Midterm Galois Theory 2019

March 17, 2020

- **1.** Let $K \subset L$ be an algebraic field extension.
 - 1. Prove that for $\alpha, \beta \in L$ we have $[K(\alpha, \beta) : K] \leq [K(\alpha) : K] \cdot [K(\beta) : K]$.
 - 2. Suppose that $[K(\alpha) : K]$ and $[K(\beta) : K]$ are co-prime. Show that in fact equality hold in (1).
- 2. Correct the following wrong theorem and give a proof of the corrected theorem.

Theorem. Let $K \subset L$ be a field extension and $\alpha \in L$. Then there is a unique monic and irreducible polynomial $f_K^{\alpha} \in K[X]$ which has α as a root. Suppose $K(\alpha) \subset L$ is the subfield generated by α . The map

$$K[X]/(f_K^{\alpha}) \to K(\alpha), g \mod f_K^{\alpha} \mapsto g(\alpha)$$

is a field isomorphism and the degree $[K(\alpha) : K]$ is equal to the degree of f_K^{α} as a polynomial in K[X].

- **3.** Determine the minimal polynomial of $\sqrt{2} + \sqrt{3} \in \mathbb{R}$ over \mathbb{Q} .
- **4.** Let $f = X^4 + 1 \in \mathbb{Z}[X]$.
 - 1. Show f is irreducible in $\mathbb{Q}[X]$.
 - 2. Let α be a root of f in an algebraic closure of \mathbb{Q} and write $K = \mathbb{Q}(\alpha)$. Factor the polynomial $X^4 4 \in K[X]$ in irreducible factors in K[X].

5. Let K be the field of fractions of the polynomial ring $\mathbb{Q}[x, y, z]$ in three variables x, y and z over \mathbb{Q} . Define

$$\alpha = x + y + z, \quad \beta = x^2 + y^2 + z^2, \quad \gamma = x^3 + y^3 + z^3 \in K$$

and let $M = \mathbb{Q}(\alpha, \beta, \gamma) \subset K$ be the subfield generated by these elements.

- 1. Is the element $x \in K$ algebraic over M. If so, determine the minimal polynomial $f_M^x \in M[X]$.
- 2. Determine the trancendence degree of M over \mathbb{Q} .