
GLOBAL TORELLI FOR COMPLEX K3 SURFACES

Abstract. Overview of statement and proof of Global Torelli, following Ver-

bitsky. With an emphasis on a strong form of the theorem, giving a complete

description of the category of complex K3s (and iso’s).

1. Motivation: classification of complex tori

2. Kähler classes and Weyl chambers

Theorem 1. Let X be a complex K3. Let ω be a Kähler form on X. Then
[ω] ∈ H2(X,R) satisfies

(1) [ω] ∈ H1,1(X)
(2) [ω]2 > 0
(3) [ω] · δ 6= 0 for every δ ∈ Pic(X) with δ2 = −2.

Proof. First two we have seen already. For the last, note that for every curve C on
X we have

[ω] · [C] =

∫
C

ω > 0,

since ω is a volume form on C. Now if D is a divisor with D2 = −2, then by
RR+SD, we have

h0(X,D) + h0(X,−D) = h1(X,D) + 2 +
D2

2
≥ 1

so that either D or −D is equivalent to an effective divisor, hence [ω] · [D] 6= 0. �

In other words, if Λ := H2(X,Z), then the class [ω] lands in

C(Λ) := {x ∈ ΛR ∩ Λ1,1 | x2 > 0, and x · δ 6= 0 for all δ ∈ ∆(Λ)},

where

∆(Λ) := {x ∈ Λ ∩ Λ1,1 | x2 = −2}.

The elements of ∆ are called roots. This set can be empty, finite or infinite. The
connected components of C(Λ) are called chambers, separated by the walls x⊥ with
x ∈ ∆(Λ).

Proposition 1. Let X be a complex K3. If ω0 and ω1 are Kähler forms, then [ω0]
and [ω1] land in the same chamber in C(H2(X,Z)).

Proof. λω0 + µω1 with λ, µ > 0 is also a Kähler form. �

Hence X determines a well-defined chamber c(X) in C(H2(X,Z)).
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3. Classification of complex K3 surfaces: statement of the theorem

Theorem 2. The functor X 7→ (H2(X,Z), c(X)) from complex K3s (and iso’s) to
the category of pairs (Λ, c) with

• Λ a weight 2 even unimodular Hodge lattice of rank 22 and signature (3, 19)
• c a connected component of C(Λ)

is an anti-equivalence of categories.

Goal for coming weeks is: to prove this theorem. No known proof on K3 by K3
basis. Must consider all K3s at same time, and use geometry of moduli spaces.

The proof is quite longe and intricate, combining different kinds of mathematics.
The goal for today: give a global overview, sketch the argument, and divide the
work.

4. The period map

4.1. The period map. Let N be the set of isoclasses of pairs (X,φ) with

(1) X a complex K3 surface
(2) φ : H2(X,Z)→ ΛK3 an isometry

The set N has a natural structure of 20-dimensional complex manifold as follows.
Let (X,φ) ∈ N . Choose a universal deformation X → S (for some open polydisk
S of dimension 20, see Lance), so that X0 = X. Since S is contractible, we have

natural isomorphisms H2(Xs,Z)
∼→ H2(X0,Z) for all s ∈ S. Hence we get an

injective map S ↪→ N . We define the topology and complex structure on N by
glueing these S’es around varying (X,φ). To see that these are compatible (when
an S and S′ overlap), we use (Lance) that X → S is also a universal deformation
for its other fibers Xs.

Let D ⊂ P(ΛK3,C) be the period domain:

D = {x ∈ P(ΛK3,C) | x2 = 0 and xx̄ > 0}.
This is an open subset of the nonsingular projective algebraic variety {x2 = 0},
hence D is a complex manifold (of dimension 20). The set D is in bijection with the
set of weight 2 Hodge structures on ΛK3 of type (1, 20, 1), compatible with inner
product (via x = H2,0).

So we obtain a map
P : N → D

which maps (X,φ) to the x corresponding to the Hodge structure on ΛK3 induced
by φ. We have already seen one fundamental theorem regarding P (Lance):

Theorem 3 (Local Torelli). The map P : N → D is a local isomorphism. �

Warning. The set N is not Hausdorff (as we will see next). This is a global prop-
erty, something we cannot see using local Torelli. In particular, the map P cannot
be an isomorphism. (But we’ll see, it is not too far from being an isomorphism).

5. Fundamental ingredients in the proof of the classification

Let N � N̄ be the Hausdorffification of N , the universal continuous map to a
Hausdorff topological space. This can be obtained by taking the quotient for the
equivalence relation generated by the following relation: x ∼ x′ if there exist (xi)
converging to both x and x′.

Since D is Hausdorff, the map P factors over a map P̄ : N̄ → D.
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Theorem 4. The map P̄ : N̄ → D is a covering map.

Sketch of proof. Local Torelli and playing with twistor lines (using the Hyperkähler
structure) plus a bit of topology (criterion for a local homeomorphism between
Hausdorff spaces to be a covering map). See Huybrechts, sections 7.3 and 7.4. �

Theorem 5. The space D is simply connected.

Sketch of proof. First show

D ∼= O(3, 19)/(SO(2)×O(1, 19))

then deduce π1(D, ∗) is trivial. See also Huybrechts, chapter 6. �

So we see that N̄ is actually a disjoint union of copies of D. Next we will show
there are exactly two copies.

Theorem 6. N and N̄ each consist of two connected components, interchanged by
(X,ϕ) 7→ (X,−ϕ).

Sketch of proof. Deformation equivalence (Juultje) plus ‘monodromy is big’. The
latter is shown by explicitly constructing elements of the monodromy group. See
Huybrechts 7.5.5. �

Theorem 7 (‘Global Torelli’). Let X and Y be K3 surfaces. Let ϕ : H2(Y,Z) →
H2(X,Z) be a Hodge isometry with ϕ(KY )∩KX 6= ∅, then there is an isomorphism
f : X → Y with ϕ = f∗.

Sketch of proof. Let N0, N̄0 and D0 be the open subsets corresponding to ‘Picard
rank 0’. Then first show that N0 → N̄0 is an isomorphism (Huybrechts 7.2.2),
and hence that N0 consists of two copies of D0 interchanged by (X,ϕ) 7→ (X,−ϕ).
From this the theorem follows in Picard rank 0. Now in general, use a degeneration
argument, to obtain a correspondence between X and Y , and analyse the geometry
to show that the correspondence must be an isomorphism (Huybrechts, §7.5). �

Theorem 8. If X,Y are complex K3 surfaces, and f, g : X → Y are isomorphisms
with f∗ = g∗ as maps H2(Y,Z)→ H2(X,Z), then f = g.

Sketch of proof. Reduce to X = Y , need to show f∗ = id implies f = id. First:
show auromorphism preserves Kähler form (and not just its class in H2), so that
f preserves the Riemannian metric. But the automorphism group of a compact
Riemannian manifold is compact, so that Aut(X) is compact. But by H0(X,TX) =
0 we also have that Aut(X) is discrete. Hence Aut(X) is finite and f of finite order.
Now show that f is transversal, if f 6= id, and use both topological and holomorphic
Lefschetz to compute the number of fixed points, obtaining a contradiction. All this
is in Huybrechts, chapter 15 ‘Automorphisms’. �

Theorem 9. The Kähler cone of a K3 surface is a full chamber in C(H2(X,R)).

Sketch of proof. See Huybrechts, Chapter 8. Note that the argument uses the
(proof of) Theorem 7. �

Theorem 10. For a Hodge lattice Λ of K3 type, the group O(Λ) acts transitively
on the set of chambers in C(Λ)

Proof. This is essentially a statement about hyperbolic Coxeter groups. See Huy-
brechts, Chapter 8 �
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6. Proof of the classification

Proof of the classification. To show that X 7→ (H2(X,Z),KX) is an equivalence of
categories, we show that it is full, faithful, and essentially surjective.

Essential surjectivity. By Theorem 4 the map N → P is surjective. Together
with the transitivity of Theorem 10, this shows that every pair (Λ, C) is realized.

Faithfulness. This is Theorem 8.
Fullness. Let X and Y be K3 surfaces. Let ψ : H2(Y,Z)→ H2(X,Z) be a Hodge

isometry mapping the Kähler chamber of Y to the Kähler chamber of X. Then by
Theorem 9 we have ψ(KY ) = ψ(KX) and by Theorem 7 there is an isomorphism
f : X → Y with ϕ = f∗. �
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