Every two K3 surfaces are deformation equivalent

Juultje Kok

reference: Le Potier; Géométrie des surfaces K3 modules et périodes, Astérisque No. 126, 1985; pages 79-89

21 oktober 2015
Every two K3 surfaces are deformation equivalent

Theorem

Every two K3 surfaces are deformation equivalent

Proof: Take a K3 surface X_0 with $\phi : H^2(X_0, \mathbb{Z}) \sim \Lambda_{K3}$. Let U be an open connected neighbourhood of X_0 in the period domain.

Theorem

The subset of K3 surfaces of type g lies dense in $\text{Im}(\alpha) \subseteq \Omega$.

Definition

A K3 surface X is called of type g if the Picard group of X is generated by an element L with $(L, L) = 2g - 2$.

Juultje Kok reference: Le Potier; Géométrie des surfaces K3 modules et périodes, Astérisque No. 126, 1985; pages 79-89

Every two K3 surfaces are deformation equivalent
Every two K3 surfaces are deformation equivalent

Theorem

Every two K3 surfaces are deformation equivalent

Proof: Take a K3 surface X_0 with $\phi : H^2(X_0, \mathbb{Z}) \simeq \Lambda_{K3}$. Let U be an open connected neighbourhood of X_0 in the period domain.

Theorem

The subset of K3 surfaces of type g lies dense in $\text{Im}(\alpha) \subseteq \Omega$.

Theorem

*Every K3 surface of type 3 is a smooth quartic in \mathbb{P}^3."

There exist a quartic surface X' in U.

Local Torelli theorem $\iff X_0$ and X' are deformation equivalent.

Theorem

Every two smooth quartic surfaces are deformation equivalent.
The subset of K3 surfaces of type g lies dense in $\text{Im}(\alpha) \subseteq \Omega$

Proof: Let $U \neq \emptyset$ be a open subset of $\text{Im}(\alpha) \subseteq \Omega$. Define for a subgroup $G \subseteq \Lambda_{K3}$ the following:

$$\Sigma(G) := \{ x \in \mathbb{P}(\Lambda_C) : (x, x) = 0 \text{ and } (x, g) = 0 \ \forall g \in G \}.$$

Proposition

Let $U \subseteq K_{20}$ be a non-empty open subset. Then there exists a primitive $\beta \in \Lambda_{K3}$ such that:

i) $(\beta, \beta) = 2g - 2,$

ii) $U \cap \{ z \in \mathbb{P}(\Lambda_C) : (\beta, z) = 0 \} \neq \emptyset$

$$\implies \Sigma(\beta \mathbb{Z}) \cap U \neq \emptyset.$$
The subset of K3 surfaces of type g lies dense in $\text{Im}(\alpha) \subseteq \Omega$

Define: $G_\beta = \{ H \subseteq \Lambda_{K3} : \beta \in H \text{ and } H \neq \beta \mathbb{Z} \}$. We have:

- every $H \in G_\beta$ has rank ≥ 2
- G_β is countable

Then it follows:

$$(\Sigma(\beta \mathbb{Z}) \cap U) \notin \bigcup_{H \in G_\beta} \Sigma(H).$$

Now take an element $(z) \in (\Sigma(\beta \mathbb{Z}) \cap U) \setminus \bigcup_{H \in G_\beta} \Sigma(H)$. Then (z) is the period of some K3 surface X. We have:

$$\text{Pic}(X) \simeq H^{1,1}(X) \cap H^2(X, \mathbb{Z}) \quad \text{(Lefschetz)}$$
$$\simeq \{ \gamma \in \Lambda_{K3} : (\gamma, z) = 0 \}$$

Juultje Kok reference: Le Potier; Géométrie des surfaces K3 modules et périodes, Astérisque No. 126, 1985; pages 79-89

Every two K3 surfaces are deformation equivalent
The subset of K3 surfaces of type g lies dense in $\text{Im}(\alpha) \subseteq \Omega$

This gives us: $\beta \in \text{Pic}(X)$ and $(z) \in \Sigma(\text{Pic}(X))$.

$$\implies \text{Pic}(X) \not\subseteq G_\beta$$

Therefore $\text{Pic}(X) \simeq \beta \mathbb{Z}$, hence U contains a K3 surface X of type g.

Juultje Kok reference: Le Potier; Géométrie des surfaces K3 modules et périodes, Astérisque No. 126, 1985; pages 79-89

Every two K3 surfaces are deformation equivalent
Every K3 surface of type 3 is isomorphic with a quartic in $\mathbb{P}^3_\mathbb{C}$.

Proof: Let X be a K3 surface of type 3, and L a generator of $\text{Pic}(X)$ with $(L, L) = 4$. We can assume that $h^0(X, L) \neq 0$. We have:

$$SD : \quad h^2(X, L) \simeq h^0(X, L^\vee) = 0$$

$$RR : \quad \chi(L) = h^0(X, L) - h^1(X, L) = \frac{1}{2}(L, L) + 2 = 4$$

Lemma

The linebundle L is globally generated.
Every K3 surface of type 3 is quartic in $\mathbb{P}^3_{\mathbb{C}}$

Corollary

The linebundle L is ample, a generic curve $Y \in |L|$ is smooth, and $h^1(X, L) = 0$.

So the linebundle gives a finite morphism

$$X \xrightarrow{\phi_L} X' \rightarrow \mathbb{P}^3_{\mathbb{C}} = \mathbb{P}(H^0(X, L)^\vee) \text{ with } \phi^*_L(O(1)) \simeq L.$$

We have:

$$\deg(X') \cdot \deg(\phi_L) = (L, L) = 4$$
Every K3 surface of type 3 is quartic in \mathbb{P}^3_C

1. **Y is non-hyperelliptic**: $\deg(\phi_L) = 1$
 \[\implies \deg(X') = 4.\]

2. **Y is hyperelliptic**: $\deg(\phi_L) = 2$
 \[\implies X'$ is a irreducible quadric surface in \mathbb{P}^3.\]

 (a) **X' is smooth**: $X' \cong \mathbb{P}^1 \times \mathbb{P}^1$ and $\text{Pic}(X') \cong \mathbb{Z} \times \mathbb{Z}$.
 But then $O(1)|_{X'} \cong O(0, 1) \otimes O(1, 0)$,
 \[\implies \phi^*_L(O(1)) \cong L \otimes^m: \text{contradiction}.\]

 (b) **X' is singular**: X' is a cone in s, $\text{Pic}(X' \setminus \{s\}) \cong L(\gamma)\mathbb{Z}$.
 But then $O(1)|_{X' \setminus \{s\}} \cong L(2\gamma)$
 \[\implies \phi^*_L(O(1)) \cong L \otimes^{2m}: \text{contradiction}.\]

Hence, X is isomorphic to a quartic surface in \mathbb{P}^3_C. □

Juultje Kok reference: Le Potier; Géométrie des surfaces K3 modules et périodes, Astérisque No. 126, 1985; pages 79-89

Every two K3 surfaces are deformation equivalent
Every 2 smooth quartics in \mathbb{P}^3 are deformation equivalent.

Theorem

Every 2 smooth quartic surfaces in \mathbb{P}^3 are deformation equivalent.

Proof: A quartic surface $X \subseteq \mathbb{P}^3_{\mathbb{C}}$ is given by an equation:

$$a_0X^4 + \ldots + a_3W^4 + a_4X^2Y^2 + \ldots + a_{34}XYZW.$$

So we get a morphism: $\mathbb{P}^3_{\mathbb{C}} \supset U$

$$\downarrow \quad \downarrow$$

$$\{\text{quartics}\} \supset \{\text{smooth quartics}\}$$

U is an open and connected subset of $\mathbb{P}^3_{\mathbb{C}}$, hence all quartic surfaces are deformation equivalent.
Proposition

Let $U \subseteq K_{20}$ be a non-empty open subset. Then there exists a primitive $\beta \in \Lambda_{K3}$ such that:

i) $(\beta, \beta) = 2g - 2$,

ii) $U \cap \{z \in \mathbb{P}(\Lambda_{\mathbb{C}}) : (\beta, z) = 0\} \neq \emptyset$

Lemma

The linebundle L is generated by global sections.

Corollary

The linebundle L is ample.

Corollary

We have $h^1(X, L) = 0$.

Juultje Kok reference: Le Potier; Géométrie des surfaces K3 modules et périodes, Astérisque No. 126, 1985; pages 79-89

Every two K3 surfaces are deformation equivalent
Proposition

Let $U \subseteq K_{20}$ be a non-empty open subset. Then there exists a primitive $\beta \in \Lambda_{K3}$ such that:

i) $(\beta, \beta) = 2g - 2$,

ii) $U \cap \{z \in \mathbb{P}(\Lambda_{\mathbb{C}}) : (\beta, z) = 0\} \neq \emptyset$

Proof: Define $\Sigma := \{(\alpha, z) \in \mathbb{P}(\Lambda_{\mathbb{C}}) \times K_{20} : (\alpha, z) = 0\}$.

\[
\begin{array}{ccc}
\Sigma & \xrightarrow{p_2} & K_{20} \supseteq U \\
\downarrow p_1 & & \\
\mathbb{P}(\Lambda_{\mathbb{R}}) & \xrightarrow{i} & \mathbb{P}(\Lambda_{\mathbb{C}})
\end{array}
\]

$V := p_1(p_2^{-1}(U))$ is open. One can show: $i^{-1}(V) \cap Q \neq \emptyset$.

Lemma

Let $Q = \{x \in \mathbb{P}(\Lambda_{\mathbb{R}}) : (x, x) = 0\}$ and V an open subset of $\mathbb{P}(\Lambda_{\mathbb{R}})$ with $V \cap Q \neq \emptyset$. Then V contains an element (β) with $\beta \in \Lambda_{K3}$, such that β is primitive and $(\beta, \beta) = 2g - 2$.
Proposition

Let $U \subseteq K_{20}$ be a non-empty open subset. Then there exists a primitive $\beta \in \Lambda_{K3}$ such that:

i) $(\beta, \beta) = 2g - 2$,

ii) $U \cap \{z \in \mathbb{P}(\Lambda_{\mathbb{C}}) : (\beta, z) = 0\} \neq \emptyset$

Proof: Define $\Sigma := \{((\alpha), (z)) \in \mathbb{P}(\Lambda_{\mathbb{C}}) \times K_{20} : (\alpha, z) = 0\}$.

\[
\begin{array}{ccc}
\Sigma & \xrightarrow{p_2} & K_{20} \supseteq U \\
\downarrow p_1 & & \downarrow \\
\mathbb{P}(\Lambda_{\mathbb{R}}) & \xrightarrow{i} & \mathbb{P}(\Lambda_{\mathbb{C}})
\end{array}
\]

$V := p_1(p_2^{-1}(U))$ is open. One can show: $i^{-1}(V) \cap Q \neq \emptyset$.

\exists a primitive $\beta \in \mathbb{P}(\Lambda_{K3})$ with $(\beta, \beta) = 2g - 2$. We also have:

$i(\beta) \in V \implies \exists u \in U$ with $(\beta, u) = 0$.

Juultje Kok reference: Le Potier; Géométrie des surfaces K3 modules et périodes, Astérisque No. 126, 1985; pages 79-89

Every two K3 surfaces are deformation equivalent
Lemma

Let \(Q = \{ x \in \mathbb{P}(\Lambda_{\mathbb{R}}) : (x, x) = 0 \} \) and \(V \) an open subset of \(\mathbb{P}(\Lambda_{\mathbb{R}}) \) with \(V \cap Q \neq \emptyset \). Then \(V \) contains an element \((\beta)\) with \(\beta \in \Lambda_{K3} \), such that \(\beta \) is primitive and \((\beta, \beta) = 2g - 2\).

Proof:

Let \(B = \{ \beta \in \Lambda_{K3} : (\beta, \beta) = 2g - 2 \text{ and } \beta \text{ is primitive} \} \),

\((B)\) the image of \(B \) in \(\mathbb{P}(\Lambda_{\mathbb{R}}) \), and

\[F = \{ \text{limit points of } (B) \} = (\overline{B}) \setminus (B)^0. \]

Claim: \(F \subseteq Q \).

Suppose \((\beta_i) \to \beta \) in \(\mathbb{P}(\Lambda_{\mathbb{R}}) \) with \(\beta_i \in \Lambda_{K3}, \beta_i^2 = 2g - 2, \) and \(\beta^2 \neq 0 \). We can choose \(\beta \) such that \(\beta^2 = \beta_i^2 \).

\[(\beta_i) \to \beta \iff \lambda_i \beta_i \to \beta \text{ in } \Lambda_{\mathbb{R}} \]

Since \(\lambda_i^2 \beta_i^2 \to \beta^2 \) we can assume \(\lambda_i = 1 \). But \(\Lambda_{K3} \) is discrete, so the sequence \(\beta_i \) must become constant: \textbf{contradiction}
In fact we have $F = Q$:

Lemma

The image of the subset \(\{ x \in \Lambda_{K3} : (x, x) = 0 \} \) lies dense in Q. Furthermore, the orbits of $O(\Lambda_{K3})$ lie dense in Q.

So if $V \subseteq \mathbb{P}(\Lambda_{\mathbb{R}})$ open and $V \cap Q \neq \emptyset$, then V contains a limitpoint of (B).

\[\implies V \text{ contains a } \beta_i \in (B). \]
Lemma

The linebundle L is generated by global sections.

Proof: Let s be a non-trivial global section of L. The section s defines a reduced and irreducible curve $Y \subseteq X$. We have:

$$ Bs|L| = \bigcap_{s' \in H^0(X,L)} \mathcal{Z}(s') \subseteq Y $$

The following sequence is exact:

$$ 0 \rightarrow \mathbb{C} \rightarrow H^0(X,L) \rightarrow H^0(Y,L|_Y) \rightarrow H^1(X,\mathcal{O}_X) = 0 \rightarrow .. $$

Lemma

Let Y be a reduced irreducible curve of genus $g \geq 1$ on a compact complex surface X. Then the linebundle $\omega_Y = (\omega_X \otimes \mathcal{O}(Y))|_Y$ is globally generated.
Corollary

The linebundle L is ample.

Proof: "L is a ample linebundle $\iff \phi_L : X \to \mathbb{P}(H^0(X, L)^\vee)$ is a finite morphism"

Suppose ϕ_L isn’t a finite morphism.

$\implies \exists$ curve $C \subseteq X$ on which ϕ_L is constant.

$\implies (C, C) < 0.$

But L generates $\text{Pic}(X)$ and $(L, L) = 4$: contradiciton.

Juultje Kok reference: Le Potier; Géométrie des surfaces K3 modules et périodes, Astérisque No. 126, 1985; pages 79-89

Every two K3 surfaces are deformation equivalent
Corollary

We have $h^1(X, L) = 0$.

Proof: Let Y be a smooth curve on X. RR and SD gives us:

$$h^1(Y, \omega_Y) = h^0(Y, \omega_Y) - \deg(\omega_Y) - (1 - g)$$
$$= h^1(Y, \mathcal{O}_Y) - 2g + 2 - 1 + g$$
$$= 1$$

Consider the short exact sequence

$$0 \rightarrow \mathcal{O}_X \rightarrow L \rightarrow L|_Y \simeq \omega_Y \rightarrow 0.$$ This gives the exact sequence:

$$0 \rightarrow H^1(X, L) \rightarrow \mathbb{C} \rightarrow \mathbb{C} \rightarrow 0 = H^2(X, L) \simeq H^0(X, L)^\vee$$

Hence we have $H^1(X, L) \simeq 0$.

Juultje Kok reference: Le Potier; Géométrie des surfaces K3 modules et périodes, Astérisque No. 126, 1985; pages 79-89

Every two K3 surfaces are deformation equivalent