Every two K3 surfaces are deformation equivalent

Juultje Kok

reference: Le Potier; Géométrie des surfaces K3 modules et périodes, Astérisque No. 126, 1985; pages 79-89

21 oktober 2015

Every two K3 surfaces are deformation equivalent

Theorem

Every two K3 surfaces are deformation equivalent

Proof. Take a K3 surface X_0 with $\phi: H^2(X_0, \mathbb{Z}) \simeq \Lambda_{K3}$. Let U be an open connected neighbourhood of X_0 in the period domain.

Theorem

The subset of K3 surfaces of type g lies dense in $Im(\alpha) \subseteq \Omega$.

Definition

A K3 surface X is called of type g if the Picard group of X is generated by an element L with (L, L) = 2g - 2.

Every two K3 surfaces are deformation equivalent

Theorem

Every two K3 surfaces are deformation equivalent

Proof. Take a K3 surface X_0 with $\phi: H^2(X_0, \mathbb{Z}) \simeq \Lambda_{K3}$. Let U be an open connected neighbourhood of X_0 in the period domain.

Theorem

The subset of K3 surfaces of type g lies dense in $Im(\alpha) \subseteq \Omega$.

Theorem

Every K3 surface of type 3 is a smooth quartic in \mathbb{P}^3 .

There exist a quartic surface X' in U.

Local Torelli theorem $\implies X_0$ and X' are deformation equivalent.

Theorem

Every two smooth quartic surfaces are deformation equivalent.

The subset of K3 surfaces of type g lies dense in $Im(\alpha)$

Theorem

The subset of K3 surfaces of type g lies dense in $Im(\alpha) \subseteq \Omega$

Proof. Let $U \neq \emptyset$ be a open subset of $\text{Im}(\alpha) \subseteq \Omega$. Define for a subgroup $G \subseteq \Lambda_{K3}$ the following:

$$\Sigma(G) := \{x \in \mathbb{P}(\Lambda_{\mathbb{C}}) : (x,x) = 0 \text{ and } (x,g) = 0 \ \forall g \in G\}.$$

Proposition

Let $U \subseteq K_{20}$ be a non-empty open subset. Then there exists a primitive $\beta \in \Lambda_{K3}$ such that:

- i) $(\beta, \beta) = 2g 2$,
- ii) $U \cap \{z \in \mathbb{P}(\Lambda_{\mathbb{C}}) : (\beta, z) = 0\} \neq \emptyset$
- $\Longrightarrow \Sigma(\beta\mathbb{Z}) \cap U \neq \emptyset.$

The subset of K3 surfaces of type g lies dense in $\operatorname{Im}(\alpha) \subseteq \Omega$

Define: $G_{\beta} = \{ H \subseteq \Lambda_{K3} : \beta \in H \text{ and } H \neq \beta \mathbb{Z} \}$. We have:

- every $H \in G_{\beta}$ has rank ≥ 2
- G_{β} is countable

Then it follows:

$$(\Sigma(\beta\mathbb{Z})\cap U)\nsubseteq\bigcup_{H\in G_{\beta}}\Sigma(H).$$

Now take an element $(z) \in (\Sigma(\beta\mathbb{Z}) \cap U) \setminus \bigcup_{H \in G_{\beta}} \Sigma(H)$. Then (z) is the period of some K3 surface X. We have:

$$\mathsf{Pic}(X) \simeq H^{1,1}(X) \cap H^2(X,\mathbb{Z})$$
 (Lefschetz)
 $\simeq \{ \gamma \in \Lambda_{K3} : (\gamma,z) = 0 \}$

The subset of K3 surfaces of type g lies dense in $\operatorname{Im}(\alpha) \subseteq \Omega$

This gives us:
$$\beta \in Pic(X)$$
 and $(z) \in \Sigma(Pic(X))$.

$$\implies \operatorname{Pic}(X) \notin G_{\beta}$$

Therefore $\operatorname{Pic}(X) \simeq \beta \mathbb{Z}$, hence U contains a K3 surface X of type g.

Every K3 surface of type 3 is quartic in $\mathbb{P}^3_{\mathbb{C}}$

$\mathsf{Theorem}$

Every K3 surface of type 3 is isomorphic with a quartic in $\mathbb{P}^3_{\mathbb{C}}$.

Proof. Let X be a K3 surface of type 3, and L a generator of Pic(X) with (L, L) = 4. We can assume that $h^0(X, L) \neq 0$. We have:

$$SD: \quad h^2(X,L) \simeq h^0(X,L^{\vee}) = 0$$

$$RR: \quad \chi(L) = h^0(X, L) - h^1(X, L) = \frac{1}{2}(L, L) + 2 = 4$$

Lemma

The linebundle L is globally generated.

Every K3 surface of type 3 is quartic in $\mathbb{P}^3_{\mathbb{C}}$

Corollary

The linebundle L is ample, a generic curve $Y \in |L|$ is smooth, and $h^1(X, L) = 0$.

So the linebundle gives a finite morphism

$$X \stackrel{\phi_L}{\longrightarrow} X' \to \mathbb{P}^3_{\mathbb{C}} = \mathbb{P}(H^0(X, L)^{\vee}) \text{ with } \phi_L^*(\mathcal{O}(1)) \simeq L.$$

We have:

$$\deg(X')\cdot\deg(\phi_L)=(L,L)=4$$

$$X \xrightarrow{\phi_L} X' \subseteq \mathbb{P}^3_{\mathbb{C}}$$

$$\cup \qquad \qquad \cup$$

$$Y \xrightarrow{\phi_L|_Y = \phi_{\omega_Y}} Y' \subseteq \mathbb{P}^2_{\mathbb{C}}$$

Every K3 surface of type 3 is quartic in $\mathbb{P}^3_{\mathbb{C}}$

- 1 Y is non-hyperelliptic: $deg(\phi_L) = 1$ $\implies deg(X') = 4$.
- 2 *Y* is hyperelliptic: $deg(\phi_L) = 2$ $\implies X'$ is a irreducible quadric surface in \mathbb{P}^3 .
 - (a) X' is smooth: $X' \simeq \mathbb{P}^1 \times \mathbb{P}^1$ and $\mathrm{Pic}(X') \simeq \mathbb{Z} \times \mathbb{Z}$. But then $\mathcal{O}(1)|_{X'} \simeq \mathcal{O}(0,1) \otimes \mathcal{O}(1,0)$, $\Longrightarrow \phi_L^*(\mathcal{O}(1)) \simeq L^{\otimes m}$: contradiction.
 - (b) X' is singular. X' is a cone in s, $Pic(X' \setminus \{s\}) \simeq L(\gamma)\mathbb{Z}$. But then $\mathcal{O}(1)|_{X' \setminus \{s\}} \simeq L(2\gamma)$ $\implies \phi_1^*(\mathcal{O}(1)) \simeq L^{\otimes 2m}$: **contradiction**.

Hence, X is isomorphic to a quartic surface in $\mathbb{P}^3_{\mathbb{C}}$.

Every 2 smooth quartics in \mathbb{P}^3 are deformation equivalent

$\mathsf{Theorem}$

Every 2 smooth quartic surfaces in \mathbb{P}^3 are deformation equivalent.

Proof. A quartic surface $X \subseteq \mathbb{P}^3_{\mathbb{C}}$ is given by an equation:

$$a_0X^4 + ... + a_3W^4 + a_4X^2Y^2 + + a_{34}XYZW.$$

U is an open and connected subset of $\mathbb{P}^{34}_{\mathbb{C}}$, hence all quartic surfaces are deformation equivalent.

Proposition

Let $U \subseteq K_{20}$ be a non-empty open subset. Then there exists a primitive $\beta \in \Lambda_{K3}$ such that:

- i) $(\beta, \beta) = 2g 2$,
- ii) $U \cap \{z \in \mathbb{P}(\Lambda_{\mathbb{C}}) : (\beta, z) = 0\} \neq \emptyset$

Lemma

The linebundle L is generated by global sections.

Corollary

The linebundle L is ample.

Corollary

We have $h^1(X, L) = 0$.

Proposition

Let $U \subseteq K_{20}$ be a non-empty open subset. Then there exists a primitive $\beta \in \Lambda_{K3}$ such that:

$$i) (\beta,\beta) = 2g - 2,$$

ii)
$$U \cap \{z \in \mathbb{P}(\Lambda_{\mathbb{C}}) : (\beta, z) = 0\} \neq \emptyset$$

Proof. Define $\Sigma := \{((\alpha), (z) \in \mathbb{P}(\Lambda_{\mathbb{C}}) \times K_{20} : (\alpha, z) = 0\}.$

$$\begin{array}{ccc}
\Sigma & \xrightarrow{\rho_2} K_{20} \supseteq U \\
\downarrow^{\rho_1} \\
\mathbb{P}(\Lambda_{\mathbb{R}}) & \xrightarrow{i} \mathbb{P}(\Lambda_{\mathbb{C}})
\end{array}$$

 $V:=p_1(p_2^{-1}(U))$ is open. One can show: $i^{-1}(V)\cap Q\neq\emptyset$.

Lemma

Let $Q = \{x \in \mathbb{P}(\Lambda_{\mathbb{R}}) : (x,x) = 0\}$ and V an open subset of $\mathbb{P}(\Lambda_{\mathbb{R}})$ with $V \cap Q \neq \emptyset$. Then V contains an element (β) with $\beta \in \Lambda_{K3}$, such that β is primitive and $(\beta, \beta) = 2g - 2$.

Proposition

Let $U \subseteq K_{20}$ be a non-empty open subset. Then there exists a primitive $\beta \in \Lambda_{K3}$ such that:

- i) $(\beta, \beta) = 2g 2$.
- ii) $U \cap \{z \in \mathbb{P}(\Lambda_{\mathbb{C}}) : (\beta, z) = 0\} \neq \emptyset$

Proof. Define $\Sigma := \{((\alpha), (z) \in \mathbb{P}(\Lambda_{\mathbb{C}}) \times K_{20} : (\alpha, z) = 0\}.$

$$\Sigma := \{((lpha), (z) \in \mathbb{P}(\Lambda_{\mathbb{C}}) imes K_{20} : (lpha, z) \}$$

$$\Sigma \xrightarrow{p_2} K_{20} \supseteq U$$

$$\downarrow^{p_1}$$

$$\mathbb{P}(\Lambda_{\mathbb{R}}) \xrightarrow{i} \mathbb{P}(\Lambda_{\mathbb{C}})$$

$$U)) \text{ is open. One can show: } i^{-1}(V) \cap U$$

 $V:=p_1(p_2^{-1}(U))$ is open. One can show: $i^{-1}(V)\cap Q\neq\emptyset$.

 \exists a primitive $\beta \in \mathbb{P}(\Lambda_{K3})$ with $(\beta, \beta) = 2g - 2$. We also have: $i(\beta) \in V \implies \exists u \in U \text{ with } (\beta, u) = 0.$

Lemma

Let $Q = \{x \in \mathbb{P}(\Lambda_{\mathbb{R}}) : (x,x) = 0\}$ and V an open subset of $\mathbb{P}(\Lambda_{\mathbb{R}})$ with $V \cap Q \neq \emptyset$. Then V contains an element (β) with $\beta \in \Lambda_{K3}$, such that β is primitive and $(\beta,\beta) = 2g - 2$.

Proof:

Let
$$B = \{\beta \in \Lambda_{K3} : (\beta, \beta) = 2g - 2 \text{ and } \beta \text{ is primitive}\},$$

(B) the image of B in $\mathbb{P}(\Lambda_{\mathbb{R}})$, and
 $F = \{\text{limit points of } (B)\} = \overline{(B)} \setminus (B)^{0}.$

Claim: $F \subseteq Q$.

Suppose $(\beta_i) \to \beta$ in $\mathbb{P}(\Lambda_{\mathbb{R}})$ with $\beta_i \in \Lambda_{K3}$, $\beta_i^2 = 2g - 2$, and $\beta^2 \neq 0$. We can choose β such that $\beta^2 = \beta_i^2$.

$$(\beta_i) \to \beta \iff \lambda_i \beta_i \to \beta \text{ in } \Lambda_{\mathbb{R}}$$

Since $\lambda_i^2 \beta_i^2 \to \beta^2$ we can assume $\lambda_i = 1$. But Λ_{K3} is discrete, so the sequence β_i must become constant: **contradiction**

In fact we have F = Q:

Lemma

The image of the subset $\{x \in \Lambda_{K3} : (x,x) = 0\}$ lies dense in Q. Furthermore, the orbits of $O(\Lambda_{K3})$ lie dense in Q.

So if $V \subseteq \mathbb{P}(\Lambda_{\mathbb{R}})$ open and $V \cap Q \neq \emptyset$, then V contains a limitpoint of (B).

 $\implies V$ contains a $\beta_i \in (B)$.

Lemma

The linebundle L is generated by global sections.

Proof. Let s be a non-trivial global section of L. The section s defines a reduced and irreducible curve $Y \subseteq X$. We have:

$$\mathsf{Bs}|L| = \bigcap_{s' \in H^0(X,L)} \mathcal{Z}(s') \subseteq Y$$

The following sequence is exact:

$$0 \to \mathbb{C} \to H^0(X, L) \to H^0(Y, L|_Y) \to H^1(X, \mathcal{O}_X) = 0 \to ...$$

Lemma

Let Y be a reduced irreducible curve of genus $g \geq 1$ on a compact complex surface X. Then the linebundle $\omega_Y = (\omega_X \otimes \mathcal{O}(Y))|_Y$ is globally generated.

Corollary

The linebundle L is ample.

Proof. "L is a ample linebundle $\iff \phi_L : X \longrightarrow \mathbb{P}(H^0(X,L)^{\vee})$ is a finite morphism"

Suppose ϕ_L isn't a finite morphism.

 $\implies \exists$ curve $C \subseteq X$ on which ϕ_L is constant.

$$\implies (C,C) < 0.$$

But L generates Pic(X) and (L, L) = 4: **contradiciton**.

Corollary

We have $h^{1}(X, L) = 0$.

Proof. Let Y be a smooth curve on X. RR and SD gives us:

$$h^{1}(Y, \omega_{Y}) = h^{0}(Y, \omega_{Y}) - \deg(\omega_{Y}) - (1 - g)$$

= $h^{1}(Y, \mathcal{O}_{Y}) - 2g + 2 - 1 + g$
= 1

Consider the short exact sequence

 $0 \to \mathcal{O}_X \to L \to L|_Y \simeq \omega_Y \to 0$. This gives the exact sequence:

$$0 \to H^1(X,L) \to \mathbb{C} \to \mathbb{C} \to 0 = H^2(X,L) \simeq H^0(X,L)^\vee$$

Hence we have $H^1(X, L) \simeq 0$.