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Traditional population models

dNi

dt
= fi(N1, ....Nq) Ni i = 1, . . . , q

• All individuals are functionally identical, mean-

ing that they have identical birth and death rates,

or

• The individuals can be represented by an average

type and this average does not change over time.
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Physiologically Structured Population Models

• explicitly model individuals and their life history,

and

• derive population-level model descriptions by keep-

ing book of the individual-level life history events

(e.g., reproduction, mortality) without making

any further assumptions at the population-level

itself.
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Individual, environmental and population state

• Individual or i-state: a set of (physiological) variables

that characterizes an individual and is used to distin-

guish individuals from each other.

• Environmental or E-state: a set of variables, e.g., food

density, density of predators, that characterizes the

environment in which the focal individual lives.

• Population or p-state: the mathematical construct to

represent all individuals making up the biological pop-

ulation. The choice of this mathematical construct de-

pends on the details of the modeled individual life his-

tory. It may be a vector of age- or size-class densities or

a continuous distribution over an age- or size-interval.
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Mortality

• Individuals experience mortality primarily during mi-

gration, both when migrating as smolt (1-2 years old)

from their natal stream to the ocean, as well as when

they migrate as adult back to their natal stream to

spawn. Mortality of individuals in the ocean is negligi-

ble. The mortality that migrating juvenile individuals

experience results in individuals having a probability

sj to survive their migration to the ocean (e.g. the sur-

vival probability from parr to smolt equals sj). The

mortality of returning adults results in these individ-

uals having a probability sa to survive their migration

back to their natal stream.
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Reproduction

• Individuals return to their natal stream to spawn at

an age of 2, 3 or 4 years old. With probability h they

return to spawn at an age of 3 years, with probabil-

ity (1 − h)/2 they return to spawn at either age 2 or

4 years old. On successful return to their natal stream,

having survived the migration, they spawn a number

of eggs that eventually yield f 1-year old individuals.

Fecundity is assumed to be independent of the age at

which adults spawn.
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Development

• Since both mortality and reproduction are determined

by the age of an individual, development from the

neonate to the juvenile and eventually the adult stage

is age-dependent, as well.
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EBT-model of coho salmon

A. Definitions

a individual age

Ni(t) number of individuals in cohort i at time t

Ai(t) age of individuals in cohort i at time t

d(a) instantaneous mortality rate for individuals with age a

E number of eggs spawned by an adult individual at age 3
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EBT-model of coho salmon

B. Model equations

Continuous-time
dynamics for all
cohorts, in between
two reproduction
events


dNi

dt
= −d(Ai) Ni

dAi

dt
= 1 i = 0, 1, 2

Creation of new
cohort during
reproduction event at
t = T, T + 1, T + 2, . . .

 N0(t) = E N2(t−)

A0(t) = 0

Renumbering
equations for all non-
newborn cohorts at
t = T, T + 1, T + 2, . . .

 Ni(t) = Ni−1(t−)

Ai(t) = Ai−1(t−) i = 1, 2
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EBT-model of chinook salmon

A. Definitions

a individual age

Ni(t) number of individuals in cohort i at time t

Ai(t) age of individuals in cohort i at time t

d(a) instantaneous mortality rate for individuals with age a

E number of eggs spawned by an adult individual at age 3

p(a) spawning probability of an individual with age a = 1, 2, 3 or 4
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EBT-model of chinook salmon

B. Model equations

Continuous-time
dynamics for all
cohorts, in between
two reproduction
events


dNi

dt
= −d(Ai) Ni

dAi

dt
= 1 i = 0, . . . , 3

Creation of new
cohort during
reproduction event at
t = T, T + 1, T + 2, . . .


N0(t) = E

3∑
i=1

p
(
Ai(t−)

)
Ni(t−)

A0(t) = 0

Renumbering
equations for all non-
newborn cohorts at
t = T, T + 1, T + 2, . . .

 Ni(t) =
(
1 − p

(
Ai−1(t−)

))
Ni−1(t−)

Ai(t) = Ai−1(t−) i = 1, . . . , 3
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Weight-age relationship for chinook salmon

Weight-age relationship for chinook salmon in Lake Ontario. Average weight-at-
age data reported by Rand & Stewart (1998) for the period 1990-1991 are shown
together with a vonBertalanffy growth curve fitted by eye.
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Weight-age relationship for chinook salmon

Weight-at-age for sexually mature hatchery chinook salmon from Lake Michigan
and Lake Ontario. Figure redrawn from Rand & Stewart (1998), showing sampling
data from Strawberry Creek, Wisconsin (Lake Michigan) and Salmon River, New
York (Lake Ontario). Both reductions in size-at-age and delays in age-at-maturity
have occurred in these populations over time.
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Fecundity-size relationship for sockeye salmon

Relationship between fecundity and fork length for 11 populations of kokanee and
46 populations of sockeye salmon. Only the regression lines to the actual data on
loge(fecundity) versus loge(fork length) are shown for different populations from
Japan, Canada and the US. Figure redrawn from McGruk (2000).
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Survial-size relationship for nasu salmon

Survival probability for different size classes of 0+ fry of nasu salmon Oncorhynchus
nasou. Survival was measured over a 3-week experimental period in the absence
(diamonds) or the presence (circles) of a fish predator. Figure redrawn from Rein-
hardt et al. (2001).



Title Page

JJ II

J I

Page 21 of 42

Go Back

Full Screen

Close

Quit

Survial-size relationship for chinook salmon

Survival as a function of body length in chinook salmon. The solid, increasing line
depicts percent survival as a function of the deviation of individual body length
from the population average length. The dotted line indicates the fraction of fish
in the salmon cohort with that particular body length. Figure redrawn from Zabel
& Achord (2004).
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Mortality: the instantaneous mortality rate d(s)

• Given the variability in size-dependent survival pat-

terns observed in natural systems, due to, for exam-

ple, the type and density of predators present, we will

consider only a very simple form of size-dependence in

mortality rate, following the relationship

d(s) = µ∞ − (µ∞ − µ0) e−s/sµ

The function d(s) hence is a decreasing function of our

body size measure s, takes on the values µ0 and µ∞

for very small and very large individual, respectively,

while it falls off with s at a rate determined by the

parameter sµ.
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Reproduction: The number of eggs produced E(s)

• Data presented by Healey (2001) and Heath et al.

(1999) indicate that per kilogram body weight chinook

salmon produce somewhere between 500 and 1200 eggs.

For the function E(s) we wil hence assume the simple

relationship

E(s) = β s3

with scaling constant β = 700. This function implies

that the number of eggs produced at spawning scales

linearly with individual body weight (= s3) and that

per kilogram weight 700 eggs are produced.
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Development: The individual growth rate g(s)

• This function represents the right-hand side of the

ODE that describes the growth of the individual in

body size:

ds

dt
= g(s) s(0) = s0

in which the parameter s0 = 0.16 equals the cubic

root of the weight of a newborn individual at birth

(W0 = 0.004) and the growth function g(s) is defined

as

g(s) = γ (s∞ − s)

with parameters γ = 0.4 and s∞ = 2.5.
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Age/size structured life history model of chinook salmon

A. i-state variables and life history parameters

Symbol Unit Value Interpretation

a y individual age

s kg1/3 individual body size

s0 kg1/3 0.16 body size of newborn individual

s∞ kg1/3 2.5 maximimum body size

γ y−1 0.4 growth rate constant

β kg−1 700 weight-specific fecundity

µ0 y−1 2 mortality rate of very small individual

µ∞ y−1 1 mortality rate of very large individual

sµ kg1/3 0.5 body size scaling constant of mortality
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Age/size structured life history model of chinook salmon

B. Life history model equations

Function Interpretation

g(s) = γ (s∞ − s) growht rate in body size

E(s) = β s3 number of eggs spawned by an adult
individual

d(s) = µ∞ − (µ∞ − µ0) e−s/sµ instantaneous mortality rate

p(a) =



0 for a = 1

0.2 for a = 2

0.75 for a = 3

1.0 for a = 4

age-specific spawning probability
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Age/size-structured EBT-model of a chinook salmon

Continuous-time
dynamics for all
cohorts, in between
two reproduction
events



dNi

dt
= −d(Si) Ni

dAi

dt
= 1

dSi

dt
= g(Si) i = 0, . . . , 3

Creation of new
cohort during
reproduction event at
t = T, T + 1, T + 2, . . .


N0(t) =

3∑
i=1

E
(
Si(t−)

)
p

(
Ai(t−)

)
Ni(t−)

A0(t) = 0

S0(t) = s0

Renumbering
equations for all non-
newborn cohorts at
t = T, T + 1, T + 2, . . .


Ni(t) =

(
1 − p

(
Ai−1(t−)

))
Ni−1(t−)

Ai(t) = Ai−1(t−)

Si(t) = Si−1(t−) i = 1, . . . , 3
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Food dependent life history model of chinook salmon

A. i-state variables and life history parameters

Symbol Unit Value Interpretation

a y individual age

s kg1/3 individual body size

s0 kg1/3 0.16 body size of newborn individual

sm kg1/3 2.5 maximimum body size at very high food
levels

γ y−1 0.4 growth rate constant

β kg−1 700 weight-specific fecundity

µ0 y−1 2 mortality rate of very small individual

µ∞ y−1 1 mortality rate of very large individual

sµ kg1/3 0.5 body size scaling constant of mortality

α g/kg2/3 1 maximum ingestion rate scaling constant

Fh g/L 0.5 body size scaling constant of mortality
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Food dependent life history model of chinook salmon

B. Life history model equations

Function Interpretation

g(s, F )= γ

(
sm

F

Fh + F
− s

)
growht rate in body size

E(s) = β s3 number of eggs spawned by an adult
individual

d(s) = µ∞ − (µ∞ − µ0) e−s/sµ instantaneous mortality rate

p(a) =



0 for a = 1

0.2 for a = 2

0.75 for a = 3

1.0 for a = 4

age-specific spawning probability

I(s, F )= α s2 F

Fh + F
resource ingestion rate
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Food dependent EBT-model of chinook salmon

Continuous-time
dynamics for all
cohorts, in between
two reproduction
events



dNi

dt
= −d(Si) Ni

dAi

dt
= 1

dSi

dt
= g(Si, F ) i = 0, . . . , 3

Creation of new
cohort during
reproduction event at
t = T, T + 1, T + 2, . . .


N0(t) =

3∑
i=1

E
(
Si(t−)

)
p

(
Ai(t−)

)
Ni(t−)

A0(t) = 0

S0(t) = s0

Renumbering
equations for all non-
newborn cohorts at
t = T, T + 1, T + 2, . . .


Ni(t) =

(
1 − p

(
Ai−1(t−)

))
Ni−1(t−)

Ai(t) = Ai−1(t−)

Si(t) = Si−1(t−) i = 1, . . . , 3

Dynamics of resource
density

dF

dt
= ρ (K − F ) −

3∑
i=0

I (Si, F ) Ni(t)
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Comuputational stages in EBT-model

1. The numerical integration of all sets of ODEs that determine the life
history of the individuals in a cohort, more specifically their develop-
ment, aging and mortality.

2. The simultaneous integration of the ODEs that determine the dynam-
ics of all environmental factors, such as food density. These ODEs are
coupled with the cohort ODEs through the influence these factors
(e.g. food density) have on individual life history and, in turn, the
population-level feedback of the cohorts on them, for example through
feeding.

3. The creation of a new cohort of individuals at the moment that a
reproduction event occurs, and

4. The renumbering of all existing cohorts in the population at the mo-
ment of a reproduction event to conserve an appropriate order in the
indexes of the cohorts.
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The population state or p-state

The mathematical object or construct that represents a

biological population in a dynamic model. The type of the

mathematical object depends on the life history model:

• In the chinook salmon model:
N0(t)

N1(t)

N2(t)

N3(t)

 ,


A0(t)

A1(t)

A2(t)

A3(t)

 or


N0(t)

N1(t)

N2(t)

N3(t)

 ,


S0(t)

S1(t)

S2(t)

S3(t)


• In the Daphnia model with continuous reproduction:

n(t, `)
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The individual state or i-state

A collection of, usually physiological, statistics that char-

acterizes the individual organism and that is used to distin-

guish individuals from each other. Formally, the individual

state should be a collection of individual properties

1. that at any one time completely determines, possibly

together with the present state of its environment, the

individual’s probability to die or give birth and its

influence on the environment (its contribution to the

overall population dynamics), and

2. whose future values are completely determined by its

present values plus the time course of the intervening

environmental history, as encountered by the individ-

ual.
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The environmental state or E-state

Every factor that can modify the life history of an individ-

ual organisms and that is not one of its own physiological

traits, is considered part of its environment. Three distinct

classes can be recognized:

• Abiotic modulation: completely external factors that

neither the individual itself, nor the population it be-

longs to, nor any other population in the community

that the population is part of can influence. This type

of environmental influence therefore does not lead to

density dependence!
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The environmental state or E-state

• Direct density dependence: Influences of the popula-

tion itself on the life history of its individuals (nursery

competition, interference, cannibalism). This density

dependence operates in a very direct way, because it

is the population abundance that directly modifies the

vital rates.

• Environmental feedback : Environmental feedback rep-

resents a form of density dependence that operates in-

directly: for example, high population densities will

lead to lower resource levels, which in turn will slow

down individual growth and development, as well as

negatively affect individual reproduction and survival.
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Basic features of Daphnia life history models

1. the feeding rate of individual Daphnia strongly in-

creases with individual size and is an increasing but

decelerating function of food density,

2. individual Daphnia mature on reaching a fixed size,

and

3. ultimate size and growth rate increase with food avail-

ability.
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Model variables and life history parameters of Daphnia

Symbol Unit Value Interpretation

` mm individual length

ν mgC/mm2 0.007 maximum ingestion rate scaling
constant

Fh mgC/L 0.164 half-saturation food density in func-
tional response

`b mm 0.6 length at birth

`j mm 1.4 length at maturation

`m mm 3.5 maximimum length at very high food
levels

γ d−1 0.11 growth rate constant

rm mm−2 1.0 maximum reproduction rate scaling
constant

µ d−1 0.05 size-independent, background mortal-
ity rate
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Life history model of Daphnia

B. Life history model equations

Function Interpretation

g(`, F )= γ

(
`m

F

Fh + F
− `

)
growht rate in length

b(`, F )=


rm `2 F

Fh + F
if `j < `

0 if ` ≤ `j

reproduction rate

d(`, F )= µ instantaneous mortality rate

I(`, F )= ν `2 F

Fh + F
Feeding rate
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EBT-model of Daphnia with continuous reproduction

A. Population variables and parameters

Symbol Unit Value Interpretation

Ni(t) #/L number of individuals in cohort i at time t

Li(t) mm average length of individuals in cohort i at
time t

B0(t) mm/L Length-based measure of individuals in co-
hort 0 at time t

F (t) mgC/L resource density in the environment

ρ d−1 0.5 semi-chemostat resource regrowth rate

K mgC/L 0.25 maximum resource density in absence of
consumers
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EBT-model of Daphnia with continuous reproduction

Continuous time dynamics during cohort cycle

Continuous-time
dynamics for boundary
cohort



dN0

dt
= −d(`b, F )N0 −

∂

∂`
d(`b, F )B0

+
∑
i>0

b (Li, F ) Ni
‡

dB0

dt
= g(`b, F )N0 +

∂

∂`
g(`b, F )B0

− d(`b, F )B0

Continuous-time
dynamics for other
cohorts


dNi

dt
= −d(Li, F )Ni

dLi

dt
= g(Li, F ) i = 1, 2, . . .

Dynamics of resource
density in environment

dF

dt
= ρ (K − F ) −

∑
i

I (Li, F ) Ni(t) ‡

‡ Include the boundary cohort in the sum if N0 6= 0; use L0 = `b+B0/N0.
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EBT-model of Daphnia with continuous reproduction

Transformation and renumbering equations

Transformation and
new initial values for
boundary cohort at end
of cohort cycle
(t = t∗, t∗ + ∆, . . .)



N1(t∗ + ∆) = N0(t∗ + ∆−)

L1(t∗ + ∆) = `b +
B0(t∗ + ∆−)
N0(t∗ + ∆−)

N0(t∗ + ∆) = 0

B0(t∗ + ∆) = 0

Renumbering equations
for other cohorts at end
of cohort cycle
(t = t∗, t∗ + ∆, . . .)


Ni(t∗ + ∆) = Ni−1(t∗ + ∆−)

Li(t∗ + ∆) = Li−1(t∗ + ∆−) i = 2, 3, . . .
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Partial differential equation formulation of the Daphnia

model

Daphnia dynamics
∂n(t, `)

∂t
+

∂g(`, F ) n(t, `)
∂`

= − d(`, F ) n(t, `)

g(`b, F ) n(t, `b) =

`m∫
`b

b(`, F ) n(t, `) d`

Algal dynamics
dF

dt
= ρ (K − F ) −

`m∫
`b

I(`, F ) n(t, `) d`

Initial conditions n(0, `) = Ψ(`)

F (0) = F0
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individual
feeding

food dependent
behavior

Population

Environment

length

mortality

reproduction

Food density

growth

n(t,l)

F


