PARI-GP Reference Card

Starting & Stopping GP

to enter GP, just type its name:
```
  gp
```
to exit GP, type
```
  q or quit
```

Help

describe function
```
  ?function
```
described extended description
```
  ??function
```
list of relevant help topics
```
  ??pattern
```

Input/Output & Defaults

output previous line, the lines before
```
  output previous line, the lines before
```
list of relevant help topics
```
  list of relevant help topics
```
describe function
```
  function
```
to exit GP, type
```
  gp
```

Starting & Stopping GP

Starting & Stopping GP

```
  gp
```
```
  q or quit
```

Metacommands

toggle timer on/off
```
  #
```
toggle timer on/off
```
  #
```
print time for last result
```
  \n
print time for last result
```
 \n```
print %n in raw format
```
  \n
print %n in raw format
```
 \n```
print %n in pretty format
```
  \n
print %n in pretty format
```
 \n```
print defaults
```
  \n
print defaults
```
 \n```
print %n in raw format
```
  \n
print %n in raw format
```
 \n```
print defaults
```
  \n
print defaults
```
 \n```
for forvec
```
  \n
for forvec
```
 \n```
for forvec
```
  \n
for forvec
```
 \n```
create empty list of maximal length
```
  \n
create empty list of maximal length
```
 \n```
delete all components of list
```
  \n
delete all components of list
```
 \n```
start new iteration of innermost enclosing loops
```
  \n
start new iteration of innermost enclosing loops
```
 \n```
new name of function
```
  \n
new name of function
```
 \n```
new name of function
```
  \n
new name of function
```
 \n```
break
```
  \n
break
```
 \n```
break
```
  \n
break
```
 \n```
next
```
  \n
next
```
 \n```
next
```
  \n
next
```
 \n```
return from current subroutine
```
  \n
return from current subroutine
```
 \n```
return from current subroutine
```
  \n
return from current subroutine
```
 \n```
evaluation
```
  \n
evaluation
```
 \n```
Elliptic Curves

Elliptic curve initially given by 5-tuple \(E = \{a_1, a_2, a_3, a_4, a_6\} \).

Points are \([x, y]\), the origin is \([0, 0]\).

Initialize elliptic struct. \(ell \) create \(\text{ellinit}(E, \{f\}) \) \(a_1, a_2, a_3, a_4, a_6, b_2, b_4, b_6, c_4, c_6, \text{disc.} \) This data can be recovered by typing \(\text{elltors} \).

- \(E \) defined over \(\mathbb{R} \)
 - \(x \)-coordinates of points of order 2
 - real and complex periods
 - associated quasi-periods
 - volume of complex lattice
- \(E \) defined over \(\mathbb{Q_p} \)
- \(\text{elltors} \)
- \(\text{Tate}^{'s} \) \([u^2, u, q]\)
- \(\text{Mestre}^{'s} \) \(w \)
- change curve \(E \) using \(v = \{u, r, s, t\} \)
- change point \(z \) using \(v = \{u, r, s, t\} \)
- cond, min mod, Tamagawa num \(\{N, v, c\} \)
- Kodaira type of \(p \) fiber of \(E \)
- add points \(z_1 + z_2 \)
- subtract points \(z_1 - z_2 \)
- compute \(n \)
- check if \(z \) on \(E \)
- order of torsion point \(z \)
- torsion subgroup with generators
- \(y \)-coordinates of point \((s) \) for \(x \)
- canonical bilinear form taken at \(z_1, z_2 \)
- canonical height of \(z \)
- height regulator matrix for pts in \(p \)
- \(p \)th coeff \(a_p \) of \(L \)-function, \(p \) prime
- \(k \)th coeff \(a_k \) of \(L \)-function
- vector of first \(n \) \(a_q \)’s in \(L \)-function

Elliptic & Modular Functions

- arithmetic-geometric mean \(\text{agm}(x, y) \)
- \(\text{ellj}(x) \)
- \(\text{weierstrass}^\sigma \) function
- \(\text{weierstrass}^v \) function
- \(\text{weierstrass}^\zeta \) function
- \(\text{modified Dedekind} \eta \) func. \(\Pi(1 - q^n) \)
- \(\text{Jacobi sine theta function} \)
- \(k \)-th derivative at \(x = 0 \) of \(\text{theta}(q, z) \)
- \(\text{weber}^\zeta \) function
- \(\zeta(n) \)

General Quadratic Forms

- \(\text{create} \ ax^2 + by^2 + cg^2 \) (distance \(d \))
- \(\text{reduce} \ x(s = \sqrt{d}, l = x) \)
- \(\text{polred} \) (primitive forms of \(\omega \))
- \(\text{polredabs} \) (primitive forms of \(\omega \))
- \(\text{polredabs} \) (prime forms of \(\omega \))
- \(\text{class} \) for \(\text{class} \) of \(\omega \)

Quadratic Fields

- \(\text{polred} \) (quadratic number \(\sqrt{-1 + \sqrt{d}} \))
- \(\text{polredabs} \) (quadratic number \(\sqrt{-1 + \sqrt{d}} \))
- \(\text{regulator} \) of \(\text{real} \) \(\text{fundamental} \) unit in \(\text{real} \) \(\text{quadratic} \) field
- \(\text{class} \) group of \(\text{class} \) for \(\text{quadratic} \) field
- \(\text{class} \) for \(\text{field} mod \) of \(\text{quadratic} \) field

General Number Fields: Initializations

- \(\text{nf} \) members: polynomial defining \(\sqrt[4]{f(\theta)} = 0 \)
- \(\text{nf} \) number of \(\text{real/complex} \) places
- \(\text{nf} \) discriminant of \(\text{nf} \)
- \(\text{t2} \) matrix
- \(\text{vector} \) of roots of \(f \)
- \(\text{integral} \) basis of \(\mathbb{Z}_K \) as powers of \(\theta \)
- \(\text{setup} \) different
- \(\text{recompute} \) using current precision
- \(\text{nf} \) relative \(\text{nf} \) given by \(g = 0 \) over \(K \)
- \(\text{nf} \) init big number field structure

Binary Quadratic Forms

- \(\text{create} \ ax^2 + by^2 + cg^2 \) (distance \(d \))
- \(\text{reduce} \ x(s = \sqrt{d}, l = x) \)
- \(\text{polred} \) (primitive forms of \(\omega \))
- \(\text{polredabs} \) (primitive forms of \(\omega \))
- \(\text{reduce} \ x(s = \sqrt{d}, l = x) \)
- \(\text{polred} \) (prime forms of \(\omega \))
- \(\text{class} \) for \(\text{field} mod \) of \(\text{quadratic} \) field
Simple Arithmetic Invariants (nf)

Elements are rational numbers, polynomials, or col-