
How to use the EBT

Contents

1 This practical 2

2 The EBT and its code 2

3 PROBLEM: coho salmon 3

4 Output files 3

5 PROBLEM: coho salmon with nursery competition 4

6 PROBLEM: chinook salmon (age-structured) 4

7 PROBLEM: chinook salmon (age + size-structured) 4

8 PROBLEM: Daphnia 5

A Explanation of the EBT code 6

A.1 The header file coho.h . 6

A.2 The problem file coho.c . 6

B Example files 10

C Some hints about C code 15

1

EBT course, June 4, 2004 2

1 This practical

The goals of this practical are to learn:

- how to use the ebttool

- how the EBT program works

- how to program the EBT (including some basic C code)

- to analyse output generated by the EBT

- to translate biological problems into (EBT) models

2 The EBT and its code

The general idea of the EBT method (for solving PSPMs) has been explained

in the lectures and in the course handbook. One step further is to ac-

tually implement a PSPM as a computer program and to study it numerically.

To make this step easy, we use the EBT program. It is a program, writ-

ten in the programming language ‘C’, which allows you to study PSPMs with-

out worrying too much about the technical problems (i.e., computer and pro-

gramming related problems). Instead, you can focus on the modelling as-

pects, which are a lot more interesting (from a biological point of view

anyway).

However, in order to do so, you will have to understand some basics of

the programming of the EBT method, and of programming in C. That is the

first goal of this practical. The second (and ultimate) is to know how

to translate a biological problem (concerning a structured population) into

an EBT model from scratch.

We start with the first goal, and we use an example. In section B you

can find the files ‘coho.h’ and ‘coho.c’ which, together, make up the EBT

implementation of the coho salmon model as listed in table 1.1 of the course

handbook.

The EBT software consists of a set of routines written in C, which take

care of:

- reading input necessary for a computation, usually from a file writ-

ten by you

- doing all the computation of life history and population dynamics

- writing output to file.

The ebttool is graphic tool which gives you easy control over all of these

aspects, and which allows you to see the output visually in the form of

graphs. Most of the routines of the EBT software are written down in a

collection of files hidden away from you (you can find them in places such

as /usr/local/escbox). Together with two so-called ‘problem files’ (i.e.,

EBT course, June 4, 2004 3

one .c file and one .h file such as coho.c and coho.h) these files can be

compiled into an executable computer program. The problem .c file con-

tains routines which specify the biological model, and the .h file (the

’header file’) contains some global definitions of the model. These two

files are where you implement your models; the goal of this practical. Once

you have written the model, you can compile the whole program using the

command ‘ebt’, or using the ebttool. Then in order to run the program,

you need two more files. One to set the so-called ‘control variables’,

which are general settings for the ebt program, such as the total time for

your computation and the time interval between output. The other contains

the initial conditions of the run.

Summarising, there are four files of interest:

- the .c file (e.g. coho.c) with the model

- the .h file (e.g. coho.h) with some global definitions

- the .cvf file (e.g. run.cvf) with settings and parameter values

- the .isf file (e.g. run.isf) with initial conditions

As mentioned above, we start by studying an existing implementation of

the coho salmon model. Some of the code is explained in detail in sec-

tion A and the code itself is given in section B.

3 PROBLEM: coho salmon

� Consider the files coho.h, coho.c, run.cvf and run.isf of the coho salmon

model (see sections A and B)

� Find parameter values of D0, D1, D2 and E such that the dynamics cor-

respond to the dynamics of the matrix model with �� � ��� and ��� � ��

(see the Excel worksheet). Note that in coho.c the time unit is as-

sumed to be days and that a year is assumed to last YEAR = 100 days.

� Question: why is there no correspondence at the level of the total

population, but only (partially) at cohort-level?

4 Output files

The EBT produces different types of output. First of all, the output as

you define it yourself in DefineOutput() can be found in the file run.out.

The first column is the time, followed by column which contain output[0],

output[1], etc. The interval between output is determined in the file run.cvf.

Second, the complete state of the system at the end of the run is saved

in the file run.esf. This file contains information on all environmen-

tal variables, and all population variables, at the last moment of the run.

(So you can rename this file into run2.isf, for example, to start a new

EBT course, June 4, 2004 4

run from this point). The first line lists env[0], env[1], etc. The sec-

ond line is blank. The third line lists the data for the first cohort.

The first column has pop[0][i][number], followed by the i-states, in turn

followed by the i-consts (popIDcards). The next lines contain the data

of the other cohorts.

Throughout the run, at intervals specified in run.cvf, the program writes

such ‘complete state’ output to the file run.csb. This file is binary but

can be translated into normal text with the command csb2txt run.csb at the

command line, or via the ebttool directly. If you write csb2txt run.csb

> run.cso then the complete state output is saved in the file run.cso.

The file run.cso now contains, for each moment of output as defined in

run.cvf, information on all environmental variables, and all population

variables. The format is the same as for the run.esf file.

Finally, the file run.rep contains a report of the run which can be used

to reproduce the same run at a later time, for example.

5 PROBLEM: coho salmon with nursery competition

� Extend the coho model to include nursery competition.

� Note that the coho.c model uses days as time unit. The equations for

correspondence are therefore:

�� � �����

�� � �����

� � � �����

� �
����� ����� � �����

��
�

where � � YEAR.

6 PROBLEM: chinook salmon (age-structured)

� Convert the coho model into a model for chinook salmon, including nurs-

ery competition. Parameterise the model such that it has the same pop-

ulation growth rate (without nursery competition) as the matrix � (equa-

tion 1.7 of the course book) with �� � �� � ���, � � ��, and the matrix

elements ��� � ��� and ��� � ����.

� Check that with the appropriate choice of spawning probabilities 	�
�,

the model gives the same results as your model of coho salmon.

7 PROBLEM: chinook salmon (age + size-structured)

� Implement the age and size-structured model of chinook salmon as de-

scribed in chapter 2.

EBT course, June 4, 2004 5

� What is the maximum size reached by the chinook? (Do you think these

parameter values are very realistic?)

� Does food-dependent growth rate limit the population size?

� An ad hoc (and not very pretty) way to include food-dependent fecun-

dity is to assume that egg production depends on the food level at the

moment of reproduction. For the sake of the practical, implement the

assumption that

���� � � �
��
�

�� � �

� Perhaps a more mechanistic assumption would be that fecundity depends

on the amount of food consumed during the entire season. Again, for

the sake of education, modify the model to include such accumulation

of reproductive potential and implement it in the EBT model.

8 PROBLEM: Daphnia

� Implement the size-structured model of Daphnia as described in chap-

ter 3.

� The function Gradient for the Daphnia model has been printed in sec-

tion B, which can be used as a help for implementing the model.

� See if you can recreate the dynamics in figure 4.7 of the course book.

EBT course, June 4, 2004 6

A Explanation of the EBT code

Most of the text here is copied from the ebttmpl.h and ebttmpl.c files.

A.1 The header file coho.h

This file contains the settings of the various constants that are neces-

sary to tailor the Escalator Boxcar Train program to the problem under study.

The more important entries in the file are explained below.

#define POPULATION NR 1

...defines the number of structured populations in the problem.

#define I STATE DIM 1

#define I CONST DIM 1

...define the dimension of the i-state and the number of constant vari-

ables that characterize a cohort. These dimensions should be the same for

all the populations.

#define ENVIRON DIM 1

...defines the number of variables characterizing the environment. Here

it is 1, because ‘‘time’’ is defined as an environmental variable

(unnecessarily).

#define OUTPUT VAR NR 5

...defines the number of quantities that have to be written to the out-

put file each time that output should be generated.

#define PARAMETER NR 4

...defines the number of free parameters in the problem. These param-

eters can be changed between various runs without compilation of the pro-

gram. Parameters that are fixed in the problem can be defined as constants

in the problem-specific program file written by the user. Changing of these

constants requires a new compilation of the program before use.

A.2 The problem file coho.c

This file contains the user-defined routines of the EBT integration pro-

gram. So this is where you specify your model.

LABELING ENVIRONMENT AND I-STATE VARIABLES

For convenience it is possible to label the environment and i-state vari-

ables with a more meaningful name by defining, for instance, see:

EBT course, June 4, 2004 7

#define time env[0]

#define age i-state(0)

...which define the variables � (E-state) and �� (i-state). Note the

zero-based array indexing in the C-language.

DEFINING AND LABELING CONSTANTS AND PARAMETERS

Define the constant names and values used in the user-specified routines.

Most parameters in the problem can be treated as constants for this file.

This seems the most easy way to specify the parameters. The parameters

that are free to change will be in a vector called "parameter[]", defined

elsewhere. As with the i-state variables it is possible to label these

parameters with a more meaningful name, e.g.:

#define D0 parameter[0]

#define D1 parameter[1]

#define D2 parameter[2]

#define E parameter[3]

#define YEAR 100.0

#define SMALL 0.01

SPECIFICATION OF THE NUMBER AND VALUES OF BOUNDARY POINTS

SetBpointNo and SetBpoints

Newborn individuals enter the population at the so-called ‘‘boundary points’’.

Specify here the number of boundary cohorts that should be created at the

start of the next cohort integration cycle. Fill the array "bpoint no[]"

with the appropriate integer values. The length of the array is "POPU-

LATION NR". The state of the environment and the population can be used

to adapt the number of the fixed points on the boundary to the current state.

In the function SetBpoints you specify the state of newborn individu-

als. In the example coho.c:

bpoint no[0]=1;

...so there is only one boundary point (all individuals are born with

the same state), and

bpoints[0][0][age]=0.0;

...which means that all individuals are born with age 0.

SPECIFICATION OF DERIVATIVES

Gradient.

EBT course, June 4, 2004 8

Here the derivatives of the i-states, E-states and cohort abundances are

specified. Define the derivatives of the various environment variables,

which have to be returned to the main program in the array "envgrad[]".

Define also the derivatives of the various population variables, which have

to be returned to the main program in the matrix of cohort variables "pop-

grad[][][]" for each population. Finally define the derivatives of the

various offspring variables, which have to be returned to the main pro-

gram in the matrix of cohort variables "ofsgrad[][][]" for each popula-

tion. NB :

� The integer array "cohort no[]" is globally available and denotes the

number of internal cohorts present in each structured population.

� The integer array "bpoint no[]" is globally available and denotes the

number of boundary cohorts present in each structured population dur-

ing the current cohort cycle.

� The offspring number can be zero. If used in a division, check for

this equality to zero!!

So, to conclude, the goal of this function is to define the derivatives

of the state variables of the model. In the coho.c model, these deriva-

tives are:

envgrad[0] = 1.0;

popgrad[0][i][number] = -popIDcard[0][i][deathrate]*pop[0][i][number];

popgrad[0][i][age] = 1.0;

...and the last two for each cohort i=�1,2,3�, ofcourse.

Note the use of the ID cards, which also referred to as �-constants. They

are not state variables themselves, but they usually are functions of the

state variables. They can come in handy to remember something, such as

the age-specific death rate in this case.

SPECIFICATION OF BETWEEN COHORT CYCLE DYNAMICS

InstantDynamics

This routine is called at the end of each cohort cycle. The routine can

be used to implement any type of instantaneous dynamics, occurring between

two subsequent cohort cycles. It can, for instance, be used for a pulsed,

instantaneous reproduction process or to set the number of individuals in

cohorts that have reached their maximum lifespan to 0.

(Note that the transformation of boundary cohorts into internal cohorts

has already been performed and that the boundary cohorts are hence char-

acterized by the number of individuals and their transformed moments (usu-

ally denoted by the symbol �). In an instantaneous reproduction process

EBT course, June 4, 2004 9

the i state of the offspring can therefore be simply specified in terms of

the mean i state!)

This routine can be used to do discrete reproduction. In the program

coho.c reproduction takes place only once per year (= once in YEAR days).

The eggs are put into the ofs[0][0] cohort:

ofs[0][0][number] = eggs;

ofs[0][0][age] = 0.0;

ofsIDcard[0][0][deathrate] = D0;

...and note that in this model adults are killed after reproduction...

SPECIFICATION OF OUTPUT VARIABLES

DefineOutput

Define here the values of the output variables in terms of the popula-

tion and environment statistics. These values have to be returned to the

main program in the array "output[]".

EBT course, June 4, 2004 10

B Example files

/***
 NAME
 coho.h
 PURPOSE
 This file contains the settings of the various constants that are
 necessary to tailor the Escalator Boxcar Train program to the problem
 under study.
 NOTES
***/

#define POPULATION_NR 1
#define I_STATE_DIM 1
#define I_CONST_DIM 1
#define ENVIRON_DIM 1
#define OUTPUT_VAR_NR 5
#define PARAMETER_NR 4
#define TIME_METHOD RKCK

/*==*/

The file run.cvf (note that the parameter values D0, D1 etc are chosen

arbitratily here):

"Fixed step size or integration accuracy when adaptive" 1.0E-8
"Cohort cycle time interval" 1.0
"Tolerance value, determining identity with zero" 1.0E-5
"Maximum integration time" 1000.0
"Output time interval" 100.0
"Complete state output interval, 0 for none" 100.0
"Minimum allowable number of individuals in cohort" 0.0
"Relative tolerances for i-state variable #0" 0.0
"Absolute tolerances for i-state variable #0" 0.0

"D0" 0.1
"D1" 0.2
"D2" 0.3
"E" 1.0

The file run.isf:

0.0

1.0 100.0 0.0

EBT course, June 4, 2004 11

/***
 NAME
 coho.c
***/

/*==
 * INCLUDING THE HEADER FILE
 *==
 */
#include "escbox.h"

/*
 *==
 * LABELLING ENVIRONMENT AND I-STATE VARIABLES
 *==
 */

#define time env[0]
#define age i_state(0)
#define deathrate i_const(0) /* use an ID card for death rate */

/*
 *==
 * DEFINING AND LABELLING CONSTANTS AND PARAMETERS
 *==
 */

#define D0 parameter[0] /* death rates D0, D1 and D2 */
#define D1 parameter[1]
#define D2 parameter[2]
#define E parameter[3] /* fecundity */

#define YEAR 100.0 /* assume a year is 100 days */
#define SMALL 0.01

/*
 *==
 * USER INITIALIZATION ROUTINE ALLOWS OPERATIONS ON INITIAL POPULATIONS
 *==
 */

void UserInit(int argc, char **argv, double *env, population *pop)
{

 return;
}

/*
 *==
 * SPECIFICATION OF THE NUMBER AND VALUES OF BOUNDARY POINTS
 *==
 */

void SetBpointNo(double *env, population *pop, int *bpoint_no)
{
 bpoint_no[0]=1; /* all newborns have same age! */

 return;
}

/*==*/

void SetBpoints(double *env, population *pop, population *bpoints)
{
 bpoints[0][0][age]=0.0; /* all newborns have same age! */

 return;
}

/*
 *==
 * SPECIFICATION OF DERIVATIVES
 *==
 */

void Gradient(double *env, population *pop, population *ofs,
 double *envgrad, population *popgrad, population *ofsgrad,
 population *bpoints)

{

EBT course, June 4, 2004 12

 register int i;

 for(i=0; i<cohort_no[0]; i++) /* Determine death rates */
 {
 if(pop[0][i][age]<1.0*YEAR) /* age 0+ */

popIDcard[0][i][deathrate] = D0;
 else if(pop[0][i][age]<2.0*YEAR) /* age 1+ */

popIDcard[0][i][deathrate] = D1;
 else if(pop[0][i][age]<3.0*YEAR) /* age 2+ */

popIDcard[0][i][deathrate] = D2;
 }

 for(i=0; i<cohort_no[0]; i++) /* The derivatives for all */
 { /* internal cohorts */
 popgrad[0][i][number] = -popIDcard[0][i][deathrate]*pop[0][i][number];
 popgrad[0][i][age] = 1.0;
 }
 envgrad[0] = 1.0;

 return;
}

/*
 *==
 * SPECIFICATION OF BETWEEN COHORT CYCLE DYNAMICS
 *==
 */

void InstantDynamics(double *env, population *pop, population *ofs)
{
 double date, eggs;
 register int i;

 date = fmod(time, YEAR); /* What is the date? */
 if (date != 0.0)
 return; /* Return if within season, else opportunity to reproduce */

 /* semelparity: 3 year old individuals reproduce and die */
 for (i=0, eggs=0.0; i<cohort_no[0]; i++)
 if (pop[0][i][age]>(3.0*YEAR-SMALL))
 {

printf("reproduction at time %f\n",time);
eggs += E*pop[0][i][number]; /* add all eggs */
pop[0][i][number] = 0.0; /* all adults die */

 }

 ofs[0][0][number] = eggs; /* put eggs into ofs cohort */
 ofs[0][0][age] = 0.0; /* specify age and ID card */
 ofsIDcard[0][0][deathrate] = D0;

 return;
}

/*
 *==
 * SPECIFICATION OF OUTPUT VARIABLES
 *==
 */

void DefineOutput(double *env, population *pop, double *output)
{

 double totpop, age0, age1, age2;
 register int i;

 for(i=0, totpop=0.0; i<cohort_no[0]; i++)
 {
 totpop += pop[0][i][number];
 }

 /* count individuals in three age classes */
 age0=0.0;
 age1=0.0;
 age2=0.0;
 for(i=0; i<cohort_no[0]; i++)

EBT course, June 4, 2004 13

 {
 if(pop[0][i][age] < 1.0*YEAR-SMALL)

age0=pop[0][i][number];
 else if(pop[0][i][age] < 2.0*YEAR-SMALL)

age1=pop[0][i][number];
 else if(pop[0][i][age] < 3.0*YEAR-SMALL)

age2=pop[0][i][number];
 }

 output[0] = totpop;
 output[1] = age0;
 output[2] = age1;
 output[3] = age2;
 output[4] = cohort_no[0];

 return;
}
/*==*/

EBT course, June 4, 2004 14

The function Gradient which may be used as a help for the problem with con-

tinuous time reproduction.

/*
 *==
 *
 * SPECIFICATION OF DERIVATIVES
 *
 *==
 */

void Gradient(double *env, population *pop, population *ofs,
 double *envgrad, population *popgrad, population *ofsgrad,
 population *bpoints)

{
 double functional_response;
 double total_area, mean_offspring_length;
 register int i;

 functional_response = env[1]/(1+env[1]); /* Determine S/(1+S) */

/* Determine the integral */
 for(i=0, total_area=0; i<cohort_no[0]; i++) /* of the total area */
 total_area += pow(pop[0][i][length], 2.0)*pop[0][i][number];

/* Include the boundary */
 if(ofs[0][0][number] > 1.0E-10) /* cohort if non-zero */
 { /* Convert length moment */
 mean_offspring_length = ofs[0][0][length]/ofs[0][0][number];
 total_area += pow(mean_offspring_length, 2.0)*ofs[0][0][number];
 }

/* The time derivative */
 envgrad[0] = 1; /* The food derivative */
 envgrad[1] = RM*env[1]*(1-env[1]/K) - functional_response*total_area;

 for(i=0; i<cohort_no[0]; i++) /* The derivatives for all */
 { /* internal cohorts */
 popgrad[0][i][number] = -DELTA*pop[0][i][number];
 popgrad[0][i][age] = 1;
 popgrad[0][i][length] = functional_response - pop[0][i][length];
 }

/* The derivatives for the */
/* boundary cohort */

 ofsgrad[0][0][number] = -DELTA*ofs[0][0][number]
 + ALPHA*functional_response*total_area;
 ofsgrad[0][0][age] = -DELTA*ofs[0][0][age]
 + ofs[0][0][number];
 ofsgrad[0][0][length] = -DELTA*ofs[0][0][length]
 + functional_response*ofs[0][0][number]
 - ofs[0][0][length];

 return;
}

EBT course, June 4, 2004 15

C Some hints about C code

Here is a very limited list of some useful things to know about C in case

you are not familiar with this programming language. (Only things that

are relevant to this practical!).

� In general, lines should end with a semicolon (;)

� Everything in between �* and *� is ignored: here you can write your

comments about your code for later reference, etc.

� There are local and global variables. Local variables are only valid

inside the function where they are defined (see below), but global vari-

ables are always valid. In the EBT, cohort no[0] is an example of a

global variable.

� C is based on ‘functions’, which are routines or procedures in which

you can make the computer do something (compute, read, write, sing,

etc.). Functions can be called from within functions.

� Functions come in different types and have different types of argu-

ments. For example the function Gradient:

void Gradient(argument1, argument1, etc.)

�

double a, b; �* declaration of doubles *�

int c, d; �* declaration of integers *�

register int i �* declaration of frequently used integers *�

(... lots of code goes in here ...)

return;

�

– The actual contents of the function is in between the � and �

– The names and types of variables (except global variables) that

will be used is the function have to be declared first (see ‘dou-

ble a, b’ etc).

– At the statement return; we return to the place from which the func-

tion was called.

� for(i=0; i<cohort no[0]; i++)

�

popgrad[0][i][age] = 1.0;

�

– This is a loop starting from i=0

– For each value of i, the code in between � and � is executed,

EBT course, June 4, 2004 16

– after which i is increased by 1.

– This is repeated as long as i<cohort no[0]

� i++ is the same as i=i+1,

see also:

eggs += pop[0][i][number]*E*pr;

which means

eggs = eggs + pop[0][i][number]*E*pr;

� a = floor((pop[0][i][age]+SMALL)/YEAR);

The function floor() rounds of to the nearest integer below the num-

ber in between parenthesis.

� if (a==1.0)

pr = P1;

else if (a==2.0)

pr = P2;

– If the condition inside (...) is true, then the command is ex-

ecuted, otherwise, we skip to the next command (the ‘else’ in this

case). Everything behind ‘else’ is only executed if the condi-

tion inside (...) was false.

– note the difference between a == 1.0 (which checks the equality

and is therefore true or false) and pr = P1 (assigns P1 to pr)

� exp(x) means ��

� pow(a,b) means
�

� If you’re interested in more, see the book ‘Practical C’ which should

be present at the practical.

