume n(n — 1)/2 is odd. Then ¢ € é""//(spm(jreg([ ]))) By (10.19), there exist e € {£1}
and i € Z with |i| < n(n—1)/2 such that A\b = e- ¢, Since b? = ¢?, if i # 1 then b* = A\2b% s0 b
is a 2"(i —1)-th root of unity, violating the initial assumption. Hence Ab = e-c. By squaring, we
obtain A\b? = b?, thus A € {£1}. Replacing ([b], \) with ([—b], —\) does not change eigenvalues
in the lemma, so we may assume A = 1. It is easy to see from (10.16) that the conclusion of the
lemma holds with the same e as we have chosen.

When n(n—1)/2 is even, we argue similarly using ¢* € &7 (spin(jreg([c]))) to find A\b? = e-c?,
which implies A = e. Again the conclusion of the lemma holds with this e as can be seen from
(10.16). The proof is finished. O

Proposition 10.5. We have that
(10.20) VpégS: pg(Frobp)ss ~ ng(n_l)/4¢ﬁp(Fr0bp) € GSpin,,, (Qy).

Proof. We first establish the claim that in(nfl)/ 2Lw7r = Np%, where y; is the cyclotomic
character and we view w; as a Galois character via class field theory. In view of Lemma 5.3, it
suffices to check that

(10.21) X;n(n_l)/zcww spin®(pS) ~ Np¢ - spin®(pS), e € {£1}.

By Lemma 4.2 we have

(10.22) spin®(pS) ~ (spinl™"%)" (o) @ Np .

For all p ¢ S we apply (10.8) and compute using Lemma 4.2 again (but now locally)

spins(pg(Frobp)ss) =~ 1spin®(qy n(n=1) /4gbﬂp (Froby))
)/4

~ )4 (spin(~1)"e)V (¢, (Frobp)) @ tN (¢r, (Froby))
~ "<” Y72 (5pin(=D"4)Y (o€ (Froby)ss) @ tN (¢, (Froby))
(10.23) o~ Xg(Frobp) ”("_1)/2(spin(_l)n‘g)v(pg(Frobp)ss)Lwﬂp (Froby).

In the last isomorphism, we appealed to functoriality of the Satake isomorphism (unramified

local Langlands correspondence) with respect to Gy, < GSOag, (dual to N : GSping,, — Gy,).

Therefore sping(pg) ~ (spin(’l)n )V (pﬂ) ® X;”(” 1)/2

(10.21).

wr. Comparing with (10.22), we obtain

16Recall we write &7 (g) for the set of (generalized) eigenvalues of a matrix g € M,
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At this point we have established that for all E-places p ¢ S that

spinpC (Froby )gs ~ ng(n_l)/4spin6¢7rp (Froby) € GLgn-1(Qy) (Prop. 10.3),
prpS (Froby )ss n 1pr°dr, (Froby) € SO2,(Qy) (Prop. 10.3),
(10.24) N p€ (Frob,) = Lq;(nfl)/QNqﬁﬂp (Froby) € G (Qy) (claim above)

By [KS16, Lem. 1.1] a semi-simple element ~ of GSpin,,,(Q;) is determined up to conjugacy by
the conjugacy classes of spin®~,spin~y € GLgn-1, stdy € GLg, and Ny € G,,. We complete
the proof by noting that the two sides of (10.20) become conjugate under spin™, spin~, std,
and N by (10.24). O

11. COMPATIBILITY AT UNRAMIFIED PLACES

We continue in the setup of §10 with the same running assumptions. We determined the
image of Frobenius under p¢ at each prime away from some finite set S. Now we compute
the image at the finite places p 1 £ above S\Sp.q. The argument here follows very closely that
of [KS16, Sect. 10]. In fact, it is directly copied in many places. We repeat it for completeness.

Proposition 11.1. Let p be a prime of E not lying above Spaq U {€}. Then pS is unramified
at p. Moreover writing q :=p N F,

pC (Froby )ss ~ 1gp " . (Frob,) € GSpin,, (@,).

Proof. Fix p as in the statement. Let p denote the prime of Q below p. Let 7 be a transfer of
7 to G(Ap) from G*(Ar) given by [KS16, Prop 6.3(2)]). Then 7! is cuspidal automorphic and
b

° M,
i

qst

° 7'['50 is £&-cohomological.

, =~ my at all finite primes q' ¢ SE U {qs¢},

a

e 7. is the Steinberg representation up to an unramified twist,

Let B(7?) be the set of cuspidal automorphic representations 7 of G(Ar) such that
Tgse and mgg, are isomorphic up to a twist by an unramified character,
700502 and 7129562 are isomorphic,

Tp is unramified,
Too 18 £-cohomological

We define an equivalence relation ~ on the set B(xn") by declaring that 7, ~ 7 if and only if
Ty € A(71) (hence, 71 = 1o if and only if 71 g ~ o). For € € {+, —}, define (true) representations

Sh, Sh,
of I'g by pp"° = Y oreB(xt)/~ Pr ° (see Theorem 9.7). Put b(rf) := > reB(rty/~ A(T) € Lo
Since spin® o pfh and spin® o p¢ have the same Frobenius trace at almost all places for 7 € B(x?),
we deduce that spin® o Pfu ~ spin® o p¢. Hence
Sh, , .
(11.1) PB" 2 () ospmgopfh.

We adapt the argument of Theorem 9.7. Consider the function f on G(Ap) of the form
[ = foolag 1K, fO10P, where foo and fyq, are as in that argument, and f°>95¢P is such that,
for all automorphic representations 7 of G(Ag) with (7°°)% # 0 and Tr 70 (foo) # 0, we have:

1 if 709486:P ~ 78,00,08¢,P

112 Tr 00, qst,P 00,qS8t:P) —
( ) ! (f ) {0 otherwise.

Arguing as in Theorem 9.7 we obtain
_ j in(n—1)/4 . j
L 1Tr(Frobfj,pSBh’e) = Z a(m)Trry(fj) = Z L(I(T)qgn(n ATy (spin®(¢r,))(Froby).
TeB(nt)/~ TEB(n%) /~
Thus the statement follows from Lemma 11.2 below. Indeed the lemma and the last equality

imply that
Tr pSBh’E(Frobg) = b(ﬂ'u> . ngn(nfl)/ler (spina(gbﬂq))(Frobg), i> 1.
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Comparing this with (11.1), we deduce that
spin® o p& (Froby )ss ~ ngn(n_l)/4spin5(¢7rq)(Frobp).

Since we also know the conjugacy relation with std and N in place of spin® from (10.9) and
Proposition 10.5 (and the argument at (10.21) in its proof) we conclude as in the proof of
Proposition 10.5 that

pS (Froby)ss ~ 15"~ ¢y, (Froby) € GSpiny, ().
O
Lemma 11.2. With the above notation, if T € B(r%) then 74 ~ 775 for all q not above Spaq U{l}.

Proof. Since Xu’s paper [Xul8, Thm. 1.8] is available also for the quasi-split outer forms of
GSOgy,, the argument for [KS16, Lem. 10.1] goes through unchanged, except Corollary 9.8
replaces [KS16, Cor. 8.5], and Lemma 5.3 replaces [KS16, Lem. 5.2]. O

12. THE MAIN THEOREM

In this section we prove Theorem A (Theorem 12.5), the main result of this paper. Before
doing this we first explain how the I'g-representation p, from previous section can be extended
to a representation of I'.

As in Theorem A, let 7 be a cuspidal automorphic representation of G*(Ar) satisfying (St)

and (L-coh). Fix a cuspidal automorphic representation 7° of SOQEn/ F(AF) which embeds in
| as it is possible by [LS19]. Assume either (std-reg) for m or Hypothesis 6.10 for an

n—l)/4.

805, " (Ar)
SOa,, (AF)-subrepresentation 7” of w. Define 7 := 7r|sim|™ Then 7 is {-cohomological and
will play the role of 7 in Sections 10 and 11. Naturally 7° is a subrepresentation of ]SO0 (Ap)
since |sim| is trivial when restricted to SOg, (Ar).

Let ST (resp. S¥) be the finite set of places of F' (resp. E) above S := Spaq U {¢}. From
Propositions 10.1 and 11.1, we obtain

p% : T'p.s — GSping, (Qy)

such that for every p ¢ S¥, writing q := p|r, we have
(12.1) pS (Froby)ss ~ 1qp ™ bz (Frob,) = 16, (Froby).

Let us explain the definition of pr on I'pg. If n is even (thus E = F') then we simply take
pr = pS. In case n is odd (so [E : F] = 2), fix an infinite place y of ' and write ¢, € I' for
the corresponding complex conjugation (canonical up to conjugacy). In order to apply Lemma
A.1, we check

Lemma 12.1. When n is odd, we have Cypg ~fo pﬁc.

Proof. In light of Proposition 5.4, it is enough to check this locally, namely that
pg(cyFrobpcgl)ss ~ 0o pg(Frobp)Ss in GSpin,, (Qy)

for almost all primes p of E. For each p, write q := p N F. Firstly if q splits in F as pc(p) then
we use (12.1) to deduce that

pg(cyFrobpcgjl)ss ~ pg(FrobC(p))SS ~ 1@z, (Frobg)) ~ 10(¢pnr, (Froby)) ~ 0(pS (Froby)).

(To see the third conjugacy relation, we argue as follows. From (8.4) we see that an element of
GSO;En/Eq has the form (g, 6(g)) with g € GSOgy, g, and that GSOQEn/f;q is isomorphic to GSO2,, g,
and GSOngC(p) by the projection map onto the first and second components, respectively.
Likewise the dual group of GSOzEn/ I;q is naturally the subgroup of GSpin,,, x GSpin,,, consisting

of elements of the form (g,6(g)), the two components corresponding to p and c(p). It follows
that ¢r, (Frobgg)) ~ 0(¢nr, (Froby)).)
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Secondly if q is inert in E' then ¢, Frobyc, L Frob,. Thus we need to check that the conjugacy
class of p¢ (Froby)ss is f-invariant. Writing 6(¢x, (Frobg)) = s x ¢ € GSpiny, (Q;) x Le/r,

(¢, (Froby)) ~ 0(¢pn, (Frobg)) =s6(s) ~0(s)s in GSpin,,, (Qy).
This implies the desired #-invariance via (12.1). The proof is complete. O

We are assuming that n is odd. By Lemmas 12.1 and A.1, we extend pg to a Galois repre-
sentation to be denoted p;:

(12.2) pr: Trg — GSping,, (Q,) x Tk /p.
There are two choices up to conjugacy (Example A.6). We choose one arbitrarily and possibly
modify the choice below.

We return to treating both parities of n. We fixed 7 above. Theorem 6.3, or Hypothesis
6.10 if (std-reg) is not assumed, supplies us with

P Trg — SO2,(Qy) I'e/r

out

such that p_, (Frobg)ss ~ qu”ﬁ (Frobg) for q,p as above. Thanks to (12.1) and the unramified

Langlands functoriality with respect to SO, — GSOfn/ E (whose dual morphism is pr°),

P (Froby ) our quwg (Froby) ~ Lpro(gbﬂq (Froby)) ~ pr°(px(Froby)ss).

Thus the conjugacy classes at the left and right ends are Oz, (Q,)-conjugate, under the identi-
fication SO, (Q) % I'g/p = O2,(Qy). Since Og, is acceptable, p |, s and pr® o pg|r,  are
02, (Qy)-conjugate. Replacing p.» by an Oa,(Q,)-conjugate, we may and will assume that

Prb ’FE,S =pr’o :07T|FE,S
without disturbing the validity of (SO-i) through (SO-v) in Theorem 6.3. When n is odd, we
take an extra step as follows. Observe that p_, and pr° o p, are two SOa,(Q,) x ' sr-valued
representations of I'rp s extending (12.3). If they are not equal then pr® o pr = p» ® Xg/r by
Example A.5 with xg/p : Tr — T'g/p = {£1}. Then we go back to (12.2) and replace pr with
pr ® X, where x is as in Example A.6; this does not affect the discussion between (12.2) and
here. Since pr® o x = xg/p, this ensures that

(12.3) Pro =PI’ 0 pr.

As in §2, let (0,51, ..., 5n) € (@, )"*! denote an element of Taspin(Qy) C GSping, (Q;). This
element maps to diag(sl,...,sn,sl_l,. sp1) € S02,(Qy) under pr°, and maps to s2sisg--- sy

ey S
under the spinor norm N .

Lemma 12.2. At every infinite place y of F, the following are GSpin,,, (Qy)-conjugate:

(a,1,...,1,—1,....,—1), a € {£1}, n:even,
—— ——
12.4 ) ~ n/2 n/2
(124) pr(cy) (1,1, 0,1, =1, 0y —1,1) % 6, n: odd.
—— ——

(n=1)/2  (n-1)/2

Proof. In light of (12.3) (which is valid for both odd and even n as discussed above) and
Theorem 6.3 (SO-v) (or Hypothesis 6.10) which describes p,» (¢, ), the following are GSpin,,, (Q;)-
conjugate:

diag(1,...,1,—1,....,—1,1,...,1,—1,...,—1), n : even,
) WA ) —
™ diag(1,...,1,—1,...,—1,1,1,...,1,—1,...,—=1,1) x 0, n:odd.
——— N—— ——— N——

(n—1)/2 (n—1)/2 (n—1)/2 (n—1)/2

Therefore pr(cy) is a lift of the right hand side (up to GSpin,, (Q,)-conjugacy) via pr°. Moreover
pr(cy)? = pﬂ(c?J) = 1. We claim that these two conditions imply (12.4).
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This is straightforward when n is even. Now suppose that n is odd. Evidently the right hand
side of (12.4) satisfies the two conditions. Any other lift of order 2 can only differ (possibly
after conjugation) from the right hand side of (12.4) by scalars {+1}. (Use Lemma 3.1 (ii) and
the order two condition.) This implies (12.4) since every g € GSpin,, (Q,) % ¢ is conjugate to
—g; indeed, —g = (g¢ ™1 if ¢ € Zgpin(Qy) is an element of order 4, noting that 6(¢) = ¢~ O

Let wy : F*\AJ — C* denote the central character of 7. By abuse of notation, we still write
wr (depending on the choice of ¢) for the f-adic character of I'p corresponding to w, via class
field theory (as in [HTO01, pp.20-21]). To make w, explicit, recall that # = m|sim|[™*~1/4 is
&-cohomological. By condition (cent), the central character of £ is z — 2% on F) at every real
place y of F, for an integer w independent of y. Therefore (recalling sim is the squaring map
on the center)

Wﬂ,y(z) — wa|z|n(n71)/2 _ Sgn(z)wyz‘w+n(nfl)/2’ = Fyx'
—w-—n(n—1)/4 . . . . w
Then wy| - | A is a finite-order Hecke character which is sgn" at every real place.
F
Hence w,; = X;yf_n(nl)/ QXO, where Xcyc is the f-adic cyclotomic character, and xo a finite-order

character with xo(cy) = (—1)" at each real place y. The upshot is that
(12.5) wr(cy) = (—=1)7wn=D/2(_yw = (—1)n(n=1D/2) y : real place of F.
We are ready to upgrade (12.1) to a compatibility at places of F' for odd n (thus [E : F] = 2).

Corollary 12.3. We have N o px = wy. Moreover, at every finite place q of F' not above
Sbaa U {{},
pr(Frobg)ss ~ 1dr, (Froby).

Remark 12.4. The corollary is certainly not automatic from (12.1) since the unramified base
change from G*(Fy) to G*(Ey) is not injective when q does not split in £. Curiously our proof
crucially relies on the image of complex conjugation. We have not found a local or global proof
only using properties at finite places.

Proof. Via the unramified Langlands functoriality with respect to the central embedding G,,, —
GSOfn/F, (12.1) implies that N o pr|r, = wr|r,. If nis even then E = F so there is no more
to prove as the latter assertion is already true by (12.1).

Henceforth assume that n is odd (so [E : F] = 2). Then either N o p = w; or N o pp =

wr ® Xg/F, Where xg/p: I'r — Tg/p 5 {£1}. To exclude the latter case, let y be a real place

of F. We have N(pr(c,)) = (—1)"Y/2 from Lemma 12.2, and wx(c,) = 1 from (12.5), but
clearly xg/r(c,) = —1. Then the only possibility is that N o pr = wy.
We prove the second assertion. If q splits in E, this follows immediately from (12.1) for

pﬂ\pEys. Henceforth assume that q is inert in E. We have seen that pr°® o pﬂ"FE,S = pﬂ,b|]_"E’S.
Theorem 6.3 (SO-i) (or Hypothesis 6.10) tells us that

pﬂg(Frobq)ss ~ Lgﬁﬂ,g(FI‘Obq) = 1pr°(Pr, (Froby)).

(Note that the outer automorphism ambiguity disappears as it is absorbed by the SOg),-
conjugacy on the nontrivial coset of SOz, x I'g/p; since q is inert in £, the image of Frobg
in I'g/p is nontrivial.) Therefore pr(Frobg)ss ~ 2t¢r, (Frobg) for some 2 € Q,. Taking the
spinor norm,

N(z) = (N o pr(Frobg)ss) "N (¢, (Frobg)) = wr(Frobg) ~'ws (Frobg) = 1.

It follows that z € {£1}. Since every g € GSpin,,,(Q;) x ¢ is conjugate to —g (proof of Lemma
12.2), we conclude that p(Frobg)ss is conjugate to t¢n, (Froby). O

Theorem 12.5. Theorem A is true.
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Proof. Let 7 be as in the theorem. We fix an automorphic representation m° of SOJQEH/ F(Ap) in

W’SOE/F(A x take p» : I'p — SO2,(Qq) x I'g/p to be as in Theorem 6.3, or Hypothesis 6.10 if
2n F

(std-reg) is false, and define
(12.6) pr: r — GSpiny, (Qy) % Tg/p

such that p_, = pr° o p, as explained at the start of this section. By inflating p, to a represen-
tation I'p — GSpin,,,(Q,) x T'r of Theorem A, but we work with p, in the form of (12.6) as
this is harmless for verifying Theorem A.

The equality p,» = pr° o pr and Corollary 12.3 imply (A2). Corollary 12.3 exactly gives
(Al). Item (A4) is straightforward from Lemma 12.2. To see (A5), note that the image of p,
in PSO2,(Qy) is the same as the image of p_, in the same group. The Zariski closure of the
image is (possibly disconnected and) reductive since p,, is semisimple and contains a regular
unipotent element by Corollary 6.7. Hence (A5) is implied by Proposition 5.2. Now p, also
contains a regular unipotent in the image, so (A6) and the uniqueness of p, up to conjugacy
are consequences of Proposition 5.4.

It remains to verify (A3). We begin with part (b). If 7y has nonzero invariants under a
hyperspecial (resp. Iwahori) subgroup, then 7Tg and wr g enjoy the same property. Therefore (b)
follows from (A2) and Theorem 6.3 (SO-iv). To prove part (c), write p for a place of E above
g. Since p is unramified over E, it suffices to check that p,|r, is crystalline at p. Moreover we
may assume F' # Q by base change. (If F = Q then replace F' with a real quadratic field F’
unramified at ¢, and F with EF’.) Then the Shimura varieties in §9 are proper, and pi};’e is
crystalline at all places above ¢ by [Lov17]. Since spino p,|r, embeds in pi?’+ o pi?’f (which is
isomorphic to the a(ﬁh)—fold direct sum of spin o p,), and since spin is faithful, we deduce that
prlry is crystalline at p as desired.

Finally we prove (A3), part (a). The new input is the claim that

(12.7) spin(uut (pr,q, 1)) ~ SPIN(LHodge(§y)), € € {&}.
Accept this for now. It follows easily from (A2) and Theorem 6.3 (SO-iii) that

t
pET (Prgs 1Y) ™ tiodge (Ey)-

If they are GSpin,,,-conjugate, we are done with (a). Otherwise, we may assume

NHT(pmqv Lf‘/)a LMHodge(gy) € X, (TGSpin)v LMHodge(fy) = H(NHT(pﬂ,qv Ly))

after conjugation. Then (12.7) would imply that spin™ (unodge(&y)) ~ SPIN™ (UHodge(y)) but
this is impossible in view of (std-reg) by comparing the highest weights described in (2.8). (The
highest weights differ only in the s,-coordinate, but (std-reg) tells us that the Hodge cocharacter
has nontrivial s,,-coordinate.) To complete the proof of (a), we check the claim (12.7). It follows
from Proposition 9.9 that for every y : F — Qy,

) ) nn-—1) .
MHT(SPIH6 O Pr, LZ/) ~ Spm6 o (MHodge(Sy) + (4)Slm) s

and the left hand side equals spin®o ugr(pr, ty) by the construction of Hodge-Tate cocharacters.
On the other hand, (A2) and (SO-iii) (and the analogue of the latter for the group GLj) tells
us that

o o nn—1 .
std” o :U'HT(/OTHLZ/) ~ std”o </’LHOdge(§y) + Hsnn) s

-1
N o pur(pr,ty) ~ No (uHOdge(Ey) + n(n4)sim> )

Therefore it boils down to the following assertion: if u1, o € Xy (Tspin) becomes conjugate after
composition with each of spin™, spin~, std®, and N. then y; and po are GSpin,,-conjugate. To
see this, note that a semi-simple conjugacy class v in GSpin,,, (C) is determined by the conjugacy
classes spin® (), N'(7) and std(y) by the table above Lemma 1.1 and Lemma 1.3(5) of [KS16].
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The same statement holds for the cocharacters via the Weyl group-equivariant isomorphism
X* (TGSpin) Xz C* — TGSpin((C)- i

Remark 12.6. Lemma 12.2 tells us that p, is totally odd. Our result also shows that p,(c,) is
as predicted by [BG14, Conj. 3.2.1, 3.2.2] for every infinite place y of F. Indeed, as explained
in §6 of their paper, their conjectures are compatible with the functoriality. Considering the
L-morphism LGSOE/F LSOE/F dual to the inclusion SO, /F — GSO, / , we reduce the

question to the case of SOQn/ in view of the characterization of pw(cy) in terms of pr(px, (cy)).
The latter is conjugate to p,», which is as conjectured by loc. cit. by Remark 6.4.

Remark 12.7. It was easier to determine the Hodge-Tate cocharacter in the GSp-case [KS16],
thanks to the absence of nontrivial outer automorphisms. In particular we did not need to prove
the analogue of Proposition 9.9. Compare with the proof of Theorem 9.1 (iii.a’) of loc. cit.

13. REFINEMENT FOR SQOs,-VALUED (GALOIS REPRESENTATIONS

As an application of our results we improve in this section upon Theorem 6.3 by removing
the outer-ambiguity of the Frobenius conjugacy classes.

Let E/F be a quadratic CM extension of F in case n is odd, and F := F for n even.
E/F

Let SO,
reprebentatlon of SO, / we write Spad(m”) (resp Spaq (7)) for the set of rational prime numbers

p, such that p = 2, p ramifies in F, or 7sz, (resp. mp) is a ramified representation of SOE/ E

be the corresponding group defined above (6.2). If ©” (resp. 7) is an automorphic

(resp. GSOy / ). For other notation, we refer to Section 1.

In order to be able to extend a given cohomological representation 7° of SOE/ F(AF) to a
cohomologzcal representation m of GSOE/ F(AF), the following condition on the central char-
acter w_, =: p2(F)\p2(Ar) — C* is necessary in view of condition (cent) of §9. (If 7 is
{—cohomological with w € Z as in (cent) then all w_, , are trivial, resp. nontrivial, according as
w is even, resp. odd.)

7y
(cent®) The sign character w,, , : p2(Fy) = {£1} — C* does not depend on y|oc.

Theorem 13.1. Let ©° be a cuspidal automorphic representation of SO, / (Ap) satisfying
(cent®), (coh®), (St°), and (std-reg®) of §6. Then there exists a semzszmple Galois represen-
tation (depending on t)
Pr> = Prv,+ T = S02,(Qp) x T'gyp
satisfying (SO-1)—(SO-v) as in Theorem 6.3 as well as the following.
(SO-i+) For every finite prime q of F not above Spaq(m”) U {£},
1 ~ WD (P [ )T,
as SO2,(Qy)-parameters.
(SO-iii+) For every q|¢, the representation Pro g 1S potentially semistable. For each y: ' — C
such that vy induces q, we have puar(pyo o Ly) ~ LuHodge(fb,y).
Condition (SO-i+) characterizes p,» uniquely up to SO, (Qy)-conjugation.
Remark 13.2. Statement (SO-i+) is stronger than (SO-7) in that the statement is up to SOs, (Qy)-
conjugacy, but also weaker as it excludes the places above Spaq(7”) U {¢}. Clearly (SO-iii+)

strengthens (SO-iii). If we drop (std-reg®) from the assumption, then the theorem can be proved
by the same argument but conditionally on Hypothesis 6.10.

Proof of Theorem 13.1. We have ps = (SOE/ F). We claim that the central character w_,
extends (via p2(Ap) C A%) to a Hecke character

x: FP\AR — C*
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such that x,(z) = 2" at every infinite place y for some w € {0,1} that is independent of y.
Indeed, w,, easily extends to a quadratic Hecke character x' : F*\AY% — {£1}. Take w = 0 if
w,» s trivial at infinite places and w = 1 otherwise. Denoting by || the absolute value character
on F*\A7, we see that x := x'| - | is a desired character.

Consider the multiplication map f: GL; X SO2En/F — GSO;EH/F. Let & be such that 7° is

£’-cohomological. Write ¢ for the algebraic character z — 2% of GL; over F. Then (g,£)

descends to an algebraic representation £ of GSOQEn/ o

Let us extend 7” to an irreducible admissible GSOQEH/ F(A r)-representation, by decomposing
7’ = @7’ and taking an irreducible subrepresentation 7, of
E/F
ndGsozn (Fv) b

T,
GLl(FU)Sofn/F(Fv)Xv v

which is semisimple [Xul6, pp.1832-1833]. Take 7, to be unramified for almost all v, and define
7= @) m,. Lemma 5.4 of [Xul8] states that

Z m(m @ w) = Z m(n9),

weX/Y X (r) 9€GS08/ " (Ap)/G(m)asOY/ T (F)

n

where we refer to loc. cit. for some undefined notation that is not important for us. Observe
that for ¢ = 1 the right hand side is positive. Thus the left hand side is positive, and thus we
may (and do) twist 7 so that it is discrete automorphic.

We now check that 7 satisfies the conditions of Theorem A. Since ms, has the same central
and infinitesimal characters as £V, by construction 74, is cohomological according to Lemma 7.2.
By Lemma 7.1, 7 satisfies (St) thus also cuspidal. Condition (std-reg) is implied by (std-reg®)
on 7. Hence we have a Galois representation

pr: T — GSping,, (Q) x Ty p.
such that for every finite F-place q not above Spuq(m) U {¢},
(13.1) pr(Frobg)ss ~ tpx, (Frobg) € GSpiny,, (Q) X Tg/p.

As in the preceding section, we can arrange that p,, = pr° o pr (not just up to outer automor-
phism). The Satake parameter of 7rg is equal to the composition of the Satake parameter of m,
with the natural surjection (cf. [Xul8, Lem. 5.2])

(pr°,id) : GSpiny, (C) x I' — SO9,(C) x I.

In particular (SO-i+) follows from (13.1) for the places not above Spaq(m) U {¢}. Similarly
(SO-iii+) follows from Theorem A (A3)(a).

At this point we have not yet completely proved (SO-i+), as the inclusion Spaq(7°) C Shaa(7)
is strict in general. Thus it remains to treat q above a prime p € Sbad(ﬂ)\Sbad(wb). Consider
for n odd (resp. even) the obvious hyperspecial subgroup (recall q { 2)

{(9,)) € GLon (O ® OR,) x OF, |5 =099 g" (L |5 )g = A\ g ), det(g) = A"}
Kq := < resp.
{(9.0) € GLan(08) x OF, | g+ (1, ™) -9 =A- (1, ") det(g) = X" }

of GSOfn/F(Fq). Define Koq to be the kernel of the similitudes mapping Kq — O;q, (g, A) — A

Then 7y is a ramified representation of GSO2En/ F(Fq), but has nonzero Kog-fixed vectors, on

which K acts through nontrivial characters of K/Koq ~ (’)}X,q. We fix one such character Xg of
K, and do this at every q above p. Now we globalize {Xg}q|p to an algebraic Hecke character
x : F*\A% — C* whose restriction to each (’);q is Xg- Define ' := 7 @ x L.
satisfies the conditions of Theorem A. Moreover, p ¢ Spaq(7') by construction. Therefore (13.1)
is true at each q|p, with 7’ in place of w. Then (SO-i+) for q follows as before. O

Then 7’ also
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14. AUTOMORPHIC MULTIPLICITY ONE

Let E/F be a quadratic CM extension of F' in case n is odd, and E := F for n even. Let SOE/ F

and GSOE/ F be the corresponding groups. If m (resp. 7 ) is an automorphic representation of

GSOQ/ (resp. SO;E/ F), we write m(m) (resp. m(n”)) for its automorphic multiplicity. In this

n n
section we will show that m(7”) and m() are 1 for certain classes of automorphic representations

of SOE/ F and GSO, / (and certain inner forms of those groups). To do this we combine our

results with a potentlal automorphy result, Arthur’s result on multiplicities for SOE/ F, and

Xu’s result on multiplicities for GSOE/ E

Let 7 be a discrete automorphic representation of SOE/ . Arthur gives in the discussion
below [Art13, Thm. 1.5.2] the following result towards the computation of m(n”). Let 1 =
11 8- - B, be the global (formal) parameter of 7° [Art13, 1.4] (cf. Section 6). Technically, 1) is
an automorphic representation 7 of GLa, (AF), isomorphic to an isobaric direct sum of cuspidal
automorphic representations wﬁ of GL,, (Ar), with v; the formal parameter represented by 7r§.
In terms of these parameters Arthur proves in Theorem 1.5.2 a decomposition of the form

L3 (SO " (FNSOL M (AF)) S5 €D P myr

$eT5 (505, ") melly (ey)

as H(SOE/ F) Hecke module. It takes us too far afield to recall all the notation here, but we
emphasize that H(SOE/ F) is the restricted tensor product of the local algebras ’H(SOE/ F( Fy))
consisting of §°-invariant functions [Art13, before (1.5.3)]. Similarly, the local packet va (ey)
consists of 90-0rbits of representations.

Assume 7° o 7 0 6°. Both 7 and 7 o §° map to the same global parameter v, and are
isomorphic as H(SOE/ F) module. Arthur proves my < 2 for all ¢. In particular

(14.1) m(x®) + m(n’ 0 0°) < my < 2.

On the other hand, §° acts on LdlSC(SOE/F( )\SOE/F(AF)), so if 7 appears, then 7” 0 §° also
appears. Hence m(n”), m(n° 0 #°) > 1, forcing m(n”) = 1 and m(n” 0 6°) = 1.

Now assume 7° ~ 7”0 6°. The global parameters ¢ and 1) o §° are locally isomorphic, but not
necessarily globally isomorphic. In this case, Arthur’s result does not give enough information
to compute m(n”). See also [Wan15, Wan19] where this question is studied in more detail.

Proposition 14.1. Assume (coh®), (St°), and (std-reg°). Let p,» be the Galois representation
attached to ©° (Theorem 6.3). Then
(1) my =2 if stdp, is irreducible.
(2) Assume € > 4dn, £ ¢ Spaa(7’) and { is in the Fontaine-Lafaille range.'™ Then m, = 2
only if stdp_, is irreducible.

In particular my = 2 if and only if m % Y.

Remark 14.2. Condition (disc-00) of §6 is built into the setup of this section, but when (disc-oco)
fails, we see from Corollary 6.8 and [Art13, Thm. 1.5.2] that m(n”) = 1 whenever 7° satisfies
(coh®), (St°), and (std-reg®).

Proof. Arthur proves that my, = 2 if and only if the numbers n; are all even ([Art13, ten lines

below Thm 1.5.2]). Since Wgst is a twist of the Steinberg representation, ’R'gSt ~ Sto,_1 H1 up
to character twist by Proposition 6.1 (Ar2). Consequently we have two possible shapes for the
global parameter v: either r =1, ny =2n,or r =2, n; = 1, ng = 2n — 1 up to swapping the
two indices (see argument below (6.3)). Thus my € {1,2} and m(m,) = 2 if and only if 7* is
cuspidal.

1"The Fontaine-Lafaille range means the following: for each embedding A\: F — Q, and each pair of distinct
Hodge-Tate weights a,b € Z of stdp$ relative A, we have |a — b| < £ — 2.
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Clearly, if 7 is not cuspidal, then stdp,» is reducible. This proves (1). Assume / is as in
(2) and (for a contradiction) that 7* is cuspidal but the f-adic representation ry := stdp,, is
reducible. Then r, = ry ® r9 with dim7; = 1 and dimry = 2n — 1, and both r; and r9 are
self-dual. Twisting 7 by a quadratic automorphic character of SO;En/ F(AF) if needed (cf. first
paragraph in the proof of Lemma 7.1 for a local setup), we may assume that r; is the trivial
representation. We will apply the potential automorphy theorem [BLGGT14, Thm. C] to ro.
Firstly, they require ¢ > 2(dim(rq) + 1) = 4n. We check the other hypotheses of that theorem:

o (Unramified almost everywhere). True by (SO-ii) of Theorem 6.3.

e (Odd essential self-duality). This condition is that ry factors through GOs,,—1(Qy) (up to
conjugation) and has totally even multiplier character. By Theorem 6.3, p_, has image in
SO02,(Qy) x Gal(E/F) C 02,(Qy). Consequently ry has image in Oa,—1(Qy) C O2,(Qy)
up to conjugation. The multiplier character of ro is trivial and hence totally even.

e (Potential diagonalizability and regularity). The representation ro|r, is crystalline by
Theorem 6.3 (SO-iv), ¢ is unramified in F/Q, and the Hodge-Tate weights are in the
Fontaine-Lafaille range. Lemma 1.4.3 of [BLGGT14] then assures that r2|r, is poten-
tially diagonalizable. Theorem 6.3 (SO-iii) and (std-reg) imply that ro is regular relative
to every embedding F < Q.

o (Irreducibility). We want r2|q, 7/ p () to be irreducible (with ¢, a primitive £-th root
of unity). This is also true, because 72 has a regular unipotent element in its image, and
is semi-simple (irreducible), and therefore strongly irreducible.

Thus the hypotheses are satisfied. By [Thm. C, loc. cit.] there exists a finite totally real Galois
extension F'/F such that rp|r,, is automorphic. In particular the L-function L(ry,s) has a
meromorphic continuation to the complex plane. In fact, it follows from a Brauer induction
argument (see [HSBT10, pf. of Thm. 4.2] and [Tay04, Sect. 5]) and Jacquet—Shalika’s work
[JS76] that L(ra, s) does not vanish at s = 1. Since r = r; @7y with 1 the trivial representation,
we have the factorization

(14.2) L(n*,s) = Cr(s) - L(ra, s),
where (r(s) is the Dedekind zeta function of F. Since 7* is cuspidal, L(xf,s) is an entire
function. As (p(s) has a pole at s =1 and L(rg,1) # 0, we have a contradiction. O

Proposition 14.3. Let ° be a cuspidal automorphic representation of SOgn/F satisfying (coh®),
(St°) and (std-reg®). Then m(n°) = 1.

Proof. We have 1 < m(n°) < My, 50 if my, = 1 we are done. We now show that m,, = 2 implies
7° % 7 0 °; then the proposition will follow from the argument at (14.1). Take ¢ sufficiently
large so that stdp_, is irreducible (Proposition 14.1). The Zariski closure I of the image of p,,
in PSOa,, is either PSOgy,, SO2,—1, G2 or PGLy. If I # PSOg,,, then stdp, is reducible. Hence
pr» has Zariski dense image in PSOs,. By the Chebotarev density theorem, there exists an
F-prime q where p_, is unramified such that p_, (Frobg)ss is not conjugate to 6°p_, (Frobg)ss. By

(SO-i) at g, the representation 775

is not isomorphic to ﬂg 0 6°. O
Using the work of Xu [Xul8] and our construction of Galois representations, we can prove
for GSOQEJ £ a statement that is very similar to Proposition 14.1:

Proposition 14.4. Let m be a cuspidal automorphic representation of GSOfn/F

coh), (St) and (std-reg). Then m(m) = 1.

satisfying (L-

Proof. (cf. [KS16, Thm. 12.1]). Let 7" be a cuspidal automorphic representation contained
in 7, such that 7° satisfies (coh®), (St°) and (std-reg®). Let Y'(w) be the set of characters
w: GSOL/F (Ap) — C* which are trivial on GSOY/"(F)AXSOE/F (Ap) ¢ GSOL/T (Ap) and
such that 7 ~ 7 ® w. Bin Xu [Xul8, Prop. 1.7] proves that

(14.3) m(m) = mg Y (m)/a(Ss)l;

where @Z is the global parameter of 7 as defined in [Xul8, Sect. 3] (@Z is denoted qA[; there).
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We claim that Y (7) = 1 in (14.3). Let w € Y(7) and let y: I' — Q, be the corresponding
character via class field theory. As ypr and p, have conjugate Frobenius images at almost all
places, we obtain xp, =~ pr by Proposition 5.4, and thus y = 1 by Lemma 5.3. Hence indeed
Y(m)=1.

Let 1) denote the Arthur parameter of 7°. (Our ¢ is ¢ in [Xul8].) Then by [loc. cit.,
Thm. 3.13], the multiplicity mg considered by Xu is the same as Arthur’s multiplicity m.
from [Art13, Thm. 1.5.2]. In [Xul8, Cor. 5.10], Xu states that my = my /Yy (), where Xy (7) :=
Yo/Xo(m,Y), where X is the 2-group {1,6}, and Xy(m,Y) is the group of §' € ¥y such that
T@w ~ 7 for some w € Y (7). As we have Y (7) = 1, we have #Xy () € {1,2} and it is equal
to 2 if and only if 7 % 7%, Thus my = #%y (7) by Proposition 14.1. Now (14.3) simplifies to

m(mr) = my = my /#Xy (m) = 1, which completes the proof. U

Let G be an inner form of the group GSO;EH/F, constructed in (8.7) (so Resp/gG can be

promoted to a Shimura datum). We close this section with computing some automorphic
multiplicities for these inner forms. In particular we prove that the multiplicities a(-) appearing
in Section 9 are in fact equal to 1.

Proposition 14.5. Let 7 be a cuspidal automorphic representation of G(Af), satisfying (coh),
(St) and (std-reg). Then m(mw) = 1.

Proof. The proof is exactly the same as the argument for [KS16, Thm. 12.2]. The main point is

that automorphic representations 7* of G*(Ap) = GSOfn/ F(AF) contributing to the analogue
of [loc. cit., Eq. (14.2)] have automorphic multiplicity 1. Notice that [Xul8, Thm. 1.8] may be
used again, together with the existence of Galois representations (Theorem A), to prove that
for all 7* and 7* contributing to [KS16, Eq. (14.2)] we have 7% ~ 7} O

qst qst”

15. MEROMORPHIC CONTINUATION OF SPIN L-FUNCTIONS

Recall that n € Z>3. Let m be a cuspidal automorphic representation of GSOQE/ F(AF)

n
unramified away from a finite set of places S. Throughout this section, we assume (spin-reg) in

the introduction, which implies (std-reg). Indeed, if the image of (sg, s1,...,5n) € TGspin under
spin® is regular then sq, ..., s, must be mutually distinct, as the weights in spin® are described
as the Weyl orbit(s) of (2.7).

Proposition 15.1. Assume that 7 satisfies (St), (L-coh), and (spin-reg). Let n € Z>3. There
exist a number field M, and a semisimple representation

R\ : T = GLgn o) (M)

for each finite place X\ of My such that the following hold for every e € e¢. (Write £ for the
rational prime below X.)

(1) At each place q of F' not above Spaq U {€}, we have
char(R7 ,(Frobg)) = char(spin®(t¢n, (Frobg))) € Mz [X].

(2) R;7>\|I‘q is de Rham for every q|l. Moreover it is crystalline if 7, is unramified and
q ¢ Shad-

(3) For each q|¢ and each y : F' — C such that vy induces q, we have pur(R; y\|r,,ty) =
L(Spin‘ o prodge(@r, ). In particular pur(Rs \|r,,ty) is a reqular cocharacter for each y.

(4) R\ is pure.

(5) R\ maps into GSpan /o (M x) if n = 2,3 (mod 4) (resp. GOgn o (Mr) if n =
0,1 (mod 4)) for a nondegenerate alternating (resp. symmetric) pairing on the underly-
ing 2" /|e|-dimensional space over My \. The multiplier character p§ : T — GL1(Mx )
(so that RS \ ~ (RS )V @ us) is totally of sign (—1)""=1/2 and associated with w, via
class field theory and L)-
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Proof. Let M be the field of definition of &, which is a finite extension of Q in C. We can
choose M, to be the field of definition for the m*°-isotypic part in the (compact support)
Betti cohomology of H*(Sh™(C), L¢) ® H*(Sh™(C), L¢) with M-coefficient. Then M is a finite
extension of M in C. For each prime ¢ and a finite place A of M, above /£, extend M — C to
an isomorphism Mm » =~ C. Identifying M,,y x>~ Qy, we have ¢y : C 5 Q. Take
R5 \ :=spin® o pg,,.

Then (1), (2), and (3) follow from (A2) and (A3) of Theorem A, respectively. Part (4) follows
from (SO-ii) of Theorem 6.3 via (A2). The first part of (5) holds true since spin® : GSpin,,, —
GLyn-1 is an irreducible representation preserving a nondegenerate symplectic (resp. symmetric)
pairing up to scalar if n is 2 (resp. 0) mod 4, and since spin : GPing,, — GLgn is irreducible and
preserves a nondegenerate symplectic (resp. symmetric) pairing up to scalar if n is 3 (resp. 1)
mod 4. Indeed, the irreducibility is standard and the rest follows from Lemma 4.2 (with the
pairing given as in the lemma). Lemma 4.2 also tells us that p§ = N o pr,,. By (A2),
wr = N o pr,, so pf is associated with wr. As in the proof of part 5 of [KS16, Prop. 13.1],
wr @ | - [M1/2 corresponds to an even Galois character of I'. (We change n(n + 1)/2 in
[KS16] to n(n — 1)/2 here due to the difference in the definition of (L-coh).) It follows that
fiay(cy) = (=1)"=1/2 for every y|oo. O

Now we apply potential automorphy results to the weakly compatible system of R ,.
Theorem 15.2. Theorem D is true.

Proof. This follows from [PT15, Thm. A], which can be applied to the weakly compatible system
{Rjr, ) thanks to the preceding proposition. O

Remark 15.3. We cannot appeal to the potential automorphy as in [BLGGT14, Thm. A] as
R | may be reducible. The point of [PT15] is to replace the irreducibility hypothesis with a
purity hypothesis (guaranteed by (iv) of Proposition 15.1). We take advantage of this.
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APPENDIX A. EXTENDING A GALOIS REPRESENTATION

Here we investigate the problem of extending a G-valued Galois representation to an ‘G-
valued representation over a quadratic extension.

We freely use the notation and terminology of §1. Let E¥ be a CM quadratic extension over
a totally real field F in an algebraic closure F. Set I' = I'p := Gal(F/F), I'g := Gal(F/E),
and I'g/p := Gal(E/F) = {1,c}. Let G be a quasi-split group over F' which splits over E. Let
RS Aut(@) denote the action of ¢ on G (with respect to a pinning over F). By CA}'(@@) X Tgp/p,
we mean the L-group relative to E/F, namely the semi-direct product such that cge = 6(g) for
9 € G(Qp).

Fix an infinite place y of F'. Write ¢, € I'r for the corresponding complex conjugation (well
defined up to conjugacy). Let p/ : T'p — é(@g) be a Galois representation. Define

@p'(y) = p(eyre, ).
1

(Of course ¢~ = ¢,.) We will sometimes impose the following hypotheses.

(H1) Centg(im(p')) = Z(G).
(H2) The map Z(CAJ) — Z(é)‘9 given by z — 260(2) is a surjection on Q,-points.
Lemma A.1. Consider the following statements.
(1) p' extends to some p: Tp — G(Qy) % Ce/p
(2) wp' =00y
(3) there exists g € G(Q,) such that g6(g) = 1 and p’(cywcgl) = g0(p' (7))g~! for every
veTlEg.
Then (3)<(1)=(2). In particular if p is as in (1) then the element g such that p(cy) = g X ¢

enjoys the property of (3). If (H1) and (H2) are satisfied, then we also have (2)=(3), so all
three statements are equivalent.

Remark A.2. We recommend [BCO09, Section A.11] as a useful guide to similar ideas.

Remark A.3. Often (2) is the condition to verify to extend a Galois representation, as we did
in Lemma 12.1 of this paper.
Proof. (3)<(1): First we show (3)=-(1). Define p by p|r,, := p’ and p(yey) := p'(7)gc (v € Tg).
Then
plcy) = gege = gb(g) = 1,
pleyyey ') =0/ (1) = g0(p' (1)g ™",
and using this, one checks that p is a homomorphism on the entire I'. A similar computation
shows (1)=(3) for g such that p(cy) =g % c.
(1)=(2): Write p(cy) = gc with g € G(Qy). For every v € T'g,
“p(v) = pleyyey) = geo' ()™ g™ = gb(p' ()9~
(2)=>(3), assuming (H1) and (H2): There exists g € G(Q,) such that
(A1) Pleyrey) =900 ()™, v€eTE
Putting cyvcljl in place of v, we obtain
P (7) = (cyrey®) = g0g0(p' (1)g ™ )g™" = 90(9)p' (1)(90(9) ™"

~

Hence g6(g) € Z(G) as Centz(p') = Z(G) by (H1). As a central element,
90(9) = g~ (90(9))g = 0(9)g = 0(90(9)),

~

=9
namely ¢0(g) € Z(@)e. By (H2), g0(g) = 26(z) for some z € Z(G). Replacing g with gz~1, we
can arrange that
90(9) = 1.
This does not affect (A.1) so we are done. O
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Lemma A.4. Assume (H1). Then the set ofG conjugacy classes of extensions of p' to T is an
Hl(FE/F, (G)) torsor if nonempty.

Proof. Fix an extension po of p/, which exists by Lemma A.1. If p is another extension of p’,
then set z := po(cy)p(c,) L. Writing po(cy) = go % ¢ and p(c,) = g X ¢, we have zg = go, and
both go, g satisfy the condition of Lemma A.1 (3). It follows that z centralizes 6(im(p ’)), hence
z € Z(G), and also that z0(z) = 1. Thus z defines a Z(G)-valued 1-cocycle on ['p/p, and by
reversing the process, such a cocycle determines an extension of p'.

Let p. be the extension given by z € Z(G) such that z6(z) = 1. It remains to show that
ps ~ po if and only if z = 6(z)/x for some z € Z(G). If p. ~ py then p. = Int(z)py for some
z € G. By (H1), z € Z(G). Evaluating at ¢y, we obtain z7'pg(c,) = xpo(cy)x~t. Therefore
z = 6(x)/x. The converse direction is shown similarly by arguing backward. O

We illustrate assumptions (H1), (H2), and the lemmas in the following examples.

Exzample A.5. Consider G = SOy, (n > 3) with 6 being the conjugation by 9¥° € O2,(Qy) —
SOgn(QZ) as in (2.2). Assume that im(p’) contains a regular element of SO, (Q,). In this
case Z(G) = Z(G ) = {£1}. Then (H2) is trivially false but (H1) is true. To see this, by
assumption, stdo p’ is either irreducible or the direct sum of an irreducible (2n — 1)-dimensional
representation and a character. In the former case (H1) is clear by Schur’s lemma. In the latter

case, again by Schur’s lemma, a centralizer of im(p’) in SO2,(Qy) is contained in (% 120" ! 0) with

a,b € {1} up to 02,(Q,)-conjugacy. Since the determinant equals 1, we deduce that a = b,
i.e., the centralizer belongs to Z(G).

We easily compute Z'(I'gp, Z(G)) = H* (Ce/r, Z(G)) ~ Z/2Z, the nontrivial element send-
ing ¢ to —1. In fact if p extends p’ in the setup of the preceding lemmas, the other extension is
easily described as p ® xg/p, where xg/p: I' = I'g/p 5 {£1}.

Example A.6. The main case of interest for us is when

e G = GSpiny, (n>3),

e 0 is the conjugation by an element of GPina,(Q,) — GSpin,, (Q)),

e im(p’) contains a regular unipotent.
Since Z(G)? = G,, (identified with invertible scalars in the Clifford algebra underlying G
as a GSpin group; see §3), assumption (H2) is satisfied. (The squaring map G,, — Gy, is
clearly surjective on Qg-points.) To check (H1), Cents(im(p’)) is contained in the preimage of
Centgo,, (im(p"°)) via pr° GSpingn — SO2p. Since the latter centralizer is {£1} C SO2,(Qy),
we see that Centg(im(p)) C pr" ' ({£1}) = Z(G ).

In the coordinates for Z(G) of Lemma 2.5, Zl(FE/F,Z(@)) = {(s0,81) : 51 € {£1}, s1 =
s3} =~ pa4, of which coboundaries are {(=1, 1)} ~ py. (The first identification is given by
taking the image of ¢.) Hence H'(I'fp, Z(G)) ~ Z/2Z. Let ¢ = (¢4, —1) € Z(G), where (4
is a primitive fourth root of unity, cf. Lemma 3.7. If p is an extension of o', then the other
extension (up to G- conjugacy) is described as p ® x, where x : I' = Z(G ) x {1, c} is inflated
from I'g = {1,¢ x c}. Notice that pr° oy = XE/F> for xg/r as in the preceding example.

Exzample A.7. When studying Galois representations arising from automorphic representa-
tions on a unitary group U, in n variables, two target groups appear in the literature: the
group G, in [CHTO8, §2.1] and the C-group of U, in [BG14]; the two are isogenous as ex-
plained in [BG14, §8.3]. The latter is the L-group of a G,,-extension of U,; it does not satisfy
(H2). The former is not an L-group, but still a semi-direct product (GL;,, x GL1) x I'g/p, with
c(g, 1) = (Prg~t®, 1, ) for an anti-diagonal matrix ®, € GL,. As such, the discussion in this
appendix goes through for G,. An easy computation shows that G, satisfies (H2) and that
H'(Tg/r, Z(GLy x GL1)) = {1} for the given Galois action. Thus provided that p’ satisfies
(H1) (e.g., if p’ is irreducible), an extension of p’ exists if and only if %y’ ~ 6o p/, and the
extension is unique up to conjugacy. Compare this with [CHTO08, Lem. 2.1.4] (which allows a
general coefficient field of characteristic 0).
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APPENDIX B. ON LOCAL A-PACKETS OF EVEN SPECIAL ORTHOGONAL GROUPS

Let F be a finite extension of Q,. Suppose that I = F' or that F is a CM quadratic extension
of F. Let xg/p : F* — {£1} denote the quadratic character associated with E/F via class

field theory. Let G := SOE/ denote the quasi-split form of the split group SOs,, over F' twisted
by Xg/p. Write Outy(G) := 02,(C)/SO04,(C) for the outer automorphism group on SOs,,(C).
Denote by 1 and St the trivial and Steinberg representations of G(F'). We aim to identify local
A-packets containing each of 1 and St.

Let Lp := Wg x SU(2) denote the local Langlands group. Write ¥*(G) for the isomorphism
classes of extended A-parameters, that is, continuous morphisms v : Lr x SU(2) — G such
that 9|z, is an L-parameter. (Two A-parameters are considered isomorphic if they are in the
same G-orbit.) Write U(G) for the subset of ¥ (G) consisting of ¢ € ¥ (G) such that the
image of 1 (Lr) in SO2,(C) x T'g/p is bounded. (Such a property is @-invariant.) The set of
Outx (G)-orbits in UH(G) (resp. ¥(G)) is denoted by ¥*(G) (resp. ¥(G)). The group £ x SU(2)
admits the involution permuting the two SU(2)-components (acting as the identity on WF) The
involution induces an involution on each of U+ (G) and ¥(G), to be written as 1 V.

We say ¢ € \If+(G) is square-integrable if v is stabilized by at most finitely many elements
of G. Then 1 lies in U(G). To see this, let w € W be a lift of (geometric) Frobenius. Then
(w)™ centralizes the image of ¢ for some m € Z>; as in [Del73, proof of Lem. 8.4.3]. Write
Ir C W for the inertia subgroup. It follows that, replacing m with a suitable multiple, ¥ (w)
has trivial image in SO2,(C) x I'g;p. Since Ir x SU(2) x SU(2) C Lr x SU(2) has already
bounded image in SO, (C) % T' g/ under ¢, we see that ¢ € ¥(G). Denote by ¥5(G) the subset
of ¥(G) consisting of square-integrable members.

Define t,iv € ¥(G) to be the map (up to @—conjugacy) that is trivial on £ and the principal
embedding on the SU(2)-factor outside L. Concretely, the latter is the unique embedding (up
to isomorphism) whose composition with std : SOg,, <+ GLa, is Sym?"~2? @ 1, where Sym?"~2
(resp. 1) denotes the (2n—2)-th symmetric power (resp. trivial) representations of SU(2). Write
gt 1= @Zva Then iy and s, are Outy (G)-stable.

To every ¢ € U(G), Arthur [Art13, Thm. 1.5.1] assigned an A-packet I1(1)), a finite set con-
sisting of Out v (G)-orbits of irreducible unitary representations of G(F). Below loc. cit. he also
defines T1(1)) for 1 € UH(G), consisting of Outy (G)-orbits of parabolically induced representa-
tions of G(F) (which need not be irreducible or unitary).

Proposition B.1. Let ¢ € @*(G). The following are true.

(1) 1 € M(yiy) and St € T(tgy).
(2) If1 (resp. St) is a direct summand of a member of IL()) then ¥ = iy (Tesp. ¥ = st ).

Remark B.2. We learned the argument for the second part from [MS14, Prop. 8.2], where a
similar statement is proved for the symplectic group.

Proof. (1) We have a number field F, a finite place q, and a quasi-split form G of the split SOa,
over F, such that Fy ~ F and Gy ~ G. Arthur’s global theorem [Art13, Thm. 1.5.2] assigns a
global parameter ¢ whose packet contains the trivial representation 1. of G (Afp). Considering
the Satake parameters at almost all places, we identify ¢) = (1 X wv,—1) B(1Xwq) in Arthur’s
notation [Art13, §1.4], where v; denotes the i-dimensional irreducible representation of SU(2).
From this, we see that qu = v It is part of the global theorem that the g-component of 1
belongs to f[(wq) In other words, 1 € f[(wmv). Since the involution v 15 changes members
of A-packets by the Aubert involution, we deduce that St € ﬁ(wSt), since the Aubert involution
sends 1 to St.

(2) It is enough to treat the case of St, as the other case follows via the Aubert involution.
Assume that St is a direct summand of 7 € IT*(¢)). We claim that 1 is square-integrable (so
that ¢ € \i’g(G)) If false, then ¢ comes from a square integrable parameter on a proper Levi
subgroup of G. The construction of packets in [Art13] (see the proof of Prop. 2.4.3 and the
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discussion around (1.5.1) therein) tells us that St appears as a direct summand in a parabolic
induction, namely

. G(F
(B.1) mdPEF;

(o) =St @7,

where P is a proper parabolic subgroup of G with Levi factor M, ¢ a finite-length representation
of M(F), and 7’ some representation of G(F'). Let us show that this is impossible. By devissage,
replacing o with an irreducible subquotient and renaming 7’ if needed, we may assume that o is
irreducible while maintaining the form of (B.1). Denote by Jp the normalized Jacquet module

relative to P. By Frobenius reciprocity,
0 75 HOIHG(F) (St, ind

S0 0 = StMél_Jl/ 2 However indggg(a) is reducible and has St as a unique quotient, thus

G(F)

P(F)(O-> = HOmM(F)(StM6;1/2, O'),

contradicting (B.1).

Before we proceed, we recall [Mg09, §4.5] (applicable since Moeglin’s A-packets are compatible
with Arthur’s by the main results of [Xul7]). Let ¢1,¢o € U(G). If TI(¢h1) NII(¢)2) is nonempty,
then 11 o A =15 0o A, where A is the diagonal embedding

Wr x SU(2) = Lp x SU(2) = Wp x SU(2) x SU(2), (w,z)— (w,z,x).
In our case, (1)) NI (ts;) # 0. Hence ¥ o A ~ 1g; o A. In particular,

(std o9 0 A)|su@)xsuz) = (std o ¥ 0 A)|sy@)xsu(z) =~ Sym™ ? @ 1.

It follows via basic representation theory of SU(2) that ¢ is trivial on the first SU(2) and
Sym?"~2 @ 1 on the second SU(2), or the other way around. That is, 1 ~ tbg; or ¥ =~ Piy.
If ¢ ~ 9t then we are done, so suppose that 1) ~ 9yi,. By the initial assumption, St C 7

for some 7 € T(tiv). Now consider F', G, and ¢ = (1 K g, 1) B (1 K v) in the proof of (1)
above. Arthur’s global packet f[(w) consists of representations 7 of G(A ) such that ”% lies in
TI(¢,) at every place v. Thus there exists 7 € TI(¢)) such that 74, =~ St. On the other hand,
7, =~ 1 at almost all v (where 7 is unramified).

For our v, the group S¢ defined in [Art13, §1.4] is trivial. This means that, by [Art13,

Thm. 1.5.2], every member of II(¢)) is a direct summand in the discrete part of the space of
L?-automorphic forms on G(A ). In particular 7 is a G(Aj)-subrepresentation in the discrete
part. This implies that dim7 = 1 by an approximation theorem for G since dim7, = 1 for
almost all v, contradicting dim 74, = 0. O
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