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Introduction

These notes are based on two talks given at the Arithmetic & Algebraic Geometry Seminar of the Korteweg-de
Vriesinstituut for mathematics of the Universiteit van Amsterdam. They are intended to give a short intro-
duction to the theory of Kähler manifolds, with a slight focus of applicability to the subject of K3 surfaces.
However, they also include other interesting results not related to K3 surfaces, most noteably at the end.

Most of these notes (all except the section on Hyper-Kähler manifolds) are based on a course on com-
plex manifolds and an essay written by myself, respectively lectured and supervised by Julius Ross, DPMMS,
Cambridge.

I will use the summation convention for repeated indices, where convenient.

1 — Basic definitions

Recall that a complex manifold has an underlying real (smooth) manifold, with an almost complex structure.
Any almost complex structure which arises in this way is said to be integrable. By the Newlander-Nirenberg
theorem, an almost complex structure is integrable if and only if its Nijenhuis tensor vanishes.

The complexi�ed tangent bundle splits as TCX B TX ⊗R C = TX (1,0) ⊕ TX (0,1) , its holomorphic and
antiholomorphic parts, and similarly T ∗

C
X = T ∗X ⊗R C = (T ∗X ) (1,0) ⊕ (T ∗X ) (0,1) .
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We write C for the trivial holomorphic line bundle, with sheaf of holomorphic sections OX on X , R for the
trivial real line bundle, with sheaf of smooth sections OX on X , and

T ∗X (p,q ) B

p∧
(T ∗X ) (1,0) ⊗R

q∧
(T ∗X ) (0,1)

A k (U ) B Γ
(
U ,

k∧
T ∗CX

)
A (p,q ) (U ) B Γ

(
U ,T ∗X (p,q )

)
Ωp (U ) B {α ∈ A p (U ) | ∂̄α = 0}

De�nition 1.1. Let X be a complex manifold with induced almost complex structure I .

• A Riemannian metric д on X is Hermitian with respect to I if дx (Ixv, Ixw ) = дx (v,w ) for all x ∈ X and
all v,w ∈ TxX ;

• In this case, de�ne the fundamental form ω ∈ A 2 (X ) by ω (v,w ) = д(Iv,w );

• We extend д to TCX by д(λv,µw ) = λµ̄ д(v,w ). Then ω ∈ A 1,1 (X ).

Remark. Any two of a triple (д, I ,ω) determine the third.

De�nition 1.2. A Hermitian metric is Kähler if dω = 0. We then call ω the Kähler form, or sometimes just
the Kähler metric.

The Kähler class of a Kähler metric д is the class [ω] ∈ H 1,1 (X ).

Remark. Any Kähler form is a symplectic form on the underlying real manifold, by de�nition. This implies
e.g. that on a compact Kähler manifold X , [ωp] , 0 ∈ Hp,p (X ) for 0 ≤ p ≤ dimCX .

Example 1.3. Complex space Cn with standard orthogonal coordinaties {x j ,y j }nj=1 (where z j = x j + iy j ) has
fundamental form ω = i

2
∑

j dz
jdz̄ j , which is clearly Kähler.

Example 1.4. If dimRX = 2, any two-form is trivially closed, so any Hermitian metric is Kähler. Hence, all
Riemann surfaces are Kähler.

Lemma 1.5. If f : X ↪→ Y is a holomorphic embedding, and Y has a Kähler metric д with Kähler form ω, then
f ∗ω is a Kähler form on X .

Proof. As Df is injective, f ∗д is non-degenerate, so it is a metric. Furthermore, d f ∗ω = f ∗dω = 0, so ω is a
Kähler form. �

De�nition 1.6. The set of Kähler classes in H 1,1 (X ) is called the Kähler cone of X .

This is indeed a cone, as a positive linear combination of metrics is a metric and both kerd and imd are
linear subspaces of A 1,1 (X ).
Remark. The Kähler cone will not be used in these notes, but it is important in the proof of the Global Torelli
theorem.

2 — Metrics and connections on vector bundles

Just as in real geometry, metrics and all related notions can be de�ned on arbitrary vector bundles, not just on
the tangent bundle. We will give these de�nitions, and develop the notions parallel to each other.

For a vector bundle E → X , its sheaf of smooth sections is denoted O (E). If E is holomorphic, its sheaf of
holomorphic sections is denoted O (E).

De�nition 2.1. Let π : E → X be a holomorphic vector bundle.

• A Hermitian metric h on E is a smooth family of Hermitian inner products on Ex , i.e. it is a (global)
smooth section of E∗ ⊗R Ē∗ such that for local smooth sections s,s ′ of E, h(s,s ′) = h(s ′,s );
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• Writing A p,q (E) = A p,q ⊗OX O (E), we can de�ne an operator ∂̄E by de�ning for holomorphic sections
s of E and (p,q)-forms α ,

∂̄E : A p,q (E) → A p,q+1 (E) : α ⊗ s 7→ (∂̄α ) ⊗ s (1)

Remark. A Hermitian metric on X induces one on the holomorphic vector bundle TX (1,0) via sesquilinear
extension to TCX , and this procedure is invertible.

De�nition 2.2. Given a Hermitian vector bundle (E,h) → X , its Chern connection is the unique holomorphic
connection ∇h on E such that ∇hh = 0, i.e.

∇h = ∇
′
h + ∂̄E , ∇′h : A 0 (E) → A 1,0 (E)

dh(v,w ) = h(∇hv,w ) + h(v,∇hw )

The proof of the unique existence will be given later.
Remark. A metric д on X is Kähler if and only if its Levi-Civita connection equals its Chern connection.

De�nition 2.3. For a Hermitian vector bundle (E,h) → X , de�ne its curvature to be ∇2
h : A 0 (E) → A 2 (E).

If E = T (1,0)X , we call this the Riemannian curvature and denote it by Rh .

Lemma 2.4. Let (E,h) → X be a Hermitian vector bundle. Then

(1) The Chern connection exists uniquely;
(2) The curvature is a skew-Hermitian element of A 1,1 (End(E)) (X ).

Proof. (1) Taking a local holomorphic frame {e j } of E and using that the Chern connection is holomorphic,
we have ∇ej = Θk

j ek for some matrix of (1,0)-forms Θ, so locally ∇ = d + Θ. Writing hjk = h(ej ,ek ), we
get

dhjk = dh(ej ,ek ) = h(Θ
l
jel ,ek ) + h(ej ,Θ

l
kel ) = Θl

jhlk + Θ̄
l
khjl (2)

and hence ∂hjk = Θl
jhlk and ∂̄hjk = Θ̄klhjl . So we need Θ = ∂h · h−1, proving uniqueness.

Taking this as a local de�ntion, it patches, proving existence.
(2) We can assume that at a point hjk = δ jk and dh = 0, so by (2), Θ∗ = −Θ.

We have

∇2s = (d + Θ)2s = d2s + d (Θs ) + Θds + Θ ∧ Θs

= (dΘ)s − Θds + Θds + Θ ∧ Θs = (dΘ + Θ ∧ Θ)s

So locally ∇2 = dΘ + Θ ∧ Θ, showing that

(∇2)∗ = (dΘ + Θ ∧ Θ)∗ = dΘ∗ − Θ∗ ∧ Θ∗ = −dΘ − Θ ∧ Θ = −∇2

Now, because ∇ = ∇′ + ∂̄E , the (0,2)-component of ∇2 is zero. By skew-hermitianness, so is its (2,0)-
component.

�

De�nition 2.5. The Ricci form of a Hermitian metric д on X is Ric(ω) B i
2π TrRд .

The curvature form of a Hermitian line bundle (L,h) → X is F (h) B i
2π ∇

2
h .

Remark. The normalisation in the above de�nition is not completely standard, but it will have the advantage
to be integral in cohomology, as will be shown in the next few lemma’s.

Lemma 2.6. The following equations hold locally

Ric(ω) = 1
2πi ∂∂̄ log detд (3)

F (h) =
1

2πi ∂∂̄ loghs (4)

where hs = h(s,s ), for a local holomorphic section s of a line bundle (L,h) → X .
Hence, Ric(ω) = −F (detд−1), where detд−1 is the natural induced metric on the canonical line bundle.
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Proof. Using the proof of lemma 2.4 with holomorphic frame s , we get locally

F (h) =
i

2π ∇
2
h =

i

2π (dΘ + Θ ∧ Θ)

=
i

2π (d (∂hs · h
−1
s ) + (∂hs · h

−1
s ) ∧ (∂hs · h

−1
s )

=
i

2π (d∂ loghs + 0) = i

2π ∂̄∂ loghs

=
1

2πi ∂∂̄ loghs

The proof for the Ricci form is similar, using Tr log = log det. �

2.1 — Curvature as Chern classes

Lemma 2.7. (1) For a Hermitian line bundle (L,h) → X , F (h) is closed and its cohomology class only depends
on L;

(2) For a Kähler manifold (X ,д), Ric(ω) is closed and its cohomology class only depends on X

Proof. Closedness is clear from lemma 2.6.
Suppose h′ is a di�erent Hermitian metric on L. Then h′s

hs
is a non-vanishing function, so it can be repre-

sented by e f , where f is globally well-de�ned up to a constant. Hence,

F (h′) − F (h) =
1

2πi ∂∂̄ f

which is an exact form.
The statement about the Ricci curvature follows from the last part of lemma 2.6. �

Lemma 2.8. Curvature forms represent Chern classes, i.e. c1 (X ) = [Ric(ω)] and c1 (L) = [F (h)] for any Kähler
class ω on X or Hermitian metric h on a line bundle L.

Proof. Again, we only need to prove the line bundle case. As the de�nition of the Chern class involves the
isomorphism Pic(X ) � Ȟ 1 (X ,O∗) and the connecting homomorphism in Čech cohomology of the fundamental
short exact sequence

0 // ZX
2πi // OX

exp // O∗X
// 0

while on the other hand, the curvature forms de�ne de Rham classes, we need to chase the connecting homo-
morphism, using the de Rham theorem to move from Čech to de Rham cohomology at some point.

Take a cover {Ui } of X over which L can be trivialised by holomorphic sections si , with holomorphic
transition functions ψi j = sis

−1
j . The �rst step of the connecting homomorphism is to lift this along the

exponential map, obtaining logψi j .
On Ui ∩Uj we get

loghsi − loghsj = log
h(ψi jsj ,ψi jsj )

h(sj ,sj )
= logψi j + logψ̄i j

so we get that δ (loghsi )i = (logψi j + logψ̄i j )i j as Čech cycles. Hence, the de Rham isomorphism sends
[logψi j+logψ̄i j ] to [d loghs ]. Taking the holomorphic part, [logψi j ] corresponds to [∂̄ loghs ] (as holomorphic
forms are those on which ∂̄ acts as zero).

The second part of the connecting homomorphism (now in de Rham cohomology) consists of taking the
di�erential, getting d ∂̄ loghs = ∂∂̄ loghs . Finally, this lifts along 2πi , so we get the class

[
1

2πi ∂∂̄ loghs
]
=

[F (h)].
This is summarised in the following diagram:

PicX ∼ // Ȟ 1 (X ,O∗) Č1 (X ,O )
expoo // A 1 (X )

d // A 2 (X ) H 2 (X ,Z)
2πioo

L
� // [ψi j ]i j � // logψi j � // ∂̄ loghs � // ∂∂̄ loghs � //

[
1

2πi ∂∂̄ loghs
]
= [F (h)]

�
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3 — Positive line bundles

Example 3.1 (The Fubini-Study metric). Consider projective space, CPn with line bundle O (−1), which can
be viewed as an extension of the standard projection π : Cn+1 \{0} → CPn to the blow-up ofCn+1 at the origin.
Endowing this line bundle with the Euclidean metric ‖ · ‖ on the total space, which is clearly Hermitian, we
get a curvature form. We de�ne the Fubini-Study metric to be the negative of this curvature.

Over the open U = {(1 : z1 : . . . : zn )} we get a section s : (1 : z1 : . . . : zn ) 7→ (1,z1, . . . ,zn ), so we can
calculate the metric:

ωFS = −F (‖ · ‖) =
i

2π ∂∂̄ log ‖s‖2

=
i

2π ∂∂̄ log(1 + zj z̄ j ) =
i

2π
1

(1 + zj z̄ j )2
(
(1 + zk z̄k )dzldz̄l − z̄kzldzkdz̄l

)
Hence ωFS (1 : 0 : . . . : 0) = i

2π dzjdz̄
j , which is non-degenerate. The Fubini-Study metric is invariant under a

transitive group action on CPn , so it is everywhere non-degenerate, hence is an actual metric.

Corollary 3.2. (1) Every projective manifold has a Kähler structure;
(2) If a line bundle L → X is very ample, it de�nes a Kähler form ω by the previous point, and [ω] = c1 (L).

Proof. (1) This follows directly from lemma 1.5.
(2) Because part of the de�nition of a very ample line bundle is that L = f ∗O (1), we have

[ω] = [f ∗ωFS] = f ∗[−F ‖ · ‖] = −f ∗c1 (O (−1)) = c1 ( f
∗O (1)) = c1 (L)

�

De�nition 3.3. A (1,1)-class in cohomology is called positive if it is a Kähler class.
A holomorphic line bundle L → X is positive if there exists a Hermitian metric h on L such that [F (h)] is

positive.

This is a very useful notion, as the following two theorems show.

Theorem 3.4 (Kodaira vanishing). Let L → X be a positive line bundle over a compact Kähler manifoldX . Then
Hq (X ,Ωp ⊗ L) = 0 if p + q > dimCX .

Theorem 3.5 (Kodaira embedding). Let L → X be a line bundle over a compact complex manifold. Then L is
ample if and only if it is positive.

These proofs of these theorems are very involved, so we do not give them here.

4 — Hyper-Kähler manifolds

De�nition 4.1. A hyper-Kähler manifold is a tuple (X ,д, I , J ) such that both (X ,д, I ) and (X ,д, J ) are Kähler
and I J + J I = 0.

A hyper-Kähler manifold has an action of the quaternions on each of its tangent spaces by de�ning K = I J
and then setting (a + bi + cj + dk )v = av + bIv + c Jv + dKv . If a = 0 and b2 + c2 + d2 = 1, the action of the
quaternion again gives a Kähler structure for (X ,д), so we get an S2 � CP1 of Kähler structures.

De�nition 4.2. Given a hyper-Kähler manifold (X ,д, I , J ) de�ne its twistor space to be the almost complex
manifold with underlying Riemannian manifold (X ,д) × (CP1,дFS) and almost complex structure at the point
(x , (a,b,c )) ∈ X × S2 ⊂ X × R3 given by (aI + bJ + cK , ICP1 ). This is integrable by the Newlander-Nirenberg
theorem, and hence a Kähler manifold.

Remark. A hyper-Kähler manifold can be recovered from its twistor space, and twistor spaces can be charac-
terised without referring to their associated hyper-Kähler manifolds, see e.g. [Saf11].

Proposition 4.3. Let (X ,д, I ) be a Kähler manifold of real dimension 4 with trivial canonical bundle. Then X
admits a hyper-Kähler structure.
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Proof. [BHPvdV] Choose a �at section τ of KX and de�ne a J1 ∈ End(TpX ) by д(J1X ,Y ) = Reτ (X ,Y ). Then

д(I J1X ,Y ) = −д(J1X , IY ) = −Reτ (X , IY ) = −Reτ (IX ,Y ) as τ is of type (0,2)
= −д(J1IX ,Y )

So I J1 = −J1I . Also, by antisymmetry of τ , J1 is skew-adjoint, so J 2
1 is self-adjoint with non-positive eigenval-

ues. As J1 , 0, J 2
1 has an eigenvalue −λ−2 with eigenspace V . De�ne J = λJ1, so J 2 |V = −idV .

Then [I , J 2] = 0, so I preserves V , and I , J , I J turn into a V a quaternionic vector space. Therefore, its real
dimension is at least 4, meaning that V = TpX .

De�ning J1 and J globally this way, we get

0 = d
(
д(J1X ,Y ) − Redτ (X ,Y )

)
= д(∇(J1X ),Y ) + д(J1X ,∇Y ) − Re

(
τ (∇X ,Y ) + τ (X ,∇Y )

)
= д((∇J1)X ,Y ) + д(J1∇X ,Y ) − Reτ (∇X ,Y )
= д((∇J1)X ,Y )

Hence J1 is �at, implying that λ is constant, so J is �at. Also д(JX , JY ) = −д(X , J 2Y ) = д(X ,Y ), so (X ,д, J ) is
Kähler. �

Remark. This shows in particular that any Kähler K3 surface (hence any K3 surface) is hyper-Kähler.

5 — The Kähler identities

A Kähler manifold has many operators on forms:

∗ : A k → A n−k d : A k → A k+1

d∗ = − ∗ d∗ : A k → A k−1 ∆d = dd
∗ + d∗d : A k → A k

∂ : A p,q → A p+1,q ∂̄ : A p,q → A p,q+1

∂∗ = − ∗ ∂∗ : A p,q → A p−1,q ∂̄∗ = − ∗ ∂̄∗ : A p,q → A p,q−1

∆∂ = ∂∂
∗ + ∂∗∂ : A p,q → A p,q ∆∂̄ = ∂̄∂̄

∗ + ∂̄∗∂̄ : A p,q → A p,q

L : A p,q → A p+1,q+1 : α 7→ α ∧ ω h : A k → A k : α 7→ (n − k )α

Λ : A p,q → A p−1,q−1 : α 7→ ∗−1 ◦ L ◦ ∗α

These operators obey certain relations:

Theorem 5.1 (Kähler identities). On a Kähler manifold, the following identities hold:

[∂̄∗,L] = i∂ [∂̄,Λ] = −i∂∗

[∂∗,L] = i ∂̄ [∂,Λ] = −i ∂̄∗

The proof of this theorem is an uninsightful local computation, so we do not give it here.

Corollary 5.2. On a Kähler manifold, we have,

(1) ∆d = 2∆∂ = 2∆∂̄ ;
(2) h, L, and Λ all commute with ∆;
(3) [Λ,L] = h, [h,L] = −2L, and [h,Λ] = 2Λ.

This corollary is purely a formal consequence of theorem 5.1, calculating �rst that ∂̄∗∂ + ∂∂̄∗ = 0.
So we get a representation of sl (2) on A ∗,∗ using h, L, and Λ, which descends to cohomology via Hodge

decomposition. Also, the Hodge decompositions for d , ∂, and ∂̄ are equal.

Corollary 5.3 (Hard Lefschetz). The map Lk : Hn−k (X ,C) → Hn+k (X ,C) is an isomorphism.

Proof. This follows from standard representation theory of sl (2). �
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6 — Kähler-Einstein metrics

We start with a de�nition.

De�nition 6.1. A Kähler metric ω is called Kähler-Einstein if for some λ ∈ R,

Ric(ω) = λω (5)

By rescaling the metric, we can and will always restrict ourselves to one of three cases: Ric(ω) = ω,
Ric(ω) = 0 or Ric(ω) = −ω. In these cases the �rst Chern class is, by de�nition, positive, zero, or negative
respectively.
Remark. The ‘Einstein’ part of the name ‘Kähler-Einstein’ originates from the Einstein equations for gravity.
A Kähler-Einstein metric is a Kähler metric which satis�es the Einstein equations in the absense of matter.
The parameter λ is called the cosmological constant in this context. In current cosmology, it is interpreted as
dark energy.

The next theorem is a fundamental result about the �rst Chern class of Kähler manifolds:

Theorem 6.2 (Calabi-Yau theorem[Yau77]). Given a compact Kähler manifold (X ,ω), there exists for any real
(1,1)-form α ∈ c1 (X ) a unique Kähler metric η, cohomologous to ω, such that Ric(η) = α .

For a proof, see e.g. Tian [Tia00].

Lemma 6.3 (∂∂̄-lemma). For any two real cohomologous (1,1)-forms τ and η on a compact Kähler manifold X ,
there exists a smooth function f : X → R such that

τ = η + i∂∂̄ f (6)

Proof. [Szé14] As τ and η are cohomologous, there exists a real 1-form α such that τ = η + dα . We can
decompose α in its (1,0) part α ′ and its (0,1) part α ′′, and as α is real, α ′′ = α ′. As τ and η are (1,1)-forms,
we get that ∂α ′ = ∂̄α ′′ = 0 and

τ = η + ∂̄α ′ + ∂α ′′ = η + ∂̄α ′ + ∂̄α ′

Choosing a Kähler metric д on X , with associated Kähler form ω, volume form dvol B ωdimC X , and Hodge
star ∗, we get ∫

X
(∂∗α ′)dvol = −

∫
X
(∗∂ ∗ α ′) · dvol =

∫
X
(∂ ∗ α ′) · (∗dvol)

=

∫
X
∂ ∗ α ′ = 0

So by Hodge theory (and the Poisson equation), there exists a function f ′ such that ∂∗α ′ = ∆∂ f
′ = ∂∗∂ f ′.

As ∂α ′ = 0, we get
∂(α ′ − ∂ f ′) = ∂∗ (α ′ − ∂ f ′) = 0

Therefore, α ′ − ∂ f ′ is ∂-harmonic, and hence also ∂̄-harmonic, as д is Kähler. This gives ∂̄α ′ = ∂̄∂ f ′. Putting
everything together,

τ − η = ∂̄α ′ + ∂̄α ′ = ∂̄∂ f ′ + ∂̄∂ f ′

= −∂∂̄ f ′ + ∂∂̄ f̄ ′ = −2i∂∂̄ Im( f ′)

Choosing f = −2 Im( f ′) gives the result. �

Remark. Because of this lemma, Kähler metrics (in the right class) always obey Ric(ω) = λω + i∂∂̄ f for some
smooth real f . The main strategy in �nding Kähler-Einstein metrics is to vary ω and see how f varies.

A main problem in this �eld has been to �nd out when a compact Kähler manifold admits a Kähler-Einstein
metric. Trivially, the �rst Chern class should be de�nite, i.e. c1 (X ) = λ[ω] for some Kähler formω. The answer
then turns out to depend on the sign of this λ:

- For the case c1 (X ) < 0, the solution to the problem is given by the following theorem:
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Theorem 6.4 (Aubin-Yau). [Aub76, Yau78] Suppose X is a compact Kähler manifold such that c1 (X ) < 0.
Then there exists a unique Kähler-Einsteinmetricω onX . This metric must necessarily lie in the cohomology
class −c1 (X ).

This case is hence completely solved.

0 For the case c1 (X ) = 0, there is no a priori con�nement of Kähler-Einstein metrics to certain cohomology
classes. It turns out there is no such restriction at all in this case.

Theorem 6.5 (Yau). Let (X ,ω) be a compact Kähler manifold with trivial �rst Chern class. Then there
exists a unique Kähler metric η, with [ω] = [η], such that Ric(η) = 0.

This is an easy corollary of the Calabi-Yau theorem, obtained by setting α = 0.
So this case is also solved.

+ In the case c1 (X ) > 0, things are more complicated. It turns out not all Kähler manifolds with positive
�rst Chern class admit a Kähler-Einstein metric. According to the Yau-Tian-Donaldson conjecture, the
obstruction is algebro-geometric in nature. This conjecture is now proven, leading to the following
theorem:

Theorem 6.6 (Berman-Chen-Donaldson-Sun). [Ber15, CDS12, CDS15a, CDS15b, CDS15c] A Fano variety
admits a Kähler-Einstein metric if and only if it is K-stable.

6.1 — Explanation of the Berman-Chen-Donaldson-Sun theorem

In order to understand this theorem, we need to introduce several de�nitions. This part is adapted from
[Ber15].

De�nition 6.7. A Fano variety X is a normal projective complex variety whose anti-canonical line bundle
−KX on the regular locus Xreg extends to an ample Q-line bundle on X , i.e. some power extends to an ample
line bundle over X .

De�nition 6.8. A Fano variety X has Kawamata log terminal (klt) singularities if there exist a metric h and
a smooth metric h′ on −KX such that F (h) is a Kähler form, loghs − logh′s is a locally bounded function (for
some holomorphic section s), and the volume form of h has �nite mass.

In this setting, the de�nition of a Kähler-Einstein needs to be adapted slightly as well:

De�nition 6.9. Let X be a Fano variety. A Kähler metric ω on X is said to be Kähler-Einstein if Ric(ω) = ω
and

∫
Xreg

ωn = c1 (−KX )
n C V .

De�nition 6.10. A normal variety X is Q-Gorenstein if nKX is a Cartier divisor for some positive integer n.

De�nition 6.11. A test con�guration for a Fano variety X consists of a �at family π : X → A1 B A1
C

with a
relatively ample Q-line bundle L → X (so some power of L is a line bundle), endowed with a Gm (C)-action
ρ covering the standard action on A1 such that

• X = X1 B π−1 (1) and (X1,L1) � (X ,−KX ) ;

• The total space X and the central �bre X0 B π−1 (0) are normal Q-Gorenstein varieties with klt singu-
larities. The latter is integral.

The condition that L → X be relatively ample means that, for all τ ∈ A1, Lτ → Xτ is ample. That X
and X0 are Q-Gorenstein means that KX/A1 = KX − π

∗KA1 is trivial near all singularities, and hence can be
extended over them.

Lemma 6.12. If (X,L) is a test con�guration for the Fano variety X , then L is isomorphic to −KX/A1 .

Proof. As L1 � −KX , and (Xτ ,Lτ ) � (X1,L1) for all τ ∈ C∗ via the action of ρ, the Q-Cartier divisors L
and −KX are linearly equivalent on X∗ B X \ X0. Hence n(L + KX ) is linearly equivalent to a Weil divisor
supported in X0 for some n. But as the central �bre is integral, n(L + KX ) is equivalent to a multiple of X0.
As X0 is cut out by π ∗τ , where τ is the coordinate on A1, and this coordinate, inducing the action on L,
vanishes with order one there, X0 is a Cartier divisor. By adjunction, L|X0 ∼ −KX0 , so L is indeed isomorphic
to −KX + π ∗KA1 = −KX/A1 . �
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Test con�gurations have an associated numerical invariant, called the Donaldson-Futaki invariant. To
de�ne it, consider for all k ≥ 1 the vector space H 0 (X0,−kK0), having a Gm (C)-action induced by that of K ,
whose dimension will be called dk . The total weight of the action will be denoted wk . By Hilbert function
theory, it can be shown that dk and wk , for large k , become polynomials of degree n and n + 1, respectively,
see [CDS12]. Hence, the following de�nition makes sense.

De�nition 6.13. The Donaldson-Futaki invariant DF(X) of a test con�guration X is given by the following
expansion:

wk

kdk
= c0 +

1
2 DF(X)k−1 +O (k−2) (7)

De�nition 6.14. A Fano varietyX is called K-stable if DF(X) ≤ 0 for all test con�gurationsX and DF(X) = 0
only if X is isomorphic X × C.

Remark. We have now de�ned the notions in theorem 6.6. The proof, however, goes way beyond the scope
of these notes. It uses functional analysis and advanced algebraic geometry, showing the strength of complex
geometry, especially when considering Kähler manifolds.
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