
PSPManalysis

A package for numerical analysis of physiologically structured

population models

André M. de Roos

Institute for Biodiversity and Ecosystem Dynamics
University of Amsterdam

A.M.deRoos@uva.nl

Version October 4, 2016

Copyright © 2015 — André M. de Roos, University of Amsterdam
All rights reserved

The development of this software has been made possible by funding
from the European Research Council under the European Union’s Sev-
enth Framework Programme (FP/2007-2013) / ERC Grant Agreement
No. 322814

Contents

1 Introduction 3

2 Short setup guide for Matlab 5
2.1 Prerequisites . 5
2.2 Package installation and testing . 5

2.2.1 Using the mex compiler under Matlab 6
2.2.2 Max OS X and Linux . 6
2.2.3 Windows . 7

Demographic analysis of linear PSPMs

3 Model formulation and ingredients 11

4 Implementation of an example model 13
4.1 Dimensions, settings and model parameters 14

4.1.1 Definition of problem dimensions and optional numerical settings . 14
4.1.2 Definition of parameter names and values 16
4.1.3 Definition of aliases to simplify implementation 16

4.2 Definition of the individual life history . 17
4.2.1 Specifying the number of possible states-at-birth 17
4.2.2 Specifying the value of all possible states-at-birth 18
4.2.3 Definition of boundaries between discrete stages 19
4.2.4 Specification of continuous individual state development 21
4.2.5 Specification of discrete individual changes at stage transitions . . 21
4.2.6 Specification of fecundity . 22
4.2.7 Specification of mortality . 23

5 Model analysis in Matlab 25
5.1 Executing of the PSPMdemo script . 25
5.2 Output files generated by the PSPMdemo script 27
5.3 Required and optional arguments of PSPMdemo 29

Equilibrium analysis of nonlinear PSPM

6 Model formulation and ingredients 35

i

ii CONTENTS

7 Implementation of an example model 37
7.1 Dimensions, settings and parameters . 39

7.1.1 Definition of problem dimensions and numerical settings. 39
7.1.2 Definition of parameter names and values 41
7.1.3 Definition of aliases to simplify implementation 42

7.2 Definition of the individual life history . 44
7.2.1 Specifying the number of possible states-at-birth 44
7.2.2 Specifying the value of all possible states-at-birth 44
7.2.3 Definition of boundaries between discrete stages 45
7.2.4 Specification of continuous individual state development 47
7.2.5 Specification of discrete individual changes at stage transitions . . 48
7.2.6 Specification of fecundity . 49
7.2.7 Specification of mortality . 50

7.3 Feedback and equilibrium of the environment 51
7.3.1 Specification of feedback impact on the environment 51
7.3.2 Specification of equilibrium conditions of the environment 52

8 Model analysis in Matlab 57
8.1 Computation of curves and detections of bifurcation points 57
8.2 Arguments of the PSPMequi script . 59
8.3 Output variables of the PSPMequi script 65
8.4 An example session using the PSPMequi script 66
8.5 Output files generated by the PSPMequi script 76

Evolutionary analysis of nonlinear PSPMs

9 Theoretical and computational background 83

10 Example model for evolutionary analysis 87

11 Model analysis in Matlab 89

12 Simulating evolutionary dynamics 97
12.1 Theoretical background . 97
12.2 Simulating evolutionary dynamics in Matlab 98
12.3 An example session using the PSPMevodyn script 102
12.4 Output files generated by the PSPMevodyn script 104

Simulating the individual life history

13 Simulating individual life histories in specific environments 111
13.1 Arguments of the PSPMind function . 111
13.2 An example using the PSPMind function 113

Additional information

14 Multiple states at birth 119
14.1 Demographic analysis . 120

14.1.1 Two different offspring body sizes 120

CONTENTS iii

14.1.2 Periodic environments . 123
14.2 Equilibrium and evolutionary analysis . 124
14.3 Other applications of multiple states-at-birth 126

15 Pulsed reproduction 129

16 UNIX command-line usage 131
16.1 The Makefile and compilation of a program 131
16.2 Executing a compiled program . 133
16.3 Output files . 136

17 Optional numerical settings 139

18 Analytical background 141
18.1 Population growth rate equations . 142
18.2 The system of equations determining an equilibrium 144
18.3 Continuation and bifurcation detection . 145

Bibliography 147

List of C code bloxes

Demographic analysis

4.1 Definition of dimensions and numerical settings 15

4.2 Definition of parameter names and values . 16

4.3 Definition of aliases . 17

4.4 Specification of the number of possible states-at-birth 18

4.5 Specification of the value of all possible states-at-birth 18

4.6 Definition of discrete stage boundaries . 19

4.7 Specification of continuous individual state development 21

4.8 Specification of discrete individual state changes 21

4.9 Specification of fecundity . 23

4.10 Specification of mortality . 24

Equilibrium analysis

7.1 Definition of dimensions and numerical settings 39

7.2 Definition of parameter names and values . 42

7.3 Definition of aliases . 43

7.4 Specification of the number of possible states-at-birth 44

7.5 Specifying the value of all possible states-at-birth 44

7.6 Definition of discrete stage boundaries . 45

7.7 Specification of continuous individual state development 47

7.8 Specification of discrete individual state changes 48

7.9 Specification of fecundity . 49

7.10 Specification of mortality . 50

7.11 Specification of feedback impact on the environment 51

7.12 Specification of equilibrium condition of the environment 54

Multiple states at birth

14.1 Specification of the number of possible states-at-birth 120

iv

List of C code bloxes v

14.2 Specifying the value of all possible states-at-birth 121

14.3 Specification of fecundity . 122

14.4 Specification of the number of possible states-at-birth 124

14.5 Specifying the value of all possible states-at-birth 125

14.6 Specification of fecundity . 126

List of Matlab and UNIX command boxes

Demographic analysis

5.A PSPMdemo call for a single parameter value . 25

5.B PSPMdemo call to compute a curve over a parameter range 26

5.C PSPMdemo help page . 32

Equilibrium analysis

8.A General syntax of a PSPMequi call . 59

8.B Starting PSPM analysis from a trivial equilibrium 67

8.C Computation of the consumer-resource equilibrium 69

8.D Computing the predator-consumer-resource equilibrium 71

8.E Computing the consumer invasion boundary 72

8.F Computing the predator invasion boundary 74

8.G Computing the predator persistence boundary 75

8.H Contents of population state generated by PSPMequi 77

8.I PSPMequi help page . 79

Analysis of evolutionary fixed points

11.A Detection of an evolutionary fixed point . 91

11.B Continuation of an evolutionary fixed point 92

11.C Construction of a pairwise invasibility plot . 94

Simulating evolutionary dynamics

12.A General syntax of a PSPMevodyn call . 98

12.B Simulating evolutionary dynamics in a single parameter 102

12.C Simulating evolutionary dynamics in two parameters 104

12.D PSPMevodyn help page . 107

vi

List of Matlab and UNIX command boxes vii

Simulating individual life histories in specific environments

13.A General syntax of a PSPMind call . 111

13.B PSPMind help page . 115

UNIX command-line usage

16.A Command-line syntax for demographic analysis 133

16.B Demographic analysis call for a single parameter value 134

16.C Demographic analysis call for a parameter range 134

16.D Command-line example of a bifurcation analysis program 135

Preface

This software package is distributed in the hope that it will be useful for the analysis of
physiologically structured population models (PSPMs) or life history models in general.
If you are not familiar with PSPMs there are many sources you can check, in particular
the original book by Metz & Diekmann (1986), but a more gentle introduction is provided
in De Roos (1997).

An earlier version of this software has been used to produce the many bifurcation graphs
of equilibria in structured population models that appear in De Roos & Persson (2013).
The approach is also shortly discussed in the Technical Appendices of that Monograph.
The basic layer of the software has hence been tested quite extensively. The current
version is built on top of that basic layer to make the implementation of a particular
PSPM easier and to make the software package accessible from R, Matlab or Octave.
The software can also be used from the command-line of any Unix-based system (Linux
or Mac OS) without the overhead of R, Matlab or Octave. This manual focuses on the
use of the software package from R or Matlab (its use from Octave should be the same).

The package is free software and released under the GNU General Public License without
any warranty or even the implied warranty of merchantability or fitness for a particular
purpose (the official statement of the GPL). If you are using the software for publications,
you are kindly asked to credit this software package by a reference to this documentation
and the website that hosts the software package, as these are currently the only sources
to be referred to.

In case you encounter any problem with the software package, please first verify the
problem is not in your own model-specific file, but indeed is a bug in the general software
layer. If you are convinced it is a bug in my programming, send me an email with as
accurate a description of the problem as possible. Do not not forget to include your model-
specific file and details about the invocation of the scripts that caused the problems.

Any comments and feedback, both on the code and on the current manual is appreciated
and will be considered carefully. In particular concrete comments, for example, explicit
suggestions for textual changes in the manual and/or corrections of the mistakes (they
are definitely there!) will be highly valued and acknowledged.

Enjoy!

André de Roos

1

1

Introduction

This software package implements numerical procedures for the analysis of physiologically
structured population models (PSPMs). PSPMs represent a class of models that consis-
tently translate continuous-time models of individual life history to the population level.
The formulation of such models is discussed extensively in Metz & Diekmann (1986) and
De Roos (1997) and is presented here only as far as needed for the use of the software.

The software allows for four different types of analyses of PSPMs:

• Demographic analysis: For linear PSPMs that do not account for density de-
pendence or population feedback on the life history of individual organisms, the
long-term population growth rate can be calculated. If the dynamics of such a lin-
ear PSPM would be simulated over time in the long run the population would grow
exponentially or decline to zero with this population growth rate. The software also
automatically calculates the sensitivity of this population growth rate with respect
to all model parameters. Furthermore, the software calculates the stable population
distribution, which characterises the composition of the population during its ex-
ponential growth phase, and the reproductive value of the individuals in this stable
population state as a function of their individual state.

• Equilibrium analysis: Equilibrium states can be computed for non-linear PSPMs
that do account for density dependence or feedback of the population on the life
history of individual organisms. These equilibrium states are computed as a function
of a single model parameter, resulting in a parameterised curve of equilibrium states.
Two types of special points can be detected in these equilibrium curves: limit points,
also called saddle-node bifurcation points, and branching points or transcritical
bifurcation points. Furthermore, the software allows for the computation of these
two types of bifurcation points as a function of two model parameters.

• Analysis of evolutionary fixed points: During the computation of equilibrium
curves of a non-linear PSPM the software also can check whether an evolutionary
singular point as defined by Adaptive Dynamics or ESS-theory (Dieckmann, 1997;
Metz et al., 1996) is encountered. These singular points are subsequently classified as
either a convergent stable strategy (CSS), an evolutionary branching point (EBP) or
an evolutionary repellor (ERP) (Geritz et al., 1998). The software can also compute
the value of a detected evolutionary singular point as a function of a second model
parameter and can, starting from a detected evolutionary singular point, compute
the pairwise invasibility plot (Dieckmann, 1997; Metz et al., 1996).

3

4 CHAPTER 1. INTRODUCTION

• Evolutionary dynamics simulation: The dynamics of life history trait values,
which in the model occur as parameters, can be simulated over evolutionary time
scales, using the canonical equation for adaptive dynamics as explained in Dieck-
mann & Law (1996). These evolutionary dynamic simulations are based on the
assumption that the system approaches an ecological equilibrium in between muta-
tion events, which change the value of the life history trait. The evolutionary rate
of change is proportional to the selection gradient in the ecological equilibrium and
the population birth rate.

The software package consists of a collection of routines implemented in C with frontends
that allows the software to be used from either R, Matlab or Octave. The implementation
of the elements of the PSPM under study, however, have to be programmed in C, using
the template files provided with the package. These design decisions have been inspired
by preliminary tests of the computational efficiency. I would have preferred to use either
R or Matlab instead of C for the implementation of the user-defined ingredients of the
PSPM under study, but this would increase the execution time by roughly 2 orders of
magnitude. Computations would then have been excruciatingly slow, which (hopefully)
justifies the added difficulty of using C.

The basic methodology to numerically compute the equilibrium of a PSPM has been
presented in Kirkilionis et al. (2001) and Diekmann et al. (2003), while De Roos (2008)
presented the modification of the latter approach to compute the demographic character-
istics of a linear PSPM. For the interested reader this manual provides a brief sketch of
this computational approach in chapter 18.

2

Short setup guide for Matlab

2.1 Prerequisites

When using Matlab the package uses the mex compiler to compile C files into a shared
library that can be loaded for computations. The mex compiler needs a stand-alone C
compiler to function properly. Newer versions of Mac OS X do not automatically include
a compiler with the basic distribution and hence require installation of the command-line
tools of Xcode, the development environment on Mac OS X. For freely available and
supported compilers on Windows systems check the Matlab website (www.mathworks.
com). In Matlab run the command mex -setup to select the C-compiler to use. Make
sure that your setup of mex is working properly, consult the Matlab documentation for
more information if necessary.

2.2 Package installation and testing

• Unpack the downloaded compressed file PSPManalysis.zip. This will create a
directory PSPManalysis, which you can move to a location of your choice in your
file system.

• Within Matlab change to the directory PSPManalysis that has been created by
unpacking the compressed file PSPManalysis.zip.

• Add the directory PSPManalysis to your search path in Matlab.

• Change to the directory Tests and execute the Matlab script alldemotests.m,
which subsequently calls the Matlab scripts Medfly_demo.m and
KlanjscekDEB_demo.m and prints or plots the results in various ways. These
scripts tests the working of the demographic analysis of the software package.

• Subsequently execute the Matlab script allequitests.m, which runs the scripts
PNAS2002equi_demo.m, Indet_growth_demo.m and KooijmanDEB_demo.m. These
scripts perform equilibrium computations of 3 different PSPMs and illustrate the
detection of saddle-node and transcritical bifurcations in equilibrium curves and
the continuation of these bifurcation points as a function of 2 model parameters
(PNAS2002equi_demo.m). The script Indet_growth_demo.m illustrates the detec-
tion of an evolutionary singular point and its continuation as a function of a model
parameter, the construction of the pairwise invasibility plot starting from the de-

5

www.mathworks.com
www.mathworks.com

6 CHAPTER 2. SHORT SETUP GUIDE FOR MATLAB

tected evolutionary singular point, as well as the simulation of evolutionary dynam-
ics in 2 life history parameters.

For demographic analysis of PSPMs use the problem file Medly.h as a template to imple-
ment the specific ingredients of the PSPM that you want to analyse, following the steps
discussed in chapter 4. For equilibrium computations use the problem file PNAS2002.h as
a template to implement the specific ingredients of the PSPM that you want to analyse,
following the steps discussed in chapter 7.

2.2.1 Using the mex compiler under Matlab

2.2.2 Max OS X and Linux

When using Matlab the package needs the mex compiler to compile C files into a shared
library that can be loaded for computations. The mex compiler requires a stand-alone C
compiler to function properly. Newer versions of Mac OS X do not automatically include
a compiler with the basic distribution and hence require installation of the command-line
tools of XCode, the development environment on Mac OS X. In Matlab run the command
mex -setup to select the C-compiler to use. Make sure that your setup of mex is working
properly, consult the Matlab documentation for more information if necessary.

On Mac OS and Linux systems the mex compiler uses a shell script mexopts.sh to tailor
the compilation settings to your system. The Matlab distribution includes a standard
version of this shell script, but this has not worked very well for me. I therefore include
here an adapted version of this shell script that works for me on Mac OS and Linux using
Matlab 2012b. To use this version of the shell script it has to be placed in the directory
where your Matlab version is looking for its configuration files. You can find out the name
of this directory by issuing the command prefdir on the Matlab command line, as shown
below:

>> prefdir
2

ans =
4

/Users/andre/.matlab/R2012b
6

If you put the mexopts.sh supplied here in that particular directory it will be used instead
of the one supplied by default. The variables in the mexopts.sh that might have to be
tuned for your system are the variables CC, CFLAGS, LDFLAGS and on Mac OS X possibly
CLIBS.

The section in the mexopts.sh file supplied with the package that I have changed to get
the package working properly on my Mac OS X (Yosemite) system is:

#
2 # CLANG settings: Include -fopenmp as argument for threading support

#
4 CC='/opt/local/bin/clang'

CFLAGS="-fopenmp -fno-common -arch $ARCHS -isysroot $MW_SDKROOT -mmacosx-version-min=$MACOSX_DEPLOYMENT_TARGET"
6 LDFLAGS="-fopenmp -arch $ARCHS -Wl,-syslibroot,$MW_SDKROOT -mmacosx-version-min=$MACOSX_DEPLOYMENT_TARGET"

#
8 # GCC settings

#
10 # CC='/opt/local/bin/gcc'

CFLAGS="-fopenmp -fno-common -arch $ARCHS -isysroot $MW_SDKROOT -mmacosx-version-min=$MACOSX_DEPLOYMENT_TARGET"
12 # LDFLAGS="-fopenmp -arch $ARCHS -Wl,-syslibroot,$MW_SDKROOT -mmacosx-version-min=$MACOSX_DEPLOYMENT_TARGET"

#
14 # Link with Matlab's libiomp5.dylib to prevent incompatibilities

2.2. PACKAGE INSTALLATION AND TESTING 7

#
16 CLIBS="$MLIBS -L$TMW_ROOT/sys/os/$Arch -liomp5"

#
18

In the above code, the variable CC is set to the compiler that I use on my Mac (I checked
the package both with the clang and gcc compiler). I do not use the clang compiler that
is standard supplied with XCode 7.2 on Mac OS X Yosemite, as this version of clang is
old and does not support parallelisation of the program via OpenMP. The clang and gcc

compiler I use I have installed from macports. Parallelisation speeds up the computations
significantly in case individuals of a particular population can be born with different states
at birth. Furthermore, to make use of the automatic parallelisation offered by OpenMP the
command-line argument -fopenmp is added to both the CFLAGS and the LDFLAGS variable.

To get the package working properly on a Debian Linux system I have changed the
variables CC, CFLAGS and LDFLAGS in the section for Linux systems to specify the compiler
to use (I checked the package both with Intel’s icc compiler and the gcc compiler) and
have added the command-line argument for automatic parallelisation using OpenMP to the
CFLAGS and LDFLAGS variables (options -openmp and -fopenmp for Intel’s icc and the
gcc compiler, respectively), as shown below:

#
2 # ICC settings: Include -openmp as argument for threading support

#
4 CC='icc'

CFLAGS="-std=gnu99 -O3 -ipo -axAVX -msse3 -openmp -D_GNU_SOURCE"
6 LDFLAGS="-openmp -pthread -shared -Wl,--version-script,$TMW_ROOT/extern/lib/$Arch/$MAPFILE -Wl,--no-undefined"

#
8 # GCC settings: Include -fopenmp as argument for threading support

#
10 # CC='gcc'

CFLAGS='-D_GNU_SOURCE -fopenmp'
12 # LDFLAGS="-fopenmp -pthread -shared -Wl,--version-script,$TMW_ROOT/extern/lib/$Arch/$MAPFILE -Wl,--no-undefined"

#

2.2.3 Windows

To compile C files into a shared library that can be loaded for computations using the mex
compiler, check the Matlab website for freely available and supported compilers on Win-
dows systems. In Matlab run the command mex -setup to select the C-compiler to use.
Make sure that your setup of mex is working properly, consult the Matlab documentation
for more information if necessary.

http://www.mathworks.com

Demographic analysis of linear
PSPMs

9

3

Model formulation and ingredients

The core of a linear PSPM consists of a model of the individual life history that is based
on the following assumptions:

• Individuals are characterised by their individual or i-state, which is a (finite) set of
physiological characteristics (traits such as age, size, sex, energy reserves):

χ = (χ1, . . . , χk) ∈ Ω ⊂ Rk

• Individuals are born with an i-state χb that is one of a finite set of possible states
at birth:

χb ∈ {φ1, . . . ,φm}

with each potential state at birth φj a valid i-state:

φj = (φj1, . . . , φjk) ∈ Ω ⊂ Rk

• Development follows a deterministic process that is continuous in time:

dχ

da
= g(χ,χb)

The development rate g(χ,χb) is a function of the individual state and the individ-
ual’s state at birth

• Reproduction is modeled by a per-capita offspring production rate (or fecundity)
β(χ,χb), dependent on the individual state and the individual’s state at birth

• Mortality is modeled by a per-capita death rate µ(χ,χb), dependent on the indi-
vidual state and the individual’s state at birth

All assumptions above are characteristic for the general class of PSPMs. The most restric-
tive of these assumptions concerns the deterministic development process. Biologically,
this assumption implies that all individuals that are born with the same state at birth
will remain identical throughout their life and will hence not diverge in their i-state
characteristics. Reproduction and mortality on the other hand are at an individual level
considered as stochastic processes, which translate to per-capita rate functions at the pop-
ulation level, given that it is assumed that the number of individuals is large (technically
speaking the number of individuals for every possible i-state).

11

4

Implementation of an example model

The steps needed for the implementation of a particular PSPM will be discussed using
a simple model for the life history of the Mediterranean fruitfly, which is also discussed
in De Roos (2008). The individual life history in this model is only age-dependent with
both age-dependent birth and mortality rates. The PSPM for this model can be described
by the following partial differential equation (PDE) for the population age-distribution
n(t, a):

∂n

∂t
+

∂n

∂a
= −µ(a)n(t, a)

n(t, 0) =

∫ ∞
Aj

β(a)n(t, a) da

β(a) = β0 e
−β1(a−Aj), if a > Aj

µ(a) = µ0 e
µ1a

The first, partial differential equation above describes the changes in the population age-
distribution n(t, a) through aging (∂n/∂a) and mortality, which is modeled by the mor-
tality rate µ(a). The second equation, representing the boundary condition for the partial
differential equation, describes the total population reproduction rate n(t, 0), which equals
the cumulative fecundity of all individuals older than Aj , the age at maturation. The mor-
tality rate µ(a) is an exponentially increasing function of age, whereas the fecundity β(a)
is highest for just maturing individuals (a = Aj) and decreases exponentially with age
afterward.

The implementation of this model, which I will refer to as the Medfly model, for analysis
with the software package requires the specification of 10 pieces of C-code arranged in
two different sections:

• Section 1: Problem dimensions, numerical settings and model parameters

• Section 2: Definition of the individual life history functions, such as development
(growth), fecundity and mortality.

The pieces of C-code are discussed in detail in the next 2 sections with 10 subsections.
The code can be found in the file Medfly.h in the directory Tests. To implement your
own model you only need a basic understanding of C, which programming language I will

13

14 CHAPTER 4. IMPLEMENTATION OF AN EXAMPLE MODEL

not further discuss here. It is advisable to use one of the example models in the directory
Tests as a basis for the implementation, for example, by opening the file Medfly.h in
Matlab’s built-in editor and saving it with a different name. The extension of your model-
specific file should however remain .h.

The software allows for the analysis of models with multiple structured populations, each
of which consists of individuals that are characterised by a finite number of individual state
variables. The number of state variables characterising an individual should, however, be
the same for each of the structured populations in the model. Furthermore, at birth
individuals may have one of a finite number of states-at-birth. To distinguish between
populations, between individual state variables and between different states-at-birth, in
the following the index p will consistently refer to the index of the structured population in
the model. Because the dimension setting POPULATION_NR is used to specify the number
of populations in the model (see the next section), p should have values in the range
0, 1, . . . , POPULATION_NR-1. Similarly, the index i will consistently refer to the index of a
particular individual state variable, which should always take values in the range 0, 1, . . . ,
I_STATE_DIM-1, given that the dimension setting I_STATE_DIM determines the number of
individual state variables (see the next section).

à As listed in chapter 3, individuals are assumed to be born with an i-state χb
that is one of a finite set of possible states-at-birth, each of which is a valid
i-state:

χb ∈ {φ1, . . . ,φm} , φj = (φj1, . . . , φjk) ∈ Ω ⊂ Rk

Given that individual age is the only i-state variable in the Medfly model, all
individuals have the same state at birth and hence m = 1. The option to
specify multiple states-at-birth is hence not relevant for the example model
discussed in this implementation chapter. This might hold more generally;
most if not all physiologically structured population models that have been
reported on in the literature so far are characterised by such a unique state-
at-birth for all individuals. Nonetheless, the option to define multiple states-
at-birth opens up some interesting research possibilities, which are discussed
further in chapter 14.

Since models involving multiple states-at-birth are not very common, infor-
mation that relates to this option will be distinguished in the text by setting
them apart in paragraphs like this one. The index j will be used to refer to the
index of a particular state-at-birth in the set {φ1, . . . ,φm}. The number m of
possible states-at-birth is set dynamically in the model file (see section 4.2.1).

4.1 Problem dimensions, numerical settings and model
parameters

4.1.1 Definition of problem dimensions and optional numerical settings

The code box below defines the different dimensions of the model and the numerical
settings to be used in the computations.

4.1. DIMENSIONS, SETTINGS AND MODEL PARAMETERS 15

Code box 4.1: Definition of dimensions and numerical settings

// Dimension settings: Required

2 #define POPULATION_NR 1 // Structured consumer population

#define STAGES 2 // Juvenile & adult

4 #define I_STATE_DIM 1 // See below

#define PARAMETER_NR 5

6

// Numerical settings: Optional (default values adopted otherwise)

8 #define MIN_SURVIVAL 1.0E-9 // Survival at which individual is considered dead

#define MAX_AGE 100000 // Give some absolute maximum for individual age

10

#define DYTOL 1.0E-7 // Variable tolerance

12 #define RHSTOL 1.0E-8 // Function tolerance

The software can simultaneously compute the population growth of more than a single
population. At the start of the problem file the variable POPULATION_NR has to be defined
equal to the number of structured populations accounted for in the model. For the Medfly
example this is obviously equal to 1 (line 2 in the code box above).

The variable STAGES has to be defined equal to the number of life stages that can be
distinguished in the individual life history (line 3 in the code box above). While integrating
the ODEs for the individual life history numerical problems may occur when the right
hand side of the ODEs changes abruptly in value at a certain threshold value of the
individual state, as a consequence of discontinuities in the development rate, the mortality
rate or the fecundity. Each of such thresholds in the individual life history should be
distinguished as a stage boundary. In the Medfly model the fecundity β(a) changes from
0 just before a = AJ to β0 at a = AJ and β0 exp(−β1(a−Aj)) at larger ages. At a = Aj
β(a) thus exhibits a discontinuity, which separates the juvenile and the adult stage from
each other. The variable STAGES is therefore set equal to 2.

The variable I_STATE_DIM (line 4 in the code box above) defines the dimension of the
individual state. As only age characterises the individuals in the Medfly model, this
variable is defined equal to 1.

The last required parameter that has to be specified is the number of parameters in the
model (set in line 5 in the code box above). In the Medfly model this equals 5 (β0, β1,
Aj , µ0 and µ1).

The remaining definitions in the code box are all optional and can be left away. A
list of all possible variables that can be changed by a definition in this code section is
provided in chapter 17. The variable MIN_SURVIVAL determines the threshold of the
survival probability below which an individual is considered dead. The integration over
the individual life history stops whenever the survival probability falls below this threshold
value. In the code above (line 8) the minimum survival is set to 10−9, which is in fact
the default value and is hence superfluous. Note that the value of MIN_SURVIVAL can not
be set equal to 0. As an alternative to using 0 MIN_SURVIVAL can be set to a very small
value like 10−100.

The variable MAX_AGE (line 9 in the code box above) can be used as an alternative to
determine the end of an individual life and to stop the integration over the individual life
history. In the Medfly model there is no maximum individual age and hence the variable
is set to a very high value (100000), which the individuals will never reach, because before
that age their survival probability has already dropped below its threshold value (10−9).

16 CHAPTER 4. IMPLEMENTATION OF AN EXAMPLE MODEL

The remaining two quantities DYTOL and RHSTOL determine whether a solution has been
found. In general, both demographic analysis as well as equilibrium analysis of PSPMs
boils down to solving a system of nonlinear equations that can be represented as G(y) = 0
for a set of unknowns y in an iterative manner. The subsequent estimates of the solution
in the Newton iterations can be labeled as yp and yp+1. A solution is now considered to
be located if both of the following conditions hold:

‖yp+1 − yp‖ < εy

‖G(yp+1)‖ < εG

where ‖.‖ refers to the Euclidean norm. DYTOL and RHSTOL are the quantities εy and εG,
respectively. Increasing (decreasing) their value leads to easier (harder) acceptance of a
set of unknowns as a solution to the system of equations G(y) = 0. The definition of
these two accuracies in the code box is in fact superfluous as they are defined equal to
their default values (see chapter 17).

4.1.2 Definition of parameter names and values

The code box below assigns each of the model parameters a meaningful name and a
default value.

Code box 4.2: Definition of parameter names and values

// Descriptive names of parameters in parameter array (at least two parameters are required)

2 char *parameternames[PARAMETER_NR] =

{ "Beta0", "Beta1", "AJ", "Mu0", "Mu1"};

4

// Default values of all parameters

6 double parameter[PARAMETER_NR] =

{47.0, 0.04, 11.0, 0.00095, 0.0581};

Model parameter values are stored by the program in the vector variable parameter.
The lines 2-3 above assign each of the elements this vector a more meaningful, model-
specific name. These name strings can not be used in the remaining parts of the model
implementation, they only serve to make the output files produced by the program more
readable. These output files contain a small header text indicating among other details
which parameter values were used for the computation of the results contained in the
output file. In this report the parameter names are listed together with their value. To
adapt the above code to a different model, the code on line 2 of the code box above should
remain the same, only change line 3 as needed (possibly extending it over multiple lines
in case there are many parameters).

The default values to use for the model parameters are specified by the declaration of the
vector parameter[PARAMETR_NR] on line 6-7 of the previous code box. The values should
be specified as a comma-separated array of values within braces (don’t forget the closing
semi-colon at the end of the statement!). To adapt the above code to a different model,
the code on line 6 of the code box above should remain the same, only change line 7 as
needed (possibly extending it over multiple lines in case there are many parameters).

4.1.3 Definition of aliases to simplify implementation

The code box below defines aliases for program variables used in the C-implementation of
the model, such that they are more easily identified with the model ingredients. Defining

4.2. DEFINITION OF THE INDIVIDUAL LIFE HISTORY 17

these aliases is optional but strongly advised as it makes model implementation more
straightforward.

Code box 4.3: Definition of aliases

// Aliases definitions for all istate variables

2 #define AGE istate[0][0]

4 // Aliases definitions for all parameters

#define BETA0 parameter[0] // Default: 47.0

6 #define BETA1 parameter[1] // Default: 0.04

#define AJ parameter[2] // Default: 11.0

8 #define MU0 parameter[3] // Default: 0.00095

#define MU1 parameter[4] // Default: 0.0581

The developmental rates in individual state, fecundity and mortality in any model depend
on the individual state itself, on the individual’s state at birth and on model parameters.
The value of the individual state variables at a particular age are always referred to
with the program variable istate[p][i], where the index p refers to the number of
the population and the index i refers to the number of the individual state variables.
Notice that in C array indices run from 0 (as opposed to 1 like in Matlab)! Similarly, the
value of the individual’s state variables at birth are always referred to with the program
variable birthstate[p][i]. In case there are multiple populations and/or more than a
single individual state variable, it is up to the user to keep track of which index pertains
to which population or individual state variable. In the Medfly model there is only a
single population and a single individual state variable, while the state at birth is rather
irrelevant as it equals age 0. Therefore, istate[0][0] is the only program quantity to
give a more meaningful name (line 2 in the code box above).

As discussed in the previous section all model parameters are contained in a vector named
parameter in the code. Which element of this vector represents which model-specific
parameter is up to the user. To prevent mixing up the interpretation of the different
vector elements and hence to prevent mistakes, it is strongly advised to define meaningful,
model-specific aliases for each of the elements of the vector parameter as is illustrated in
lines 5-9 in the code box above. It is best to avoid completely the direct use of the program
variable parameter in any part of the model specification and only use the models-specific
aliases.

4.2 Definition of the individual life history

4.2.1 Specifying the number of possible states-at-birth

The first routine to be implemented for a particular life history model defines for every
population in the model the number of possible states-at-birth that an individual can be
born with (i.e. the value of the size m of the set {φ1, . . . ,φm}).

18 CHAPTER 4. IMPLEMENTATION OF AN EXAMPLE MODEL

Code box 4.4: Specification of the number of possible states-at-birth

/*

2 * Specify the number of states at birth for the individuals in all structured

* populations in the problem in the vector BirthStates[].

4 */

6 void SetBirthStates(int BirthStates[POPULATION_NR], double E[])

{

8 BirthStates[0] = 1;

10 return;

}

For each population with index p the variable BirthStates[p] has to be set to the number
of possible states at birth. Because individual age is the only i-state variable the Medfly
model, the state-at-birth is unique and hence BirthStates[0] is set to 1.

à Note that different populations may have different numbers of states-at-birth.
BirthStates[p] hence does not need to be the same for all p.

4.2.2 Specifying the value of all possible states-at-birth

The next routine to implement defines for every possible state-at-birth with index j the
actual value of the different individual state variables at birth φj =

(
φj1, . . . ,φjk

)
:

Code box 4.5: Specification of the value of all possible states-at-birth

/*

2 * Specify all the possible states at birth for all individuals in all

* structured populations in the problem. BirthStateNr represents the index of

4 * the state of birth to be specified. Each state at birth should be a single,

* constant value for each i-state variable.

6 *

* Notice that the first index of the variable 'istate[][]' refers to the

8 * number of the structured population, the second index refers to the

* number of the individual state variable. The interpretation of the latter

10 * is up to the user.

*/

12

void StateAtBirth(double *istate[POPULATION_NR], int BirthStateNr, double E[])

14 {

AGE = 0.0;

16

return;

18 }

For every population (p = 0, 1, . . . , POPULATION_NR-1) the value of each individual state
variable istate[p][i] (i = 0, 1, . . . , I_STATE_DIM-1) has to be assigned a unique value,
from which individual development will start at age 0. As shown in the example of
the Medfly model, if the life history depends on the age of the individual, age should
be explicitly included as one of the individual state variables. The program does not
automatically include individual age in its characterisation of the individual state, even
though integration over the entire life history (as a function of age) is carried out. For
the Medfly model age is the only individual state variables and set to 0 at birth.

4.2. DEFINITION OF THE INDIVIDUAL LIFE HISTORY 19

à This routine will be called as many times as there are possible states-at-birth.
The variable BirthStateNr indicates the index j of the state-at-birth in the set
{φ1, . . . ,φm} for which the values have to be set in the current invocation of the
routine. The routine will thus be called with BirthStateNr set equal to a value
in 0, 1, . . . ,m− 1 (Remember the starting index 0 in C!). If there are multiple
states-at-birth (BirthStates[p] > 1) the definition of the values of the i-state
variables has to depend explicitly on the index BirthStateNr to make the
states-at-birth different from each other. Furthermore, if the problem involves
multiple structured populations the number of possible states-at-birth can be
different for each of them, which might lead to a situation that the routine
above is called with a value of the index BirthStateNr that is larger than the
maximum number of states-at-birth for a particular population (BirthStateNr
≥ BirthStates[p]). The program safely ignores such inappropriate state-at-
birth specifications.

4.2.3 Definition of boundaries between discrete stages

The next routine determines the boundaries between consecutive stages in the individual
life history.

Code box 4.6: Definition of discrete stage boundaries

/*

2 * Specify the threshold determining the end point of each discrete life

* stage in individual life history as function of the i-state variables and

4 * the individual's state at birth for all populations in every life stage.

*

6 * Notice that the first index of the variable 'istate[][]' refers to the

* number of the structured population, the second index refers to the

8 * number of the individual state variable. The interpretation of the latter

* is up to the user.

10 */

12 void IntervalLimit(int lifestage[POPULATION_NR], double *istate[POPULATION_NR],

double *birthstate[POPULATION_NR], int BirthStateNr, double E[],

14 double limit[POPULATION_NR])

{

16 if (lifestage[0] == 0)

limit[0] = AGE - AJ;

18

return;

20 }

In this routine the variable limit[p] has to be defined, which has as many elements as
there are populations (p = 0 . . . POPULATION_NR-1). The life stage that the individual
is in at the moment this routine is called, is determined by the variable lifestage[p],
which has a value of 0 if the individual is in the first life stage and a value of STAGES-1 if it
is in the last life stage. The element limit[p] should now indicate when the current life
stage as given in lifestage[p] ends. In particular, the program considers the current life
stage to end when limit[p] turns from negative to positive. For the end of the last life
stage the death of old age, either by reaching the maximum age MAX_AGE or by reaching
the minimum survival threshold MIN_SURVIVAL, does not have to be specified separately,

20 CHAPTER 4. IMPLEMENTATION OF AN EXAMPLE MODEL

the program takes care of that automatically. In the Medfly model therefore only the end
of the larval stage has to be specified, as expressed in lines 16-17 of the code box above.

The threshold value that has to be stored and returned to the program in limit[p]
will depend on the individual state variables, possibly on the individual’s state-at-birth
and will be different for individuals in different life stages. For this reason, the rou-
tine IntervalLimit() has as arguments lifestage[], specifying the life stage that the
individual is currently in, istate[][], the individual state, and birthstate[][], the
individual’s state-at-birth.

à Like the previous routine, this routine will be called as many times as there are
possible states-at-birth, because the state-at-birth may influence the threshold
between consecutive life stages. The same holds for the routines discussed in
sections 4.2.4-4.2.7 below, which define changes in the i-state variables, the
fecundity and the mortality of individuals, respectively. In essence, individuals
with different states-at-birth are treated as constituting subpopulations within
the same structured population.

Because of the possible dependence on the state-at-birth the variables
birthstate[][] and BirthStateNr are passed as arguments to this routine
and the once discussed in sections 4.2.4-4.2.7. These arguments contain the
values of the i-state variables and the index in the set {φ1, . . . ,φm}, respec-
tively, for which the routine is invoked and for which the threshold between
consecutive life stages has to be evaluated.

If the problem involves multiple structured populations and the number of pos-
sible states-at-birth differs among them, the routine above may be called with
a value of the index BirthStateNr that is larger than the maximum number of
states-at-birth for a particular population (BirthStateNr ≥ BirthStates[p]).
Although this circumstance may seem confusing, the user does not have to
worry about it, as the program is designed to safely ignore such assign-
ments of thresholds between consecutive life stages, changes in the i-state
variables, fecundity and mortality of individuals for states-at-birth with in-
dex BirthStateNr ≥ BirthStates[p]that are inappropriate for the structured
population with index p.

Notice that the function header shown in code box 4.6 also contains an array E[] as a vari-
able. This array will contain the values of the environment variables during equilibrium
computations of PSPMs (see chapters 6 to 8). In demographic analysis of PSPMs this
variable is non-functional and is best ignored, using it in a statement inside the routine
may even cause the program to crash. The only reason for the presence of this variable in
the function header is to keep the function declaration the same for both demographic and
equilibrium analysis computations. In principle, the same model-specific file can hence be
used for both types of analysis. The variable E[] will for the same reasons also be part
of the headers of the next 4 routines.

Tip: The more advanced user who wants to perform both demographic and equilibrium
analysis using the same model-specific file should notice that the array of environment
variables E[] can in principle be used inside all the routines, if the dimension ENVIRON_DIM

determining the number of environment variables has been set (see code box 7.1 on page 39
for details). The appropriate value to use for the environment variables should be assigned

4.2. DEFINITION OF THE INDIVIDUAL LIFE HISTORY 21

to the elements E[e] in the routine StateAtBirth() (see the next code box 4.5), after
which it will keep the same value throughout all the subsequent routines.

4.2.4 Specification of continuous individual state development

Code box 4.7: Specification of continuous individual state development

/*

2 * Specify the development of individuals as a function of the i-state

* variables and the individual's state at birth for all populations in every

4 * life stage.

*

6 * Notice that the first index of the variables 'istate[][]' and 'development[][]'

* refers to the number of the structured population, the second index refers

8 * to the number of the individual state variable. The interpretation of the

* latter is up to the user.

10 */

12 void Development(int lifestage[POPULATION_NR], double *istate[POPULATION_NR],

double *birthstate[POPULATION_NR], int BirthStateNr, double E[],

14 double development[POPULATION_NR][I_STATE_DIM])

{

16 development[0][0] = 1.0;

18 return;

}

This routine specifies the right-hand side of the ODE:

dχ

da
= g(χ,χb)

that determines the continuous development of the individual state variables during the
life history. In the Medfly model the specification is obviously trivial. More generally, the
value of development[p][i] determines for each structured population p the development
in the individual state variable i. Notice that these development rates may differ in differ-
ent life stages, for example growth in body size may be different for juveniles and adults
in case adults invest a lot of energy into reproduction. The development rates should
then be specified dependent on the current life stage the individual is in. This current life
stage at the moment the routine is evaluated is contained in the variable lifestage[p].
The development rate may furthermore depend on the individual state variables and pos-
sibly on the individual’s state-at-birth, which is the reason for istate[][], the individual
state, and birthstate[][], the individual’s state-at-birth, as arguments to this routine.

à Refer to the remarks in section 4.2.3 concerning the dependence on the indi-
vidual’s state-at-birth.

4.2.5 Specification of discrete individual changes at stage transitions

Even though not listed among the basic assumptions of the PSPM in the beginning of
this chapter, it is permissible to have discrete changes or jumps in the individual state
variables at the transition between two consecutive life stages. If these occur, they should
be programmed in the following routine.

Code box 4.8: Specification of discrete individual state changes

22 CHAPTER 4. IMPLEMENTATION OF AN EXAMPLE MODEL

/*

2 * Specify the possible discrete changes (jumps) in the individual state

* variables when ENTERING the stage specified by 'lifestage[]'.

4 *

* Notice that the first index of the variable 'istate[][]' refers to the

6 * number of the structured population, the second index refers to the

* number of the individual state variable. The interpretation of the latter

8 * is up to the user.

*/

10

void DiscreteChanges(int lifestage[POPULATION_NR], double *istate[POPULATION_NR],

12 double *birthstate[POPULATION_NR], int BirthStateNr, double E[])

{

14 return;

}

This routine is not relevant in case of the Medfly model and hence its contents are empty
(apart for the necessary return; statement).

This routine is called whenever a transition between two consecutive life stages is reached
during the integration over the individual life history. It should be noted that the value
of the variable lifestage[p] indicates the life stage that is entered, that is, following
the current stage boundary. This routine will hence never be called with a value of one
of the elements lifestage[p] equal to 0. The discrete changes in the individual state
variables have to be implemented by assigning new values to the variables istate[p][i].
These assignments may as before depend on the life stage that is entered, as specified by
the variable lifestage[], the (old values) of the individual state variables, contained in
the argument istate[][], and possibly on the individual’s state-at-birth, specified in the
argument birthstate[][]. If no assignment of a value to istate[p][i] is implemented,
that particular individual state variable will keep its current value.

à Refer also to the remarks in section 4.2.3 concerning the dependence on the
individual’s state-at-birth.

4.2.6 Specification of fecundity

The following routine specifies the fecundity as a function of the individual state. The
code fragment below implements the function β(a) = β0e

−β1(a−Aj) for the Medfly model.
It provides a good example of how to assign a different value for a particular life history
rate dependent on the life stage that an individual is in. The same approach can also be
used in the other routines specifying the life history rates of individuals.

4.2. DEFINITION OF THE INDIVIDUAL LIFE HISTORY 23

Code box 4.9: Specification of fecundity

/*

2 * Specify the fecundity of individuals as a function of the i-state

* variables and the individual's state at birth for all populations in every

4 * life stage.

*

6 * The number of offspring produced has to be specified for every possible

* state at birth in the variable 'fecundity[][]'. The first index of this

8 * variable refers to the number of the structured population, the second

* index refers to the number of the birth state.

10 *

* Notice that the first index of the variable 'istate[][]' refers to the

12 * number of the structured population, the second index refers to the

* number of the individual state variable. The interpretation of the latter

14 * is up to the user.

*/

16

void Fecundity(int lifestage[POPULATION_NR], double *istate[POPULATION_NR],

18 double *birthstate[POPULATION_NR], int BirthStateNr, double E[],

double *fecundity[POPULATION_NR])

20 {

if (lifestage[0] == 1) // Only for adults

22 {

fecundity[0][0] = BETA0*exp(-BETA1*(AGE - AJ));

24 }

else

26 fecundity[0][0] = 0;

28 return;

}

In this routine not only the fecundity (i.e. the number of offspring produced per unit
time) has to be specified, but also the state-at-birth of the produced offspring. Therefore,
this routine has to assign values to the matrix fecundity[p][j], which determines for
the population with index p the number of offspring produced per unit time with state-
at-birth with index j in the set {φ1, . . . ,φm}. This fecundity will certainly depend on
the life stage that the individual is in (only adults reproduce), which is contained in
the argument lifestage[], and on the individual state variables, i.e. the values of the
argument istate[][]), but possibly also on the individual’s state-at-birth, the values
and index of which are specified by the arguments birthstate[][] and BirthStateNr,
respectively.

In the most common case of a unique state-at-birth and a single structured population,
like in the Medfly model, the only valid indices are p = 0 and j = 0 and hence only the
variable fecundity[0][0] has to be assigned.

à For more detailed remarks about models with multiple states-at-birth consult
section 4.2.3.

4.2.7 Specification of mortality

The last routine specifies the mortality as a function of the individual state.

24 CHAPTER 4. IMPLEMENTATION OF AN EXAMPLE MODEL

Code box 4.10: Specification of mortality

/*

2 * Specify the mortality of individuals as a function of the i-state

* variables and the individual's state at birth for all populations in every

4 * life stage.

*

6 * Notice that the first index of the variable 'istate[][]' refers to the

* number of the structured population, the second index refers to the

8 * number of the individual state variable. The interpretation of the latter

* is up to the user.

10 */

12 void Mortality(int lifestage[POPULATION_NR], double *istate[POPULATION_NR],

double *birthstate[POPULATION_NR], int BirthStateNr, double E[],

14 double mortality[POPULATION_NR])

{

16 mortality[0] = MU0*exp(MU1*AGE);

18 return;

}

For each population the corresponding element of the array mortality[p] should be
assigned the mortality rate, possibly dependent on the life stage the individual is in at
the moment this routine is called (given in argument lifestage[]), the current i-state of
the individual (given in argument istate[][]) and the individual’s state-at-birth (current
values and index in the set {φ1, . . . ,φm} given by birthstate[][] and BirthStateNr,
respectively).

In the Medfly model the mortality is not influenced by the life stage specifically and is only
age-dependent. The line 16 in the code box above implements the function µ(a) = µ0e

µ1a.

à Refer to the remarks in section 4.2.3 concerning the dependence on the indi-
vidual’s state-at-birth.

5

Model analysis in Matlab

5.1 Executing of the PSPMdemo script

Once the model has been implemented, you can proceed carrying out its analysis, which
in the simplest approach is performed by calling the Matlab-script PSPMdemo.m with the
name of the file specifying the PSPM passed as a string argument. It is unnecessary
to include the extension .h as part of the file name, the Matlab-script will strip the .h

extension away if it is included. Therefore, the following two invocations of PSPMdemo are
identical:

>> PSPMdemo('Medfly')

and

>> PSPMdemo('Medfly.h')

These two calls of the PSPMdemo-script will give the same output as the following invoca-
tion of the script with the two optional arguments 'clean' and 'force':

Command box 5.A: PSPMdemo call for a single parameter value

>> PSPMdemo('Medfly', 'clean', 'force')
2

Building executable Medflydemo.mexmaci64 ...
4

#
6 # Executing : PSPMdemo('Medfly', [], [], {})

#
8 # Parameter values :

#
10 # Beta0 : 47 Beta1 : 0.04 AJ : 11

Mu0 : 0.00095 Mu1 : 0.0581
12 #

1:PGR[0] 2:Tc[0] 3:S[0][0] 4:S[0][1] 5:S[0][2] 6:S[0][3] 7:S[0][4]
14 #

0.41905662 13.16725955 0.00161586 -0.16459366 -0.03198198 -1.52635957 -0.01132532
16

18 ans =

20 []

The PSPMdemo function first compiles the model-specific file using the Matlab’s mex com-
piler as is indicated by the first line of output of the script. This compilation step is
only carried out when the executable (called Medflydemo.mexmaci64 on my system) does

25

26 CHAPTER 5. MODEL ANALYSIS IN MATLAB

not exist, or when the model-specific has been changed since the last compilation of the
executable. Furthermore, the compilation step is forced by the invocation of PSPMdemo
with the additional argument 'force' as in the Matlab command box shown above.

When the PSPMdemo function is invoked in the way shown above the output of the com-
putation is only printed to the console, the script does not return any variables or results
(as is clear from the boxed material above). Apart from printing the exact command-line
that has been used to start the computation, the values of the parameters are printed
using the meaningful, model-specific names, as set in the code box 4.2 on page 16.

The numerical output generated by the model is printed as a single line of numbers. The
first column of this output contains the computed population growth rate. The second
column contains the generation time in the stable population state, which corresponds to
the average age at reproduction in the exponentially growing population and is defined
as: ∫ ∞

0
a e−raβ(χ(a))F(a) da

in which r represents the population growth rate, β(χ(a)) the fecundity of an individual
with individual state χ(a) at age a and F(a) the probability that an individual survived
up to age a. The following columns show the sensitivity of the population growth rate
with respect to the model parameters in the order as they are defined in code box 4.2. For
the Medfly model these are the sensitivities to the 5 model parameters that are printed
directly above.

The second method to invoke the PSPMdemo function is with an additional arguments to
calculate the population growth rate as a function of one of the model parameters for
a range of values of this parameter. This can be achieved by passing as an additional
argument to the script a vector of 5 elements of the following form:

[<index> <starting value> <step size> <minimum value> <maximum value>]

The first element indicates the index of the parameter in the array parameter (see code
box 4.3) to vary, the second element of the array indicates its starting value from which
to compute the curve of the population growth rate as a function of the parameter, the
third value indicates the step size in the parameter along this curve (which can be either
positive or negative), while the final two elements of the array indicate the minimum and
maximum value of the parameter. The computation of the curve of the population growth
rate as a function of the model parameter stops, whenever the minimum or maximum
parameter value is reached.

The following Matlab code illustrates this use of the PSPMdemo function for the Medfly
model by computing the population growth rate as a function of parameter[2], which is
the value of Aj , starting at the initial and default value of Aj = 11 and computing the
growth rate for increasing values of the parameter with step size 0.1, while limiting the
computation to the interval 11 ≤ Aj ≤ 20.

Command box 5.B: PSPMdemo call to compute a curve over a parameter range

>> [data desc] = PSPMdemo('Medfly', [2 11 0.1 11 20]);
2

Executable Medflydemo.mexmaci64 is up-to-date
4

1.10000000E+01 4.19056620E-01
6 1.11000000E+01 4.15884247E-01

5.2. OUTPUT FILES GENERATED BY THE PSPMDEMO SCRIPT 27

1.12000000E+01 4.12762685E-01
8 <...output lines suppressed in this box...>

1.98000000E+01 2.53879994E-01
10 1.99000000E+01 2.52772251E-01

2.00000000E+01 2.51674454E-01
12

14 #
Executing : PSPMdemo('Medfly', [2 11 0.1 11 20], [], {})

16 #
Parameter values :

18 #
Beta0 : 47 Beta1 : 0.04 AJ : 11

20 # Mu0 : 0.00095 Mu1 : 0.0581
#

22 # Index of bifurcation parameter #1 : 2
#

24 # 1:AJ 2:PGR[0] 3:Tc[0] 4:S[0][0] 5:S[0][1] 6:S[0][2] 7:S[0][3] 8:S[0][4]
#

26 >> data

28 data =

30 11 0.41906 13.167 0.0016159 -0.16459 -0.031982 -1.5264 -0.011325
11.1 0.41588 13.282 0.0016019 -0.16429 -0.031467 -1.5323 -0.01148

32 11.2 0.41276 13.397 0.0015881 -0.16399 -0.030966 -1.5383 -0.011637
<...output lines suppressed in this box...>

34 19.8 0.25388 23.15 0.00091906 -0.14471 -0.11128 -2.1725 -0.030825
19.9 0.25277 23.262 0.00091464 -0.14453 -0.11027 -2.1815 -0.031129

36 20 0.25167 23.374 0.00091025 -0.14436 -0.10929 -2.1905 -0.031436
>> sprintf(desc)

38
ans =

40

42 #
Executing : PSPMdemo('Medfly', [2 11 0.1 11 20], [], {})

44 #
Parameter values :

46 #
Beta0 : 47 Beta1 : 0.04 AJ : 11

48 # Mu0 : 0.00095 Mu1 : 0.0581
#

50 # Index of bifurcation parameter #1 : 2
#

52 # 1:AJ 2:PGR[0] 3:Tc[0] 4:S[0][0] 5:S[0][1] 6:S[0][2] 7:S[0][3] 8:S[0][4]
#

Some of the intermediate lines of output generated by Matlab in this case are suppressed
for brevity. When the PSPMdemo function is invoked in this way to compute parameter
dependence, it generates two output variables, which in the Matlab command box shown
above are assigned to the variables data and desc. The variable data consists of columns
of computed output with as a first column the value of the parameter, the second column
the value of the population growth rate for that particular parameter value and the third
column the generation time (the average age at reproduction) in the stable population
during the exponential growth phase. The subsequent columns represent the sensitivities
of the population growth rate to all model parameters, as discussed before. The output
of data in the box above shows that the data indeed start at Aj = 11 and that the
computation is terminated when a value of Aj is reached that exceeds the maximum
parameter value specified. The data contained in the output variable can subsequently
be used for plotting or for further calculations.

The output variable desc contains the description of the executed calculation, which is the
textual information that is also printed to the Matlab console at the end of calculations.
In fact, the PSPMdemo function prints its report on the calculations by execution of the
statement sprintf(desc) as is also executed from the Matlab command-line in the box
above.

5.2 Output files generated by the PSPMdemo script

The PSPMdemo function and module generates 2 output files when the script is only per-
forming a single population growth rate calculation and 3 output files when the pop-

28 CHAPTER 5. MODEL ANALYSIS IN MATLAB

ulation growth rate is computed as a function of a model parameter. The name of
these files is always of the form <Modelname>-PGR-<NNNN>.<ext>, in which <Modelname>

is the same as the name of the file specifying the model excluding its .h extension,
<NNNN> is a 4-digit number that is unique for the current computation and .<ext> is
the extension, which can be either .err, .mat or .out. Hence, the invocation of the
PSPMdemo function for the Medfly model, as shown in Matlab command box 5.A, gen-
erates the output files Medfly-PGR-0000.err and Medfly-PGR-0000.mat, while the in-
vocation of the PSPMdemo function for the Medfly model, as shown in Matlab command
box 5.B, generates three output files: Medfly-PGR-0001.err, Medfly-PGR-0001.mat and
Medfly-PGR-0001.out. For the 4-digit number <NNNN> in the file name, the program
always finds the lowest positive value that is not in use yet. However, whenever the
PSPMdemo function is invoked with the (optional) argument 'clean', as is the case in
Matlab command box 5.A, the PSPMdemo function deletes all output files that have been
generated for the particular model studied (all files called <Modelname>-PGR-<NNNN>.err,
<Modelname>-PGR-<NNNN>.mat and <Modelname>-PGR-<NNNN>.out, and hence the 4-
digit file identification number will restart at 0000 again. Deleting all the output files
from previous computations and/or the compiled program executables that the package
has generated can also be done separately. The package contains a function PSPMclean,
taking no arguments, to delete all .bif, .err, .mat and .out files and/or all executable
files that are present in the current working directory.

The file called <Modelname>-PGR-<NNNN>.err contains information about the numerical
progress of the computation. It reports details on the steps take during the Newton iter-
ation, the convergence to the solution, as well as information about the steps taken along
the curve that is being computed. This file can be informative in case the computation
of a particular curve stops for unknown reasons, but is otherwise of little use.

The file called <Modelname>-PGR-<NNNN>.mat contains information on the stable pop-
ulation distribution for every parameter value for which the population growth rate is
computed. For example, the file Medfly-PGR-0001.mat is generated by the invocation
of the PSPMdemo function for the Medfly model shown in Matlab command box 5.B. By
highlighting (selecting) this file in Matlab’s “Current folder” window, its contents are dis-
played in Matlab’s “File details” window. It consists of a series of population states, one
for each of the parameter value for which the population growth rate has been computed,
as shown in the following box (notice that some intermediate output is suppressed as was
also the case in Matlab command box 5.B):

State_1_100000E01 <1x1 struct>
2 State_1_110000E01 <1x1 struct>

State_1_120000E01 <1x1 struct>
4 <...output lines suppressed in this box...>

State_1_980000E01 <1x1 struct>
6 State_1_990000E01 <1x1 struct>

State_2_000000E01 <1x1 struct>

The population state called State_1_120000E01 pertains to the parameter value Aj =
11.2 as its name suggests. Loading this state into the Matlab workspace reveals its contents
to be various arrays of numbers, as shown in the following box:

>> load('Medfly-PGR-0001.mat', 'State_1_120000E01')
2 >> State_1_120000E01

4 State_1_120000E01 =

5.3. REQUIRED AND OPTIONAL ARGUMENTS OF PSPMDEMO 29

6 BifPars: 11.2
Parameters: [47 0.04 11.2 0.00095 0.0581]

8 PGR: 0.41276
Pop00_BirthStates: 0

10 Pop00: [100x3 double]

The first element (called BifPars) of the structure containing the population state
State_1_120000E01 is the value of the bifurcation parameter for this particular state.
The second element, an array called Parameters, contains the values of all the model
parameters for which the population growth rate has been computed, while the third
member of the structure State_1_120000E01 contains the computed population growth
rate. In the case of the Medfly model this is a single scalar value, but if the population
growth rate is computed for more than one population at a time, the population growth
rate values are making up an array as well. The two subsequent arrays characterise the
stable population distribution, of which the first (called Pop00_BirthStates) specifies
the state at birth of the individuals. The other (called Pop00) is a two-dimensional array
containing in the first column the density profile of the stable population, in the second
column the individual state variable and the reproductive value of the individuals in the
last column, as shown below:

>> State_1_120000E01.Pop00
2

ans =
4

1 0 1
6 0.81299 0.50043 1.23

0.66094 1.0009 1.513
8 <...output lines suppressed in this box...>

1.5357e-09 48.542 8.4214
10 1.239e-09 49.042 4.6031

1e-09 49.541 0

In the Medfly model individuals are only characterised by their age and hence their is only
a single column with individual state variables. If individuals are characterised by more
than a single individual state variable the values of these follow in additional columns
of the two-dimensional array Pop00. The last column of this array always contains the
reproductive value of an individual. For an explanation of the reproductive value and its
computation I refer to De Roos (2008).

The last output file generated during the population growth rate has a name of the form
<Modelname>-PGR-<NNNN>.out. This file contains the same information as is contained in
the two output variables data and desc returned by the PSPMdemo function. The first lines
of this file all start with a # sign and contain the information about the run performed,
which is also contained in desc and can be listed by the statement sprintf(desc) (see
Matlab command box 5.B). Following this descriptive header the file contains columns with
computational results that are also contained in the variable data (see Matlab command
box 5.B), that is, the parameter values, population growth rates, generation times and
sensitivities of the population growth rate to all model parameters. Matlab command
box 5.B provides an example of the type of output generated by the computational module.

5.3 Required and optional arguments of PSPMdemo

As shown in Matlab command box 5.A at least one argument has to be passed to the
PSPMdemo function, the base name of the file with the model specification, that is without

30 CHAPTER 5. MODEL ANALYSIS IN MATLAB

its .h extension. All other arguments that can be passed to the PSPMdemo function are
optional. A full listing of all required and optional arguments can be shown by calling up
the help page of the PSPMdemo function using the command help PSPMdemo. The result
is shown in Matlab command box 5.C.

The optional second argument to the PSPMdemo function is used to compute the population
growth rate over a range of a particular model parameter, as shown in and discussed
following Matlab command box 5.B.

The optional third argument of the PSPMdemo function is a 1-dimensional array of model
parameter values. When used, this array should have the same length as the number of
parameters in the model (PARAMETER_NR). When of this length the values will replace the
default values of the parameters that are listed in the model specification file (see code
box 4.2 for an example). If the array used for this third argument is not of the correct
length PARAMETER_NR, it will simply be ignored.

The optional fourth argument of the PSPMdemo function is a Matlab cell array containing
possible options that modify the behaviour of the computational module. A useful option
is the 'test' option, which can be passed to the computational module by using the
cell array {’test’} as fourth argument to the PSPMdemo function. This invokes the
computational module in testing mode, which implies that only a single integration of the
individual life history is carried out and no iteration to locate the population growth rate
is performed. In testing mode the computational module reports on the dynamics of the
individual state variables, the survival and the expected number of offspring produced by
an individual during its different life stage as well as over its entire life. Testing mode is
very useful to discover whether or not the model implementation gives sensible results or
not.

The other possible element of the option cell array that modifies the behaviour of the
computational module is the 'isort' option, which can be passed to the computational
module by using for example {'isort', '1'} as fourth argument to the PSPMdemo func-
tion. This option modifies the population state output that is stored in the output file
with a name of the form <Modelname>-PGR-<NNNN>.mat. By default the computational
module reports the information about the stable population state distribution and the
reproductive value for 100 equidistant values of the first individual state variable. More
specifically, the range of the first individual state variable that is covered during the entire
life of an individual until the moment that it is considered dead (i.e. the maximum age
or the minimum survival threshold has been reached, see section 4.1.1) is subdivided into
100 equidistant intervals and the population density function, individual state variables
and reproductive value are computed at each of these 100 nodal values of the first state
variable. By using the option 'isort' the default choice to use the first individual state
variable for this subdivision can be changed to the second, third, and so on. Notice
though, that the obligatory index value that has to be passed together with the use of the
'isort' option follows the C-convention of ordering arrays starting at 0 (as opposed to
Matlab where array indices start at 1). Therefore, passing {'isort', '0'} as option cell
array to the PSPMdemo function is the same as the default behaviour: the first individual
state variable is used for the subdivision and ordering of the population state distribu-
tion, while passing {'isort', '1'} would use the second individual state variable for
this purpose. Also notice that the default number of subdivisions of the individual state
variable and hence the number of nodal values for which the population state distribution
is reported can be changed by including a statement of the form

5.3. REQUIRED AND OPTIONAL ARGUMENTS OF PSPMDEMO 31

#define COHORT_NR 200

among the definitions of the numerical settings in the model specification (see code box 4.2
in section 4.1.1 and chapter 17).

Three other, optional arguments can be passed to the PSPMdemo function: 'clean',
'force' and 'debug'. Unlike the previous arguments, which all modify the compu-
tations to be performed, these options modify the behaviour of the PSPMdemo function
itself, in particular the compilation of the model specific file into a mex module that can
be executed from Matlab. Also unlike all the previous arguments that can be passed,
these arguments can be passed in any order and at any position, the PSPMdemo function
will filter these 3 optional arguments from the argument list before passing the filtered
argument list to the computational routine.

• Option 'clean': This optional argument instructs the PSPMdemo function to delete
all result files from previous calculations with the model, that is all files with
names of the form <Modelname>-PGR-<NNNN>.err, <Modelname>-PGR-<NNNN>.mat
and <Modelname>-PGR-<NNNN>.out. Deleting all the output files from previous
computations and/or the compiled program executables that the package has gen-
erated can also be done separately. The package contains a function PSPMclean,
taking no arguments, to delete all .err, .mat and .out files and/or all executable
files that are present in the current working directory.

• Option 'force': Using the option 'force' instructs the PSPMdemo file to force
re-compilation of the model specific file into a mex module that can be executed by
Matlab. This option will usually not be needed by normal users, as the PSPMdemo

function automatically recompiles the computational module when the model spe-
cific file with an .h extension is more recently changed than the compiled mex file.
However, if for some unclear reason this automatic recompilation fails, the 'force'
option can be used to initiate re-compilation.

• Option 'debug': This option instructs the PSPMdemo function to turn on debugging
flags while compiling the model specific file into a mex module. This option can be
useful to detect programming mistakes in the model-specific file that are otherwise
hard to track down. The downside is that depending on the version of Matlab that
is used, turning on debugging flags during compilation may generate a lot of output,
including warnings about standard files of the operating system that are perfectly
correct. It is hence not so easy to spot among all these messages the warnings that
relate to the model-specific code that has been implemented.

32 CHAPTER 5. MODEL ANALYSIS IN MATLAB

Command box 5.C: PSPMdemo help page

>> help PSPMdemo
2 PSPMdemo: Performs demographic analysis of a structured population model

4 Syntax:

6 [curvepoints, curvedesc] = ...
PSPMdemo(modelname, curvepars, parameters, options, 'clean', 'force', 'debug')

8
Arguments:

10
modelname: (string, required)

12 Basename of the file with model specification. The file
should have extension '.h'. For example, the model 'Medfly'

14 is specified in the file 'Medfly.h'

16 curvepars: (row vector, optional, can be the empty vector [])
Vector of length 5, specifying:

18
curvepars(1): the index of the parameter to vary

20 curvepars(2): the initial value of the parameter
curvepars(3): the step size in the parameter value

22 curvepars(4): lower threshold, below which value of the
parameter the computation stops

24 curvepars(5): upper threshold, above which value of the
parameter the computation stops

26
parameters: (row vector, optional, can be the empty vector [])

28 Vector of length PARAMETER_NR (set in the model program
file), specifying the values for the model parameters to

30 use in the computation. Vectors of other lengths, including
an empty vector will be ignored.

32
options: (cell array, optional, can be the empty cell array {})

34 Cell array with pairs of an option name and a value (for
example {'isort', '1'}) or single options (i.e. 'test').

36 Possible option names and their values are:

38 'isort', '<index>': Index of i-state variable to use as
ruling variable for sorting the

40 structured populations
'test' : Perform only a single integration over

42 the life history, reporting dynamics
of survival, R0 and i-state variables

44
'clean': (string. optional argument)

46 Remove all the result files of the model before the
computation

48
'force': (string, optional argument)

50 Force a rebuilding of the model before the computation

52 'debug': (string, optional argument)
Compile the model in verbose mode and with debugging flag set

54
Output:

56
curvepoints: Matrix with output for all computed points along the curve

58
curvedesc: Column vector with strings, summarizing the numerical details

60 of the computed curve (i.e., initial point, parameter values,
numerical settings used).

Equilibrium analysis of nonlinear
PSPM

33

6

Model formulation and ingredients

The core of a nonlinear PSPM consists of a model of the individual life history that is
based on the following assumptions:

• Individuals are characterised by their individual or i-state, which is a (finite) set of
physiological characteristics (traits such as age, size, sex, energy reserves):

χ = (χ1, . . . ,χk) ∈ Ω ⊂ Rk

• Individuals are born with an i-state χb that is one of a finite set of possible states
at birth:

χb ∈ {φ1, . . . ,φm}

with each potential state at birth φj a valid i-state:

φj = (φj1, . . . , φjk) ∈ Ω ⊂ Rk

• Individuals are assumed to live in an environment characterised by a (finite) set of
environment variables:

E = (E1, . . . , En) ∈ Rn

Environment variables can include independent quantities like resource density and
density of predators, but also density-dependent measures like total number of in-
dividuals or biomass in the population

• Individual and environmental state variables determine, possibly together with the
individual’s state-at-birth, the individual life history (development, reproduction,
mortality)

• Development follows a deterministic process that is continuous in time:

dχ

da
= g(χ,χb, E)

• Reproduction is a function β(χ,χb, E) of the individual state, the individual’s state-
at-birth and its environment

35

36 CHAPTER 6. MODEL FORMULATION AND INGREDIENTS

• Mortality is a function µ(χ,χb, E) of the individual state, the individual’s state-at-
birth and its environment

• Individuals have an impact γ(χ,χb, E) on their environment

• Environment variables may follow autonomous dynamics in absence of individuals:

dEi
dt

= G(E)

or be a density-dependent function of the population:

Ei(t) =

∫
Ω
γi(χ,χb, E)n(t,χ) dχ

Most of the above assumptions are characteristic for the entire class of non-linear PSPMs.
The most restrictive of these assumptions concerns the deterministic development process.
Biologically, this assumption implies that all individuals that are born with the same state
at birth will remain identical throughout their life and will hence not diverge in their i-
state characteristics. Reproduction and mortality on the other hand are at an individual
level considered as stochastic processes, which translate to per-capita rate functions at
the population level, given that it is assumed that the number of individuals is large
(technically speaking the number of individuals for every possible i-state).

7

Implementation of an example model

The steps needed for the implementation of a particular nonlinear PSPM will be dis-
cussed using a simple, tritrophic model for the basic resource, a size-structured consumer
population and an unstructured predator population, which is discussed in De Roos &
Persson (2002). The individual life history of the consumer in this model is dependent
on the individual body length `, the resource density R and the predator density P . The
PSPM for this can be described by the following set of ordinary and partial differential
equations for the resource density R, the consumer size (i.e. length) distribution c(t, `)
and the predator density P :

dR

dt
= ρ (Rmax − R) −

∫ `m

`b

I(`, R) c(t, `) d`

∂c(t, `)

∂t
+

∂g(`, R) c(t, `)

∂`
= −µ(`, P) c(t, `)

g(`, R) c(t, `b) =

∫ `m

`j

β(`, R) c(t, `) d`

dP

dt
=

(
ε

aB

1 + ThB
− δ

)
P

B =

∫ `v

`b

ω`3 c(t, `) d`

In this model the resource follows semi-chemostat dynamics in the absence of consumers.
Consumers forage on the resource following the length-dependent function I(`, R), defined
as:

I(`, R) = Im`
2 R

Rh +R

Consumers grow in length from their size at birth `b to their absolute maximum size
`m with a growth rate g(`, R) and produce offspring at a rate β(`, R), which rates both
depend on the consumer length itself and the current resource density:

g(`, R) = γ

(
`m

R

Rh +R
− `

)

β(`, R) =

0 if ` < `j

rm`
2 R

Rh +R
otherwise

37

38 CHAPTER 7. IMPLEMENTATION OF AN EXAMPLE MODEL

Consumers experience a mortality rate µ(`, P) dependent on their own length and the
current predator density:

µ(`, P) =

µb +
aP

1 + ThB
if ` < `v

µb otherwise

From these equations it can be inferred that predators forage only on consumers with
a length between the length at birth `b and `v. Larger consumers are invulnerable to
predation. The quantity B represents the biomass of consumers in this vulnerable size
range, which biomass governs the growth rate of the predator population following a
type II functional response.

The implementation of this model for analysis with the software package requires the
specification of 12 pieces of C-code arranged in three different sections:

• Section 1: Problem dimensions, numerical settings and model parameters

• Section 2: Definition of the individual life history functions, such as development
(growth), fecundity and mortality.

• Section 3: Definition of the individual feedback on the environment and the equi-
librium conditions for environment variables.

The pieces of C-code are discussed in detail in the next 3 sections with 12 subsections.
The code can be found in the file PNAS2002.h in the directory Tests. For ease of writing
I will in the following sections often refer to this model as the PNAS model. The first 2
sections with C-code, specifying model constants and the individual life history, are to a
considerable extent similar to the corresponding sections with code snippets discussed in
the previous chapter on demographic analysis. Some of the text presented in that chapter
is therefore repeated here for those readers that skipped the previous chapter.

The software allows for the analysis of models with multiple structured populations, each
of which consists of individuals that are characterised by a finite number of individual state
variables. The number of state variables characterising an individual should, however, be
the same for each of the structured populations in the model. Furthermore, at birth
individuals may have one of a finite number of states-at-birth. To distinguish between
populations, between individual state variables and between different states-at-birth, in
the following sections the index p will consistently refer to the index of the structured
population in the model. Because the dimension setting POPULATION_NR is used to specify
the number of populations in the model (see the next section), p should have values in
the range 0, 1, . . . , POPULATION_NR-1. Similarly, the index i will consistently refer to the
index of a particular individual state variable, which should always take values in the
range 0, 1, . . . , I_STATE_DIM-1, given that the dimension setting I_STATE_DIM determines
the number of individual state variables (see the next section).

à As listed in chapter 6, individuals are assumed to be born with an i-state χb
that is one of a finite set of possible states-at-birth, each of which is a valid
i-state:

χb ∈ {φ1, . . . ,φm} , φj = (φj1, . . . , φjk) ∈ Ω ⊂ Rk

7.1. DIMENSIONS, SETTINGS AND PARAMETERS 39

à Given that in the PNAS model all individuals are born with age 0 and length
` = `b, all individuals have the same state at birth and hencem = 1. The option
to specify multiple states-at-birth is hence not relevant for the example model
discussed in this implementation chapter. This might hold more generally;
most if not all physiologically structured population models that have been
reported on in the literature so far are characterised by such a unique state-
at-birth for all individuals. Nonetheless, the option to define multiple states-
at-birth opens up some interesting research possibilities, which are discussed
further in chapter 14.

Since models involving multiple states-at-birth are not very common, infor-
mation that relates to this option will be distinguished in the text by setting
them apart in paragraphs like this one. The index j will be used to refer to the
index of a particular state-at-birth in the set {φ1, . . . ,φm}. The number m of
possible states-at-birth is set dynamically in the model file (see section 7.2.1).

7.1 Problem dimensions, numerical settings and model
parameters

7.1.1 Definition of problem dimensions and numerical settings.

The code box below defines the different dimensions of the model and the numerical
settings to be used in the computations. These definitions, using #define-statement
interpreted by the C-precompiler, have to appear at the very beginning of the model-
specific file for the code to compile correctly.

The software can handle problems with multiple structured populations. Therefore, the
variable POPULATION_NR has to be defined equal to the number of structured populations
accounted for in the model. For the PNAS example this is obviously equal to 1 (line 2 in
the code box below).

Code box 7.1: Definition of dimensions and numerical settings

// Dimension settings: Required

2 #define POPULATION_NR 1

#define STAGES 3

4 #define I_STATE_DIM 2

#define ENVIRON_DIM 3

6 #define INTERACT_DIM 4

#define PARAMETER_NR 16

8

// Numerical settings: Optional (default values adopted otherwise)

10 #define MIN_SURVIVAL 1.0E-9 // Survival at which individual is considered dead

#define MAX_AGE 100000 // Give some absolute maximum for individual age

12

#define DYTOL 1.0E-7 // Variable tolerance

14 #define RHSTOL 1.0E-6 // Function tolerance

16 #define ALLOWNEGATIVE 0 // Negative solution values allowed?

#define COHORT_NR 100 // Number of cohorts in state output

The variable STAGES has to be defined equal to the number of life stages that can be
distinguished in the individual life history (line 3 in the code box above). While integrating

40 CHAPTER 7. IMPLEMENTATION OF AN EXAMPLE MODEL

the ODEs for the individual life history numerical problems may occur when the right
hand side of the ODEs changes abruptly in value at a certain threshold value of the
individual state, as a consequence of discontinuities in the development rate, the mortality
rate or the fecundity. Each of such thresholds in the life history should be distinguished as
a stage boundary. In the PNAS model the mortality changes discontinuously at ` = `v,
while the fecundity changes discontinuously at ` = `j . Three life stages can hence be
distinguished: vulnerable juveniles, invulnerable juveniles and adults, and the changes in
the life history rates are indeed abrupt at the transition boundaries between these stages.
The variable STAGES is therefore set equal to 3.

The variable I_STATE_DIM (line 4 in the code box above) defines the dimension of the
individual state. For the PNAS model this is defined equal to 2 to account for both
individual age and individual length.

The variable ENVIRON_DIM is required in nonlinear PSPM, whereas it is optional for
demographic analysis of linear PSPMs. It represents the number of environment variables
that determine the life history of an individual. In the PNAS model the growth and
fecundity of individual consumers are functions of the resource density R, whereas the
mortality is a function of the predator density P and the biomass of vulnerable consumers
B. The latter only influences the mortality of the vulnerable consumers, because it
determines the value of the predator functional response. ENVIRON_DIM hence equals 3 in
the PNAS model.

The variable INTERACT_DIM defines the number of functions that represent the impact
of an individual on its environment. In the PNAS model this feedback of an individual
consumer on its environment consists of its grazing rate I(`, R) and the biomass-length
relation ω`3 determining the biomass of vulnerable consumers, as it represents food for
predators. Therefore, the variable INTERACT_DIM should be at least set equal to 2. How-
ever, all interaction functions are also saved to the output file generated during a com-
putation. The interaction functions can hence be conveniently used to produce arbitrary
output quantities of the form∫

Ω
h(χ,χb, E) ñ(χ) dχ

where h(χ,χb, E) is an interaction (weighing) function that can depend on the values
of the individual state χ, the state-at-birth of individuals χb and the values of the en-
vironment variables E, and ñ(χ) is the stable population distribution in equilibrium.
Such quantities can therefore represent the total population density in equilibrium (when
h(χ,χb, E) = 1), the total population biomass (when h(χ,χb, E) equals the biomass of an
individual with individual state χ and state-at-birth χb) or the total population birth rate
in equilibrium (when h(χ,χb, E) is the fecundity of an individual with individual state χ
and state-at-birth χb). In the PNAS model I want in addition to the biomass of vulnera-
ble consumers, also the biomass of non-vulnerable juvenile consumers and the biomass of
adult consumers as output of the model and hence have set the variable INTERACT_DIM

equal to 4.

The last required parameter that has to be specified is the number of parameters in the
model (set in line 7 in the code box above). In the PNAS model this equals 16 (ρ, Rmax,
`b, `v, `j , `m, ω, Imax, Rh, γ, rm, µb, a, Th, ε and δ).

The remaining definitions in the code box are all optional and can be left away. A
list of all possible variables that can be changed by a definition in this code section is

7.1. DIMENSIONS, SETTINGS AND PARAMETERS 41

provided in chapter 17. The variable MIN_SURVIVAL determines the threshold of the
survival probability below which an individual is considered dead. The integration over
the individual life history stops whenever the survival probability falls below this threshold
value. In code box 7.1 (line 10) the minimum survival is set to 10−9, which is in fact the
default value and is hence superfluous. Note that the value of MIN_SURVIVAL can not be
set equal to 0. As an alternative to using 0 MIN_SURVIVAL can be set to a very small value
like 10−100.

The variable MAX_AGE (line 11 in code box 7.1) can be used as an alternative to determine
the end of an individual life and to stop the integration over the individual life history. In
the PNAS model there is no maximum individual age and hence the variable is set to a
very high value (100000), which the individuals will never reach, because before that age
their survival probability has already dropped below its threshold value (10−9).

The two quantities DYTOL and RHSTOL determine whether a solution has been found. In
general, both demographic analysis as well as equilibrium analysis of PSPMs boils down
to solving a system of nonlinear equations that can be represented as G(y) = 0 for a set of
unknowns y in iterative manner. The subsequent estimates of the solution in the Newton
iterations can be labeled as yp and yp+1. A solution is now considered to be located if
both of the following conditions hold:

‖yp+1 − yp‖ < εy

‖G(yp+1)‖ < εG

where ‖.‖ refers to the Euclidean norm. DYTOL and RHSTOL are the quantities εy and εG,
respectively. Increasing (decreasing) their value leads to easier (harder) acceptance of a
set of unknowns as a solution to the system of equations G(y) = 0. The definition of
these two accuracies in the code box is in fact superfluous as they are defined equal to
their default values (see chapter 17).

The quantity ALLOWNEGATIVE is a flag that can only have a value of 0 or 1 and determines
whether or not computations should stop when one of the variables to solve for reaches
a negative value. In most population models negative solution values are biologically not
relevant and ALLOWNEGATIVE is hence set to 0 by default. Line 16 in code box 7.1 is only
included to illustrate the use of ALLOWNEGATIVE and does not change the value of this
variable from its default value. Most likely, setting ALLOWNEGATIVE equal to 1 as opposed
to 0 will only be useful in specific cases.

The last quantity COHORT_NR defines the number of cohorts making up the equilibrium
population output. During computations of the equilibrium a number of output files
will be generated (see section 8.5), one of which is a Matlab file containing the popu-
lation equilibrium state for each parameter that the equilibrium values are computed
for. COHORT_NR specifies how many cohorts should be used to represent these equilib-
rium population states. Larger values will generate more detailed representations of the
equilibrium population state at the expense of larger file sizes.

7.1.2 Definition of parameter names and values

The code box below assigns each of the model parameters a meaningful name and a
default value.

42 CHAPTER 7. IMPLEMENTATION OF AN EXAMPLE MODEL

Code box 7.2: Definition of parameter names and values

// Descriptive names of parameters in parameter array (at least two parameters are required)

2 char *parameternames[PARAMETER_NR] =

{ "Rho", "Rmax", "Lb", "Lv", "Lj", "Lm", "Beta", "Imax", "Rh", "Gamma", "Rm", "Mub",

4 "A", "Th", "Epsilon", "Delta"};

6 // Default values of all parameters

double parameter[PARAMETER_NR] =

8 { 0.1, 3.0E-4, 7.0, 27.0, 110.0, 300.0, 9.0E-6, 1.0E-4, 1.5E-5, 0.006, 0.003, 0.01,

5000.0, 0.1, 0.5, 0.01};

Model parameter values are stored by the program in the vector variable parameter.
The lines 2-4 above assign each of the elements this vector a more meaningful, model-
specific name. These name strings can not be used in the remaining parts of the model
implementation, they only serve to make the output files produced by the program more
readable. These output files contain a small header text indicating among other details
which parameter values were used for the computation of the results contained in the
output file (see section 8.5). In the output file parameters are referred to with their
names as defined in the array of strings *parameternames[k]. To adapt the above code
to a different model, the code on line 2 of the code box above should remain the same,
only change lines 3-4 as needed (possibly extending it over more lines in case there are
many parameters).

The default values to use for the model parameters are specified by the declaration of the
vector parameter[PARAMETR_NR] on line 7-9 of the previous code box. The values should
be specified as a comma-separated array of values within braces (don’t forget the closing
semi-colon at the end of the statement that is required in the C-language!). To adapt the
above code to a different model, the code on line 7 of the code box above should remain
the same, only change lines 8-9 as needed (possibly extending it over more lines in case
there are many parameters).

7.1.3 Definition of aliases to simplify implementation

The following code box defines aliases for program variables used in the C-implementation
of the model, such that they are more easily identified with the model ingredients. Defining
these aliases is optional but strongly advised as it makes model implementation more
straightforward.

The life history functions in any model depend on the individual state itself, on the envi-
ronment variables and on model parameters. The value of the individual state variables
at a particular age are always referred to with the program variable istate[p][i], where
the index p refers to the number of the population and the index i refers to the number
of the individual state variables. Notice that in C array indices run from 0 (as opposed
to 1 like in Matlab)! Similarly, the value of the individuals state variables at birth are
always referred to with the program variable birthstate[p][i]. In case there are mul-
tiple populations and/or more than a single individual state variable, it is up to the user
to keep track of which index pertains to which population or individual state variable. In
the PNAS model the two individual state variables are age and length, which are identi-
fied with the first and second element of the individual state vector, istate[0][0] and
istate[0][1], respectively (line 2-3 in the code box below).

7.1. DIMENSIONS, SETTINGS AND PARAMETERS 43

Code box 7.3: Definition of aliases

// Aliases definitions for all istate variables

2 #define AGE istate[0][0]

#define LENGTH istate[0][1]

4

// Aliases definitions for all environment variables

6 #define R E[0]

#define P E[1]

8 #define B E[2]

10 // Aliases definitions for all parameters

#define RHO parameter[0] // Default: 0.1

12 #define RMAX parameter[1] // Default: 3.0E-4

14 #define LB parameter[2] // Default: 7

#define LV parameter[3] // Default: 27

16 #define LJ parameter[4] // Default: 110

#define LM parameter[5] // Default: 300

18

#define OMEGA parameter[6] // Default: 9.0E-6

20

#define IMAX parameter[7] // Default: 1.0E-4

22 #define RH parameter[8] // Default: 1.5E-5

24 #define GAMMA parameter[9] // Default: 0.006

#define RM parameter[10] // Default: 0.003

26

#define MUB parameter[11] // Default: 0.01

28

#define A parameter[12] // Default: 5000.0

30 #define TH parameter[13] // Default: 0.1

#define EPSILON parameter[14] // Default: 0.5

32 #define DELTA parameter[15] // Default: 0.01

The value of the environment variables are contained in an array E[e] with e an index in
the range 0 . . . ENVIRON_DIM-1. Again, it is up to the user to keep track of which index
pertains to which environmental state variable. The use of aliases is really beneficial for
this purpose. As defined in code box 7.1 three environment variables are identified in the
PNAS model: the resource density, the density of predators and the biomass of juvenile
consumers that are vulnerable to predation. Lines 6-8 in code box 7.3 identifies these
with the first, second and third element of the array E[e], respectively, and introduces
the aliases R, P and B for these quantities. All code shown below will make use of these
aliases as opposed to their real names in the program (E[0], E[1] and E[2]).

Similar arguments as given above for the individual state variables contained in the array
istate[p][i] and the environment variables contained in the array E[e] hold for the
model parameters. All model parameters are contained in a vector named parameter[k]
in the code (see the previous section) with k an index in the range 0 . . . PARAMETER_NR-1.
Which element of this vector represents which model-specific parameter is up to the user.
To prevent mixing up the interpretation of the different vector elements and hence to
prevent mistakes, it is strongly advised to define meaningful, model-specific aliases for
each of the elements of the vector parameter[k] as is illustrated in lines 11-32 in the
code box above. It is best to avoid completely the direct use of the program variable
parameter[k] in any part of the model specification and only use the models-specific
aliases.

44 CHAPTER 7. IMPLEMENTATION OF AN EXAMPLE MODEL

7.2 Definition of the individual life history

7.2.1 Specifying the number of possible states-at-birth

The first routine to be implemented for a particular life history model defines for every
population in the model the number of possible states-at-birth that an individual can be
born with (i.e. the value of the size m of the set {φ1, . . . ,φm}).

Code box 7.4: Specification of the number of possible states-at-birth

/*

2 * Specify the number of states at birth for the individuals in all structured

* populations in the problem in the vector BirthStates[].

4 */

6 void SetBirthStates(int BirthStates[POPULATION_NR], double E[])

{

8 BirthStates[0] = 1;

10 return;

}

For each population with index p the variable BirthStates[p] has to be set to the
number of possible states at birth. Because in the PNAS model all individuals are born
with age 0 and length ` = `b, all individuals have the same, unique state at birth and
hence BirthStates[0] is set to 1.

à Note that different populations may have different numbers of states-at-birth.
BirthStates[p] hence does not need to be the same for all p.

7.2.2 Specifying the value of all possible states-at-birth

The next routine to implement defines for every possible state-at-birth with index j the
actual value of the different individual state variables at birth φj =

(
φj1, . . . ,φjk

)
.

Code box 7.5: Specifying the value of all possible states-at-birth

/*

2 * Specify all the possible states at birth for all individuals in all

* structured populations in the problem. BirthStateNr represents the index of

4 * the state of birth to be specified. Each state at birth should be a single,

* constant value for each i-state variable.

6 *

* Notice that the first index of the variable 'istate[][]' refers to the

8 * number of the structured population, the second index refers to the

* number of the individual state variable. The interpretation of the latter

10 * is up to the user.

*/

12

void StateAtBirth(double *istate[POPULATION_NR], int BirthStateNr, double E[])

14 {

AGE = 0.0;

16 LENGTH = LB;

18 return;

}

For every population (p = 0, 1, . . . , POPULATION_NR-1) the value of each individual state
variable istate[p][i] (i = 0, 1, . . . , I_STATE_DIM-1) has to be assigned a unique value,

7.2. DEFINITION OF THE INDIVIDUAL LIFE HISTORY 45

from which individual development will start at age 0. Notice that the program does not
automatically include individual age in its characterisation of the individual state, even
though integration over the entire life history (as a function of age) is carried out. For
the PNAS model age at birth is (obviously) set to 0, while the length at birth is given by
the parameter `b (line 15 and 16, respectively in the code box below).

à This routine will be called as many times as there are possible states-at-birth.
The variable BirthStateNr indicates the index j of the state-at-birth in the set
{φ1, . . . ,φm} for which the values have to be set in the current invocation of the
routine. The routine will thus be called with BirthStateNr set equal to a value
in 0, 1, . . . ,m− 1 (Remember the starting index 0 in C!). If there are multiple
states-at-birth (BirthStates[p] > 1) the definition of the values of the i-state
variables has to depend explicitly on the index BirthStateNr to make the
states-at-birth different from each other. Furthermore, if the problem involves
multiple structured populations the number of possible states-at-birth can be
different for each of them, which might lead to a situation that the routine
above is called with a value of the index BirthStateNr that is larger than the
maximum number of states-at-birth for a particular population (BirthStateNr
≥ BirthStates[p]). The program safely ignores such inappropriate state-at-
birth specifications.

7.2.3 Definition of boundaries between discrete stages

The next routine determines the boundaries between consecutive stages in the individual
life history:

Code box 7.6: Definition of discrete stage boundaries

/*

2 * Specify the threshold determining the end point of each discrete life

* stage in individual life history as function of the i-state variables and

4 * the individual's state at birth for all populations in every life stage.

*

6 * Notice that the first index of the variable 'istate[][]' refers to the

* number of the structured population, the second index refers to the

8 * number of the individual state variable. The interpretation of the latter

* is up to the user.

10 */

12 void IntervalLimit(int lifestage[POPULATION_NR], double *istate[POPULATION_NR],

double *birthstate[POPULATION_NR], int BirthStateNr, double E[],

14 double limit[POPULATION_NR])

{

16 switch (lifestage[0])

{

18 case 0:

limit[0] = LENGTH - LV;

20 break;

case 1:

22 limit[0] = LENGTH - LJ;

break;

24 }

26 return;

}

46 CHAPTER 7. IMPLEMENTATION OF AN EXAMPLE MODEL

In this routine the variable limit[p] has to be defined, which has as many elements as
there are populations (p = 0 . . . POPULATION_NR-1). The life stage that the individual
is in at the moment this routine is called, is determined by the variable lifestage[p],
which has a value of 0 if the individual is in the first life stage and a value of STAGES-1 if it
is in the last life stage. The element limit[p] should now indicate when the current life
stage as given in lifestage[p] ends. In particular, the program considers the current life
stage to end when limit[p] turns from negative to positive. For the end of the last life
stage the death of old age, either by reaching the maximum age MAX_AGE or by reaching
the minimum survival threshold MIN_SURVIVAL, does not have to be specified separately,
the program takes care of that automatically.

The threshold value that has to be stored and returned to the program in limit[p]

will depend on the individual state variables, possibly on the individuals state-at-birth
and will be different for individuals in different life stages. For this reason, the rou-
tine IntervalLimit() has as arguments lifestage[], specifying the life stage that
the individual is currently in, istate[][], the individual state, birthstate[][] and
BirthStateNr, the value and index of the individual’s state-at-birth, respectively. The
threshold value marking the end of a particular stage may, however, in addition depend
on the value of the environment variables (E[]).

In the PNAS model there is a discontinuous change at the length threshold ` = `v when
individuals turn from vulnerable to completely invulnerable to predation. The value that
indicates the end of the first life stage (when lifestage[p] = 0) is hence set to `−`v (line
18-20 in the code box above). Furthermore, individuals mature at ` = `j , which changes
their fecundity discontinuously from a 0 value just before maturation to a positive value
just after maturation. The value that indicates the end of the second (juvenile) stage
(when lifestage[p] = 1) is hence set to `− `j (line 21-23 in the code box above).

à Like the previous routine, this routine will be called as many times as there are
possible states-at-birth, because the state-at-birth may influence the threshold
between consecutive life stages. The same holds for the routines discussed in
sections 7.2.4-7.2.7 and 7.3.1 below, which define changes in the i-state vari-
ables, the fecundity and the mortality of individuals and their impact on the
environment, respectively. In essence, individuals with different states-at-birth
are treated as subpopulations within the same structured population.

Because of the possible dependence on the state-at-birth the variables
birthstate[][] and BirthStateNr are passed as arguments to this routine
and the once discussed in sections 7.2.4-7.2.7 and 7.3.1. These arguments con-
tain the values of the i-state variables and the index in the set {φ1, . . . ,φm},
respectively, for which the routine is invoked and for which the threshold be-
tween consecutive life stages has to be evaluated.

7.2. DEFINITION OF THE INDIVIDUAL LIFE HISTORY 47

à If the problem involves multiple structured populations and the number of pos-
sible states-at-birth differs among them, the routine above may be called with
a value of the index BirthStateNr that is larger than the maximum number of
states-at-birth for a particular population (BirthStateNr ≥ BirthStates[p]).
Although this circumstance may seem confusing, the user does not have to
worry about it, as the program is designed to safely ignore such assignments
of thresholds between consecutive life stages, changes in the i-state variables,
fecundity, mortality and impact on the environment of individuals for states-
at-birth with index BirthStateNr ≥ BirthStates[p]that are inappropriate
for the structured population with index p.

7.2.4 Specification of continuous individual state development

This routine specifies the right-hand side of the ODE:

dχ

da
= g(χ,χb, E)

that determines the continuous development of the individual state variables during the
life history as a function of the state variables themselves, the individual’s state-at-birth
and the environment variables.

Code box 7.7: Specification of continuous individual state development

/*

2 * Specify the development of individuals as a function of the i-state

* variables and the individual's state at birth for all populations in every

4 * life stage.

*

6 * Notice that the first index of the variables 'istate[][]' and 'development[][]'

* refers to the number of the structured population, the second index refers

8 * to the number of the individual state variable. The interpretation of the

* latter is up to the user.

10 */

12 void Development(int lifestage[POPULATION_NR], double *istate[POPULATION_NR],

double *birthstate[POPULATION_NR], int BirthStateNr, double E[],

14 double development[POPULATION_NR][I_STATE_DIM])

{

16 development[0][0] = 1.0;

development[0][1] = GAMMA*(LM*R/(R + RH) - LENGTH);

18

return;

20 }

For each individual state variable i of every structured population p that is part of the
individual state istate[p][i], its rate of development during the life history has to be
specified in development[p][i]. Notice that these development rates may differ in differ-
ent life stages, for example growth in body size may be different for juveniles and adults
in case adults invest a lot of energy into reproduction. The development rates should then
be specified dependent on the current life stage the individual is in. This current life stage
at the moment the routine is evaluated is contained in the variable lifestage[p]. The
development rate may furthermore depend on the individual state variables, on the indi-
viduals state-at-birth and on the value of the environment variables, which is the reason

48 CHAPTER 7. IMPLEMENTATION OF AN EXAMPLE MODEL

for istate[][], the individual state, birthstate[][] and BirthStateNr, the value and
index of the individual’s state-at-birth, respectively, and E[], the environment variables,
as arguments to this routine.

In the PNAS model the first individual state variable corresponds to the individual age,
which obviously has a rate of development equal to 1. The rate of development in in-
dividual length, the second individual state variable, follows the vonBertalanffy growth
function, as specified by the function g(`, R) (refer to the model formulation at the start
of this chapter).

à Refer to the remarks in section 7.2.3 concerning the dependence on the indi-
vidual’s state-at-birth.

7.2.5 Specification of discrete individual changes at stage transitions

Even though not listed among the basic assumptions of the PSPM in the beginning of
this chapter, it is permissible to have discrete changes or jumps in the individual state
variables at the transition between two consecutive life stages. If these occur, they should
be programmed in the following routine.

Code box 7.8: Specification of discrete individual state changes

/*

2 * Specify the possible discrete changes (jumps) in the individual state

* variables when ENTERING the stage specified by 'lifestage[]'.

4 *

* Notice that the first index of the variable 'istate[][]' refers to the

6 * number of the structured population, the second index refers to the

* number of the individual state variable. The interpretation of the latter

8 * is up to the user.

*/

10

void DiscreteChanges(int lifestage[POPULATION_NR], double *istate[POPULATION_NR],

12 double *birthstate[POPULATION_NR], int BirthStateNr, double E[])

{

14 return;

}

This routine is not relevant in case of the PNAS model and hence its contents are empty
(apart for the necessary return; statement).

This routine is called whenever a transition between two consecutive life stages is reached
during the integration over the individual life history. It should be noted that the value
of the variable lifestage[p] indicates the life stage that is entered, that is, following
the current stage boundary. This routine will hence never be called with a value of one
of the elements lifestage[p] equal to 0. The discrete changes in the individual state
variables have to be implemented by assigning new values to the variables istate[p][i].
These assignments may as before depend on the life stage that is entered, as specified by
the variable lifestage[], the (old values) of the individual state variables, contained in
the argument istate[][], the individuals state-at-birth, determined by the arguments
birthstate[][] and BirthStateNr, and on the environment variables E[]. If no assign-
ment of a value to istate[p][i] is implemented, that particular individual state variable
will keep its current value.

7.2. DEFINITION OF THE INDIVIDUAL LIFE HISTORY 49

à Refer to the remarks in section 7.2.3 concerning the dependence on the indi-
vidual’s state-at-birth.

7.2.6 Specification of fecundity

The following routine specifies the fecundity as a function of the individual state.

Code box 7.9: Specification of fecundity

/*

2 * Specify the fecundity of individuals as a function of the i-state

* variables and the individual's state at birth for all populations in every

4 * life stage.

*

6 * The number of offspring produced has to be specified for every possible

* state at birth in the variable 'fecundity[][]'. The first index of this

8 * variable refers to the number of the structured population, the second

* index refers to the number of the birth state.

10 *

* Notice that the first index of the variable 'istate[][]' refers to the

12 * number of the structured population, the second index refers to the

* number of the individual state variable. The interpretation of the latter

14 * is up to the user.

*/

16

void Fecundity(int lifestage[POPULATION_NR], double *istate[POPULATION_NR],

18 double *birthstate[POPULATION_NR], int BirthStateNr, double E[],

double *fecundity[POPULATION_NR])

20 {

fecundity[0][0] = 0.0;

22 if (lifestage[0] == 2)

fecundity[0][0] = RM*R/(R + RH)*LENGTH*LENGTH;

24

return;

26 }

In this routine not only the fecundity (i.e. the number of offspring produced per unit
time) has to be specified, but also the state-at-birth of the produced offspring. Therefore,
this routine has to assign values to the matrix fecundity[p][j], which determines for
the population with index p the number of offspring produced per unit time with state-
at-birth with index j in the set {φ1, . . . ,φm}. This fecundity will certainly depend on
the life stage that the individual is in (only adults reproduce), which is contained in
the argument lifestage[], and on the individual state variables, i.e. the values of the
argument istate[][]), but possibly also on the individual’s state-at-birth, the values
and index of which are specified by the arguments birthstate[][] and BirthStateNr,
respectively, and on the value of environment variables, provided by the argument E[],
at the moment this routine is called.

In the most common case of a unique state-at-birth and a single structured population,
like in the PNAS model, the only valid indices are p = 0 and j = 0 and hence only
the variable fecundity[0][0] has to be assigned. The code fragment above implements
a non-zero fecundity for individuals in the third life stage (lifestage[0] == 2), which
corresponds to the adult individuals with ` > `j . The implemented expression corresponds
to the function β(`, R) = rmR/(Rh+R)`2 as assumed in the PNAS model (see chapter 7).
The code provides a good example of how to assign a different value for a particular life

50 CHAPTER 7. IMPLEMENTATION OF AN EXAMPLE MODEL

history rate dependent on the life stage that an individual is in. The same approach can
also be used in the other routines specifying the life history rates of individuals.

à For more detailed remarks about models with multiple states-at-birth consult
section 7.2.3.

7.2.7 Specification of mortality

The following routine specifies the mortality as a function of the individual state.

Code box 7.10: Specification of mortality

/*

2 * Specify the mortality of individuals as a function of the i-state

* variables and the individual's state at birth for all populations in every

4 * life stage.

*

6 * Notice that the first index of the variable 'istate[][]' refers to the

* number of the structured population, the second index refers to the

8 * number of the individual state variable. The interpretation of the latter

* is up to the user.

10 */

12 void Mortality(int lifestage[POPULATION_NR], double *istate[POPULATION_NR],

double *birthstate[POPULATION_NR], int BirthStateNr, double E[],

14 double mortality[POPULATION_NR])

{

16 if (lifestage[0] == 0)

mortality[0] = MUB + A*P/(1+A*TH*B);

18 else

mortality[0] = MUB;

20

return;

22 }

For each population the corresponding element of the array mortality[p] should be
assigned the mortality rate, possibly dependent on the life stage the individual is in at
the moment this routine is called (given in argument lifestage[]), the current i-state of
the individual (given in argument istate[][]), the individual’s state-at-birth (values and
index in the set {φ1, . . . ,φm} given by birthstate[][] and BirthStateNr, respectively)
and the value of environment variables (E[]).

In the PNAS model all individuals experience a background mortality rate µb, while small
juvenile individuals, which are in the first distinguished life stage (lifestage[0] == 0),
experience on top of the background mortality a predation mortality equal to aP/(1+ThB)
as expressed by the function µ(`, P) in chapter 7.

à Refer to the remarks in section 7.2.3 concerning the dependence on the indi-
vidual’s state-at-birth.

7.3. FEEDBACK AND EQUILIBRIUM OF THE ENVIRONMENT 51

7.3 Feedback on and equilibrium condition of the
environment

7.3.1 Specification of feedback impact on the environment

In this routine the functions should be programmed that represent the influence of individ-
uals in the structured populations on their environment. These functions may represent
effects like grazing rates or availability as food for higher trophic levels.

Code box 7.11: Specification of feedback impact on the environment

/*

2 * For all the integrals (measures) that occur in interactions of the

* structured populations with their environments and for all the integrals

4 * that should be computed for output purposes (e.g. total juvenile or adult

* biomass), specify appropriate weighing function dependent on the i-state

6 * variables, the individual's state at birth, the environment variables and

* the current life stage of the individuals. These weighing functions should

8 * be specified for all structured populations in the problem. The number of

* weighing functions is the same for all of them.

10 *

* Notice that the first index of the variables 'istate[][]' and 'impact[][]'

12 * refers to the number of the structured population, the second index of the

* variable 'istate[][]' refers to the number of the individual state variable,

14 * while the second index of the variable 'impact[][]' refers to the number of

* the interaction variable. The interpretation of these second indices is up

16 * to the user.

*/

18

void Impact(int lifestage[POPULATION_NR], double *istate[POPULATION_NR],

20 double *birthstate[POPULATION_NR], int BirthStateNr, double E[],

double impact[POPULATION_NR][INTERACT_DIM])

22 {

impact[0][0] = IMAX*R/(R + RH)*LENGTH*LENGTH;

24

switch (lifestage[0])

26 {

case 0:

28 impact[0][1] = OMEGA*LENGTH*LENGTH*LENGTH;

impact[0][2] = 0;

30 impact[0][3] = 0;

break;

32 case 1:

impact[0][1] = 0;

34 impact[0][2] = OMEGA*LENGTH*LENGTH*LENGTH;

impact[0][3] = 0;

36 break;

case 2:

38 impact[0][1] = 0;

impact[0][2] = 0;

40 impact[0][3] = OMEGA*LENGTH*LENGTH*LENGTH;

break;

42 }

44 return;

}

As explained in section 7.1.1 interaction functions are of the form∫
Ω
h(χ,χb, E) ñ(χ) dχ

where h(χ,χb, E) is an interaction (weighing) function that can depend on the values
of the individual state χ, the state-at-birth of individuals χb and the values of the en-
vironment variables E, and ñ(χ) is the stable population distribution in equilibrium.

52 CHAPTER 7. IMPLEMENTATION OF AN EXAMPLE MODEL

Such quantities can therefore represent the total population density in equilibrium (when
h(χ,χb, E) = 1), the total population biomass (when h(χ,χb, E) equals the biomass of
an individual with individual state χ and state-at-birth χb) or the total population birth
rate in equilibrium (when h(χ,χb, E) is the fecundity of an individual with individual
state χ and state-at-birth χb). These interaction variables, in fact, determine the equi-
librium of the model, because the nonlinearities that make an equilibrium possible arise
through the impact of an individual on its environment.

As also explained in section 7.1.1 all interaction functions are saved to the output file
when an equilibrium has been computed. Interaction functions are hence not only used
to compute the density-dependent feedback in the model, but also to obtain model output
quantities of the form shown above.

In the PNAS model this feedback of an individual consumer on its environment consists
of its grazing rate I(`, R) and the biomass-length relation ω`3 determining the biomass of
vulnerable consumers, as it represents food for predators. The grazing rate of an individual
consumer in the PNAS model is independent of the life stage it is in. As is shown in line
23 of the code box above, this impact is assigned to the first interaction variable (the one
with index 0). Line 25-42 of the code box 7.11 show that biomass of juvenile consumers
that are vulnerable to predation is assigned to the second interaction variable (lines 27-
31), whereas the biomass of the invulnerable juvenile and adult consumers is assigned
to the third (lines 32-36) and fourth (lines 37-41) interaction variable. These last two
interaction variables are obviously not needed for the specification of the equilibrium, but
are only included as additional output.

It should be pointed out that the routine in code box 7.11 should only specify the im-
pact of an individual on its environment, given its current life stage (function argument
lifestage[]), its individual state (argument istate[][]), its state-at-birth (values and
index in the set {φ1, . . . ,φm} given by birthstate[][] and BirthStateNr, respectively)
and the value of environment variables (E[]). In other words, the routine should only
specify the weighing function h(χ,χb, E). The program automatically translates this
individual-level impact function to the feedback of the total population on its environ-
ment, as explained in the next section.

à Refer to the remarks in section 7.2.3 concerning the dependence on the indi-
vidual’s state-at-birth.

7.3.2 Specification of equilibrium conditions of the environment

The last routine has to specify the equilibrium conditions of the environment, dependent
on the values of the environment variables itself and/or the values of the population
feedback functions. As explained in chapter 6 environment variables can be of different
types. As shown in the code box 7.12 below 3 different types of environment variables are
distinguished that are referred to with the keywords PERCAPITARATE, GENERALODE and
POPULATIONINTEGRAL, respectively.

The first type of environment variable, indicated with the keyword PERCAPITARATE, is
one that follows dynamics described by an ordinary differential equation (ODE) and in
addition can potentially be 0 in equilibrium. The ODE describing the dynamics of such
an environment variable Ei(t) is then of the general form:

dEi
dt

= G(E, I)Ei

7.3. FEEDBACK AND EQUILIBRIUM OF THE ENVIRONMENT 53

in which E is the vector of environment variables, I is the vector of population feedback
functions on the environment and G(E, I) is a bounded function. More formally, G(E, I)
should statisfy −∞ < −C ≤ G(E, I) ≤ C <∞ for some positive real value C, such that
the value Ei = 0 (the zero equilibrium, also referred to as the trivial or boundary equi-
librium) indeed represents a regular equilibrium value of the ODE above. The function
G(E, I) then represents the per-capita rate of change of Ei and any non-zero (non-trivial
or internal) equilibrium of Ei fulfills the condition G(E, I) = 0. To handle more easily
the continuation of zero equilibrium values for this type of environment variables and to
be able to detect transcritical bifurcation points (also referred to as branching points) be-
tween an equilibrium curve with Ei = 0 and a curve with Ei 6= 0, this type of environment
variable has to be labeled as PERCAPITARATE in the program (see code box 7.12 below)
and its equilibrium condition has to be specified by the per capita growth rate G(E, I).

The second type of environment variable, indicated with the keyword GENERALODE, is one
that follows dynamics described by an ordinary differential equation (ODE), but Ei = 0
is not a potential equilibrium value for this environment variable. The ODE describing
the dynamics of such an environment variable Ei(t) is then of the general form:

dEi
dt

= G(E, I)

in which E is the vector of environment variables, I is the vector of population feedback
functions on the environment andG(E, I) 6= 0 when Ei = 0. Such an environment variable
can never have a zero equilibrium value and transcritical bifurcation points between an
equilibrium curve with Ei = 0 and a curve with Ei 6= 0 do not occur either. All equilibrium
values of Ei satisfy the condition G(E, I) = 0. This type of environment variable has to
be labeled as GENERALODE in the program (see code box 7.12 below) and its equilibrium
condition has to be specified by the function G(E, I).

The last type of environment variable are variables that represent measures (weighted
integrals) of the population distribution itself. More formally, environment variables that
can be expressed as:

Ei(t) = Ii(t) with Ii(t) =

∫
Ω
γi(χ,χb, E)n(t,χ) dχ

in which the function γi(χ,χb, E) is some arbitrary weighing function and Ii is one
of the functions representing the feedback of a population on its environment. This
type of environment variable represents a direct density-dependent effect of the popula-
tion on the life history of the individuals. Examples of the weighing functions include
γi(χ,χb, E) = 1, in which case Ei would represent the total population density in num-
bers, or γi(χ,χb, E) = χi with χi referring to the mass of an individual organism, in
which case Ei would represent the total population biomass. Obviously, the value of Ei
equals 0 in case of a zero-valued or trivial equilibrium state for the population distribution
n(t,χ). This type of environment variable has to labeled as POPULATIONINTEGRAL in the
program (see code box 7.12 below) and its equilibrium condition has to be specified by
identifying it with the appropriate feedback function Ii.

54 CHAPTER 7. IMPLEMENTATION OF AN EXAMPLE MODEL

Code box 7.12: Specification of equilibrium condition of the environment

/*

2 * Specify the type of each of the environment variables by setting

* the entries in EnvironmentType[ENVIRON_DIM] to PERCAPITARATE, GENERALODE

4 * or POPULATIONINTEGRAL based on the classification below:

*

6 * Set an entry to PERCAPITARATE if the dynamics of E[j] follow an ODE and 0

* is a possible equilibrium state of E[j]. The ODE is then of the form

8 * dE[j]/dt = P(E,I)*E[j], with P(E,I) the per capita growth rate of E[j].

* Specify the equilibrium condition as condition[j] = P(E,I), do not include

10 * the multiplication with E[j] to allow for detecting and continuing the

* transcritical bifurcation between the trivial and non-trivial equilibrium.

12 *

* Set an entry to GENERALODE if the dynamics of E[j] follow an ODE and 0 is

14 * NOT an equilibrium state of E. The ODE then has a form dE[j]/dt = G(E,I).

* Specify the equilibrium condition as condition[j] = G(E,I).

16 *

* Set an entry to POPULATIONINTEGRAL if E[j] is a (weighted) integral of the

18 * population distribution, representing for example the total population

* biomass. E[j] then can be expressed as E[j] = I[p][i]. Specify the

20 * equilibrium condition in this case as condition[j] = I[p][i].

*

22 * Notice that the first index of the variable 'I[][]' refers to the

* number of the structured population, the second index refers to the

24 * number of the interaction variable. The interpretation of the latter

* is up to the user. Also notice that the variable 'condition[j]' should

26 * specify the equilibrium condition of environment variable 'E[j]'.

*/

28

const int EnvironmentType[ENVIRON_DIM] = {GENERALODE, PERCAPITARATE, POPULATIONINTEGRAL};

30

void EnvEqui(double E[], double I[POPULATION_NR][INTERACT_DIM],

32 double condition[ENVIRON_DIM])

{

34 condition[0] = RHO*(RMAX - R) - I[0][0];

condition[1] = EPSILON*A*I[0][1]/(1+A*TH*I[0][1]) - DELTA;

36 condition[2] = I[0][1];

38 return;

}

In the code box above, the array EnvironmentType[ENVIRON_DIM] has to define
for each environment variable separately its type (PERCAPITARATE, GENERALODE or
POPULATIONINTEGRAL). This array hence has as many elements as there are en-
vironment variables. Secondly, in the routine that follows the specification of
EnvironmentType[ENVIRON_DIM] the equilibrium conditions have to be implemented as
a function of the values of the environment variables itself E[] and the value of the pop-
ulation feedbacks functions I[][]. These latter two arrays are passed as arguments to
the routine EnvEqui, while the equilibrium conditions have to be specified in the array
condition[]. Notice that the ordering of the elements in the arrays condition[] and
E[] are the same, meaning for example that the equilibrium condition for the second
environment variable E[1] has to be returned in condition[1].

Notice that the feedback functions I[][] are the population-level representations of the
individual-level impact functions impact[][] as they are defined in code box 7.11. In
case of a unique state-at-birth the expected life history is the same for all individuals in
the population and hence not dependent on a state-at-birth χb. In this case, such an
expected impact of an individual during its entire life on its environment is given by an
integral of the form:

Γ =

∫ ∞
0

γ(χ(a), E)F(a) da

7.3. FEEDBACK AND EQUILIBRIUM OF THE ENVIRONMENT 55

in which γ(χ(a), E) quantifies the impact dependent on the individual state and the
environment variables, χ(a) is the individual state at age a and F(a) represents the
probability that the individual survives until age a, which is defined as:

F(a) = exp

(
−
∫ a

0
µ(χ(a), E) da

)
with µ(χ(a), E) the individual’s instantaneous mortality rate. The population-level im-
pact on the environment now simply equals the product of the total population birth rate
in equilibrium b̃ and the individual-level impact:

Ĩ = b̃Γ

The elements of I[][] and impact[][] therefore correspond one-to-one, such that for
example in the PNAS model, in which impact[0][0] is defined as the individual feeding
rate on the resource, the quantity I[0][0] equals the grazing rate of the entire population
on the resource.

In the PNAS model, the first environment variable represents the resource density, which
follows semi-chemostat growth in the absence of consumers. As a consequence, the re-
source R does NOT have an equilibrium value R̃ = 0. The type of the first environment
variable is therefore set to GENERALODE and its equilibrium condition is specified in line
34 of the code box above as RHO*(RMAX - R) - I[0][0]. The first term in this line of
C-code implements the semi-chemostat dynamics in the absence of consumers and the
quantity I[0][0] represents the grazing rate by the total population of consumers as
mentioned above.

The second environment variable represents the predator density, the dynamics of which
is described by the ODE

dP

dt
=

(
ε

aB

1 + ThB
− δ

)
P

Because P = 0 is a regular fixed point of this ODE, the type of the second environment
variable is set to PERCAPITARATE on line 29 of code box 7.12 above, while its per capita
growth rate εaB/(1 + ThB) − δ is used to define its equilibrium condition on line 35.
Notice in this respect that the population feedback quantity I[0][1] represents B, the
total biomass of small juvenile consumers that are vulnerable to predation, which is
calculated from the individual-level impact quantity impact[0][1] defined on lines 27-31
in code box 7.11.

Finally, the third environment variable in the PNAS model is the total biomass of small
juvenile consumers B, which exerts a direct density-dependent effect on the mortal-
ity rate of small juvenile consumer individuals themselves, as it influences the preda-
tor functional response. The type of the third environment variable is therefore set to
POPULATIONINTEGRAL on line 29 of code box 7.12 above. On line 36 of code box 7.12
the equilibrium condition of this third environment variable is specified by identifying
it with the population feedback quantity I[0][1], which the program computes on the
basis of the individual-level impact quantity impact[0][1] that represents the biomass
of an individual consumer that is in the first life stage, where it is vulnerable to predation
(lines 27-31 in code box 7.11).

56 CHAPTER 7. IMPLEMENTATION OF AN EXAMPLE MODEL

à In case of multiple states-at-birth, individuals with different states-at-birth
may have different impacts on their environment. The expected impact of an
individual during its entire life on its environment is then given by an integral
of the form:

Γj =

∫ ∞
0

γ(χ(a,φj),φj , E)Fj(a) da

in which γ(χ(a,φj),φj , E) quantifies the impact of an individual that is born
with state φj state dependent on its individual state at age a, χ(a,φj), its
state-at-birth φj and the environment variables. Fj(a) now represents the
probability that an individual born with state-at-birth φj survives until age a,
which is defined as:

Fj(a) = exp

(
−
∫ a

0
µ(χ(a,φj),φj , E) da

)
with µ(χ(a,φj),φj , E) the individual’s instantaneous mortality rate.

If the possible states-at-birth are given by the set {φ1, . . . ,φm}, the individual-
level impact is anm-dimensional vector Γ = (Γ1, . . . ,Γm). The population-level
impact on the environment in this case equals the dot product of this vector
Γ with the m-dimensional vector b̃, representing the equilibrium distribution
of produced offspring over the possible states-at-birth {φ1, . . . ,φm} (refer to
Diekmann et al., 2003, for details).

The program automatically computes the equilibrium distribution of pro-
duced offspring over the possible states-at-birth and uses it to compute the
population-level impacts contained in I[][] from the individual-level impacts
that have been specified in impact[][].

8

Model analysis in Matlab

8.1 Computation of curves and detections of bifurcation
points

The software package allows to carry out 6 different types of computations of equilibria,
corresponding to 6 different types of curves. These different types of computations are
uniquely labeled with a 2- or 3-letter abbreviation code.

'EQ': This is the basic type of computation and hence the one that one usually starts
out with. In this computational mode the software calculates the equilibrium of
the PSPM as a function of a particular parameter over a range of values of that
parameter. This type of computation hence yields a type of curve that I will refer
to as “equilibrium curve” (as opposed to the more general “bifurcation curve”).

During the computation of an equilibrium curve the software will detect 4 types of
special points or bifurcation points:

– Branching point: A branching or transcritical bifurcation point is a point
where two different equilibrium curves intersect. Generically, such a bifurcation
occurs in a PSPM at a parameter value that represents the invasion or extinc-
tion threshold of a structured population and the two equilibrium curves are
characterised by a zero (trivial) and non-zero (non-trivial) equilibrium value
for a particular structured population, respectively. The program will report
the occurrence of a branching point as 'BP #N', where N is the number of the
structured population, for which the switch from a zero to non-zero equilibrium
value occurs.

– Environment branching point: A branching or transcritical bifurcation
point can also occur for an environment variable. The two equilibrium curves
are then characterised by a zero (trivial) and non-zero (non-trivial) equilibrium
value for a particular environment variable as opposed to a structured popu-
lation. From the point of view of bifurcation theory, branching points that
involve a zero and non-zero value of a structured population are the same as
branching points that involve a zero and non-zero environment variable. The
two types are only distinguished by the software, because they are computed
differently. The program will report the occurrence of a branching point as
'BPE #N', where N is the number of the environment variable, for which the
switch from a zero to non-zero equilibrium value occurs. Notice that environ-

57

58 CHAPTER 8. MODEL ANALYSIS IN MATLAB

ment branching points can only be detected for environment variables that are
of the type PERCAPITARATE (see section 7.3.2 above).

– Limit point: At a limit point a saddle-node bifurcation occurs, in which 2
different equilibria in the model, an unstable saddle and a stable node, disap-
pear at a particular threshold value of a parameter. At this parameter value
the equilibrium curve reaches an extremum in the parameter values and hence
bends back on itself. The program will report the occurrence of a limit point
as 'LP'.

– Evolutionary fixed point: The equilibrium condition for a structured pop-
ulation model can be expressed as:

R0(p,E(p)) = 1

in which p is one of the model parameters. The quantity R0(p,E(p)) refers to
the expected number of offspring that an individual of the structured popula-
tion will produce during its lifetime, in an environment that is characterised
by the environment variables E(p). The parameter p may directly influence
the value of R0(p,E(p)) but also indirectly, because it may have an impact
on the equilibrium values of the environment variables. The software uses the
condition above to compute the equilibrium of a PSPM (see also chapter 18).

In an evolutionary setting, in which mutations in the parameter p can occur
and selection acts to increase or decrease the parameter p over evolutionary
time, higher values of p are selected for if ∂R0/∂p > 0, while lower values of p
are selected for if ∂R0/∂p is negative. Any parameter value where ∂R0/∂p = 0
is a fixed point of the evolutionary process, as for this parameter value the
selection gradient for the parameter p is 0 (Metz et al., 1996; Geritz et al.,
1998; Diekmann et al., 2003). The software will detect these evolutionary
fixed points. In addition, the software will compute the second-order partial
derivatives of R0 to classify the evolutionary fixed point as a convergent stable
strategy (CSS), an evolutionary repellor (ERP) or an evolutionary branching
point (EBP) (Geritz et al., 1998).

It should be noted that evolutionary fixed points are normal equilibrium points
of the dynamics system, as opposed to special bifurcation points, since the
(ecological) dynamics of the model do not change at the critical parameter
value. However, from en evolutionary perspective these points are special.
They moreover play a key role in the theory of Adaptive Dynamics (Metz et
al., 1996; Geritz et al., 1998; Diekmann et al., 2003). It is for this reason that
the software reports them as special points.

The remaining 5 types of computations that the software can carry out all involve one
of the special, bifurcation points that the software detects during the computation of an
equilibrium curve. During the computation of the following curves always 2 model param-
eters are varied, hence these computations are referred to as two-parameter bifurcations,
as opposed to the one-parameter bifurcation of an equilibrium curve.

’BP’: In this computational mode the software computes the location of a branching point
of a structured population as a function of 2 model parameters. The resulting line
can hence be interpreted as the invasion or extinction boundary of the structured
population. This computation should start from an initial point close to a (detected)
branching point.

8.2. ARGUMENTS OF THE PSPMEQUI SCRIPT 59

’BPE’: Similarly, in this computational mode the software computes the location of an
environment branching point as a function of 2 model parameters. The resulting
line can hence be interpreted as the boundary separating a parameter region with
a zero equilibrium value for the environment variable from a region with a non-zero
equilibrium value of the environment value. This computation should start from an
initial point close to a (detected) environment branching point.

’LP’: In this computational mode the software computes the location of a limit point as a
function of 2 model parameters. The resulting line can hence be interpreted as the
boundary separating a parameter region with (at least) two equilibrium states from
a parameter region where these two specific equilibrium states do not occur. This
computation should start from an initial point close to a (detected) limit point.

’ESS’: The value of a particular parameter for which an evolutionary fixed point occurs is
generically referred to as an ESS parameter value. In this computational mode the
software computes the location of such an ESS parameter value as a function of the
bifurcation parameter. This computational mode can hence be used to investigate
how the evolutionary optimal value of one model parameter depends on the value of
a second parameter. Curves of this type correspond to the evolutionary isocline of
the ESS parameter as a function of the bifurcation parameter. 'ESS' computations
are, however, not limited to a single parameter having its ESS value, the program
can also compute curves of equilibria, in which multiple model parameters are at
their ESS value. The bifurcation parameter, which parameterises the curve, is not
one of these ESS parameters. This computation should start from an initial point
close to a (detected) evolutionary fixed point.

’PIP’: This computation also starts from an initial point close to a (detected) evolutionary
fixed point. In the theory of adaptive dynamics that focuses on evolutionary analysis
the pairwise invasibility plot or PIP plays an important role (Dieckmann, 1997; Metz
et al., 1996). The PIP is a two-dimensional plot, spanned by the parameter value
of a resident type on the x-axis and the parameter value of a mutant type on the
y-axis. The plot indicates for which parameter values the mutant type has a positive
(negative) growth rate and hence can (can not) invade in the equilibrium as set by
the resident type. In the computational mode 'PIP' the software computes the
boundary between the parameter regions, for which the mutant has a positive and
a negative growth rate.

8.2 Arguments of the PSPMequi script

Once the model has been implemented, you can proceed carrying out its analysis with
the Matlab-script PSPMequi.m. The syntax for calling PSPMequi is shown in the Matlab
command box below.

Command box 8.A: General syntax of a PSPMequi call

>> [curvepoints, curvedesc, bifpoints, biftypes] = ...
2 PSPMequi(modelname, biftype, startpoint, stepsize, parbnds, parameters, options,...

'clean', 'force', 'debug')

A call to PSPMequi requires 6 obligatory arguments and can in addition include 3 optional
arguments. A short explanation of all arguments is provided by calling the help page of
the Matlab-script PSPMequi.m with the command help PSPMequi (see the result in the
Matlab command box 8.I).

60 CHAPTER 8. MODEL ANALYSIS IN MATLAB

The 7 obligatory arguments to the PSPMequi function are the following:

1. The first argument to the Matlab-script PSPMequi is the name of the file specifying
the PSPM, passed as a string argument. It is unnecessary to include the extension
.h as part of the file name, the Matlab-script will strip the .h extension away if it
is included. The Matlab-command to analyse the PNAS model that will be used as
illustrations below will therefore all take 'PNAS2002' as their first argument.

2. The second argument to the PSPMequi function determines which type of computa-
tion should be carried out for the particular model. These types of computation are
discussed in section 8.1 above. This string argument should hence be either 'BP',
'BPE', 'EQ', 'LP', 'ESS' or 'PIP'.

3. The third argument is the initial point of the computation. This initial point should
be close to a solution point for the selected computation, that is, close to an equi-
librium point, a branching point, an environment branching or a limit point for an
'EQ', 'BP', 'BPE' and a 'LP' computation, respectively. For either a 'ESS' or a
'PIP' computation the initial point should be close to an evolutionary fixed point.

The initial point should be a Matlab (row) vector with the proper dimension. For
equilibrium computations (type 'EQ') this vector in general consists of the initial
value of the model parameter to vary, the estimated equilibrium values for all the en-
vironment variables and the estimated values of the birth rate for all the structured
populations in the model, in the following order:

[<parameter> <environment variables> <population birth rates>]

However, environment variables that have been explicitly specified with the program
option 'envZE' as having a zero equilibrium value and birth rates of populations
that have been explicitly specified with the program option 'popZE' to be in a zero
equilibrium state (see the description of these options under point 7 below), should
be omitted from this vector of initial values.

For all two-parameter types of bifurcation computations ('BP', 'BPE', 'LP', 'ESS'
and 'PIP') the value of the second model parameter should be appended as last
element to the vector of initial values, which therefore has the format:

[<parameter> <environment variables> <population birth rates> <parameter 2>]

For 'ESS' computations with multiple parameters having their ESS value this vector
has to be extended with the initial estimate of the ESS value for each of these model
parameters.

Also for these computations holds that environment variables that have been explic-
itly specified with the program option 'envZE' as having a zero equilibrium value
and birth rates of populations that have been explicitly specified with the program
option 'popZE' to be in a zero equilibrium state (see the description of these op-
tions under point 7 below), should be omitted from this vector of initial values.
In addition, in case of a continuation of a branching point, either for a structured
population model (type 'BP') or for an environment variable (type 'BPE'), the zero
value for the birth rate of the structured population or the environment variable
(specified with the program options 'popBP' and 'envBP', respectively; see below),

8.2. ARGUMENTS OF THE PSPMEQUI SCRIPT 61

for which the branching point occurs, should also be omitted from the vector of
initial values.

4. The fourth argument to the PSPMequi function determines the step size along the
computed curve. The absolute spacing between subsequent solution points com-
puted on the curve is difficult to predict, as it is determined by both the step size
and how quickly the different variables change along the curve. The step size can
be either positive or negative, while step sizes of smaller absolute value will lead to
the computation of solution points that are more closely spaced together.

5. The fifth argument to the PSPMequi function determines which of the model pa-
rameters should be varied during the computation and at which parameter values
the computations should stop. This information should be specified by a Matlab
(row) vector, which for every parameter to be varied specifies a triplet of values
including the index of the parameter, its minimum and its maximum value at which
the computation should stop. For equilibrium computations (type 'EQ') the vector
should hence have the following format:

[<index 1> <minimum 1> <maximum 1>]

The first element of the vector indicates the index of the parameter in the array
parameter (see code box 7.3) to vary, while the final two elements of the array
indicate the minimum and maximum value of the parameter. The computation of
the equilibrium curve as a function of the model parameter stops, whenever the
minimum or maximum parameter value is reached.

For all two-parameter type of computations ('BP', 'BPE', 'LP', 'ESS' and 'PIP')
the vector should be extended with the index of the second parameter to vary in the
computation as well as the minimum and the maximum value of this parameter, at
which to stop the curve computation. The vector with parameter information has
therefore in this case the format:

[<index 1> <minimum 1> <maximum 1> <index 2> <minimum 2> <maximum 2>]

For 'ESS' computations with multiple parameters having their ESS value this vector
has to be extended with a triplet of values for each of these model parameters
with the triplet specifying the index of the particular ESS parameter as well as its
minimum and the maximum value. The number of triplets should correspond with
the number of initial estimates for the ESS values of parameters as specified in the
third argument to the function.

6. The sixth obligatory argument of the PSPMequi function is a Matlab (row) vector
of model parameter values. When used, this array should have the same length as
the number of parameters in the model (PARAMETER_NR). When of this length the
values will replace the default values of the parameters that are listed in the model
specification file (see code box 7.2 for an example). If the array used for this sixth
argument is not of the correct length PARAMETER_NR, for example when an empty
vector is passed as the sixth argument, it will simply be ignored.

7. The seventh and last obligatory argument of the PSPMequi function is a Matlab cell
array containing possible options that modify the behaviour of the computational
module. Some of the options require a value and hence occur as a pair of option

62 CHAPTER 8. MODEL ANALYSIS IN MATLAB

name and option value, while others occur on their own. Options can be specified in
any order, but the option value should always immediately follow after the option
name. All option values refer to indices of either environment variables, structured
populations or individual state variables. Notice, that this index value follows the
C-convention of ordering arrays starting at 0 (as opposed to Matlab where array
indices start at 1).

• Option pair {’envBP’, ’i’}: This option pair is only relevant for contin-
uations of a branching points or transcritical bifurcation in an environment
variable (curve type 'BPE'). The option value 'i' determines the index of the
environment variables, of which to continue the transcritical bifurcation as a
function of 2 parameters. Notice that this computation can only be carried out
for environment variables that are of the type PERCAPITARATE (see section 7.3.2
above).

• Option pair {’popBP’, ’i’}: This option pair is only relevant for continu-
ations of branching points or transcritical bifurcations of a structured popu-
lation (curve type 'BP'). The option value 'i' determines the index of the
population, of which to continue the transcritical bifurcation as a function of
2 parameters.

• Option pair {’popEVO’, ’i’}: This option pair is relevant for the compu-
tation of the selection gradient during equilibrium continuations (curve type
'EQ'), continuations of evolutionary fixed points (curve type 'ESS') and the
construction of pairwise invasibility plots (curve type 'PIP'). The option value
'i' determines the index of the population, for which to compute the selec-
tion gradient or in which the evolutionary singularity occurs that should be
computed as a function of 2 parameters.

• Option pair {’parEVO’, ’i’}: This option pair is only relevant for the com-
putation of the selection gradient during equilibrium continuations (curve type
'EQ') and then only when the option pair {’popEVO’, ’i’} is also specified.
In this case the index 'i' determines the index of the parameter for which
to compute the selection gradient. The default is to compute the selection
gradient with respect to the bifurcation parameter. Specifying this index does
compute the selection gradient for a particular parameter, but detection of
evolutionary singular points is only possible if the bifurcation parameter is the
evolutionary parameter.

• Option pair {’envZE’, ’i’}: This option pair can be specified several times
as part of the option cell array. Including this option instructs the compu-
tational module to set the value of the environment variable with index 'i'
equal to 0 during the computations of the fixed point problem that determines
the curve. In addition, the equilibrium condition for this environment variable
(as, for example, specified in code box 7.12) is ignored and hence not included
as condition to hold in the particular equilibrium point. Notice that this can
only occur for environment variables that are of the type PERCAPITARATE or
POPULATIONINTEGRAL (see section 7.3.2 above). Forcing an environment vari-
able to have a zero equilibrium value as opposed to specifying a value of 0
for it as part of the initial point of the computation, allows for the proper
detection and handling of branching or transcritical bifurcation points in this

8.2. ARGUMENTS OF THE PSPMEQUI SCRIPT 63

environment variable. Omitting this option for an environment variable, but
providing instead a value of 0 as part of the initial point of the computation,
may lead to the proper computation of an equilibrium curve, in which the
environment variable has a 0 value, but may also lead to numerous, spurious
messages about branching points in this variable.

• Option pair {’popZE’, ’i’}: This option pair can be specified several times
as part of the option cell array. Including this option forces the computational
module to assume that the structured population with index 'i' in the model
is in a zero equilibrium state for the curve that has to be computed. This is
the only way to compute an equilibrium curve with a zero equilibrium state
for a particular parameter. Even if a value of 0 would be specified for the
birth rate of a population as part of the initial point of the computation, the
software would compute the equilibrium curve with a non-zero (non-trivial)
equilibrium state for this population. Notice that if a structured population is
forced to be in a zero equilibrium state by using the 'popZE' option, a zero
equilibrium state should also be enforced for all the environment variables that
represent integrals over this population distribution (that are hence of the type
POPULATIONINTEGRAL).

• Option pair {’isort’, ’i’}: This option modifies the output of the equi-
librium state of the populations, which are stored in an output file with a
name of the form <Modelname>-<Type>-<NNNN>.mat (see below). By default
the computational module reports the information about the stable popula-
tion state distributions by subdividing the axis of the first state variable (the
one with index '0') in 100 subintervals of equal length and reporting the
statistics for the cohort of individuals within each subinterval. By using the
option 'isort' the default choice to use the first individual state variable for
this subdivision can be changed to the second, third, and so on. Therefore,
passing {’isort’, ’0’} as option cell array to the PSPMequi function is the
same as the default behaviour: the first individual state variable is used for
the subdivision and ordering of the population state distribution, while pass-
ing {’isort’, ’1’} would use the second individual state variable for this
purpose. Also notice that the number of subdivisions of the individual state
variable can be redefined by assigning the dimension COHORT_NR a value differ-
ent from 100 (see code box 7.2 in section 7.1.1 as well as chapter 17).

• Option {’noBP’}: Specifying the option 'noBP' instructs the program not
to test for the occurrence of branching points ('BP'), when computing an
ecological equilibrium as a function of a single model parameter. The advantage
of specifying this option is that execution speed increases, as testing for a
branching point is computationally demanding. The disadvantage is that the
exact location of branching points will not be reported.

• Option {’noLP’}: Specifying the option 'noLP' instructs the program not to
test for the occurrence of limit points ('LP'), when computing an ecological
equilibrium as a function of a single model parameter. The advantage of spec-
ifying this option is that execution speed increases, as testing for a limit point
is computationally demanding. The disadvantage is that the exact location of
limit points will not be reported.

64 CHAPTER 8. MODEL ANALYSIS IN MATLAB

• Option {’single’}: When the option 'single' is specified as part of the op-
tion cell array, the program will only compute a single point of the equilibrium
curve, for the initial value of the bifurcation parameter. The program will not
continue the equilibrium curve originating from this first point. This option is
hence useful for when only a single equilibrium is of interest.

• Option {’test’}: The last possible option that can be passed to the PSPMequi
function as part of the option cell array is the 'test' option. This invokes
the computational module in testing mode, which implies that only a single
integration of the individual life history is carried out and no iteration to locate
a fixed point of a set of equations is performed. In testing mode the compu-
tational module reports on the dynamics of the individual state variables, the
survival, the cumulative impact on the environment and the expected number
of offspring produced by an individual during its different life stage as well as
over its entire life. Testing mode is very useful to discover whether or not the
model implementation gives sensible results or not.

Three other, optional arguments can be passed to the PSPMequi function: 'clean',
'force' and 'debug'. Unlike the previous arguments, which all modify the compu-
tations to be performed, these options modify the behaviour of the PSPMequi function
itself, in particular the compilation of the model specific file into a mex module that can
be executed from Matlab. Also unlike all the previous arguments that can be passed,
these arguments can be passed in any order and at any position, the PSPMequi function
will filter these 3 optional arguments from the argument list before passing the filtered
argument list to the computational routine.

• Option 'clean': This optional argument instructs the PSPMequi function to
delete all result files that have been generated during previous calculations with the
model, i.e. as a result of previous calls to PSPMequi. These result files have names of
the form <Modelname>-<Type>-<NNNN>.bif, <Modelname>-<Type>-<NNNN>.err,
<Modelname>-<Type>-<NNNN>.mat and <Modelname>-<Type>-<NNNN>.out, in
which <Modelname> refers to the name of the model (i.e. PNAS2002 in the example
model presented in previous sections), <Type> refers to the type of continuation that
has been performed, i.e. either BP, BPE, EQ, ESS, LP or PIP, and <NNNN> is a unique
number that distinguishes consecutive computations of the same type of curve with
the same model. Deleting all the output files from previous computations and/or
the compiled program executables that the package has generated can also be done
separately. The package contains a function PSPMclean, taking no arguments, to
delete all .bif, .err, .mat and .out files and/or all executable files that are present
in the current working directory.

• Option 'force': Using the option 'force' instructs the PSPMequi file to force
re-compilation of the model specific file into a mex module that can be executed by
Matlab. This option will usually not be needed by normal users, as the PSPMequi

function automatically recompiles the computational module when the model spe-
cific file with an .h extension is more recently changed than the compiled mex file.
However, if for some unclear reason this automatic recompilation fails, the 'force'
option can be used to initiate re-compilation.

• Option 'debug': This option instructs the PSPMequi function to turn on debugging
flags while compiling the model specific file into a mex module. This option can be
useful to detect programming mistakes in the model-specific file that are otherwise

8.3. OUTPUT VARIABLES OF THE PSPMEQUI SCRIPT 65

hard to track down. The downside is that depending on the version of Matlab that
is used, turning on debugging flags during compilation may generate a lot of output,
including warnings about standard files of the operating system that are perfectly
correct. It is hence not so easy to spot among all these messages the warnings that
relate to the model-specific code that has been implemented.

8.3 Output variables of the PSPMequi script

When calling the PSPMequi function it first compiles the model-specific file called
<Model>.h using the Matlab’s mex compiler into a compiled, computational module. This
compilation step is only carried out when the executable (called <Model>equi.mexmaci64

on my system) does not exist, or when the model-specific file has been changed since the
last compilation of the executable. Furthermore, the compilation step is forced by the in-
vocation of PSPMequi with the additional argument 'force' as discussed in the previous
section. For example, for the PNAS model, the implementation of which is specified in the
file PNAS2002.h, the executable is called PNAS2002equi.mexmaci64 (on other operating
systems this file may be called PNAS2002equi.mex). Following successful compilation the
PSPMequi function executes the compiled, computational module with the 7 arguments
that are passed to the PSPMequi function as obligatory input (see the previous section).

The computational module generates up to 4 output variables on execution (see the help
page on PSPMequi in Matlab command box 8.I). The first output variable curvepoints

contains the numerical information of the points along the computed curve. This variable
curvepoints is a matrix, in which each row represents one solution point along the curve.
The columns contain the value of the parameter(s) that have been varied, the equilibrium
value of all environment variables, the equilibrium value for the birth rate of all structured
populations in the problem, the equilibrium value of all interaction variables defined in
the routine Impact() (see code box 7.11), the per capita growth rate of all environment
variables for which this is relevant (those of the type PERCAPITARATE, see section 7.3.2),
for each of the structured populations the expected number of offspring produced by an
individual during its lifetime (R0), for the structured population with index popEVO (if
this index is defined via de option cell array) the derivative of its R0 value with respect to
the evolutionary parameter (determined by the option parEVO, by default the bifurcation
parameter) and finally the norm of the right-hand side of the system of equations that is
solved. The latter quantity (referred to as RHS norm) measures how close the computed
solution point is to the true solution. The derivative of the R0 value for a structured
population with respect to the bifurcation parameter can be used as an indicator for
evolutionary change: positive and negative values of this derivative indicate that there is
selection for larger and smaller values of the bifurcation parameter, respectively.

The column layout just described pertains to computations of equilibrium curves. For
other types of computed curves the number of columns in the output variable curvepoints
is different. For all curves that depend on two parameters (curve types 'BP', 'BPE', 'LP'
and 'PIP') the value of the second parameter is inserted as an additional column after
all equilibrium values for the birth rates of the structured populations. For 'ESS' curves
additional columns are inserted after all these equilibrium birth rate values for each of
the parameters that is forced to its evolutionary stationary value along the curve. In
addition, preceding the final column with the RHS norm additional columns are added for
the second-order partial derivatives of R0 of the structured population with index popEVO

with respect to the resident and mutant value of each of the evolutionary parameters,

66 CHAPTER 8. MODEL ANALYSIS IN MATLAB

respectively (see chapters 9 to 11 for more details). These partial derivatives characterise
the evolutionary fixed point as a convergent stable strategy (CSS), an evolutionary repellor
(ERP) or an evolutionary branching point (EBP).

When the PSPMequi function finishes, it prints textual information about the computation
that has been carried out. This text also contains a header line indicating which column
of the output contains which particular value (see the section 8.4 below).

The second output variable curvedesc (see Matlab command box 8.I), which is always
produced by the computational module irrespective of the type of curve computation
that is carried out, contains the description of the executed calculation, which includes
the command-line that is used for the invocation of the computational routine, the val-
ues of all parameters used for the current computation and a header line indicating the
meaning of all the output variables produced by the computational module. This tex-
tual information is also printed to the Matlab console at the end of calculations. In fact,
the PSPMequi function prints its report on the calculations by execution of the state-
ment sprintf(curvedesc). More details about the content of the description variable
curvedesc is provided in the section below discussing the example of a model analysis
using the PSPMequi function.

The third and fourth output variables are only non-empty for computations of equilibrium
curves (type 'EQ'). The third output variable bifpoints (see Matlab command box 8.I)
contains the same type of information as the first output variable curvepoints, but now
only for the detected bifurcation points along the computed curve. Finally, the fourth and
last output variable biftypes (see Matlab command box 8.I) is a cell array with strings
that indicate the type of bifurcation point detected. These strings can be, for example, 'BP
#0', 'BPE #0', 'LP' or 'CSS #0'. Each element in the cell array biftypes characterises
the corresponding row in the output variable bifpoints.

8.4 An example session using the PSPMequi script

To illustrate the use of the PSPMequi function I will discuss the analysis of the PNAS
model, presented in chapter 7. The statements below are taken from the Matlab-script
PNAS2002equi_demo.m, which executes in addition to the statements represented here,
Matlab commands to visualize the computed results in graphs. It is therefore recom-
mended to run the PNAS2002equi_demo.m script at the same time as reading the expla-
nation in this section.

Starting the analysis of a PSPM from some random initial values to search for the equi-
librium values of environment variables and population birth rates is often not a very
successful strategy. Most likely, the initial point will be too far off a solution point, which
might cause the software not to converge to the solution. A better alternative is to start
with a trivial equilibrium of the model, the value of which is known on beforehand. For
example, it is biologically realistic to assume that at very high mortality or at very low
food conditions a population is extinct. Such an extinct state is often easily characterised
and hence provides a useful starting point.

The analysis of the PNAS model is therefore started from the trivial equilibrium,
which is stable for very low values of the resource productivity Rmax. In this equi-
librium only the resource density has a non-zero value equal to its maximum R̃ =
Rmax, while both the consumer and the predator equilibrium are in a zero equi-
librium state. For this reason, the PSPMequi function is invoked with the options

8.4. AN EXAMPLE SESSION USING THE PSPMEQUI SCRIPT 67

{’popZE’, ’0’, ’envZE’, ’1’, ’envZE’, ’2’}, which enforces this zero equilibrium
state for the structured population with index 0 (the consumer), the environment variable
with index 1 (the predator) and the environment variable with index 2 (the biomass of
small consumers that are vulnerable to predation). The latter is obviously in a zero equi-
librium state, because the variable represents an integral over the population distribution
of the consumer. More generally, if a structured population is assumed to be in a zero
equilibrium state by using the 'popZE' option, a zero equilibrium state should also be
enforced for all the environment variables that represent integrals over this population
distribution (that are hence of the type POPULATIONINTEGRAL). Because consumer and
predator are assumed to be in a zero equilibrium state the initial point for the call to the
PSPMequi function shown in the box 8.B below consists of only 2 elements, Rmax and the
initial guess for R̃, which are both taken equal to 1.0 · 10−6. The parameter with index
1, which corresponds to Rmax, is the one to be varied in positive direction with step size
0.5 over the range 0 to 4.0 · 10−4.

The sixth argument in the call to the PSPMequi function shown below is an empty Matlab
row vector []. This argument represents the parameter values to be used for the com-
putation. Because it is an empty vector, it is ignored and the default parameter values,
as specified in code box 7.2, are used. This sixth argument will also be an empty row
vector in all further calls to the PSPMequi function discussed below and will therefore
from hereon be ignored.

Command box 8.B: Starting PSPM analysis from a trivial equilibrium

>> [data1, desc1, bdata1, btype1] = PSPMequi('PNAS2002', 'EQ', [1.0E-06 1.0E-06], 0.5, [1 0 4E-4], [],...
2 {'popZE', '0', 'envZE', '1', 'envZE', '2'}, 'clean', 'force');

4 Building executable PNAS2002equi.mexmaci64 ...

6 1.00000000E-06 1.00000000E-06
1.35355339E-06 1.35355339E-06

8 1.70710678E-06 1.70710678E-06
<...output lines suppressed in this box...>

10 8.77817459E-06 8.77817459E-06
8.85690312E-06 8.85690312E-06 **** BP #0 ****

12 9.13172798E-06 9.13172798E-06
<...output lines suppressed in this box...>

14 3.34047294E-04 3.34047294E-04
3.69402633E-04 3.69402633E-04

16 4.04757972E-04 4.04757972E-04

18
#

20 # Executing : PSPMequi('PNAS2002', 'EQ', [1E-06 1E-06], 0.5, [1 0 0.0004], [], {'popZE', '0', 'envZE', '1', 'envZE', '2'})
#

22 # Parameter values :
#

24 # Rho : 0.1 Rmax : 1E-06 Lb : 7
Lv : 27 Lj : 110 Lm : 300

26 # Beta : 9E-06 Imax : 0.0001 Rh : 1.5E-05
Gamma : 0.006 Rm : 0.003 Mub : 0.01

28 # A : 5000 Th : 0.1 Epsilon : 0.5
Delta : 0.01

30 #
Index of bifurcation parameter #1 : 1

32 #
1:Rmax 2:E[0] 3:E[1] 4:E[2] 5:b[0] 6:I[0][0] 7:I[0][1] .. 10:pcgE[1] 11:R0[0] 12:RHS norm

34 #
>> data1

36
data1 =

38
1e-06 1e-06 0 0 0 0 0 .. -0.01 0 0

40 1.3536e-06 1.3536e-06 0 0 0 0 0 .. -0.01 0 4.2352e-17
1.7071e-06 1.7071e-06 0 0 0 0 0 .. -0.01 0 4.2352e-17

42 <...output lines suppressed in this box...>
0.00033405 0.00033405 0 0 0 0 0 .. -0.01 4430.2 9.7578e-16

44 0.0003694 0.0003694 0 0 0 0 0 .. -0.01 4491.5 1.0842e-15
0.00040476 0.00040476 0 0 0 0 0 .. -0.01 4542.8 1.03e-15

46
>> bdata1

48
bdata1 =

50
8.8569e-06 8.8569e-06 0 0 0 0 0 .. -0.01 1 0

68 CHAPTER 8. MODEL ANALYSIS IN MATLAB

52
>> btype1

54
btype1 =

56
'BP #0'

58

In the output shown in the box above a large number of output lines have been suppressed
and several intermediate columns have been deleted from the output, because the page
width does not allow them to be shown completely. Consult the listing in your Matlab
console for the complete output of the commands executed.

After the specific call shown, the PSPMequi function first cleans all previous output file
(notice the option 'clean') and subsequently compiles the computational module using
the mex compiler (notice the somewhat superfluous option 'force'). Subsequently, the
compiled module is executed with the obligatory arguments that the PSPMequi function
passes on. The computational module computes the particular equilibrium curve over
the required range of the parameter with index 1 (representing Rmax; see code box 7.2).
At the end of the computation the PSPMequi function prints a textual summary of the
computation that has been executed. This is summary is in fact the content of the second
output variable of the script, here assigned to desc1, which is printed to the Matlab console
using the statement sprintf(desc1). Apart from printing the exact command-line that
has been used to start the computation, the values of the parameters are printed using the
meaningful, model-specific names, as set in the code box 7.2 on page 42. Furthermore,
a header line is printed with a short description of each of the columns in the output
matrix, which in the call to PSPMequi shown in the box above is assigned to the variable
data1. As shown in the box above, executing the command data1 shows the value of the
various columns in this output matrix.

Most importantly, halfway during the computation of the trivial equilibrium the software
reports that a branching point has been located, indicated with 'BP #0'. This branching
or transcritical bifurcation point corresponds to the invasion threshold of the consumer.
The exact data about the branching point are returned as the third output variable,
which is assigned to bdata1. Displaying bdata1 reveals that it has the same layout as
the output matrix data1, but only contains a single row with data for the branching
point. Notice that the value of R0, the expected number of offspring produced by an
individual consumer during its lifetime, is exactly equal to 1 in this branching point (as
it should be), whereas it is smaller and larger than 1 for lower and higher values of Rmax,
respectively. The corresponding element of the fourth output variable, assigned to the cell
array btype1, contains the descriptive string 'BP #0' that is also printed to the console
on detection of the branching point.

In addition to executing the call to the PSPMequi function shown in box 8.B, the
PNAS2002equi_demo.m script also uses the output variables data1, bdata1 and btype1

to generate a plot of the computed results.

The next step in the analysis of the PNAS model starts from the detected transcritical
bifurcation point that is stored in the output variable bdata1. Starting from that point the
call to PSPMequi shown in the next Matlab command box computes the equilibrium curve
with a non-zero equilibrium state of the consumer, while the predator is still assumed
to have a zero equilibrium value. Because the absence of the predator ensures that the
third environment variable, representing the total biomass of small consumers that the
predator forages on, does not influence the equilibrium state, this third environment

8.4. AN EXAMPLE SESSION USING THE PSPMEQUI SCRIPT 69

variable is also ignored. The PSPMequi function is therefore called with the option array
{’envZE’,’1’,’envZE’,’2’}. As before, the curve is computed as a function of the
parameter with index 1, which corresponds to Rmax, with step size 0.2 over the range of
Rmax values between 0 and to 4.0 · 10−4. As initial point of the computation the Rmax-
value and the equilibrium values of the resource density and the population birth rate in
the bifurcation point are used, which correspond to the first, second and fifth element in
bdata1 (although bdata1(5) is of course equal to 0).

Command box 8.C: Computation of the consumer-resource equilibrium

>> [data2, desc2, bdata2, btype2] = PSPMequi('PNAS2002','EQ',bdata1([1 2 5]),0.2,[1 0 4E-4],[],{'envZE','1','envZE','2'});
2

Executable PNAS2002equi.mexmaci64 is up-to-date
4

8.85690312E-06 8.85690312E-06 0.00000000E+00
6 9.05689403E-06 8.85690312E-06 1.90665832E-09

9.25688494E-06 8.85690312E-06 3.81331663E-09
8 <...output lines suppressed in this box...>

2.51840533E-04 8.85690312E-06 2.31653906E-06
10 2.53602314E-04 8.85690312E-06 2.33333540E-06 **** BPE #1 ****

2.66316121E-04 8.85690312E-06 2.45454534E-06
12 <...output lines suppressed in this box...>

3.82120831E-04 8.85690312E-06 3.55859558E-06
14 3.96596420E-04 8.85690312E-06 3.69660186E-06

4.11072009E-04 8.85690312E-06 3.83460814E-06
16

18 #
Executing : PSPMequi('PNAS2002', 'EQ', [8.8569E-06 8.8569E-06 0], 0.2, [1 0 0.0004], [], {'envZE', '1', 'envZE', '2'})

20 #
Parameter values :

22 #
Rho : 0.1 Rmax : 8.8569E-06 Lb : 7

24 # Lv : 27 Lj : 110 Lm : 300
Beta : 9E-06 Imax : 0.0001 Rh : 1.5E-05

26 # Gamma : 0.006 Rm : 0.003 Mub : 0.01
A : 5000 Th : 0.1 Epsilon : 0.5

28 # Delta : 0.01
#

30 # Index of bifurcation parameter #1 : 1
#

32 # 1:Rmax 2:E[0] 3:E[1] 4:E[2] 5:b[0] 6:I[0][0] 7:I[0][1] .. 10:pcgE[1] 11:R0[0] 12:RHS norm
#

34 >> data2

36 data2 =

38 8.8569e-06 8.8569e-06 0 0 0 0 0 .. -0.01 1 4.9364e-08
9.0569e-06 8.8569e-06 0 0 1.9067e-09 1.9999e-08 3.2751e-09 .. -0.0099918 1 4.9364e-08

40 9.2569e-06 8.8569e-06 0 0 3.8133e-09 3.9998e-08 6.5502e-09 .. -0.0099836 1 4.9364e-08
<...output lines suppressed in this box...>

42 0.00038212 8.8569e-06 0 0 3.5586e-06 3.7326e-05 6.1127e-06 .. 0.0052351 1 5.0051e-08
0.0003966 8.8569e-06 0 0 3.6966e-06 3.8774e-05 6.3497e-06 .. 0.0058241 1 5.0105e-08

44 0.00041107 8.8569e-06 0 0 3.8346e-06 4.0222e-05 6.5868e-06 .. 0.0064129 1 5.0161e-08

46 >> bdata2

48 bdata2 =

50 0.0002536 8.8569e-06 0 0 2.3333e-06 2.4475e-05 4.008e-06 .. -9.5387e-11 1 5.6287e-09

52 >> btype2

54 btype2 =

56 'BPE #1'

As in the previous Matlab command box a large number of output lines and columns have
been suppressed to fit the page width of this manual. Please consult the listing in your
Matlab console for the complete output of the commands executed.

The layout of the output and the output variables of the call to PSPMequi shown in
box 8.C is similar to the output as discussed following Matlab command box 8.B. The
data of the computed equilibrium points are assigned to the variable data2. Halfway
during the computation of the equilibrium the software reports that a branching point
has been located for the environment variable with index 1, indicated with 'BPE #1'. This
branching or transcritical bifurcation point corresponds to the invasion threshold of the
predator. For Rmax-values above this threshold the predator can invade the equilibrium

70 CHAPTER 8. MODEL ANALYSIS IN MATLAB

of the consumer population, but it fails to invade for lower Rmax-values. The exact data
about this branching point are returned as the third output variable, which is assigned
to bdata2. Displaying bdata2 reveals that it has the same layout as the output matrix
data2, but only contains a single row with data for the branching point. Notice that
the population growth rate of the predator, shown in column 10 labeled pcgE[1] of
the output, is equal to 0 at the detected branching point (as it should be), whereas
it is smaller and larger than 0 for lower and higher values of Rmax, respectively. The
corresponding element of the fourth output variable, assigned to the cell array btype2,
contains the descriptive string 'BPE #1' that is also printed to the console on detection
of the branching point.

As before, the PNAS2002equi_demo.m script also plots the output variables data2, bdata2
and btype2 that result from the call to the PSPMequi function shown in box 8.C as
additional curves in the graphs that it had generated previously.

The final step in this part of the analysis of the PNAS model starts from the detected
transcritical bifurcation point of environment variable 1, representing the predator popu-
lation, which is stored in the output variable bdata2. Starting from that point the call to
PSPMequi shown in the next Matlab command box computes the equilibrium curve with
a non-zero equilibrium state of the consumer and predator. All environment variables
influence this equilibrium state, hence the PSPMequi function is called with an empty cell
array for the options {}. As before, the curve is computed as a function of the parameter
with index 1, which corresponds to Rmax, with step size -0.1 over the range of Rmax
values between 0 and to 4.0 · 10−4. The choice of a negative step size is arrived at by trial
and error. Choosing a positive step size to start the continuation from this point would
have quickly shown that the equilibrium predator density would turn negative, whereas
this equilibrium density increases from 0 to positive values with a negative step size. The
transcritical bifurcation in this invasion point of the predator is hence subcritical.

As initial point of the computation the data of the branching point contained in bdata2

are used. This initial point should contain appropriate values for the bifurcation param-
eter Rmax, the equilibrium values of the resource density, the predator density and the
biomass density of small, vulnerable consumers as well as the population birth rate in
the bifurcation point. Normally, appropriate starting values for these variables are to be
found in the first 5 elements of the vector bdata2. Inspection of bdata2(1:5), however,
shows that both bdata2(3) and bdata2(4) are equal to 0:

>> bdata2(1:5)
2

ans =
4

0.0002536 8.8569e-06 0 0 2.3333e-06

Obviously, bdata2(3) is equal to 0 as it represents the zero equilibrium value of the
predator in the consumer-resource equilibrium curve that is computed with the call to
PSPMequi shown in Matlab command box 8.C. Given that the next computation starts
from the invasion threshold of the predator the value of 0 for the initial predator density
is correct. The value of bdata2(4), however, representing the total biomass density of
consumers vulnerable to predation is also 0, because it was produced by a call to PSPMequi

with the option {’envZE’, ’2’}, which forces this environment variable to equal 0. Since
this is not appropriate as estimate for the environment variable in an equilibrium with
predator, consumer and resource present, the value of the interaction variable I[0][1]

8.4. AN EXAMPLE SESSION USING THE PSPMEQUI SCRIPT 71

(column 7 in bdata2) is used instead as initial estimate, which corresponds to the pop-
ulation integral representing the total biomass of small consumers that are vulnerable to
predation (see code box 7.11 and 7.12). Hence, the vector bdata2([1 2 3 7 5]) is used
as initial point for the computation shown in the next box:

Command box 8.D: Computing the predator-consumer-resource equilibrium

>> [data3, desc3, bdata3, btype3] = PSPMequi('PNAS2002', 'EQ', bdata2([1 2 3 7 5]), -0.1 , [1 0 4E-4], [], {});
2

Executable PNAS2002equi.mexmaci64 is up-to-date
4

2.53602314E-04 8.85690312E-06 0.00000000E+00 4.00801599E-06 2.33333540E-06
6 2.52575824E-04 8.85867223E-06 9.53209678E-08 4.00801603E-06 2.36171847E-06

2.51552996E-04 8.86045755E-06 1.90561304E-07 4.00801603E-06 2.39038298E-06
8 <...output lines suppressed in this box...>

8.84797878E-05 1.31293570E-05 3.80288012E-05 4.00801603E-06 5.16666426E-05
10 8.84988526E-05 1.32327343E-05 3.84539884E-05 4.00801603E-06 5.25658260E-05 **** LP ****

8.84988526E-05 1.32327343E-05 3.84539884E-05 4.00801603E-06 5.25658260E-05
12 <...output lines suppressed in this box...>

3.89812802E-04 2.39609635E-04 1.32971757E-04 4.00801603E-06 2.92629903E-04
14 3.97021837E-04 2.46474525E-04 1.33292505E-04 4.00801603E-06 2.93524789E-04

4.04225759E-04 2.53351050E-04 1.33597449E-04 4.00801603E-06 2.94375934E-04
16

18 #
Executing : PSPMequi('PNAS2002', 'EQ', [0.000253602 8.8569E-06 0 4.00802E-06 2.33334E-06], -0.1, [1 0 0.0004], [], {})

20 #
Parameter values :

22 #
Rho : 0.1 Rmax : 0.000253602 Lb : 7

24 # Lv : 27 Lj : 110 Lm : 300
Beta : 9E-06 Imax : 0.0001 Rh : 1.5E-05

26 # Gamma : 0.006 Rm : 0.003 Mub : 0.01
A : 5000 Th : 0.1 Epsilon : 0.5

28 # Delta : 0.01
#

30 # Index of bifurcation parameter #1 : 1
#

32 # 1:Rmax 2:E[0] 3:E[1] 4:E[2] 5:b[0] 6:I[0][0] 7:I[0][1] .. 10:pcgE[1] 11:R0[0] 12:RHS norm
#

34 >> data3

36 data3 =

38 0.0002536 8.8569e-06 0 4.008e-06 2.3333e-06 2.4475e-05 4.008e-06 .. -8.5897e-11 1 5.1658e-08
0.00025258 8.8587e-06 9.5321e-08 4.008e-06 2.3617e-06 2.4372e-05 4.008e-06 .. -6.9538e-11 1 3.1014e-08

40 0.00025155 8.8605e-06 1.9056e-07 4.008e-06 2.3904e-06 2.4269e-05 4.008e-06 .. -4.2689e-11 1 2.1533e-08
<...output lines suppressed in this box...>

42 0.00038981 0.00023961 0.00013297 4.008e-06 0.00029263 1.502e-05 4.008e-06 .. -5.8209e-10 1 2.3378e-07
0.00039702 0.00024647 0.00013329 4.008e-06 0.00029352 1.5055e-05 4.008e-06 .. -5.803e-10 1 2.3306e-07

44 0.00040423 0.00025335 0.0001336 4.008e-06 0.00029438 1.5087e-05 4.008e-06 .. -5.7618e-10 1 2.3141e-07

46 >> bdata3

48 bdata3 =

50 8.8499e-05 1.3233e-05 3.8454e-05 4.008e-06 5.2566e-05 7.5266e-06 4.008e-06 .. -1.6414e-10 1 6.6251e-08

52 >> btype3

54 btype3 =

56 'LP'

In the output shown in the box above a large number of output lines have been suppressed
and even more intermediate columns then in the previous Matlab output box have been
deleted, because the page width does not allow them to be shown completely. Consult the
listing in your Matlab console for the complete output of the commands executed. Other-
wise the layout of the output and the output variables of the call to PSPMequi shown in
box 8.D is the same as in Matlab command box 8.C. The data of all computed equilibrium
points making up the curve are assigned to the variable data3 and the description of the
computed curve is assigned to the variable desc3. Issuing the command sprintf(desc3)

would lead to the textual output with information about the computation that is also
produced by the PSPMequi function when finishing.

This last call to the PSPMequi function illustrates the detection of the last type of bifur-
cation that can occur in the dynamics of the PSPM, the saddle-node bifurcation. Start-
ing from the predator invasion threshold the curve representing the predator-consumer-

72 CHAPTER 8. MODEL ANALYSIS IN MATLAB

resource equilibrium first bends toward lower values of Rmax reaching a minimum at
Rmax = 8.8476 · 10−5. The curve subsequently turns toward higher values of Rmax
again. The saddle-node bifurcation or limit point occurs at this minimum value of
Rmax = 8.8476 · 10−5. The data pertaining to this limit point is stored in the output
variable bdata3, whereas its description 'LP' is stored in the first element of the cell
array btype3. The limit point is the minimum value of Rmax for which a predator-
consumer-resource equilibrium occurs. It is hence also referred to as the predator persis-
tence boundary.

The PNAS2002equi_demo.m script uses data3, bdata3, and btype3 to draw the additional
curves representing the predator-consumer-resource equilibrium in the bifurcation graphs
that already showed the curves resulting from the previous 2 call to PSPMequi (see Matlab
command box 8.B and 8.C).

The following 3 calls to PSPMequi that are executed by the PNAS2002equi_demo.m script,
illustrated in Matlab command box 8.E, 8.F and 8.G, compute the location of the 3
detected bifurcation points, the branching point representing the invasion threshold of
the consumer, the branching point of environment variable 2 representing the invasion
threshold of the predator and the limit point representing the persistence threshold of
the predator, as a function of two parameters: the value of Rmax and the value of the
consumer background mortality µb. These calls hence all use as 4th argument to the
script the vector [1 0 4.0E-4 11 0 0.1] indicating that the parameters with index 1
and 11 are to be varied (see code box 7.3) within the ranges 0 to 4.0 · 10−4 and 0 to 0.1,
respectively.

Computing the consumer invasion boundary as a function of Rmax and µb starts from the
data on the branching point stored in the output variable bdata1, which was detected
during the computation of the trivial equilibrium without any consumers and predators
(see Matlab command box 8.B). The first two elements of this vector represent the value
of Rmax and the equilibrium resource density at the consumer invasion boundary. To
complete the specification of the initial point of the computation the default value of con-
sumer background mortality (0.01) is added. Hence, the initial point of the computation
is [bdata1([1 2]) 0.01]. The type of the computation, which is the second argument
to the PSPMequi function, is now specified as 'BP' as opposed to the value 'EQ' that was
used in all previous calls to PSPMequi.

At the consumer invasion boundary, the environment variables with index 1 and
2, representing the predator density and the total biomass density of small con-
sumers vulnerable to predation, respectively, are both 0. The last argument of the
call to PSPMequi shown in Matlab command box 8.E hence equals the cell array
{’envZE’, ’1’, ’envZE’, ’2’, ’popBP’, ’0’}, which in addition to the zero equi-
librium value for the environment variables also instructs the computational module that
the transcritical bifurcation point that is computed occurs in the population with index
0.

Command box 8.E: Computing the consumer invasion boundary

>> [data4, desc4] = PSPMequi('PNAS2002', 'BP', [bdata1([1 2]) 0.01], 0.05 , [1 0 4.0E-4 11 0 0.1], [],...
2 {'envZE', '1', 'envZE', '2', 'popBP', '0'});

4 Executable PNAS2002equi.mexmaci64 is up-to-date

6 8.85690312E-06 8.85690312E-06 1.00000000E-02
8.88483087E-06 8.88483087E-06 1.03112655E-02

8 8.91358293E-06 8.91358293E-06 1.06066164E-02

8.4. AN EXAMPLE SESSION USING THE PSPMEQUI SCRIPT 73

<...output lines suppressed in this box...>
10 3.94598924E-04 3.94598924E-04 8.27003296E-02

3.98126241E-04 3.98126241E-04 8.27343996E-02
12 4.01653833E-04 4.01653833E-04 8.27678949E-02

14
#

16 # Executing : PSPMequi('PNAS2002', 'BP', [8.8569E-06 8.8569E-06 0.01], 0.05, [1 0 0.0004 11 0 0.1], [],
{'envZE', '1', 'envZE', '2', 'popBP', '0'})

18 #
Parameter values :

20 #
Rho : 0.1 Rmax : 8.8569E-06 Lb : 7

22 # Lv : 27 Lj : 110 Lm : 300
Beta : 9E-06 Imax : 0.0001 Rh : 1.5E-05

24 # Gamma : 0.006 Rm : 0.003 Mub : 0.01
A : 5000 Th : 0.1 Epsilon : 0.5

26 # Delta : 0.01
#

28 # Index of bifurcation parameter #1 : 1
Index of bifurcation parameter #2 : 11

30 # Index of structured population with transcritical bifurcation: 0
#

32 # 1:Rmax 2:E[0] 3:E[1] 4:E[2] 5:b[0] 6:Mub 7:I[0][0] 8:I[0][1] 9:I[0][2] .. 13:RHS norm
#

34 >> data4

36 data4 =

38 8.8569e-06 8.8569e-06 0 0 0 0.01 0 0 0 .. 4.9204e-08
8.8848e-06 8.8848e-06 0 0 0 0.010311 0 0 0 .. 1.3274e-08

40 8.9136e-06 8.9136e-06 0 0 0 0.010607 0 0 0 .. 1.5157e-08
<...output lines suppressed in this box...>

42 0.0003946 0.0003946 0 0 0 0.0827 0 0 0 .. 9.5602e-10
0.00039813 0.00039813 0 0 0 0.082734 0 0 0 .. 9.6191e-10

44 0.00040165 0.00040165 0 0 0 0.082768 0 0 0 .. 9.6506e-10

(Once again, consult your Matlab console for a complete listing of the output of the
commands shown above as parts of this output is deleted for the sake of brevity and
layout).

As shown in the Matlab command box above the output of the PSPMequi function is stored
in only 2 output variables, the data matrix data4 containing all information about the
points making up the computed curve and the description variable desc4, whose contents
can be shown by executing sprintf(desc4) and is also printed by the PSPMequi func-
tion to the Matlab console on exit. The PSPMequi function does produce two additional
output variables containing information about bifurcations, but since no detection of
such special points is carried out during computations of transcritical bifurcation bound-
aries, these last two output variables are empty. As shown in the Matlab command box
above the output now contains an additional column, which follows the values of the
birth rate of the structured population in equilibrium. This column contains the value
of the second bifurcation parameter, which corresponds to µb in the PNAS model. The
PNAS2002equi_demo.m script subsequently uses the first and and the sixth column of
data4 to create a graph with Rmax (first column) on the x-axis and µb (sixth column) on
the y-axis, showing the regions of parameter space for which persistence of the consumer
population is and is not possible.

Computing the predator invasion boundary as a function of Rmax and µb starts from the
data on the branching point stored in the output variable bdata2, which was detected
during the computation of the consumer-resource equilibrium without any predators (see
Matlab command box 8.C). The first two elements of this vector represent the value of
Rmax and the equilibrium resource density at the predator invasion boundary, while the
fifth element of bdata2 represents the birth rate of the structured consumer population
in this equilibrium (see the listing of bdata2 in Matlab command box 8.C). To complete
the specification of the initial point of the computation the default value of consumer
background mortality (0.01) is added. Hence, the initial point of the computation is
[bdata2([1 2 5]) 0.01]. The type of the computation, which is the second argument to

74 CHAPTER 8. MODEL ANALYSIS IN MATLAB

the PSPMequi function, is now specified as 'BPE', indicating that a transcritical bifurcation
curve in an environment variable is to be computed as a function of 2 model parameters.

The environment variables with index 2, representing the total biomass density of small
consumers vulnerable to predation does not affect the predator invasion boundary, as
it only influences the predation mortality of small consumers (see code box 7.10). This
environment variable can hence be assumed to equal 0 and its equilibrium condition can
be ignored by passing the appropriate option pair to the PSPMequi function. Further-
more, the option cell array should instruct the computational module to compute the
transcritical bifurcation curve for the environment variable with index 1. The last ar-
gument of the call to PSPMequi shown in Matlab command box 8.F therefore equals the
cell array {’envBP’, ’1’, ’envZE’, ’2’}. Notice that compared to the previous call
to PSPMequi, this option array does not contain any specific instructions concerning the
structured consumer population.

Command box 8.F: Computing the predator invasion boundary

>> [data5, desc5] = PSPMequi('PNAS2002', 'BPE', [bdata2([1 2 5]) 0.01], -0.1, [1 0 4.0E-4 11 0 0.1], [],...
2 {'envBP', '1', 'envZE', '2'});

4 Executable PNAS2002equi.mexmaci64 is up-to-date

6 2.53602314E-04 8.85690312E-06 2.33333540E-06 1.00000000E-02
2.44422274E-04 8.88032498E-06 2.35250524E-06 1.02628274E-02

8 2.35413020E-04 8.90710825E-06 2.37324896E-06 1.05420330E-02
<...output lines suppressed in this box...>

10 3.88476406E-04 2.61758185E-04 1.08055050E-05 8.07841851E-02
3.95419276E-04 2.68571865E-04 1.08238254E-05 8.09262046E-02

12 4.02376220E-04 2.75405272E-04 1.08413352E-05 8.10619333E-02

14
#

16 # Executing : PSPMequi('PNAS2002', 'BPE', [0.000253602 8.8569E-06 2.33334E-06 0.01], -0.1, [1 0 0.0004 11 0 0.1], [],
{'envBP', '1', 'envZE', '2'})

18 #
Parameter values :

20 #
Rho : 0.1 Rmax : 0.000253602 Lb : 7

22 # Lv : 27 Lj : 110 Lm : 300
Beta : 9E-06 Imax : 0.0001 Rh : 1.5E-05

24 # Gamma : 0.006 Rm : 0.003 Mub : 0.01
A : 5000 Th : 0.1 Epsilon : 0.5

26 # Delta : 0.01
#

28 # Index of bifurcation parameter #1 : 1
Index of bifurcation parameter #2 : 11

30 # Index of environment variable with transcritical bifurcation : 1
#

32 # 1:Rmax 2:E[0] 3:E[1] 4:E[2] 5:b[0] 6:Mub 7:I[0][0] 8:I[0][1] 9:I[0][2] .. 13:RHS norm
#

34 >> data5

36 data5 =

38 0.0002536 8.8569e-06 0 0 2.3333e-06 0.01 2.4475e-05 4.008e-06 0.00041897 .. 5.083e-08
0.00024442 8.8803e-06 0 0 2.3525e-06 0.010263 2.3554e-05 4.008e-06 0.00039918 .. 1.7842e-08

40 0.00023541 8.9071e-06 0 0 2.3732e-06 0.010542 2.2651e-05 4.008e-06 0.00037982 .. 2.3654e-08
<...output lines suppressed in this box...>

42 0.00038848 0.00026176 0 0 1.0806e-05 0.080784 1.2672e-05 4.008e-06 5.4416e-05 .. 1.4571e-09
0.00039542 0.00026857 0 0 1.0824e-05 0.080926 1.2685e-05 4.008e-06 5.4388e-05 .. 1.5249e-09

44 0.00040238 0.00027541 0 0 1.0841e-05 0.081062 1.2697e-05 4.008e-06 5.4362e-05 .. 1.5871e-09

(Once again, consult your Matlab console for a complete listing of the output of the
commands shown above as parts of this output is deleted for the sake of brevity and
layout).

The Matlab command box above shows that the output of the PSPMequi function has in
this case a similar layout as when computing the consumer invasion boundary (Matlab
command box 8.E). The data about the points making up the computed curve are stored
in the variable data5, whereas the description of the computations is stored in desc5.
The last two, empty output quantities returned by the PSPMequi function are ignored as
before. The PNAS2002equi_demo.m script again uses the first and and the sixth column

8.4. AN EXAMPLE SESSION USING THE PSPMEQUI SCRIPT 75

of data5 to create a graph with Rmax (first column) on the x-axis and µb (sixth column)
on the y-axis, showing the regions of parameter space for which invasion of the consumer-
resource equilibrium by the predator is possible or not.

The final analysis step to be performed is to compute the location of the limit point in the
predator-consumer-resource equilibrium curve as a function of Rmax and µb. This compu-
tation starts from the data on the limit point stored in the output variable bdata3, which
was detected during the computation of the predator-consumer-resource equilibrium (see
Matlab command box 8.D). The first five elements of this vector represent the value of
Rmax, the equilibrium resource density, the equilibrium predator density, the equilibrium
biomass density of small consumers vulnerable to predation and the equilibrium birth
rate of the consumer population. To complete the specification of the initial point of the
computation the default value of consumer background mortality (0.01) is added. Hence,
the initial point of the computation is specified as [bdata3([1:5]) 0.01]. The type of
the computation, which is the second argument to the PSPMequi function, is now specified
as 'LP', indicating that a saddle-node bifurcation curve is to be computed as a function
of 2 model parameters.

For this computation an empty cell array {} is passed as the last argument to the PSPMequi
function, because all variables influence the location of the limit point and hence none of
the quantities are characterised by a zero equilibrium state.

Command box 8.G: Computing the predator persistence boundary

>> [data6, desc6] = PSPMequi('PNAS2002', 'LP', [bdata3([1:5]) 0.01], 0.1, [1 0 4.0E-4 11 0 0.1], [], {});
2

Executable PNAS2002equi.mexmaci64 is up-to-date
4

8.84988526E-05 1.31478259E-05 3.80697042E-05 4.00801603E-06 5.17387220E-05 1.00133536E-02
6 8.88061600E-05 1.32276426E-05 3.77736397E-05 4.00801603E-06 5.08693879E-05 1.02496482E-02

8.91170085E-05 1.33078344E-05 3.74734505E-05 4.00801603E-06 5.00036622E-05 1.04892017E-02
8 <...output lines suppressed in this box...>

1.12736550E-04 1.70612462E-05 9.68666652E-08 4.00801603E-06 4.97533817E-06 3.44553531E-02
10 1.12762559E-04 1.70588288E-05 2.96439331E-09 4.00801603E-06 4.94135869E-06 3.45011382E-02

1.12788464E-04 1.70563741E-05 -9.10003572E-08 4.00801603E-06 4.90755125E-06 3.45468972E-02
12

14 #
Executing : PSPMequi('PNAS2002', 'LP', [8.84989E-05 1.32327E-05 3.8454E-05 4.00802E-06 5.25658E-05 0.01], 0.1,

16 [1 0 0.0004 11 0 0.1], [], {})
#

18 # Parameter values :
#

20 # Rho : 0.1 Rmax : 8.84989E-05 Lb : 7
Lv : 27 Lj : 110 Lm : 300

22 # Beta : 9E-06 Imax : 0.0001 Rh : 1.5E-05
Gamma : 0.006 Rm : 0.003 Mub : 0.01

24 # A : 5000 Th : 0.1 Epsilon : 0.5
Delta : 0.01

26 #
Index of bifurcation parameter #1 : 1

28 # Index of bifurcation parameter #2 : 11
#

30 # 1:Rmax 2:E[0] 3:E[1] 4:E[2] 5:b[0] 6:Mub 7:I[0][0] 8:I[0][1] 9:I[0][2] .. 13:RHS norm
#

32 >> data6

34 data6 =

36 8.8499e-05 1.3148e-05 3.807e-05 4.008e-06 5.1739e-05 0.010013 7.5351e-06 4.008e-06 6.4614e-05 .. 1.6208e-10
8.8806e-05 1.3228e-05 3.7774e-05 4.008e-06 5.0869e-05 0.01025 7.5579e-06 4.008e-06 6.5012e-05 .. 4.3746e-12

38 8.9117e-05 1.3308e-05 3.7473e-05 4.008e-06 5.0004e-05 0.010489 7.5809e-06 4.008e-06 6.5406e-05 .. 1.499e-10
<...output lines suppressed in this box...>

40 0.00011274 1.7061e-05 9.6867e-08 4.008e-06 4.9753e-06 0.034455 9.5675e-06 4.008e-06 8.158e-05 .. 4.4366e-12
0.00011276 1.7059e-05 2.9644e-09 4.008e-06 4.9414e-06 0.034501 9.5704e-06 4.008e-06 8.1585e-05 .. 9.821e-12

42 0.00011279 1.7056e-05 -9.1e-08 4.008e-06 4.9076e-06 0.034547 9.5732e-06 4.008e-06 8.159e-05 .. 1.219e-12

(Once again, consult your Matlab console for a complete listing of the output of the
commands shown above as parts of this output is deleted for the sake of brevity and
layout).

76 CHAPTER 8. MODEL ANALYSIS IN MATLAB

The output of the PSPMequi function in this last call has a similar layout as in the previous
two calls to compute consumer and predator invasion boundary (Matlab command box 8.E
and 8.F). The data about the points making up the computed curve are stored in the
variable data6, whereas the description of the computations is stored in desc6. The last
two, empty output quantities returned by the PSPMequi function are ignored as before.
The PNAS2002equi_demo.m script again uses the first and and the sixth column of data6
to create a graph with Rmax (first column) on the x-axis and µb (sixth column) on the
y-axis, showing the regions of parameter space for which a predator-consumer-resource
equilibrium occurs or not and hence for which predators can persist.

8.5 Output files generated by the PSPMequi script

The computational module that is produced by the PSPMequi function generates 4 output
files in case of a one-parameter bifurcation (continuation type ’EQ’) and 3 output files
in case of two-parameter continuations (continuation types ’BP’, ’BPE’, ’LP’, ’ESS’ and
’PIP’). The name of these files is always of the form <Modelname>-<Type>-<NNNN>.<ext>,
in which <Modelname> is the same as the name of the file specifying the model excluding
its .h extension, <Type> refers to the type of the continuation performed (either ’EQ’,
’BP’, ’BPE’, ’LP’, ’ESS’ or ’PIP’) and <NNNN> is a 4-digit number that is unique for the
current computation and .<ext> is the extension, which can be either .bif, .err, .mat
or .out. The unique number distinguishes the same types of curve computations for the
same model from each other. The number is obtained by considering for a specific type
of continuation (’BP’, ’BPE’, ’EQ’, ’LP’, ’ESS’ or ’PIP’) increasing values of <NNNN> (i.e.,
0000, 0001, 0002 and so forth) and testing whether result files with the particular index
are already present. The program uses the first value of <NNNN> that is not in use.

Hence, the call of the PSPMequi function for the PNAS model, as shown
in Matlab command box 8.B generates the output files PNAS2002-EQ-0000.bif,
PNAS2002-EQ-0000.err, PNAS2002-EQ-0000.out and PNAS2002-EQ-0000.mat, the
following call as shown in Matlab command box 8.C generates the output
files PNAS2002-EQ-0001.bif, PNAS2002-EQ-0001.err, PNAS2002-EQ-0001.out and
PNAS2002-EQ-0001.mat, while the last computation of an equilibrium curve, as shown
in Matlab command box 8.D, generates the output files PNAS2002-EQ-0002.bif,
PNAS2002-EQ-0002.err, PNAS2002-EQ-0002.out and PNAS2002-EQ-0002.mat. The
computations of the consumer invasion, predator invasion and predator persis-
tence boundary (see Matlab command box 8.E, 8.F and 8.G) each generate only
3 output files, called PNAS2002-<Type>-0000.err, PNAS2002-<Type>-0000.out and
PNAS2002-<Type>-0000.mat with <Type> equal to BP, BPE and LP in case of the consumer
invasion, the predator invasion and the predator persistence boundary, respectively.

The file called <Modelname>-<Type>-<NNNN>.err that is generated during the computa-
tions of curves contains information about the numerical progress of the computations.
It reports details on the steps taken during the Newton iteration, the convergence to the
solution, as well as information about the steps taken along the curve that is being com-
puted. This file can be informative in case the computation of a particular curve stops
for unknown reasons, but is otherwise of little use.

The output file called <Modelname>-<Type>-<NNNN>.out contains the same information
as is contained in the first two output variables curvepoints and curvedesc returned by
the PSPMequi function (see Matlab command box 8.I). The first lines of this file all start
with a # sign and contain the information about the run performed, which is also contained

8.5. OUTPUT FILES GENERATED BY THE PSPMEQUI SCRIPT 77

in curvedesc and can be listed by the statement sprintf(curvedesc). Following this
descriptive header the file contains columns with computational results that are also
contained in the variable curvepoints (see, for example, Matlab command box 8.C).
In fact, the first two output variables curvepoints and curvedesc are generated by
reading the contents of the file <Modelname>-<Type>-<NNNN>.out from disk after the
computations have ended, storing all lines that start with a # sign into a single string
variable curvedesc, while storing the information on all other lines into the data matrix
curvepoints.

Similarly, the output file called <Modelname>-<Type>-<NNNN>.bif, which is only gen-
erated during the computation of an equilibrium curve (type 'EQ') contains the same
information as is contained in the last two output variables bifpoints and biftypes

returned by the PSPMequi function (see Matlab command box 8.I). Each row in the file
<Modelname>-<Type>-<NNNN>.bif pertains to a single detected bifurcation point. A row
starts with the numerical data that characterises the bifurcation point, which are exactly
the same columns of data as stored in the file <Modelname>-<Type>-<NNNN>.out. Ap-
pended to the numerical data is a string of the form *** <Type> ***, where <Type> can
be, for example, BP #0, BP #0, LP or CSS #0. The numerical data that form the first
part of each row are stored by the PSPMequi function into the output variable bifpoints,
which hence has as many columns as there are in the output variable curvepoints and as
many rows as there bifurcation points occurring in the computed equilibrium curve. The
strings representing the type of bifurcation point are stored by the PSPMequi function into
the output cell array biftypes, which hence has as many cells as there are bifurcation
points.

The file called <Modelname>-<Type>-<NNNN>.mat contains for every curve point that has
been computed information on the parameters, for which the point has been computed, the
equilibrium values of all environment variables and the stable distribution of all structured
populations in the model. For example, the file PNAS2002-EQ-0002.mat is generated by
the invocation of the PSPMequi function for the PNAS model shown in Matlab command
box 8.D. Highlighting (selecting) this file in Matlab’s “Current folder” window displays its
contents in Matlab’s “File details” window. It consists of a series of population states, one
for each of the points computed along the curve, as shown in the following box (notice that
some intermediate output is suppressed as was also the case in previous Matlab command
boxes):

State_2_536023E_04 <1x1 struct>
2 State_2_525758E_04 <1x1 struct>

State_2_515530E_04 <1x1 struct>
4 <...output lines suppressed in this box...>

State_3_898128E_04 <1x1 struct>
6 State_3_970218E_04 <1x1 struct>

State_4_042258E_04 <1x1 struct>

The population state called State_4_042258E_04 pertains to the parameter value Rmax =
4.042258 ·10−4 as its name suggests. Loading this state into the Matlab workspace reveals
its contents to be various arrays of numbers, as shown in the following box:

Command box 8.H: Contents of population state generated by PSPMequi

>> load('PNAS2002-EQ-0002.mat', 'State_4_042258E_04')
2 >> State_4_042258E_04

4 State_4_042258E_04 =

78 CHAPTER 8. MODEL ANALYSIS IN MATLAB

6 BifPars: 0.00040423
Parameters: [0.1 0.00040423 7 27 110 300 9e-06 0.0001 1.5e-05 0.006 0.003 0.01 5000 0.1 0.5 0.01]

8 Environment: [0.00025335 0.0001336 4.008e-06]
Pop00_BirthStates: [0 7]

10 Pop00: [100x3 double]

The first element (called BifPars) of the structure containing the population state
State_4_042258E_04 is the value of the bifurcation parameter for this particular state.
The second element, an array called Parameters, contains the values of all the model
parameters for which the population state has been computed, while the fourth member
of the structure State_4_042258E_04 contains the equilibrium values of all environment
variables. The two subsequent arrays characterise the stable population distribution, of
which the first (called Pop00_BirthStates) specifies the state at birth of the individuals.
The other (called Pop00) is a two-dimensional array characterising the population distri-
bution in the equilibrium point with the first column State_4_042258E_04.Pop00(:,1)

representing the density profile of the equilibrium population and the subsequent columns
State_4_042258E_04.Pop00(:,2) and State_4_042258E_04.Pop00(:,3) representing
the average values of the individual state variables with index 0 and 1 in the model
(corresponding to individual age and length in the PNAS model), as shown below:

>> State_4_042258E_04.Pop00
2

ans =
4

0.00043495 1.475 9.4233
6 7.1561e-07 18.427 35.856

6.3189e-07 30.804 53.561
8 <...output lines suppressed in this box...>

4.9656e-12 1206.2 283.03
10 4.3877e-12 1218.6 283.05

3.8771e-12 1230.9 283.06

If individuals are characterised by more than two individual state variables, the values of
these follow in additional columns of the two-dimensional array Pop00. The Matlab com-
mand box above also illustrates the contents of the equilibrium population distribution by
listing the first and last 3 rows of the two-dimensional array State_4_042258E_04.Pop00.
The dimension of the array State_4_042258E_04.Pop00 indicates that the population
is represented by 100 cohorts of individuals (see chapter 17 for the option to change
this number). The number of individuals in cohort i is given by the array element
State_4_042258E_04.Pop00(i,1), while the average value of the individual state vari-
able with index 0 and 1 (average age and average length in the PNAS model) are given by
State_4_042258E_04.Pop00(i,2) and State_4_042258E_04.Pop00(i,3), respectively.

8.5. OUTPUT FILES GENERATED BY THE PSPMEQUI SCRIPT 79

Command box 8.I: PSPMequi help page

>> help PSPMequi
2 PSPMequi: Computes a bifurcation curve for a structured population model

4 Syntax:

6 [curvepoints, curvedesc, bifpoints, biftypes] = ...
PSPMequi(modelname, biftype, startpoint, stepsize, parbnds, parameters, options,...

8 'clean', 'force', 'debug')

10 Arguments:

12 modelname: (string, required)
Basename of the file with model specification. The file

14 should have extension '.h'. For example, the model 'PNAS2002'
is specified in the file 'PNAS2002.h'

16
biftype: (string, required)

18 Type of bifurcation to compute: BP, BPE, EQ, LP, ESS or PIP

20 startpoint: (row vector, required)
The initial point from which to start the continuation of

22 the curve

24 stepsize: (double value, required)
Value of the step size in the first bifurcation parameter

26
parbnds: (row vector of length n*3, required)

28 Vector of length n*3 with n=1 for EQ continuation, n=2 for
BP, BPE, LP and PIP continuation and n >=2 for ESS continuation.

30 Each triples specifies:

32 parbnds(1): the index of the first bifurcation parameter
parbnds(2): lower threshold, below which value of the

34 first bifurcation parameter the computation stops
parbnds(3): upper threshold, above which value of the

36 first bifurcation parameter the computation stops

38 In case of two-parameter bifurcations:

40 parbnds(4): the index of the second bifurcation parameter
parbnds(5): lower threshold, below which value of the

42 second bifurcation parameter the computation stops
parbnds(6): upper threshold, above which value of the

44 second bifurcation parameter the computation stops

46 parameters: (row vector, required, but can be the empty vector [])
Vector of length PARAMETER_NR (set in the model program

48 file), specifying the values for the model parameters to
use in the computation. Vectors of other lengths, including

50 an empty vector will be ignored.

52 options: (cell array, required, but can be the empty cell array {})
Cell array with pairs of an option name and a value (for

54 example {'popBP', '1'}) or single options (i.e. 'test').
Possible option names and their values are:

56
'envBP', '<index>': Index of environment variable, of which

58 to continue the transcritical bifurcation
'popBP', '<index>': Index of structured population, of which

60 to continue the transcritical bifurcation
'popEVO', '<index>': Index of structured population, for

62 which to compute the selection gradient or
perform ESS or PIP continuation

64 'parEVO', '<index>': Index of parameter, for which to compute
the selection gradient

66 'envZE', '<index>': Index of environment variable in
trivial equilibrium (can be used

68 multiple times)
'popZE', '<index>': Index of structured population in

70 trivial equilibrium (can be used
multiple times)

72 'isort', '<index>': Index of i-state variable to use as
ruling variable for sorting the

74 structured populations
'noBP' : Do not check for branching points while

76 computing equilibrium curves
'noLP' : Do not check for limit points while

78 computing equilibrium curves
'single' : Only compute the first point of the

80 solution curve, do not continue the curve
'test' : Perform only a single integration over

82 the life history, reporting dynamics
of survival, R0, i-state and

84 interaction variables

86 'clean': (string. optional argument)
Remove all the result files of the model before the

88 computation

90 'force': (string, optional argument)
Force a rebuilding of the model before the computation

92
'debug': (string, optional argument)

80 CHAPTER 8. MODEL ANALYSIS IN MATLAB

94 Compile the model in verbose mode and with debugging flag set

96 Output:

98 curvepoints: Matrix with output for all computed points along the curve

100 curvedesc: Column vector with strings, summarizing the numerical details
of the computed curve (i.e., initial point, parameter values,

102 numerical settings used)
bifpoints: Matrix with the located bifurcation points along the curve

104
biftypes: Column vector of strings, containing a description of the

106 type of bifurcation for each of the located bifurcation points

Evolutionary analysis of
non-linear PSPMs

81

9

Theoretical and computational background

The analysis evolutionary fixed points of non-linear PSPMs focuses on the question how
the value of a particular model parameter would change if mutations would generate
variability in this parameter value and selection would act on this variability. Adaptive
dynamics (Metz et al., 1996; Geritz et al., 1998) constitutes an approach to answer such
questions, while carefully taking into account the feedback of populations on their en-
vironment. The central function in the theory of adaptive dynamics is the long-term
population growth of a mutant type in an environment that is completely dominated and
hence determined by a resident population. This quantity is usually referred to with the
symbol sx(y), in which x refers to the type of the resident population and y refers to the
type of the mutant. Not surprisingly, when the mutant is identical to the resident it has
a population growth rate 0, since the resident is assumed to persist indefinitely (Notice
that this does no require the population to be in equilibrium). Therefore:

sx(y)|y=x = 0

Furthermore, the partial derivative ∂sx(y)/∂y equals the selection gradient, indicating
whether a mutation-selection process will lead to larger or smaller values of the trait x.
If

∂sx(y)

∂y

∣∣∣∣
y=x

> 0 (9.1)

a mutant with a trait value y larger than the resident trait value x will have a positive
long-term growth rate and hence will be able to invade, while the opposite holds for when
the partial derivative is negative. An evolutionary singular point, which will be indicated
with x∗, now occurs where

∂sx(y)

∂y

∣∣∣∣
y=x∗

= 0

Furthermore, The second-order partial derivatives

∂2sx(y)

∂x2

∣∣∣∣
y=x∗

and
∂2sx(y)

∂y2

∣∣∣∣
y=x∗

determine whether the evolutionary singular point is a convergent stable strategy (CSS),
an evolutionary repellor (ERP) or an evolutionary branching point (EBP) (Geritz et al.,
1998).

83

84 CHAPTER 9. THEORETICAL AND COMPUTATIONAL BACKGROUND

In the bifurcation analysis of PSPMs the equilibrium of a structured population is deter-
mined by the condition

R0 − 1 = 0

in which R0 is the expected number of offspring produced by a single individual of the
structured population during its entire life. R0 is not the same as the long-term population
growth rate, but the condition R0− 1 is sign-equivalent with the population growth rate:
the sign of R0 − 1 and the population growth rate are always the same and when R0 − 1
equals 0, the population growth rate is 0 as well. According to the theory of adaptive
dynamics (Metz et al., 1996; Geritz et al., 1998) the function R0−1 can therefore be used
for the analysis of evolutionary fixed points of PSPMs.

In the context of the PSPMs the traits x and y will refer to the resident and mutant
value, respectively, of one of the model parameters. The value of such a parameter
will influence the expected number of offspring produced by a single individual of the
structured population during its entire life, R0, if the parameter represents a life history
characteristic. On the other hand, R0 is also influenced by the environment in which the
individual lives. A key element of PSPMs is that this environment itself is influenced by
the structured population to such an extent that the equilibrium value of the environment
is determined by the population. The equilibrium value of the environment is hence also
a function of the model parameters and we can write the equilibrium condition of the
structured population more appropriately as:

R0(y, Ẽ(x))|y=x − 1 = 0

x in this condition refers to the value of one of the model parameters in the PSPM
of the resident type of individual that dominates the structured population and hence
determines the equilibrium value of the environment variables Ẽ(x), whereas y refers to
the value of that same parameter for a mutant type, which invades the population at low
density. The partial derivatives of the function R0(y, Ẽ(x))− 1 can therefore be used to
classify a computed equilibrium in a PSPM as an evolutionary fixed point and determine
whether it is a convergent stable strategy (CSS), an evolutionary repellor (ERP) or an
evolutionary branching point (EBP) (Geritz et al., 1998). Since the constant 1 in this
function is irrelevant for the partial derivatives, the quantities of interest are:

R0x :=
∂R0(y, Ẽ(x))

∂y

∣∣∣∣
y=x∗

R0xx :=
∂2R0(y, Ẽ(x))

∂x2

∣∣∣∣
y=x∗

R0yy :=
∂2R0(y, Ẽ(x))

∂y2

∣∣∣∣
y=x∗

During an equilibrium computation with the PSPMequi script the program can check
for every computed equilibrium point the value of R0x. This test is, however, only
performed when the option 'popEVO' is set to a valid value, that is in the range 0 to
POPULATION_NR-1. The value of this option identifies the index of the structured popu-
lation, for which to carry out the evolutionary fixed point analysis. As default the option

85

'popEVO' is not defined and the test of the evolutionary properties of the equilibrium is
skipped, as was the case in the model analyzed in chapter 8. When the software detects
a sign change in this quantity, it attempts to locate the exact position of the evolutionary
fixed point by solving for the equilibrium of the PSPM with the additional condition
R0x = 0. When successful the software computes the second-order partial derivatives
R0xx and R0yy to classify the evolutionary fixed point. The computation of these partial
derivatives is done entirely numerically using a central-differencing approach. Unless it
fails to compute one of the partial derivatives properly, the software will report whether
a convergent stable strategy (CSS), an evolutionary repellor (ERP) or an evolutionary
branching point (EBP) has been detected.

Once an evolutionary fixed point is detected, the software allows for 2 further steps of
analysis of the evolutionary fixed point. The first type of analysis that can be carried out is
that the evolutionary fixed point can be computed for a range of values of a second model
parameter. More precisely, the condition R0x = 0 is added as supplementary condition
to the system of equations determining the equilibrium of the PSPM and because of this
additional condition one more unknown quantity, the value of a second model parameter,
has to be solved for. This type of computations is referred to with the acronym 'ESS'.
They yield curves that show the evolutionary stable value of the evolutionary parameter
as a function of the first bifurcation parameter.

The software is in fact sufficiently general to allow for continuation of curves with mul-
tiple model parameters having their evolutionary stationary value. These curves are all
indicated with the acronym 'ESS'. For each evolutionary parameter the corresponding
condition R0x = 0 is added to the system of equations to solve. For each parameter at
its evolutionary stationary value the vector of initial estimates of a solution point (the
third argument to the function PSPMequi) should contain a value close this evolutionary
stationary value, whereas the index of the parameter in the model and its allowable min-
imum and maximum value are defined by the triplet in the fifth argument to the function
PSPMequi (see section 8.2). As discussed in section 8.2 this fifth argument to the function
PSPMequi should for 'ESS' computations contain at least 2 triplets, one for the (first)
bifurcation parameter and one for the model parameter that is fixed at its evolutionary
stationary value, but it can be extended with more triplets in case the 'ESS' curve is
characterised by multiple parameters at their evolutionary stationary value. The num-
ber of triplets for evolutionary parameters should match the number of initial estimates
for these parameters in the third argument to the function PSPMequi. The current ver-
sion of the software computes for each parameter at its evolutionary stationary value the
second-order partial derivatives R0xx and R0yy and writes these second-order derivatives
to the output file. Notice, however, that these derivatives only provide a classification of
the evolutionary stationary point in terms of convergent stable, evolutionary repellor or
evolutionary branching point in the case of a single evolutionary parameter, as the classi-
fication of multidimensional evolutionary fixed point involves more complex computations
of derivatives (see Leimar, 2005).

The second type of analysis that can be performed is the computation of the pairwise
invasibility plot (or PIP; for an explanation see Geritz et al. (1998)) starting from the
evolutionary fixed point. This type of computation is indicated with the acronym 'PIP'
and is carried out by supplementing the system of equations determining the equilibrium
of the PSPM with the condition R0(y, Ẽ(x)) = 1. Because of this extension, one more
unknown variable has to be solved for, which in this case is the mutant value of the
model parameter y. The first and second bifurcation parameter in this case have the

86 CHAPTER 9. THEORETICAL AND COMPUTATIONAL BACKGROUND

same index in the array of parameter values, but the first bifurcation parameter refers to
the resident value x of this parameter, while the second bifurcation parameter refers to
the mutant value y. The result of such a computation is a curve in the parameter space
spanned by x and y, where the growth rate of a mutant with parameter value y in an
equilibrium environment determined by a resident population with parameter value x has
a zero population growth rate. PIPs are plots of such curves and these plots can be used
for inferring various evolutionary consequences (Geritz et al., 1998).

While performing computations of the type 'ESS' and 'PIP' the software continuously
computes the value of the second order partial derivatives R0xx and R0yy and writes these
values to the output file (with extension .out). Inspection of the output file can hence also
indicate whether an evolutionary fixed point changes its type, for example from CSS to
EBP or vice versa. Automatic detection and processing of such type changes is, however,
(currently) not implemented in the software.

10

An example model for the analysis of evolutionary
fixed points

The analysis of evolutionary fixed points of PSPMs will be illustrated using a model for
a size-structured consumer population feeding on a resource R. Individual consumers
are assumed to be born at size sb and forage on the resource at a rate proportional to
an allometric function of their size, sq. They are furthermore assumed to have a linear
functional response, such that their ingestion rate equals γ(s,R) = ImaxRs

q. Ingested
energy is assimilated with a constant conversion efficiency σ. Maintenance costs are also
assumed to follow an allometric relation of body size, Tsp.

Juvenile individuals spend all their net energy production on growth in body size and
hence have a somatic growth rate σγ(s,R) − Tsp. Above a body size threshold s = sj ,
referred to as the maturation size, individuals decrease the fraction of their net-energy
production that they invest in somatic growth and use the remainder for investments
in reproduction. The function κ(s) indicates the fraction of net-energy production in-
vested in somatic growth. κ(s) is a cubic function of size that decreases smoothly and
continuously from a value of 1 at s = sj to a value 0 at s = sm. The size thresh-
old s = sm hence represents the maximum body size individual consumers can possi-
bly reach. The energy invested into reproduction is converted into offspring with size
s = sb. No further conversion losses are assumed to occur during somatic growth and
reproduction, the conversion efficiency σ is assumed to include all such losses. The so-
matic growth rate hence equals g(s,R) = κ(s)(σγ(s,R) − Tsp), while the fecundity is
given by β(s,R) = (1 − κ(s))(σγ(s,R) − Tsp)/sb. Consumers experience a constant,
size-independent mortality. Finally, in the absence of consumers the resource follows
semi-chemostat dynamics with turn-over rate δ and maximum resource density Rmax.

The model dynamics can now be described by the following system of partial and ordinary
differential equations for the resource density R and the consumer size distribution n(t, s):

∂n(t, s)

∂t
+

∂ (g(s,R)n(t, s))

∂s
= −µn(t, s)

g(sb, R)n(t, sb) =

∫ sm

sb

β(s,R)n(t, s) ds

dR

dt
= δ (Rmax −R) −

∫ sm

sb

γ(s,R)n(t, s) ds

87

88 CHAPTER 10. EXAMPLE MODEL FOR EVOLUTIONARY ANALYSIS

As discussed above the individual life history functions representing food ingestion, so-
matic growth, fecundity and the fraction of net-energy production allocated to somatic
growth are given by:

γ(s,R) = ImaxRs
q

g(s,R) = κ(s) (σγ(s,R) − T sp)

β(s,R) =
(1− κ(s)) (σγ(s,R) − T sp)

sb

κ(s) =

1 if s ≤ sj

1 − 3

(
s− sj
sm − sj

)2

+ 2

(
s− sj
sm − sj

)3

otherwise

The evolutionary fixed point analysis will focus on the parameter q, the allometric scaling
exponent of ingestion rate with body size s. Default values of the other parameters are:
δ = 0.1, Rmax = 2.0, Imax = 1.0, T = 0.1, p = 1.0, sb = 0.05, sj = 1.0, sm = 2.0
and σ = 0.5. The background mortality experienced by consumers is assumed to equal
µ = 0.01.

The model is implemented in the model-specific file Indet_growth.h that you can find in
the Tests directory. The implementation of the model follows the guidelines as presented
for the PNAS model in chapter 7 and will therefore not be discussed in detail. The reader
is encouraged to inspect the file Indet_growth.h and work out the translation of the
mathematical formulation given above into the necessary C-code elements required for
analysis.

11

Model analysis in Matlab

The analysis using Matlab can be performed by executing the Matlab script
Indet_growth_demo.m, which is to be found together with the model-specific file
Indet_growth.h in the Tests directory. Below 3 commands will be discussed that are
executed by the Indet_growth_demo.m script and that illustrate the possibilities to use
the software for evolutionary fixed point analysis. The Indet_growth_demo.m script fur-
thermore performs some plotting of the output data generated by the computational
module.

The analysis starts out by computing the equilibrium of the consumer-resource model as
a function of the parameter q, the allometric scaling exponent of ingestion with body size
s. This parameter has index 6 in the parameter array defined in the model-specific file
Indet_growth.h (see line 50–80 in that file). The computation starts from an equilibrium
point at q = 1.0, computing the equilibrium for decreasing values of q in the range
0.5 ≤ q ≤ 2.0. Hence, the fourth and fifth argument of the PSPMequi function, which
specify the step size along the equilibrium curve and the index of the bifurcation parameter
plus the limits to its range for the computation, respectively, are taken equal to -0.1 and
[6 0.5 2.0].

The initial point for the computations is a rather crude estimate of the equilibrium state
for q = 1, for which parameter value all rates are linear in body mass s. Per unit biomass
the net-production rate of new biomass, either through somatic growth or through fecun-
dity, then equals σImaxR − T , while the loss rate per unit biomass equals the mortality
rate µ. Equating these two rates to each other, yields the equilibrium resource density
R̃ = (T + µ)/(σImax) = 0.22. The initial estimate for the population birth rate in equi-
librium is especially crude, as it is taken equal to 0. Despite that the initial point is not
close to the equilibrium solution for q = 1 the computations easily converge as can be
seen in the Matlab command box below.

Furthermore, the computations are carried out with the default parameter values, such
that the 6th argument of the function PSPMequi is an empty vector ([]). The last argu-
ment of the function PSPMequi is the option cell array, in which the option 'popEVO' is set
equal to '0'. Defining this option instructs the program to compute the selection gradient
in the evolutionary parameter during equilibrium continuations (Curve type 'EQ'). The
evolutionary parameter can be any of the parameters in the parameter vector by assign-
ing the index of the particular parameter to the option 'parEVO' in the option vector.
However, only when the option 'parEVO' is set equal to the bifurcation parameter or left
unspecified (in which case parEVO defaults to the bifurcation parameter) is it possible to

89

90 CHAPTER 11. MODEL ANALYSIS IN MATLAB

assess whether or not a computed equilibrium is an evolutionary fixed point. Below the
option 'popEVO' identifies the structured population with index 0 as the population for
which to carry out the evolutionary analysis (obviously, as it is the only population in
this problem).

91

Command box 11.A: Detection of an evolutionary fixed point

>> [data1, desc1, bdata1, btype1] = PSPMequi('Indet_growth', 'EQ', [1.0 0.22 0.0], -0.1, [6 0.5 2.0], [], {'popEVO', '0'});
2

Building executable Indet_growthequi.mexmaci64 ...
4

1.00000000E+00 2.20000000E-01 3.55373787E-02
6 9.98043762E-01 2.19653632E-01 3.45381701E-02

9.96005285E-01 2.19313094E-01 3.35389579E-02
8 <...output lines suppressed in this box...>

9.44570226E-01 2.15621677E-01 1.85536239E-02
10 9.38263361E-01 2.15592978E-01 1.75885671E-02 **** CSS #0 ****

9.38034889E-01 2.15593014E-01 1.75557539E-02
12 <...output lines suppressed in this box...>

5.18672354E-01 2.40531837E-01 7.04499110E-03
14 5.09283848E-01 2.41208401E-01 7.01122421E-03

4.99855837E-01 2.41890186E-01 6.97858797E-03
16

18 #
Executing : PSPMequi('Indet_growth', 'EQ', [1 0.22 0], -0.1, [6 0.5 2], [], {'popEVO', '0'})

20 #
Parameter values :

22 #
Delta : 0.1 Rmax : 2 Sb : 0.05

24 # Sj : 1 Sm : 2 Imax : 1
q : 1 Sigma : 0.5 T : 0.1

26 # p : 1 Mu : 0.01
#

28 # Index of bifurcation parameter #1 : 6
#

30 # 1:q 2:E[0] 3:b[0] 4:I[0][0] 5:I[0][1] 6:I[0][2] 7:R0[0] 8:R0_x[6] 9:RHS norm
#

32 >> data1

34 data1 =

36 1 0.22 0.035537 0.178 0.5323 0.27679 1 -41.446 9.5791e-09
0.99804 0.21965 0.034538 0.17803 0.52939 0.27986 1 -38.946 3.2943e-08

38 0.99601 0.21931 0.033539 0.17807 0.52629 0.28312 1 -36.481 3.0528e-08
<...output lines suppressed in this box...>

40 0.94457 0.21562 0.018554 0.17844 0.43178 0.3793 1 -2.0917 1.6189e-08
0.93826 0.21559 0.017589 0.17844 0.41944 0.39166 1 -9.0639e-11 7.9831e-09

42 0.93803 0.21559 0.017556 0.17844 0.41899 0.3921 1 0.070595 8.0441e-09
<...output lines suppressed in this box...>

44 0.51867 0.24053 0.007045 0.17595 0.10149 0.69826 1 6.4213 1.466e-09
0.50928 0.24121 0.0070112 0.17588 0.099431 0.70002 1 6.3229 2.2549e-09

46 0.49986 0.24189 0.0069786 0.17581 0.097426 0.70171 1 6.227 1.9907e-09

48 >> bdata1

50 bdata1 =

52 0.93826 0.21559 0.017589 0.17844 0.41944 0.39166 1 -9.0639e-11 7.9831e-09

54 >> btype1

56 btype1 =

58 'CSS #0'

As can be seen in the command box above an evolutionary fixed point is detected at
q∗ = 0.938266. On the basis of the second-order partial derivatives, which are not re-
ported explicitly by the program during this computation, the fixed point is classified as
a convergent stable strategy. It occurs (self-evidently in this model) in the structured
population with index 0. The cell array btype1 therefore consists of the single string
'CSS #0'.

Because the program is instructed to assess the evolutionary properties of the computed
equilibrium points, the output matrix data1 produced by the call to PSPMequi, has an
additional column of output compared to the columns of output discussed in chapter 8,
labeled R0_x[0] (column 8). This is the derivative of the R0 value, the expected number
of offspring produced by an individual during its entire life, with respect to the bifurcation
parameter q for the population with index 0. Inspection of this column shows that this
derivative is negative for q-values larger than q∗ and positive for q-values smaller than this
evolutionary fixed point value. This implies that for q > q∗ a mutation-selection process
will select for smaller values of the trait q, while larger q-values will be selected for when
q < q∗. The evolutionary fixed point q∗ is therefore convergent. The Matlab script
Indet_growth_demo.m illustrates this computation by plotting the equilibrium resource

92 CHAPTER 11. MODEL ANALYSIS IN MATLAB

density and the equilibrium consumer biomass as a function of the parameter q. At the
CSS the equilibrium resource density reaches a minimum value.

In the next step of the analysis the detected evolutionary fixed point is used as start-
ing point for a computation of its value as a function of a second model parameter, p,
the allometric scaling exponent of the maintenance rate with body size. The acronym
of this type of computation is 'ESS', which is supplied as the second argument to the
PSPMequi function in the next Matlab command box. Such 'ESS' computations always
use a parameter that is not defined to have its evolutionary stationary value as (first)
bifurcation parameter. The evolutionary parameters are added as additional variables to
the problem, which are following all values for the environmental variable(s) and popula-
tion birth rate(s). Since the default parameter value for p is 1.0, the initial point of the
'ESS' computation below is specified as [1.0 bdata1([2 3 1])], given that the second,
third and first element of the array bdata1 represent the equilibrium resource density,
equilibrium birth rate and the evolutionary stationary value q-value in the evolutionary
fixed point, respectively.

The fifth argument to the function PSPMequi, specifying the indices and range limits of
the variable parameters in the computation, now has to contain as first triplet the index,
minimum and maximum value of the bifurcation parameter p in the problem, while the
second triplet specifies the index, minimum and maximum value of the parameter q, which
is assumed to have its evolutionary stationary value. The parameter p has index 9 in the
parameter array defined in the model-specific file Indet_growth.h (see line 50–80 in that
file) and for the computation its value is restricted to the interval 0.5 ≤ p ≤ 2.0. The array
[9 0.5 2.0 6 0.5 2.0] is therefore passed as 5th argument to the PSPMequi function.

Lastly, as in the invocation of the function PSPMequi shown in command box 11.A the
option cell array that is supplied to the PSPMequi function as 7th argument equals
{’popEVO’, ’0’} to indicate that the evolutionary computations should focus on the
R0 value of the structured population with index 0.

Command box 11.B: Continuation of an evolutionary fixed point

>> [data2, desc2] = PSPMequi('Indet_growth', 'ESS', [1.0 bdata1([2 3 1])], 0.1, [9 0.5 2.0 6 0.5 2.0], [], {'popEVO', '0'});
2

Executable Indet_growthequi.mexmaci64 is up-to-date
4

1.00000000E+00 2.15592978E-01 1.75885671E-02 9.38263361E-01
6 1.04628202E+00 2.15928682E-01 1.83620718E-02 9.81458017E-01

1.09100600E+00 2.16276945E-01 1.91532469E-02 1.02305121E+00
8 <...output lines suppressed in this box...>

1.97281065E+00 2.31687764E-01 4.44253948E-02 1.79193220E+00
10 1.99862418E+00 2.32535490E-01 4.53663299E-02 1.81213728E+00

2.02444044E+00 2.33417049E-01 4.63073461E-02 1.83215556E+00
12

14 #
Executing : PSPMequi('Indet_growth', 'ESS', [1 0.215593 0.0175886 0.938263], 0.1, [9 0.5 2 6 0.5 2], [], {'popEVO', '0'})

16 #
Parameter values :

18 #
Delta : 0.1 Rmax : 2 Sb : 0.05

20 # Sj : 1 Sm : 2 Imax : 1
q : 0.938263 Sigma : 0.5 T : 0.1

22 # p : 1 Mu : 0.01
#

24 # Index of bifurcation parameter #1 : 9
Index of parameter #1 at ESS value : 6

26 # Index of structured population for evolutionary analysis : 0
#

28 # 1:p 2:E[0] 3:b[0] 4:q 5:I[0][0] .. 8:R0[0] 9:R0_x[9] 10:R0_xx[0] 11:R0_yy[0] 12:RHS norm
#

30 >> data2

32 data2 =

34 1 0.21559 0.017589 0.93826 0.17844 .. 1 -1.5739 0.00013642 -0.00013624 1.8636e-07
1.0463 0.21593 0.018362 0.98146 0.17841 .. 1 -1.6704 0.00014653 -0.00014642 4.2147e-10

93

36 1.091 0.21628 0.019153 1.0231 0.17837 .. 1 -1.7681 0.00015623 -0.00015609 6.4441e-10
<...output lines suppressed in this box...>

38 1.9728 0.23169 0.044425 1.7919 0.17683 .. 1 -4.6071 0.00026926 -0.00026795 3.2118e-10
1.9986 0.23254 0.045366 1.8121 0.17675 .. 1 -4.7119 0.00026945 -0.00026812 3.4521e-10

40 2.0244 0.23342 0.046307 1.8322 0.17666 .. 1 -4.8174 0.00026949 -0.00026813 4.1015e-10

(Notice that the intermediate columns specifying the value of some of the interaction
variables in equilibrium have been suppressed as output in the Matlab command box
above to keep the displayed output within the page width).

The most important quantities to observe in the output above are the columns in the
data matrix data2 labelled R0_xx and R0_yy, which represent the second-order partial
derivatives of the R0 value with respect to the resident and mutant value of the parameter
q, respectively. As discussed in chapter 9 these second-order partial derivatives classify
the evolutionary fixed point as a convergent stable strategy, an evolutionary repellor or
an evolutionary branching point (see Geritz et al. (1998) for details). The output shown
above indicates that the evolutionary fixed point remains a convergent stable strategy
over the entire range of parameters for which the curve is computed, because R0_xx is
always larger than R0_yy.

The graphical illustration produced by the Matlab script Indet_growth_demo.m for this
computation consists of the curve of the evolutionary fixed point value of q (column 4
in the data matrix data2) as a function of the bifurcation parameter p (column 1 in the
data matrix data2).

Notice that the quantities R0_xx and R0_yy are only relevant in the 1-dimensional case,
that is if only a single life history is assumed to adopt its evolutionary stationary value
in the ESS continuation. In the multi-dimensional case, when computing curves of evolu-
tionary stationary points with multiple life history traits evolving, the situation is more
complicated. During such multi-dimensional ESS continuations, the program does not
report the quantities R0_xx and R0_yy, but instead provides as output the dominant
eigenvalues of the Jacobian and Hessian matrices of the canonical equation, as well as the
quantity zTC01z, which determines whether or not evolutionary branching can occur at
an evolutionary stationary state that is attracting, but not evolutionary stable. In this
expression z is the dominant eigenvector of the Hessian matrix and C01 = J − H, the
matrix with cross-derivatives of the canonical equation with respect to the mutant and
the resident traits. For more details, see Leimar (2005) and Geritz et al. (2015).

The last step in the analysis of the evolutionary fixed point is to construct the pair-
wise invasibility plot or PIP, starting from the detected evolutionary fixed point. The
type of computation is now specified as 'PIP'. The third argument in the call to
the function PSPMequi, representing the starting point of the computation, equals
bdata1([1 2 3 1]), which array contains in addition to the resident value of the pa-
rameter q, the equilibrium resource density and the equilibrium population birth rate
the mutant value of the parameter q. In the detected evolutionary fixed point this
mutant parameter value equals the resident value. Because the resident and mutant
parameter are two values of the same model parameter the two triplets that make up
the fifth argument to the function PSPMequi are identical. This argument hence equals
[6 0.5 2.0 6 0.5 2.0]. The function is moreover called twice, once with a positive
step size of 0.1 and once with a negative step size of -0.1, to compute the boundary in
the PIP that radiates out from the evolutionary fixed point in two directions.

94 CHAPTER 11. MODEL ANALYSIS IN MATLAB

Command box 11.C: Construction of a pairwise invasibility plot

>> data3 = PSPMequi('Indet_growth', 'PIP', bdata1([1 2 3 1]), 0.1, [6 0.5 2.0 6 0.5 2.0], [], {'popEVO', '0'}),
2 data4 = PSPMequi('Indet_growth', 'PIP', bdata1([1 2 3 1]), -0.1, [6 0.5 2.0 6 0.5 2.0], [], {'popEVO', '0'})

4 Executable Indet_growthequi.mexmaci64 is up-to-date

6 9.38263361E-01 2.15592978E-01 1.75885671E-02 9.38263361E-01
9.44757579E-01 2.15623452E-01 1.85841380E-02 9.31442039E-01

8 9.50520866E-01 2.15706603E-01 1.95802172E-02 9.24768482E-01
<...output lines suppressed in this box...>

10 1.05716678E+00 2.40976093E-01 8.16044991E-02 5.12503828E-01
1.05797641E+00 2.41437457E-01 8.23722323E-02 5.06112695E-01

12 1.05878535E+00 2.41902724E-01 8.31367021E-02 4.99682764E-01

14
#

16 # Executing : PSPMequi('Indet_growth', 'PIP', [0.938263 0.215593 0.0175886 0.938263], 0.1, [6 0.5 2 6 0.5 2], [],
{'popEVO', '0'})

18 #
Parameter values :

20 #
Delta : 0.1 Rmax : 2 Sb : 0.05

22 # Sj : 1 Sm : 2 Imax : 1
q : 0.938263 Sigma : 0.5 T : 0.1

24 # p : 1 Mu : 0.01
#

26 # Index of bifurcation parameter #1 : 6
Index of structured population for evolutionary analysis : 0

28 #
1:q 2:E[0] 3:b[0] 4:q' 5:I[0][0] 6:I[0][1] 7:I[0][2] 8:R0[0] 9:R0[1] 10:RHS norm

30 #

32 data3 =

34 0.93826 0.21559 0.017589 0.93826 0.17844 0.41944 0.39166 1 1 1.462e-07
0.94476 0.21562 0.018584 0.93144 0.17844 0.43215 0.37893 1 1 6.9554e-10

36 0.95052 0.21571 0.01958 0.92477 0.17843 0.44349 0.36755 1 1 4.0596e-09
<...output lines suppressed in this box...>

38 1.0572 0.24098 0.081604 0.5125 0.1759 0.59762 0.20193 1 1 9.5157e-12
1.058 0.24144 0.082372 0.50611 0.17586 0.59846 0.20089 1 1 1.0016e-11

40 1.0588 0.2419 0.083137 0.49968 0.17581 0.59929 0.19985 1 1 1.0534e-11

42 Executable Indet_growthequi.mexmaci64 is up-to-date

44 9.38263361E-01 2.15592978E-01 1.75885671E-02 9.38263361E-01
9.30859689E-01 2.15628723E-01 1.65937656E-02 9.45282279E-01

46 9.22302855E-01 2.15749165E-01 1.56001074E-02 9.52520009E-01
<...output lines suppressed in this box...>

48 5.13691984E-01 2.40890443E-01 7.02691650E-03 1.05701563E+00
5.04282772E-01 2.41569757E-01 6.99375827E-03 1.05820719E+00

50 4.94835713E-01 2.42254183E-01 6.96170534E-03 1.05939157E+00

52
#

54 # Executing : PSPMequi('Indet_growth', 'PIP', [0.938263 0.215593 0.0175886 0.938263], -0.1, [6 0.5 2 6 0.5 2], [],
{'popEVO', '0'})

56 #
Parameter values :

58 #
Delta : 0.1 Rmax : 2 Sb : 0.05

60 # Sj : 1 Sm : 2 Imax : 1
q : 0.938263 Sigma : 0.5 T : 0.1

62 # p : 1 Mu : 0.01
#

64 # Index of bifurcation parameter #1 : 6
Index of structured population for evolutionary analysis : 0

66 #
1:q 2:E[0] 3:b[0] 4:q' 5:I[0][0] 6:I[0][1] 7:I[0][2] 8:R0[0] 9:R0[1] 10:RHS norm

68 #

70 data4 =

72 0.93826 0.21559 0.017589 0.93826 0.17844 0.41944 0.39166 1 1 1.462e-07
0.93086 0.21563 0.016594 0.94528 0.17844 0.40513 0.40595 1 1 2.609e-10

74 0.9223 0.21575 0.0156 0.95252 0.17843 0.38898 0.42204 1 1 9.0182e-09
<...output lines suppressed in this box...>

76 0.51369 0.24089 0.0070269 1.057 0.17591 0.10039 0.6992 1 1 1.0273e-07
0.50428 0.24157 0.0069938 1.0582 0.17584 0.098359 0.70093 1 1 1.0158e-07

78 0.49484 0.24225 0.0069617 1.0594 0.17577 0.096386 0.70259 1 1 1.1849e-07

The commands and output in the box above do not need further explanation, except
that the first and the fourth column are the value of q and q′, , the resident and the
mutant value of the evolutionary parameter, respectively. From the 8th and 9th column
it can be verified that both the resident and the mutant type indeed attain R0 = 1 in
the equilibrium states computed. The Matlab script Indet_growth_demo.m uses the first
and fourth output columns, corresponding to the two bifurcation parameters, from the

95

data matrices data3 and data4 that result from the first and second call to the function
PSPMequi in the command box above to construct the pairwise invasibility plot (PIP).

The Matlab script Indet_growth_demo.m furthermore verifies the construction of the
PIP by computing the boundary that are contained in the data matrices data3

and data4 via an alternative route. For this purpose it uses the model-specific
file Indet_growth_resmut.h, which implements the same model as specified in
Indet_growth.h, but explicitly accounts for the resident and the mutant type as two
independent structured populations that compete for the same resource. Using this imple-
mentation with two populations, the boundary in the pairwise invasibility plot that sepa-
rates parameter regions with a positive and negative population growth rate of the mutant
type, corresponds to the transcritical bifurcation curve (or invasion boundary) of the mu-
tant population into the resident population. The Matlab script Indet_growth_demo.m

computes this transcritical bifurcation curve by taking the last computed equilibrium
point from the data matrix data4 and using it as initial point for the following command:

[data5, desc5] = PSPMequi('Indet_growth_resmut', 'BP', data4(end,1:4), 0.1, [6 0.5 2.0 12 0.5 2.0], [], {'popBP', '1'});

The plot that is subsequently generated by the Indet_growth_demo.m script confirms the
correctness of the curve.

12

Simulating evolutionary dynamics

12.1 Theoretical background

In the context of adaptive dynamics the change over evolutionary time in a set of life
history traits, characterising the individuals of a population, can be described by the so-
called canonical equation (Dieckmann & Law, 1996). This canonical equation specifies a
system of ordinary differential equation for the values of a trait vector x = (x1, . . . , xn),
assuming that the population size is large (infinite) and that evolution is limited by small
mutation steps in the trait values. More specifically,

dx

dt
= ne(x) θΣ

∂sx(y)

∂y

∣∣∣∣
y=x

(12.1)

Here, ne(x) is the effective population size, θ the mutation probability per birth event, Σ
the n–dimensional mutational variance–covariance matrix summarising the distribution
of mutations around the resident type x and ∂sx(y)/∂y is the selection gradient (see also
equation (9.1)). As discussed in section 9 the selection gradient is sign–equivalent with
the following derivative of R0:

∂R0(y, Ẽ(x))

∂y

∣∣∣∣
y=x

(12.2)

This partial derivative of R0 with respect to life history parameters is the quantity that
is used to analyse evolutionary fixed points of PSPMs, as explained in chapters 9-11.
Furthermore, we can assume that the effective population size ne(x) is proportional to
the birth rate of a structured population, b̃(x), for a given value of the trait vector. In
other words, the evolutionary dynamics of the values of the life history parameters can
be assumed to be proportional to the product of the population birth rate and the partial
derivative of R0:

dx

dt
∝ b̃(x) Σ

∂R0(y, Ẽ(x))

∂y

∣∣∣∣
y=x

(12.3)

Given that the software package routinely computes both b̃(x) as well as ∂R0(y, Ẽ(x))/∂y
while analysing evolutionary fixed points in PSPMs, it is easy to understand that simulat-
ing the dynamics of the life history trait values over evolutionary time is a straightforward
extension.

97

98 CHAPTER 12. SIMULATING EVOLUTIONARY DYNAMICS

Hence, the PSPManalysis package contains in addition to the PSPMdemo and PSPMequi

scripts a script called PSPMevodyn to simulate the change in an arbitrary number of
life history parameters over evolutionary time. As a starting point the script takes an
ecological equilibrium state for a particular set of parameters and computes both the
partial derivative of R0 with respect to the evolving parameters and the value of the
population birth rate b̃ in equilibrium. Given these 2 quantities, it computes the value
of the right-hand side of expression (12.3) that is proportional to the evolutionary rate
of change in the life history parameters as determined by the canonical equation. Unless
explicitly specified, the script assumes that the mutational variance-covariance matrix Σ
equals the identity matrix. Finally, it uses the computed value of the evolutionary rate
of change to derive new values for the evolving parameters using the Euler method for
numerical integration of ordinary differential equations.

12.2 Simulating evolutionary dynamics in Matlab

The use of the PSPMevodyn script will be illustrated with the same model as described in
chapter 10 and analysed in chapter 11. In fact, the Matlab script Indet_growth_demo.m,
that is to be found together with the model-specific file Indet_growth.h in the Tests

directory and that was already discussed in the previous chapter, performs at the end 2
computations of trait dynamics over evolutionary time. The Indet_growth_demo.m script
furthermore performs some plotting of the output data generated by these computations.

The general call to the PSPMevodyn script is shown in the command box below.

Command box 12.A: General syntax of a PSPMevodyn call

>> [curvepoints, curvedesc] = ...
2 PSPMevodyn(modelname, startpoint, curvepars, evopars, covars, parameters, options,...

'clean', 'force', 'debug')

The obligatory arguments to the PSPMevodyn script are the following:

1. The first argument to the Matlab-script PSPMevodyn is the name of the file specifying
the PSPM, passed as a string argument. It is unnecessary to include the extension
.h as part of the file name, the Matlab-script will strip the .h extension away if it is
included. The Matlab-commands to analyse the model specified in Indet_growth.h

that will be used for the illustration below will therefore all take 'Indet growth'
as their first argument.

2. The second argument is the initial point of the computation. This initial point
should be close to an equilibrium point of the ecological dynamics. The initial
point should be a Matlab (row) vector with the proper dimension, including as
first elements the estimated equilibrium values for all the environment variables
and the estimated values of the birth rate for all the structured populations in the
model, followed by initial values for all parameters that are allowed to evolve over
evolutionary time:

[<environment variables> <population birth rates> <parameter 1> <parameter 2>]

However, environment variables that have been explicitly specified with the program
option 'envZE' as having a zero equilibrium value and birth rates of populations
that have been explicitly specified with the program option 'popZE' to be in a zero

12.2. SIMULATING EVOLUTIONARY DYNAMICS IN MATLAB 99

equilibrium state (see the description of these options under point 7 below), should
be omitted from this vector of initial values.

3. The third argument to the PSPMevodyn function is a Matlab row vector consisting of
2 elements: (1) the maximum step size in evolutionary time during the integration
of the canonical equation and (2) the maximum evolutionary time at which to stop
the integration of the canonical equation.

4. The fourth argument to the PSPMevodyn function determines which of the model
parameters are allowed to evolve and at which limits further evolution of these
parameter is prohibited. This information should be specified by a Matlab (row)
vector, which for every evolving parameter should include a triplet of values speci-
fying the index of the parameter, its minimum and its maximum value at which its
evolution should stop. Therefore, in case of a single evolving parameter, the row
vector is of the form:

[<index 1> <minimum 1> <maximum 1>]

The first element of the vector indicates the index of the parameter in the array
parameter to vary, while the final two elements of the array indicate the minimum
and maximum value of the parameter. When two parameters are allowed to evolve,
the row vector is of the form:

[<index 1> <minimum 1> <maximum 1> <index 2> <minimum 2> <maximum 2>]

With multiple evolving parameters the vector has to be extended with a triplet of
values for each of these model parameters with the triplet specifying the index of the
particular parameter as well as its minimum and the maximum value. The number
of triplets should correspond with the number of initial values for the evolving
parameters as specified in the second argument to the function. The integration
of the canonical equation is halted before reaching the maximum integration time
specified in the third argument to the function, whenever all evolving parameter
have reached either their minimum or their maximum limit.

5. The fifth argument of the PSPMevodyn function specifies the variance–covariance
matrix Σ (see equation (12.1)). This argument can be specified as an n× n matrix
or as a vector of length n · n, where n equals the number of evolving parameters.
The element (i, j) of the matrix (or equivalently the element (i ·n+ j) of the vector)
should indicate how the selection gradient in trait j changes the value of trait i
through genetic coupling. If the empty vector is specified the matrix Σ is taken
equal to the identity matrix.

6. The sixth obligatory argument of the PSPMevodyn function is a Matlab (row) vector
of model parameter values. When used, this array should have the same length as
the number of parameters in the model (PARAMETER_NR). When of this length the
values will replace the default values of the parameters that are listed in the model
specification file. If the array used for this sixth argument is not of the correct length
PARAMETER_NR, for example when an empty vector is passed as the sixth argument,
it will simply be ignored.

100 CHAPTER 12. SIMULATING EVOLUTIONARY DYNAMICS

7. The seventh and last obligatory argument of the PSPMevodyn function is a Matlab cell
array containing possible options that modify the behaviour of the computational
module. Most of the options require a value and hence occur as a pair of option name
and option value. Only the 'test' option (see below) occurs on its own. Options
can be specified in any order, but the option value should always immediately follow
after the option name. All option values refer to indices of either environment
variables, structured populations or individual state variables. Notice, that this
index value follows the C-convention of ordering arrays starting at 0 (as opposed to
Matlab where array indices start at 1).

• Option pair {’popEVO’, ’i’}: This option pair specifies the index of the struc-
tured population, whose life history parameters are evolving. If not specified,
this index defaults to 0.

• Option pair {’envZE’, ’i’}: This option pair can be specified several times
as part of the option cell array. Including this option instructs the computa-
tional module to set the value of the environment variable with index 'i' equal
to 0 during the computations of the fixed point problem that determines the
selection gradient in the evolving parameters. In addition, the equilibrium con-
dition for this environment variable (as, for example, specified in code box 7.12)
is ignored and hence not included as condition to hold in the particular equi-
librium point. Notice that this can only occur for environment variables that
are of the type PERCAPITARATE or POPULATIONINTEGRAL (see section 7.3.2).

• Option pair {’popZE’, ’i’}: This option pair can be specified several times
as part of the option cell array. Including this option forces the computational
module to assume that the structured population with index 'i' in the model
is in a zero equilibrium state. This is the only way to compute an equilibrium
with a zero equilibrium state for a particular population. Even if a value of
0 would be specified for the birth rate of a population as part of the initial
point of the computation, the software would compute the equilibrium curve
with a non-zero (non-trivial) equilibrium state for this population. Notice that
if a structured population is forced to be in a zero equilibrium state by using
the 'popZE' option, a zero equilibrium state should also be enforced for all the
environment variables that represent integrals over this population distribution
(that are hence of the type POPULATIONINTEGRAL).

• Option pair {’isort’, ’i’}: This option modifies the output of the pop-
ulation states that are stored in an output file with a name of the form
<Modelname>-EVODYN-<NNNN>.mat. By default the computational module re-
ports the information about the population state distributions by subdividing
the axis of the first state variable (the one with index '0') in 100 subinter-
vals of equal length and reporting the statistics for the cohort of individuals
within each subinterval. By using the option 'isort' the default choice to use
the first individual state variable for this subdivision can be changed to the
second, third, and so on. Therefore, passing {’isort’, ’0’} as option cell
array to the PSPMevodyn function is the same as the default behaviour: the
first individual state variable is used for the subdivision and ordering of the
population state distribution, while passing {’isort’, ’1’} would use the
second individual state variable for this purpose. Also notice that the number

12.2. SIMULATING EVOLUTIONARY DYNAMICS IN MATLAB 101

of subdivisions of the individual state variable can be redefined by assigning
the dimension COHORT_NR a value different from 100 (see chapter 17).

• Option {’test’}: The last possible option that can be passed to the
PSPMevodyn function as part of the option cell array is the 'test' option.
This invokes the computational module in testing mode, which implies that
only a single integration of the individual life history is carried out and no
iteration to locate a fixed point of a set of equations is performed. In testing
mode the computational module reports on the dynamics of the individual
state variables, the survival, the cumulative impact on the environment and
the expected number of offspring produced by an individual during its different
life stage as well as over its entire life. Testing mode is very useful to discover
whether or not the model implementation gives sensible results or not.

Three other, optional arguments can be passed to the PSPMevodyn function: 'clean',
'force' and 'debug'. Unlike the previous arguments, which all modify the computations
to be performed, these options modify the behaviour of the PSPMevodyn function itself,
in particular the compilation of the model specific file into a mex module that can be
executed from Matlab. Also unlike all the previous arguments that can be passed, these
arguments can be passed in any order and at any position, the PSPMevodyn function
will filter these 3 optional arguments from the argument list before passing the filtered
argument list to the computational routine.

• Option 'clean': This optional argument instructs the PSPMevodyn function to
delete all result files that have been generated during previous calculations with
the model, i.e. as a result of previous calls to PSPMdemo, PSPMequi or PSPMevodyn.
These result files have names of the form <Modelname>-<Type>-<NNNN>.bif,
<Modelname>-<Type>-<NNNN>.err, <Modelname>-<Type>-<NNNN>.mat and
<Modelname>-<Type>-<NNNN>.out, in which <Modelname> refers to the name
of the model, <Type> refers to the type of computation that has been performed,
which in the case of PSPMevodyn equals EVODYN, and <NNNN> is a unique number
that distinguishes consecutive computations of the same type of curve with the
same model. Deleting all the output files from previous computations and/or the
compiled program executables that the package has generated can also be done
separately. The package contains a function PSPMclean, taking no arguments, to
delete all .bif, .err, .mat and .out files and/or all executable files that are present
in the current working directory.

• Option 'force': Using the option 'force' instructs the PSPMevodyn file to force
re-compilation of the model specific file into a mex module that can be executed by
Matlab. This option will usually not be needed by normal users, as the PSPMevodyn

function automatically recompiles the computational module when the model spe-
cific file with an .h extension is more recently changed than the compiled mex file.
However, if for some unclear reason this automatic recompilation fails, the 'force'
option can be used to initiate re-compilation.

• Option 'debug': This option instructs the PSPMevodyn function to turn on debug-
ging flags while compiling the model specific file into a mex module. This option
can be useful to detect programming mistakes in the model-specific file that are
otherwise hard to track down. The downside is that depending on the version of
Matlab that is used, turning on debugging flags during compilation may generate a
lot of output, including warnings about standard files of the operating system that

102 CHAPTER 12. SIMULATING EVOLUTIONARY DYNAMICS

are perfectly correct. It is hence not so easy to spot among all these messages the
warnings that relate to the model-specific code that has been implemented.

The computational module generates 2 output variables on execution (see the help page
on PSPMevodyn in Matlab command box 12.D). The first output variable curvepoints

contains the numerical information of the points along the computed curve. This variable
curvepoints is a matrix, in which each row represents one solution point along the curve.
The columns contain the evolutionary time value, the equilibrium value of all environment
variables, the equilibrium value for the birth rate of all structured populations in the
problem, the current value of the evolving parameter(s), the equilibrium value of all
interaction variables defined in the routine Impact(), the per capita growth rate of all
environment variables for which this is relevant (those of the type PERCAPITARATE), for
each of the structured populations the expected number of offspring produced by an
individual during its lifetime (R0) and finally the norm of the right-hand side of the
system of equations that is solved to obtain the ecological equilibrium. The latter quantity
(referred to as RHS norm) measures how close the computed equilibrium point is to the
true solution.

When the PSPMevodyn function finishes, it prints textual information about the compu-
tation that has been carried out. This textual information is also contained in the second
output variable curvedesc of the function (see box 12.D). Among others, this text con-
tains a header line indicating which column of the output contains which particular value
(see Matlab command box 12.B below for an example). The PSPMevodyn function prints
its report on the calculations by execution of the statement sprintf(curvedesc).

12.3 An example session using the PSPMevodyn script

The Matlab script Indet_growth_demo.m illustrates the use of the PSPMevodyn function by
simulating the evolutionary dynamics in the parameter q, the scaling power in the model
implemented in Indet_growth.h that relates the resource ingestion rate to individual
body size (see chapter 10). The particular call to the PSPMevodyn function is shown in
the following Matlab command box:

Command box 12.B: Simulating evolutionary dynamics in a single parameter

>> [data1, desc1] = PSPMevodyn('Indet_growth', [0.22 0.03554 1.0], [0.05 10], [6 0.5 1.5], [], [], {'popEVO', '0'});
2

Building executable Indet_growthevodyn.mexmaci64 ...
4

0.005000 2.20000000E-01 3.55373787E-02 1.00000000E+00
6 0.010000 2.18793851E-01 3.19778211E-02 9.92635669E-01

0.015000 2.18089189E-01 2.97666950E-02 9.87408855E-01
8 <...output lines suppressed in this box...>

2.581562 2.15592977E-01 1.75885665E-02 9.38263363E-01
10 2.631562 2.15592977E-01 1.75885665E-02 9.38263362E-01

2.681562 2.15592977E-01 1.75885664E-02 9.38263362E-01
12

14 #
Executing : PSPMevodyn('Indet_growth', [0.22 0.03554 1], [0.05 10], [6 0.5 1.5], [], [], {'popEVO', '0'})

16 #
Parameter values :

18 #
Delta : 0.1 Rmax : 2 Sb : 0.05

20 # Sj : 1 Sm : 2 Imax : 1
q : 1 Sigma : 0.5 T : 0.1

22 # p : 1 Mu : 0.01
#

24 # Index of structured population for evolutionary dynamics : 0
Index of evolution parameter #0 : 6

26 #
1:Evol.time 2:E[0] 3:b[0] 4:q 5:I[0][0] 6:I[0][1] 7:I[0][2] 8:R0[0] 9:RHS norm

28 #
>> data1

12.3. AN EXAMPLE SESSION USING THE PSPMEVODYN SCRIPT 103

30
data1 =

32
0.005 0.22 0.035537 1 0.178 0.5323 0.27679 1 9.5869e-09

34 0.01 0.21879 0.031978 0.99264 0.17812 0.52101 0.28863 1 8.7718e-09
0.015 0.21809 0.029767 0.98741 0.17819 0.51246 0.2975 1 3.5224e-09

36 <...output lines suppressed in this box...>
2.5816 0.21559 0.017589 0.93826 0.17844 0.41944 0.39166 1 2.3086e-07

38 2.6316 0.21559 0.017589 0.93826 0.17844 0.41944 0.39166 1 2.3086e-07
2.6816 0.21559 0.017589 0.93826 0.17844 0.41944 0.39166 1 2.3086e-07

Starting from an (approximate) equilibrium resource density of 0.22 and an (approxi-
mate) equilibrium birth rate value of 0.03554 for an initial parameter value q = 1.0 the
evolutionary dynamics is simulated from t = 0 (this starting time is always taken equal
to 0) till t = 2.681562. The simulation stops at this time point, because the evolution
in q has converged to a fixed value and q is not going to change any further. This final
value of q hence represents a stable and attracting evolutionary state (CSS). In general,
the computation will be stopped whenever all evolving parameters have stabilised at a
constant value.

The starting point of the computation is contained in the second argument to the function
PSPMevodyn, as shown above, whereas the first argument defines the basename of the file
with the model implementation 'Indet growth'. The third argument to the function
PSPMevodyn sets the maximum evolutionary time step to 0.05 and the maximum time
at which to stop the evolutionary simulation to 10.0, but the latter is never reached
because of the convergence to an evolutionarily constant q value. The fourth argument
to the function PSPMevodyn contains a single triplet of values, given that only a single
parameter is allowed to evolve, defining the index of the parameter q in the parameter

array as defined in Indet_growth.h and its minimum and maximum value at which to
stop the computations. The fifth and sixth argument are left undefined, which implies that
the variance–covariance matrix Σ (refer to equation (12.1)) defaults to the identity matrix
and default values are used for all non-evolving model parameters. These default values
are defined in the file Indet_growth.h. The final argument to the function PSPMevodyn,
the cell array with options, defines the index of the structured population, in which the
evolutionary dynamics takes place, equal to 0, but as discussed before, specifying this
option is superfluous as the option 'popEVO' is equal to 0 by default.

During the computations the program reports the current value of the evolutionary time,
the ecological equilibrium values of the resource density and the population birth rate
and the current value of the evolving parameter q. In the Matlab command box above the
values of the computed points along the evolutionary trajectory are stored in the variable
data1, the contents of which are inspected after the PSPMevodyn function finishes and
it has printed out the textual information about the computation. The demonstration
script Indet_growth_demo.m uses the data contained in the first and the fourth column
of data1 to plot the time course of evolutionary change in the parameter q.

In the following Matlab command box, a similar trajectory of the evolutionary dynamics
is computed starting from the same ecological equilibrium, but now both the parameter
q and the parameter p, which relates the maintenance costs to individual body size (see
chapter 10), are allowed to evolve. To that end, the starting point of the computation is
extended with an initial value for the parameter p (1.0) and the fourth argument of the
PSPMevodyn function is extended with a triplet of values that indicate the index of the
parameter p in the parameter array as defined in Indet_growth.h and its minimum and
maximum value at which to stop the computations. In addition, the maximum integration
time at which to stop the evolutionary computations is increased to 100. Otherwise, the

104 CHAPTER 12. SIMULATING EVOLUTIONARY DYNAMICS

command line of this computation is identical to the one shown in Matlab command
box 12.B.

Command box 12.C: Simulating evolutionary dynamics in two parameters

>> [data2, desc2] = PSPMevodyn('Indet_growth',[0.22 0.03554 1.0 1.0],[0.05 100],[6 0.5 1.5 9 0.5 1.5],[],[],{'popEVO','0'});
2

Executable Indet_growthevodyn.mexmaci64 is up-to-date
4

0.005000 2.20000000E-01 3.55373787E-02 1.00000000E+00 1.00000000E+00
6 0.010000 2.18004640E-01 2.95832099E-02 9.92635669E-01 1.00669514E+00

0.015000 2.17277498E-01 2.70926149E-02 9.88746582E-01 1.01012886E+00
8 <...output lines suppressed in this box...>

59.960312 2.13281602E-01 1.20360784E-02 4.99880243E-01 5.34824255E-01
10 60.010312 2.13281602E-01 1.20360784E-02 4.99880243E-01 5.34824254E-01

60.060312 2.13281602E-01 1.20360784E-02 4.99880243E-01 5.34824254E-01
12

14 #
Executing : PSPMevodyn('Indet_growth', [0.22 0.03554 1 1], [0.05 100], [6 0.5 1.5 9 0.5 1.5], [], [], {'popEVO', '0'})

16 #
Parameter values :

18 #
Delta : 0.1 Rmax : 2 Sb : 0.05

20 # Sj : 1 Sm : 2 Imax : 1
q : 1 Sigma : 0.5 T : 0.1

22 # p : 1 Mu : 0.01
#

24 # Index of structured population for evolutionary dynamics : 0
Index of evolution parameter #0 : 6

26 # Index of evolution parameter #1 : 9
#

28 # 1:Evol.time 2:E[0] 3:b[0] 4:q 5:p 6:I[0][0] 7:I[0][1] 8:I[0][2] 9:R0[0] 10:RHS norm
#

30 >> data2

32 data2 =

34 0.005 0.22 0.035537 1 1 0.178 0.5323 0.27679 1 9.5869e-09
0.01 0.218 0.029583 0.99264 1.0067 0.1782 0.51299 0.30033 1 3.9863e-09

36 0.015 0.21728 0.027093 0.98875 1.0101 0.17827 0.50136 0.31348 1 3.4821e-09
<...output lines suppressed in this box...>

38 59.96 0.21328 0.012036 0.49988 0.53482 0.17867 0.3555 0.34742 1 7.8664e-07
60.01 0.21328 0.012036 0.49988 0.53482 0.17867 0.3555 0.34742 1 7.8664e-07

40 60.06 0.21328 0.012036 0.49988 0.53482 0.17867 0.3555 0.34742 1 7.8664e-07

The output in the command box above shows that again the evolutionary dynamics are
halted before the maximum time (100) is reached. As soon as an evolving parameter
(here the parameter q) drops below its minimum value or exceeds its maximum value, as
specified in the fourth argument to the function PSPMevodyn, it is stopped from evolving
further, which in the case of the computation shown above leads to convergence to a
constant value of the second evolving life history parameter p. This convergence ultimately
halts the computation. The computation is therefore in this case stopped because no
further evolution occurs, but computations will also stop whenever all evolving parameters
have reached either their minimum or their maximum limit.

12.4 Output files generated by the PSPMevodyn script

The computational module that is produced by the PSPMevodyn function
generates 3 output files. The name of these files is always of the form
<Modelname>-EVODYN-<NNNN>.<ext>, in which <Modelname> is the same as the name
of the file specifying the model excluding its .h extension, <NNNN> is a 4-digit number
that is unique for the current computation and .<ext> is the extension, which can be
either .err, .mat or .out. The unique number distinguishes the same types of curve
computations for the same model from each other. The number is obtained by considering
increasing values of <NNNN> (i.e., 0000, 0001, 0002 and so forth) and testing whether
result files with the particular index are already present. The program uses the first value
of <NNNN> that is not in use.

12.4. OUTPUT FILES GENERATED BY THE PSPMEVODYN SCRIPT 105

The file called <Modelname>-EVODYN-<NNNN>.err that is generated during the computa-
tions contains information about the numerical progress of the computations. It reports
details on the steps taken during the Newton iteration, the convergence to the solution,
as well as information about the steps taken along the curve that is being computed. This
file can be informative in case the computation of a particular curve stops for unknown
reasons, but is otherwise of little use.

The output file called <Modelname>-EVODYN-<NNNN>.out holds the same information as
is contained in the two output variables curvepoints and curvedesc returned by the
PSPMevodyn function (see box 12.D). The first lines of this file all start with a # sign and
contain the information about the run performed, which is also contained in curvedesc

and can be listed by the statement sprintf(curvedesc). Following this descriptive
header the file contains columns with computational results that are also contained in
the variable curvepoints (see, for example, Matlab command box 12.B). In fact, the two
output variables curvepoints and curvedesc are generated by reading the contents of
the file <Modelname>-EVODYN-<NNNN>.out from disk after the computations have ended,
storing all lines that start with a # sign into a single string variable curvedesc, while
storing the information on all other lines into the data matrix curvepoints.

The file called <Modelname>-EVODYN-<NNNN>.mat contains for every curve point that has
been computed information on the parameters, for which the point has been computed,
the equilibrium values of all environment variables and the stable distribution of all struc-
tured populations in the model. For example, the file Indet_growth-EVODYN-0001.mat

is generated by the invocation of the PSPMevodyn function in Matlab command box 12.C.
Highlighting (selecting) this file in Matlab’s “Current folder” window displays its contents
in Matlab’s “File details” window. It consists of a series of population states, one for
each of the points computed along the evolutionary trajectory, as shown in the following
box (notice that some intermediate output is suppressed as was also the case in previous
Matlab command boxes):

State_5_000000E_03 <1x1 struct>
2 State_1_000000E_02 <1x1 struct>

State_1_500000E_02 <1x1 struct>
4 <...output lines suppressed in this box...>

State_5_996031E01 <1x1 struct>
6 State_6_001031E01 <1x1 struct>

State_6_006031E01 <1x1 struct>

The structure called State_1_500000E_02 contains the population state in the ecological
equilibrium that occurred at time point t = 0.015 during the simulation of evolutionary
dynamics, as its name suggests. Loading this state into the Matlab workspace reveals its
contents to be various arrays of numbers, as shown in the following box:

>> load('Indet_growth-EVODYN-0001.mat', 'State_1_500000E_02')
2 >> State_1_500000E_02

4 State_1_500000E_02 =

6 EvoTime: 0.015
EvoPars: [0.98875 1.0101]

8 Parameters: [0.1 2 0.05 1 2 1 0.98875 0.5 0.1 1.0101 0.01]
Environment: 0.21728

10 Pop00_BirthStates: [0 0.05]
Pop00: [100x3 double]

The first element (called EvoTime) of the structure contains the value of the evolutionary
time t at which the current population state occurs. The second element, an array called

106 CHAPTER 12. SIMULATING EVOLUTIONARY DYNAMICS

EvoPars, contains the values at evolutionary time t of all the evolving model parameters.
The third element, an array called Parameters, contains the values of all the model pa-
rameters for which the population state has been computed, while the third member of the
structure State_1_500000E_02 contains the equilibrium values of all environment vari-
ables. The two subsequent arrays characterise the equilibrium population distribution, of
which the first (called Pop00_BirthStates) specifies the state at birth of the individuals.
The other (called Pop00) is a two-dimensional array characterising the population distri-
bution in the equilibrium point with the first column State_1_500000E_02.Pop00(:,1)

representing the density profile of the equilibrium population and the subsequent columns
State_1_500000E_02.Pop00(:,2) and State_1_500000E_02.Pop00(:,3) representing
the average values of the individual state variables with index 0 and 1 in the model (cor-
responding to individual age and size in the model implemented in Indet_growth.h), as
shown below:

>> State_1_500000E_02.Pop00
2

ans =
4

0.50709 10.004 0.0584
6 0.41218 30.727 0.079118

0.33503 51.451 0.10572
8 <...output lines suppressed in this box...>

9.4425e-10 2020.2 1.9858
10 7.6751e-10 2040.9 1.9859

6.2386e-10 2061.6 1.9861

If individuals are characterised by more than two individual state variables, the values of
these follow in additional columns of the two-dimensional array Pop00. The Matlab com-
mand box above also illustrates the contents of the equilibrium population distribution by
listing the first and last 3 rows of the two-dimensional array State_1_500000E_02.Pop00.
The dimension of the array State_1_500000E_02.Pop00 indicates that the population
is represented by 100 cohorts of individuals (see chapter 17 for the option to change
this number). The number of individuals in cohort i is given by the array element
State_1_500000E_02.Pop00(i,1), while the average value of the individual state variable
with index 0 and 1 (average age and average body size in the current model) are given by
State_1_500000E_02.Pop00(i,2) and State_1_500000E_02.Pop00(i,3), respectively.

12.4. OUTPUT FILES GENERATED BY THE PSPMEVODYN SCRIPT 107

Command box 12.D: PSPMevodyn help page

>> help PSPMevodyn
2 PSPMevodyn: Computes the evolutionary dynamics for a structured population model using the canonical equation

4 Matlab syntax:

6 [curvepoints, curvedesc] = ...
PSPMevodyn(modelname, startpoint, curvepars, evopars, covars, parameters, options,...

8 'clean', 'force', 'debug')

10 Arguments:

12 modelname: (string, required)
Basename of the file with model specification. The file

14 should have extension '.h'. For example, the model 'PNAS2002'
is specified in the file 'PNAS2002.h'

16
startpoint: (row vector, required)

18 The initial point from which to start the simulation of the dynamics over
evolutionary time, including the initial values of the evolving parameters

20
curvepars: (row vector of length 2, required)

22 Vector of length 2 specifying:

24 curvepars(1): the maximum step size in evolutionary time during
the integration of the canonical equation

26 curvepars(2): the maximum evolutionary time at which to stop
the integration of the canonical equation

28
evopars: (row vector of length n*3, required)

30 Vector of length n*3 specifying:

32 evopars(1): the index of the first evolution parameter
evopars(2): lower threshold, below which value of the

34 first evolution parameter the computation stops
evopars(3): upper threshold, above which value of the

36 first evolution parameter the computation stops
......

38
evopars(n*3-2): the index of the last evolution parameter

40 evopars(n*3-1): lower threshold, below which value of the
last evolution parameter the computation stops

42 evopars(n*3): upper threshold, above which value of the
last evolution parameter the computation stops

44
covars: (row vector, required, but can be the empty vector [])

46 Vector of length n*n, where n is the number of evolving parameters.
The vector elements specify the values of the covariance matrix in

48 the selection gradients. Vectors of other lengths, including an
empty vector will be ignored.

50
parameters: (row vector, required, but can be the empty vector [])

52 Vector of length PARAMETER_NR (set in the model program
file), specifying the values for the model parameters to

54 use in the computation. Vectors of other lengths, including
an empty vector will be ignored.

56
options: (cell array, required, but can be the empty cell array {})

58 Cell array with pairs of an option name and a value (for
example {'popBP', '1'}) or single options (i.e. 'test').

60 Possible option names and their values are:

62 'popEVO', '<index>': Index of structured population, for
which to calculate the evolutinary dynamics

64 'envZE', '<index>': Index of environment variable in
trivial equilibrium (can be used

66 multiple times)
'popZE', '<index>': Index of structured population in

68 trivial equilibrium (can be used
multiple times)

70 'isort', '<index>': Index of i-state variable to use as
ruling variable for sorting the

72 structured populations
'test' : Perform only a single integration over

74 the life history, reporting dynamics
of survival, R0, i-state and

76 interaction variables

78 'clean': (string. optional argument)
Remove all the result files of the model before the

80 computation

82 'force': (string, optional argument)
Force a rebuilding of the model before the computation

84
'debug': (string, optional argument)

86 Compile the model in verbose mode and with debugging flag set

88 Output:

90 curvepoints: Matrix with output for all computed points along the curve

92 curvedesc: Column vector with strings, summarizing the numerical details
of the computed curve (i.e., initial point, parameter values,

108 CHAPTER 12. SIMULATING EVOLUTIONARY DYNAMICS

94 numerical settings used)

Simulating the individual life
history

109

13

Simulating individual life histories in specific
environments

To analyse the factors and mechanisms that lead to specific changes in model equilibria
with a change in parameters it is often necessary to compute the life history trajectory of
an individual organism at a specific set of environmental conditions. Although to some
extent this information can be extracted from the population state file (the .mat file)
that is generated as output, the package also contains a separate function PSPMind that
computes the individual life history, given a particular set of values for the environmental
variables. Invoking the PSPMind function requires a slightly different syntax than the
functions discussed in earlier chapters, because PSPMind only needs the values of envi-
ronmental variables as input. The output of PSPMind function is a structure with similar
contents as the structures that are normally stored in the .mat file (see section 5.2, 8.5
or 12.4 for a discussion of the .mat file). In fact, the program generates such a file with
a name <Modelname>-IND-<NNNN>.mat which contains exactly one population state. As
before, <Modelname> is the same as the name of the file specifying the model excluding its
.h extension and <NNNN> is a 4-digit number that is unique for the current computation.

13.1 Arguments of the PSPMind function

The general call to the PSPMind function is shown in the command box below.

Command box 13.A: General syntax of a PSPMind call

>> output = PSPMind(modelname, environment, parameters, options, 'clean', 'force', 'debug')

The obligatory and optional arguments to the PSPMind function are the following:

1. The first, obligatory argument to the Matlab-script PSPMind is the name of the file
specifying the PSPM, passed as a string argument. It is unnecessary to include
the extension .h as part of the file name, the Matlab-script will strip the .h exten-
sion away if it is included. The Matlab-command to simulate the life history with
the model in PNAS2002.h, which is used for the illustration below, therefore takes
'PNAS2002' as its first argument.

111

112
CHAPTER 13. SIMULATING INDIVIDUAL LIFE HISTORIES IN SPECIFIC

ENVIRONMENTS

2. The second, obligatory argument is a Matlab (row) vector containing the values of
the environmental variables, for which to compute the individual life history:

[<environment variable 1> <environment variable 2> ...]

The number of values specified in this vector should equal the value of the constant
ENVIRON_DIM as it is defined in the model specification file (.h file). Notice, that
this vector therefore does not contain any parameter values or birth rate values of
the structured populations.

3. The third obligatory argument of the PSPMind function is a Matlab (row) vector
of model parameter values. When used, this array should have the same length as
the number of parameters in the model (PARAMETER_NR). When of this length the
values will replace the default values of the parameters that are listed in the model
specification file (see code box 7.2 for an example). If the array used for this third
argument is not of the correct length PARAMETER_NR, for example when an empty
vector is passed as the third argument, it will simply be ignored.

4. The fourth, optional argument of the PSPMind function is a Matlab cell array con-
taining possible options that modify the behaviour of the computational module.
The PSPMind function only recognises a single option 'isort'. Hence, this fourth
argument is either specified as an empty cell array {} or takes the form:

{’isort’, ’i’}

This option modifies the output of the equilibrium state of the populations, which
are stored in an output file with a name of the form <Modelname>-IND-<NNNN>.mat

(see below). By default the computational module reports the information about
the stable population state distributions by subdividing the axis of the first state
variable (the one with index '0') in 100 subintervals of equal length and reporting
the statistics for the cohort of individuals within each subinterval. By using the
option 'isort' the default choice to use the first individual state variable for this
subdivision can be changed to the second, third, and so on. Therefore, passing
{’isort’, ’0’} as option cell array to the PSPMequi function is the same as the
default behaviour: the first individual state variable is used for the subdivision
and ordering of the population state distribution, while passing {’isort’, ’1’}

would use the second individual state variable for this purpose. Also notice that the
number of subdivisions of the individual state variable can be redefined by assigning
the dimension COHORT_NR a value different from 100 (see code box 7.2 in section 7.1.1
as well as chapter 17).

Three other, optional arguments can be passed to the PSPMequi function: 'clean',
'force' and 'debug'. Unlike the previous arguments, which all modify the compu-
tations to be performed, these options modify the behaviour of the PSPMequi function
itself, in particular the compilation of the model specific file into a mex module that can
be executed from Matlab. Also unlike all the previous arguments that can be passed,
these arguments can be passed in any order and at any position, the PSPMequi function
will filter these 3 optional arguments from the argument list before passing the filtered
argument list to the computational routine.

• Option 'clean': This optional argument instructs the PSPMequi function to

13.2. AN EXAMPLE USING THE PSPMIND FUNCTION 113

delete all result files that have been generated during previous calculations with the
model, i.e. as a result of previous calls to PSPMequi. These result files have names of
the form <Modelname>-<Type>-<NNNN>.bif, <Modelname>-<Type>-<NNNN>.err,
<Modelname>-<Type>-<NNNN>.mat and <Modelname>-<Type>-<NNNN>.out, in
which <Modelname> refers to the name of the model (i.e. PNAS2002 in the example
model presented in previous sections), <Type> refers to the type of continuation that
has been performed, i.e. either BP, BPE, EQ, ESS, LP or PIP, and <NNNN> is a unique
number that distinguishes consecutive computations of the same type of curve with
the same model. Deleting all the output files from previous computations and/or
the compiled program executables that the package has generated can also be done
separately. The package contains a function PSPMclean, taking no arguments, to
delete all .bif, .err, .mat and .out files and/or all executable files that are present
in the current working directory.

• Option 'force': Using the option 'force' instructs the PSPMequi file to force
re-compilation of the model specific file into a mex module that can be executed by
Matlab. This option will usually not be needed by normal users, as the PSPMequi

function automatically recompiles the computational module when the model spe-
cific file with an .h extension is more recently changed than the compiled mex file.
However, if for some unclear reason this automatic recompilation fails, the 'force'
option can be used to initiate re-compilation.

• Option 'debug': This option instructs the PSPMequi function to turn on debugging
flags while compiling the model specific file into a mex module. This option can be
useful to detect programming mistakes in the model-specific file that are otherwise
hard to track down. The downside is that depending on the version of Matlab that
is used, turning on debugging flags during compilation may generate a lot of output,
including warnings about standard files of the operating system that are perfectly
correct. It is hence not so easy to spot among all these messages the warnings that
relate to the model-specific code that has been implemented.

The output of function is discussed in the example below.

13.2 An example using the PSPMind function

To illustrate the use of the PSPMind function, I will consider the example as dis-
cussed in section 8.5 and shown in box 8.H. There, an equilibrium population state
called State_4_042258E_04 pertaining to the parameter value Rmax = 4.042258 ·
10−4, was read from the population state (.mat) file. As shown in box 8.H
the vector of environmental variables for the computed model equilibrium equals
[0.00025335 0.0001336 4.008e-06]. Computing the individual life history for this
particular environmental state with PSPMind gives the following result:

>> output = PSPMind('PNAS2002', [0.00025335 0.0001336 4.008e-06], [], {'isort', '1'});
2

Building executable PNAS2002ind.mexmaci64 using sources from /Users/andre/programs/PSPM analysis ...
4

6

8 Istate[0] Istate[1] Survival R0 Impact[0] Impact[1] Impact[2] Impact[3]
Pop. # 0 - Bstate 0 - (Final): 1237.24 283.066 1E-09 0.999838 0.0512458 0.0136148 0.0370505 0.624898

10

12 Parameters: [0.1 0.0003 7 27 110 300 9e-06 0.0001 1.5e-05 0.006 0.003 0.01 5000 0.1 0.5 0.01]

114
CHAPTER 13. SIMULATING INDIVIDUAL LIFE HISTORIES IN SPECIFIC

ENVIRONMENTS

Environment: [0.00025335 0.0001336 4.008e-06]
14 Pop00: [101x8 double]

The individual life history is contained in the structure element Pop00 and contains the
following columns:

>> output.Pop00
2

ans =
4

1 0 7 0 0 0 0 0
6 0.32214 1.6741 9.7607 0.0063037 0.004973 0 0 0

0.10259 3.3651 12.521 0.0099518 0.0087971 0 0 0
8 0.032289 5.0735 15.282 0.011783 0.011195 0 0 0

<...output lines suppressed in this box...>
10 3.6519e-07 647.2 277.54 0.050977 0.013615 0.037051 0.61773 0.99177

1.2064e-07 757.96 280.31 0.051156 0.013615 0.037051 0.6225 0.99715
12 1e-09 1237.2 283.07 0.051246 0.013615 0.037051 0.6249 0.99984

The columns refer to the individual survival, the values of all individual state variables,
the values of the different cumulative impacts of the individual and the value of its life-
time reproductive success R0, respectively. These values are reported at 100 points in
the individual life history. Passing the option vector {’isort’, ’1’} as argument im-
plies that the interval between the minimum and maximum value of the individual state
variable with index 1 (here ranging between 7 and 283.1) is subdivided into 100 equidis-
tant subintervals. It is at the boundaries of these subintervals that the life history data
are reported. If the model contains multiple structured populations, the individual life
histories of individuals in the other populations will follow as Pop01, Pop02, etc.

Do note, however, that the function PSPMind will simulate the individual life history for
the default values of the parameters, unless the parameters argument is passed to the
function. Therefore, technically the life history shown above pertains to a parameter
value of Rmax = 3.0 ·10−4 (default value) as opposed to Rmax = 4.042258 ·10−4, for which
the equilibrium environmental variables were calculated. In this particular case this does
not matter because the parameter Rmax represents the resource productivity which does
not affect the individual life history at all. But in case the bifurcation parameter does
influence the individual life history make sure to pass the proper parameter vector as an
argument to the function PSPMind.

13.2. AN EXAMPLE USING THE PSPMIND FUNCTION 115

Command box 13.B: PSPMind help page

>> help PSPMind
2 PSPMind: Computes the individual life history in a given environment

4 Syntax:

6 output = PSPMind(modelname, environment, parameters, options, 'clean', 'force', 'debug')

8 Arguments:

10 modelname: (string, required)
Basename of the file with model specification. The file

12 should have extension '.h'. For example, the model 'PNAS2002'
is specified in the file 'PNAS2002.h'

14
environment: (row vector, required)

16 Vector of length ENVIRON_DIM (set in the model program
file), specifying the value of the environmental variables

18 at which to calculate the individual life history

20 parameters: (row vector, required, but can be the empty vector [])
Vector of length PARAMETER_NR (set in the model program

22 file), specifying the values for the model parameters to
use in the computation. Vectors of other lengths, including

24 an empty vector will be ignored.

26 options: (cell array, required, but can be the empty cell array {})
Cell array with a pair of an option name and a value (for

28 example {'isort', '1'}). The only possible option name
and its values is:

30
'isort', '<index>': Index of i-state variable to use as

32 ruling variable for sorting the
structured populations

34
'clean': (string. optional argument)

36 Remove all the result files of the model before the
computation

38
'force': (string, optional argument)

40 Force a rebuilding of the model before the computation

42 'debug': (string, optional argument)
Compile the model in verbose mode and with debugging flag set

44
Output:

46
The output is a structure with the population state as normally stored in the

48 .mat output file of PSPMdemo, PSPMequi, and PSPMevodyn.

Additional information

117

14

Multiple states at birth

The previous chapters focused mainly on models that assume that all newborn individuals
have the same, unique state-at-birth. In the Medfly model, used in chapter 4 to discuss
the implementation of a model for demographic analysis, individual age was the only
i-state variable, which obviously equals 0 for all individuals at birth. In the PNAS model,
used in chapter 7 to discuss the implementation of a model for equilibrium analysis,
all individuals were assumed to be born with the same length at birth ` = `b. The
directory Test contains, however, also 4 files (Indet_growth_5bs.h, KlanjscekDEB2.h,
Medfly_periodic.h and PNAS2002_5bs.h) that implement models, in which individuals
have different states-at-birth. These models will not be discussed extensively. Instead,
the following sections will only briefly present some details about their implementation
and usage, which are specific to the multiple states-at-birth.

The implementation of a model with multiple states-at-birth differs in at least 3 aspects
from a model with a unique state-at-birth:

1. The number of possible states at birth has to be defined larger than 1.

2. The values of the i-state variables at birth have to be defined separately for the
different states-at-birth.

3. Not only the number of offspring produced has to be specified, but also the state-
at-birth of the offspring has to be specified.

4. In addition, the state-at-birth of an individual may influence the threshold value
separating consecutive stages, the development and discrete changes in the individ-
ual state variables, the fecundity, the mortality and the impact of the individual on
its environment (the latter only in case of equilibrium analysis of non-linear models).
If this is the case, the values assigned in the routines IntervalLimit(), Growth(),
DiscreteChanges(), Fecundity(), Mortality(), and possibly Impact() will be
dependent on the state-at-birth as well.

This last aspect is, however, not absolutely necessary, whereas the aspects 1-3 mentioned
above are.

119

120 CHAPTER 14. MULTIPLE STATES AT BIRTH

14.1 Demographic analysis with multiple states-at-birth

14.1.1 Two different offspring body sizes

The file KlanjscekDEB2.h implements a model, in which the life history of the individ-
uals is described by a dynamic energy budget (DEB) model. The model is a variant
of the model implemented in the file KlanjscekDEB.h, which assumes that all individ-
uals at birth have the same size at birth Vb. In contrast, the model implemented in
the file KlanjscekDEB2.h is based on an assumption that two types of offspring are
produced: small offspring with a body size 0.7 · Vb and large offspring with a body
size 1.3 · Vb. Both models are discussed in detail in De Roos (2008), the model im-
plemented in KlanjscekDEB.h on page 5-7 and the model with two types of offspring
(implemented in KlanjscekDEB2.h) on page 13-14 of De Roos (2008). The Matlab script
KlanjscekDEB_demo.m carries out the demographic analysis for both models and graphs
the results as a function of food density in the environment, which can be compared with
Figure 2 in De Roos (2008).

As shown in the code box below, which contains a snippet from the model implemented in
KlanjscekDEB2.h, the number of possible states-at-birth should be defined larger than 1
in the routine SetBirthStates(), in this particular model BirthStates[0] is set equal
to 2.

Code box 14.1: Specification of the number of possible states-at-birth

/*

2 *===

* DEFINITION OF THE LIFE HISTORY MODELS FOLLOWS BELOW

4 *===

* Specify the number of states at birth for the individuals in all structured

6 * populations in the problem in the vector BirthStates[].

*===

8 */

10 void SetBirthStates(int BirthStates[POPULATION_NR], double E[])

{

12 BirthStates[0] = 2;

14 return;

}

The values of the i-state variables in the different states-at-birth have to be defined
separately. This means that in the routine StateAtBirth() the assignment of the values
to the variables istate[][] has to be made conditional on the value of the index of the
state-at-birth BirthStateNr. The model implemented in the file KlanjscekDEB2.h has
2 states-at-birth {φ1,φ2}. In the code box below it is shown that the state-at-birth φ1

(with index BirthStateNr = 0) corresponds to the small-sized offspring with body size
0.7 ·Vb, while the the state-at-birth φ2 (BirthStateNr = 1) corresponds to the large-sized
offspring with body size 1.3 · Vb.

14.1. DEMOGRAPHIC ANALYSIS 121

Code box 14.2: Specifying the value of all possible states-at-birth

/*

2 *===

* Specify all the possible states at birth for all individuals in all

4 * structured populations in the problem. BirthStateNr represents the index of

* the state of birth to be specified. Each state at birth should be a single,

6 * constant value for each i-state variable.

*

8 * Notice that the first index of the variable 'istate[][]' refers to the

* number of the structured population, the second index refers to the

10 * number of the individual state variable. The interpretation of the latter

* is up to the user.

12 *===

*/

14

void StateAtBirth(double *istate[POPULATION_NR], int BirthStateNr, double E[])

16 {

if (BirthStateNr == 0)

18 {

AGE = 0.0;

20 VOLUME = 0.7*VB;

Q = 0.0;

22 H = 0.0;

}

24 else

{

26 AGE = 0.0;

VOLUME = 1.3*VB;

28 Q = 0.0;

H = 0.0;

30 }

32 return;

}

Finally, the last part of the code that has to be changed in case of multiple states-at-birth is
the assignment of fecundity to different states-at-birth. The model implemented in the file
KlanjscekDEB2.h assumes that individuals with a different state-at-birth differ in their
offspring production. More specifically, individuals that are born with a small size (V =
0.7 ·Vb) are assumed to invest 2/3 of the energy that they have available for reproduction
on producing small offspring (i.e. with V = 0.7 · Vb) and 1/3 of the reproductive energy
producing large-sized offspring with V = 1.3 · Vb. Vice versa, individuals that are born
with a large body size (V = 1.3 · Vb) are assumed to invest 2/3 of the energy that they
have available for reproduction on producing large offspring (i.e. with V = 1.3 · Vb) and
1/3 of the reproductive energy producing small-sized offspring with V = 0.7 · Vb. Parents
bias their energetic investment into reproduction therefore toward producing offspring
with the same size at birth as they were born with themselves. These different energetic
investments into the two types of offspring are subsequently converted into a number of
offspring by dividing them by the energy costs to produce a single offspring. For small- and
large-sized offspring these costs are proportional to 0.7 · Vb and 1.3 · Vb, respectively. For
mothers born with a small size-at-birth this implies that the biased energetic investment
in producing offspring with small sizes-at-birth is even more pronounced when considered
in terms of number of offspring produced, whereas for mothers born with a large size-at-
birth the bias is dampened by the conversion to number of offspring produced.

The size-at-birth of the offspring produced is therefore on average smaller in the model
implemented in KlanjscekDEB2.h, compared to the model with a single state-at-birth,
which is implemented in KlanjscekDEB.h. As a consequence, the number of offspring
produced is larger, which is the most likely reason for the finding that the population

122 CHAPTER 14. MULTIPLE STATES AT BIRTH

growth rate of the model with 2 states-at-birth is consistently larger than in case of a
single state-at-birth (see the graphical output of the KlanjscekDEB_demo.m script).

Code box 14.3: Specification of fecundity

/*

2 *===

* Specify the fecundity of individuals as a function of the i-state

4 * variables and the individual's state at birth for all populations in every

* life stage.

6 *

* The number of offspring produced has to be specified for every possible

8 * state at birth in the variable 'fecundity[][]'. The first index of this

* variable refers to the number of the structured population, the second

10 * index refers to the number of the birth state.

*

12 * Notice that the first index of the variable 'istate[][]' refers to the

* number of the structured population, the second index refers to the

14 * number of the individual state variable. The interpretation of the latter

* is up to the user.

16 *===

*/

18

void Fecundity(int lifestage[POPULATION_NR], double *istate[POPULATION_NR],

20 double *birthstate[POPULATION_NR], int BirthStateNr, double E[],

double *fecundity[POPULATION_NR])

22 {

double Er;

24

if (lifestage[0] == 1) // Only for adults

26 {

Er = (1-KAPPA)*EM*FOOD*G*(NU*pow(VOLUME, 2.0/3.0) + M*VOLUME)/(FOOD + G);

28 fecundity[0][0] = fecundity[0][1] = max(Er - (1-KAPPA)*EM*M*G*VP,0);

if (BirthStateNr == 0)

30 {

fecundity[0][0] *= (2.0/3.0)*KAPPA_R/(EM*(KAPPA*G + FOOD)*0.7*VB);

32 fecundity[0][1] *= (1.0/3.0)*KAPPA_R/(EM*(KAPPA*G + FOOD)*1.3*VB);

}

34 else

{

36 fecundity[0][0] *= (1.0/3.0)*KAPPA_R/(EM*(KAPPA*G + FOOD)*0.7*VB);

fecundity[0][1] *= (2.0/3.0)*KAPPA_R/(EM*(KAPPA*G + FOOD)*1.3*VB);

38 }

}

40 else

{

42 fecundity[0][0] = 0;

fecundity[0][1] = 0;

44 }

46 return;

}

In case of multiple states at birth the structures in the output file containing the stable
population states is more complex. Consider for example the computation with the file
KlanjscekDEB2.h that is executed when running the test script alldemotests.m:

>> [data2, desc2] = PSPMdemo('KlanjscekDEB2', [0 1.0 -0.02 0.4 1.0], 'clean', 'force');
2

Building executable KlanjscekDEB2demo.mexmaci64 ...
4

1.00000000E+00 6.95508116E-01
6 9.80000000E-01 6.82539595E-01

9.60000000E-01 6.69183490E-01
8 <...output lines suppressed in this box...>

4.40000000E-01 9.73367354E-02
10 4.20000000E-01 5.99646757E-02

14.1. DEMOGRAPHIC ANALYSIS 123

4.00000000E-01 2.03431517E-02
12

14 #
Executing : PSPMdemo('KlanjscekDEB2', [0 1 -0.02 0.4 1], [], {})

16 #
Parameter values :

18 #
Food : 1 Kappa : 0.8 Kappa_R : 0.001

20 # Nu : 0.075 m : 0.583 g : 1.286
Vb : 1E-09 Vp : 1.73E-06 [Em] : 0.7

22 # ha : 0.15
#

24 # Index of bifurcation parameter #1 : 0
#

26 # 1:Food 2:PGR[0] 3:Tc[0] 4:S[0][0] 5:S[0][1] 6:S[0][2] 7:S[0][3] .. 12:S[0][8] 13:S[0][9]
#

Obviously, this model contains more parameters and hence there are many more
columns in the output representing sensitivities of the population growth rate with
respect to model parameters. Loading the first structure from the the output file
KlanjscekDEB2-PGR-0000.mat containing the stable population states and displaying
its contents reveals the additional elements due to the multiple states at births:

>> load('KlanjscekDEB2-PGR-0000.mat', 'State_1_000000E00')
2 >> State_1_000000E00

4 State_1_000000E00 =

6 BifPars: 1
Parameters: [1 0.8 0.001 0.075 0.583 1.286 1e-09 1.73e-06 0.7 0.15]

8 PGR: 0.69551
Pop00_StableBirthDist: [0.70973 0.29027]

10 Pop00_BirthStates: [2x4 double]
Pop00_Bstate00: [100x6 double]

12 Pop00_Bstate01: [100x6 double]

The first additional element of the structure is Pop00_StableBirthDist, which specifies
the stable distribution of offspring produced with the 2 possible states at birth that are
defined in the model. Each of the rows of the element Pop00_BirthStates of the structure
specifies a different state at birth with its columns specifying the value of the 4 individual
state variables in that particular state. For each state at birth, a stable population
distribution for individuals born in that particular state is stored in two-dimensional
arrays, called Pop00_Bstate00 and Pop00_Bstate01 respectively. As before, these two-
dimensional arrays contain as the first and last column the stable population density and
the reproductive value, respectively, while the intervening columns contain the values of
the individual state variables.

14.1.2 Periodic environments

The file Medfly_periodic.h implements a variant of the Medfly model that is discussed
in chapter 4, in which juvenile medflies are periodically exposed to a very high mortality
rate that decays exponentially within a short time period. Such a scenario could, for
example, reflect a periodic treatment of the population with an insecticide that affects
all juvenile individuals equally, irrespective of their age. This model is discussed in detail
in De Roos (2008, pp. 8-10) and will thus not be presented further here. The Matlab
script Medfly_periodic_demo.m can be used to obtain the results that are also shown
in Figure 3 of De Roos (2008). Notice, however, that this computation takes a long time
(several hours) because the periodicity in the juvenile mortality makes it computationally
very intensive.

The model implemented in the file Medfly_periodic.h illustrates that it is possible to
carry out demographic analysis, i.e. calculation of the population growth rate as a function

124 CHAPTER 14. MULTIPLE STATES AT BIRTH

of a parameter and the sensitivity of the growth rate with respect to all model parameters,
even in case of periodic environments. This does, however, not extend to equilibrium and
evolutionary analysis, which are based on the assumption that the environment is in a
constant, equilibrium state.

14.2 Equilibrium and evolutionary analysis with multiple
states-at-birth

The two files PNAS2002_5bs.h and Indet_growth_5bs.h implement versions of the mod-
els implemented in the files PNAS2002.h and Indet_growth.h and discussed in chap-
ters 6-8 and 9-11, respectively, but with 5 states-at-birth instead of the unique state-
at-birth accounted for in the original models. The analysis of these model versions
with multiple states-at-birth is largely similar to the analysis of the original models
and will hence not be discussed further. The Matlab scripts PNAS2002_5bs_demo.m and
Indet_growth_5bs_demo.m carry out the same analysis steps as presented in detail in
chapters 8 and 11, respectively, but for the model versions with 5 states-at-birth. In-
stead, in the following I will only discuss for the model implemented in PNAS2002_5bs.h

the details, in which this implementation differs from the original model implemented in
PNAS2002.h.

The following code box defines two macros, BIRTHSTATES and BIRTHSPREAD, which de-
termine the number of different states-at-birth and the variation in size-at-birth between
the smallest and the largest offspring body size. The number of states-at-birth is defined
equal to 5 in the routine SetBirthStates(), as shown below:

Code box 14.4: Specification of the number of possible states-at-birth

/*

2 *===

* DEFINITION OF THE LIFE HISTORY MODELS FOLLOWS BELOW

4 *===

* Specify the number of states at birth for the individuals in all structured

6 * populations in the problem in the vector BirthStates[].

*===

8 */

10 #define BIRTHSTATES 5

#define BIRTHSPREAD 2.0

12

void SetBirthStates(int BirthStates[POPULATION_NR], double E[])

14 {

BirthStates[0] = BIRTHSTATES;

16

return;

18 }

Subsequently, the values of the different states-at-birth is set in the routine
StateAtBirth(), dependent on the index BirthStateNr of the state-at-birth. The 5
states-at-birth in the model form a set {φ1,φ2,φ3,φ4,φ5}. The code box below shows
that the length-at-birth in these 5 different states equals `b−∆/2, `b−∆/4, `b, `b + ∆/4
and `b + ∆/2, respectively, where ∆ is the difference in size-at-birth between the smallest
and the largest offspring as given by the macro BIRTHSPREAD (Remember that indices in
C start at 0 and that the values adopted by BirthStateNr hence run from 0 thru 4). Of
course, for all states-at-birth the age of the individual is set to 0.

14.2. EQUILIBRIUM AND EVOLUTIONARY ANALYSIS 125

Code box 14.5: Specifying the value of all possible states-at-birth

/*

2 *===

* Specify all the possible states at birth for all individuals in all

4 * structured populations in the problem. BirthStateNr represents the index of

* the state of birth to be specified. Each state at birth should be a single,

6 * constant value for each i-state variable.

*

8 * Notice that the first index of the variable 'istate[][]' refers to the

* number of the structured population, the second index refers to the

10 * number of the individual state variable. The interpretation of the latter

* is up to the user.

12 *===

*/

14

void StateAtBirth(double *istate[POPULATION_NR], int BirthStateNr, double E[])

16 {

AGE = 0.0;

18 LENGTH = LB + (((double)BirthStateNr)/((double)(BIRTHSTATES-1)) - 0.5)*BIRTHSPREAD;

20 return;

}

The final routine that differs between the models with a unique state-at-birth and 5
states-at-birth is the routine specifying the fecundity of an individual, as this routine
should not only specify the number of offspring produced, but also the state-at-birth
of the offspring produced. The code box below shows that the model implemented in
the file PNAS2002_5bs.h assumes that the distribution of the produced offspring is in-
dependent of the size-at-birth of the mother, since the variables fecundity[0][0] thru
fecundity[0][4] are assigned the same values irrespective of the index BirthStateNr

or the state-at-birth birthstate[][]. All mothers produce 50% of their offspring with
a length-at-birth equal to `b, 20% of their offspring each with a length-at-birth equal to
`b −∆/4 and `b + ∆/4 and 10% each with the most extreme lengths-at-birth of `b −∆/2
and `b + ∆/2.

The Matlab script PNAS2002_5bs_demo.m performs the same analysis steps for the
PNAS2002 model with 5 states-at-birth, as carried out by the Matlab script
PNAS2002equi_demo.m for the original model. Executing this script shows that there
are at most quantitative differences, if at all, between the results of the two mod-
els. A similar finding is obtained when comparing the results of the Matlab script
Indet_growth_5bs_demo.m that performs the analysis of the model presented in chap-
ter 10 but with 5 states-at-birth with the results of the original model, the analysis of
which was discussed in chapter 11. In both cases the additional states-at-birth hence
hardly affect model predictions.

126 CHAPTER 14. MULTIPLE STATES AT BIRTH

Code box 14.6: Specification of fecundity

/*

2 *===

* Specify the fecundity of individuals as a function of the i-state

4 * variables and the individual's state at birth for all populations in every

* life stage.

6 *

* The number of offspring produced has to be specified for every possible

8 * state at birth in the variable 'fecundity[][]'. The first index of this

* variable refers to the number of the structured population, the second

10 * index refers to the number of the birth state.

*

12 * Notice that the first index of the variable 'istate[][]' refers to the

* number of the structured population, the second index refers to the

14 * number of the individual state variable. The interpretation of the latter

* is up to the user.

16 *===

*/

18

void Fecundity(int lifestage[POPULATION_NR], double *istate[POPULATION_NR],

20 double *birthstate[POPULATION_NR], int BirthStateNr, double E[],

double *fecundity[POPULATION_NR])

22 {

double fec;

24

fecundity[0][0] = 0.0;

26 fecundity[0][1] = 0.0;

fecundity[0][2] = 0.0;

28 fecundity[0][3] = 0.0;

fecundity[0][4] = 0.0;

30 if (lifestage[0] == 2)

{

32 fec = RM*R/(R + RH)*LENGTH*LENGTH;

fecundity[0][0] = 0.1*fec;

34 fecundity[0][1] = 0.2*fec;

fecundity[0][2] = 0.5*fec;

36 fecundity[0][3] = 0.2*fec;

fecundity[0][4] = 0.1*fec;

38 }

40 return;

}

14.3 Other applications of multiple states-at-birth

The models with multiple states-at-birth discussed here only represent the basic type of
application of this modeling feature. The option to account for multiple states-at-birth
allows, however, for modeling a variety of scenarios. It goes too far to present this range
of scenarios in detail and I will hence limit myself to pointing out a few examples.

As one example, multiple states-at-birth can be used to distinguish between the sexes in
a population model. Two states-at-birth can then be defined, representing the male and
female sex of an individual. An individual’s sex can influence its life history through for
example development and mortality. If in addition the fecundity of the (female) individu-
als is modeled following a particular type of mating structure, it might be necessary in to
define the total number of mature males and/or females in the population as environment
variables.

As another example, multiple states-at-birth make it possible to account for population-
genetic processes in a model. For example, 3 states-at-birth could be used to model the

14.3. OTHER APPLICATIONS OF MULTIPLE STATES-AT-BIRTH 127

2 homozygous and the single heterozygous genotypes in a one locus-two allele popula-
tion model. Multiple alleles would be possible to account for as well at the expenses of
defining more states-at-birth. In this manner, the interplay between population-genetic
processes and complex individual life histories could be analysed for its population and
even community consequences.

15

Pulsed reproduction

All previous chapters listed as one of the basic assumptions for the class of structured
population models that can be analysed with this software package that reproduction
is modeled with a function β(χ,χb, E), representing the rate of offspring production,
dependent on the individual state, the individual’s state-at-birth and possibly on its
environment. Reproduction is hence considered a continuous process. If reproduction
would occur as a pulsed process in time, the density of individuals in a population would
change instantaneously as would its impact on its environment. This precludes that the
environment is constant in time, which is a crucial assumption for the equilibrium and
evolutionary analysis of structured population models. Demographic analysis, however,
is still possible even when reproduction occurs as a pulsed process in time.

To model reproduction as a pulsed process in time in case of demographic analysis of a
structured population, the time interval between successive reproduction events has to be
defined using the macro constant REPRODUCTION_INTERVAL, as for example shown in the
command box below.

// The following definition will force the program to consider reproduction pulses
2 #define REPRODUCTION_INTERVAL 1.0

Reproduction will be assumed a pulsed event whenever REPRODUCTION_INTERVAL is
defined. Notice that it is not possible to have irregular intervals between repro-
ductive pulses, the interval is necessarily constant and equal to the value to which
REPRODUCTION_INTERVAL is set.

The model file KlanjscekDEBpulsed.h in the Tests directory provides an example of
a model that describes reproduction as a pulsed process (the model is also discussed in
De Roos, 2008). The model implemented in this file is similar to the model implemented
in the file KlanjscekDEB2.h, which is discussed in section 14.1, except for the fact that
reproduction occurs as a pulsed event at regular time intervals of 1 time unit and all
newborn individuals have the same state at birth.

To model the pulsed reproduction process an additional state variable characterising an
individual is introduced in the model, which represents the number of eggs that an adult
individual has accumulated in its body. This content of the egg buffer is the 5th individual
state variable in the model as shown in the following code box:

#define EGGS istate[0][4]

129

130 CHAPTER 15. PULSED REPRODUCTION

The routine Development now contains additional statements specifying the dynamics
for this individual state variable, which hence describe how the egg buffer is filling up
in between two reproduction events. Naturally, this only occurs when an individual has
matured, as shown in the code box below:

void Development(int lifestage[POPULATION_NR], double *istate[POPULATION_NR],
2 double *birthstate[POPULATION_NR], int BirthStateNr, double E[],

double development[POPULATION_NR][I_STATE_DIM])
4 {

double dVda, dQda, dHda;
6 double Er;

8 // Assume growth always occurs
dVda = max((FOOD*NU*pow(VOLUME, 2.0/3.0) - M*G*VOLUME)/(FOOD + G), 0);

10 dQda = G*EM*(dVda + M*VOLUME);
dHda = HA*Q/VOLUME;

12
development[0][0] = 1.0;

14 development[0][1] = dVda; // dV/da
development[0][2] = dQda; // dQ/da

16 development[0][3] = dHda; // dH/da

18 if (lifestage[0] == 1) // Only for adults
{

20 Er = (1-KAPPA)*EM*FOOD*G*(NU*pow(VOLUME, 2.0/3.0) + M*VOLUME)/(FOOD + G);
development[0][4] = max(Er - (1-KAPPA)*EM*M*G*VP,0);

22 development[0][4] /= EM*(KAPPA*G + FOOD)*VB/KAPPA_R;
}

24 else
development[0][4] = 0;

26
return;

28 }

Finally, if reproduction is modelled as a pulsed process the routine Fecundity has to
specify the number of offspring produced at a reproduction event. As opposed to the
case with continuous reproduction the fecundity is not a rate, but rather a number of
offspring. As shown below, for the model implemented in KlanjscekDEBpulsed.h the
fecundity is defined equal to the number of accumulated eggs. At the same time the
egg buffer is emptied, i.e. EGGS set equal to 0. Hence, in case of pulsed reproduction,
the routine Fecundity should not only define how many offspring are produced (possibly
with different states at birth), but also how the individual state of the parent is changed
when it reproduces.

void Fecundity(int lifestage[POPULATION_NR], double *istate[POPULATION_NR],
2 double *birthstate[POPULATION_NR], int BirthStateNr, double E[],

double *fecundity[POPULATION_NR])
4 {

if (lifestage[0] == 1) // Only for adults
6 {

fecundity[0][0] = EGGS;
8 }

else
10 fecundity[0][0] = 0;

12 EGGS = 0.0; // Empty the egg buffer

14 return;
}

The demonstration script KlanjscekDEB_demo in the Tests directory illustrates the anal-
ysis of the model in KlanjscekDEBpulsed.h at the same time as it analyses the related
models implemented in KlanjscekDEB.h and KlanjscekDEB2.h.

16

UNIX command-line usage

Even though in the previous chapters its use from a Matlab or Octave console was dis-
cussed, the software itself is a standard C-program. All programs described in previous
chapters can hence also be compiled outside Matlab and Octave and used from a command
line in, for example, a bash shell under a Unix-based operating system (such as provided
by the Terminal.app on Mac OS X). In this chapter I will shortly discuss how to compile
and execute the programs within such an interactive bash shell. I will assume that the
reader is familiar with the Unix operating system and command line use in bash shells.

The use of the program from a bash command line does not influence the model specifica-
tion in the .h file. Hence, for details of the model implementation I refer to sections 4.1.1
to 4.2.7 for the implementation of a model, which is going to be investigated using demo-
graphic analysis, and to the sections 7.1.1 to 7.3.2 for a model that is to be investigated
using bifurcation analysis.

16.1 The Makefile and compilation of a program

The distribution includes a Makefile that can be used to build the computational pro-
grams. The following box shows the top lines in this Makefile.

Generic Makefile for the compilation of a continuation problem of the class
2 # of models that can be analyzed with the generic program files PSPMevodyn.c,

PSPMequi.c PSPMind.c or PSPMdemo.c
4 #

Possible targets to make:
6 #

make <model>demo (builds demographic executable from .h file)
8 # make <model>ind (builds individual executable from .h file)

make <model>equi (builds equilibrium executable from .h file)
10 # make <model>evodyn (builds evolutionary executable from .h file)

#
12 # make clean (cleans up all target programs)

make cleanoutput (cleans up all error and output files)
14 # make allclean (combines previous two)

#
16 #

#==
18 # Specify where the library modules are located (ADAPT TO YOUR INSTALLATION)

#==
20

MODDIR = $(HOME)/programs/PSPManalysis
22

#==
24 # Specify the optional compilation settings and uses of libraries:

#
26 # CLANG : Use (1)/Don't use (0) Mac OS X clang compiler (for Mac OS X only)

ICC : Use (1)/Don't use (0) Intel's icc compiler (for Linux only)
28 # OPENMP : Use (1)/Don't use (0) OpenMP parallelisation

MKL : Use (1)/Don't use (0) Intel's MKL libraries (for Linux only)
30 #

131

132 CHAPTER 16. UNIX COMMAND-LINE USAGE

Best settings:
32 #

Mac OS X : CLANG = 1, OPENMP = 1 (if clang with -fopenmp support is installed)
34 # CLANG = 0, OPENMP = 1 (otherwise; gcc with -fopenmp is faster)

#
36 #==

38 CLANG = 1
ICC = 1

40 OPENMP = 1
MKL = 0

To adapt this Makefile to your system the definition of the variable MODDIR has to be
changed. It should point at the directory in which the basic program files such as PSP-
Mdemo.c and PSPMequi.c are located.

The variables CLANG, ICC, OPENMP and MKL can be set to 0 or 1 and tailor the program to
the installed compiler and libraries on your system. On Mac OS system the Makefile will
use the clang compiler if CLANG is set equal to 1, otherwise it invokes the gcc compiler.
In general the clang compiler seems to yield slightly faster code than the gcc compiler,
but support by the clang compilers on Mac OS for the OpenMP parallel programming
interface (see below) is limited (except for more recent versions of Mac OS). On Linux
systems the Makefile will invoke Intel’s icc compiler if ICC is set equal to 1, otherwise
it invokes the gcc compiler. Again, the icc compiler seems to yield generally somewhat
faster code than the gcc compiler.

The variable OPENMP is relevant on both Mac OS and Linux systems and indicates whether
the OpenMP parallel programming interface should be used (OPENMP equal to 1) or not
(OPENMP equal to 0). The use of the OpenMP parallel programming interface is an integral
part of the program and requires no further adjustments of the code by the user. Its use
yields in particular much faster execution speeds if there are multiple states at birth
possible. The speed up by using OpenMP is in these cases substantial.

Finally, the variable MKL is only used on Linux. When set to 1, the Makefile links against
Intel’s MKL libraries as opposed to the standard Lapack and Cblas libraries. This might
yield faster code in particular cases, but this speed up is not tested extensively.

Further adaptations to the Makefile are most likely not needed. Note, however,
that a number of libraries have to be installed for the programs to compile success-
fully. In particular, on Mac OS the Makefile assumes that the Lapack and Cblas li-
braries are installed, as it uses the linking options -llapack -lcblas -lm during the
final link step of the programs. On Linux system the default linking options are
-llapack -lcblas -llapack_atlas -latlas, indicating that the Atlas version of the
Lapack library is used. Successful compilation requires that the libraries invoked by these
linking options are installed on your operating system and can be found by the compiler.
However, even though the program uses standard C code and only calls well-established
routines from the Lapack and Cblas libraries, the different versions of the Mac OS and
Linux operating system differ in the libraries that are installed. This means that the
Makefile might not always work on all systems and might have to be adapted if com-
pilation of a program leads to error messages that either of these libraries can not be
found.

The Makefile defines a number of targets as is also visible from the command box above.
Executing the command make <model>demo will build a program for demographic anal-
ysis of the model that is specified in the file <model>.h. Hence, building the program for
the Medfly model discussed as an example in chapters 3 to 5, can be done by executing
make Medflydemo.

16.2. EXECUTING A COMPILED PROGRAM 133

Similarly, executing the commands make <model>equi, make <model>evodyn and
make <model>ind will build programs for bifurcation analysis, evolutionary dynamics
simulations and individual life history simulations, respectively, of a model that is spec-
ified in the file <model>.h. Hence, building the program for the PNAS model discussed
as an example in chapters 6 to 8, can be done by executing make PNAS2002equi.

The remaining targets defined by the Makefile are all cleaning targets. The command
make clean will clean up all files in the current directory that have been produced during
compilation steps. In particular, this step will scan the directory for all the .h files in
it and will remove all the existing <model>demo and <model>equi programs, as well as
the object modules that were produced during intermediate compilation steps of these
programs.

Executing the command make cleanoutput will delete all files that have been produced
by running either a demographic analysis program or a bifurcation analysis program. In
particular, this step will scan the directory for all files with a name <model>.h, which will
all be considered to be model-specific include files. For each of these files <model>.h it
will delete all files in the current directory that start with <model> and have an extension
of .bif, .err, .mat, .csb or .out. This will remove all output files generated by the
computation modules, whether they have been executed from the Matlab command line
or from the bash command line.

Finally, the command make allclean combines the previous two cleaning steps into one.

16.2 Executing a compiled program

After building a program for demographic analysis, its use from the command-line follows
a similar approach as its execution from Matlab, only the syntax is different because all
options, initial values for the computation, the step size in the bifurcation parameter and
the limits to the parameter range have to be passed as command-line arguments. The
syntax can be inspected by executing the compiled program with a single argument -?,
which prints out a help message:

Command box 16.A: Command-line syntax for demographic analysis

~/programs/PSPManalysis/Tests: Medflydemo -?
2

Usage: Medflydemo [-par1 <index> <initial value> <step> <min. par.1> <max. par.1>] [-isort <index>] [-test]
4

Aim: Computation of the population growth rate and its parameter sensitivities for (multiple) structured populations
6 possibly as a function of a model parameter

8 Possible options are:

10 -par1 <index>: Index of the parameter, as a function of which to compute the population growth rate
If this option is used <initial value>, <step>, <min. par.1> and <max. par.1> specify

12 the initial value, stepsize value, minimum and maximum value of this parameter.
If not specified, a single computation of the population growth rate and parameter sensitivities

14 is carried out for the current parameter values.
-isort <index>: Index of i-state variable to use as ruling variable for sorting the structured populations.

16 -test : Perform only a single integration over the life history, reporting dynamics of survival, R0
and i-state variables.

18
Medflydemo, Copyright (C) 2015, Andre M. de Roos, University of Amsterdam

20
This program comes with ABSOLUTELY NO WARRANTY; without even the implied warranty of

22 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License (<http://www.gnu.org/philosophy/why-not-lgpl.html>) for more details

24

The help message in the box above shows that executing the computations from the
command-line takes the same options as when executing the module from Matlab as

134 CHAPTER 16. UNIX COMMAND-LINE USAGE

explained in chapter 5. I will hence not discuss in detail the structure of the command-
line, as the help message shown above in combination with the explanation about the
demographic analysis program in chapter 5 should suffice to infer the correct use of the
program.

As an example the box below shows how to execute the demographic analysis from the
command-line without any further parameters. This example corresponds to the call to
the PSPMdemo function shown in Matlab command box 5.A. Comparing the output below
with that in box 5.A shows that the two are identical. For further explanations I therefore
refer to the explanation of the use of the computational program from Matlab in chapter 5.

Command box 16.B: Demographic analysis call for a single parameter value

~/programs/PSPManalysis/Tests: Medflydemo
2 #

Executing : Medflydemo
4 #

Parameter values :
6 #

Beta0 : 47 Beta1 : 0.04 AJ : 11
8 # Mu0 : 0.00095 Mu1 : 0.0581

#
10 # 0:PGR[0] 1:Tc[0] 2:S[0][0] 3:S[0][1] 4:S[0][2] 5:S[0][3] 6:S[0][4]

#
12 0.419057 13.167260 0.001616 -0.164595 -0.031982 -1.526368 -0.011325

In a similar vein, the output of an execution of the program to compute the population
growth rate over a range of parameters is the same as in Matlab command box 5.B, as
shown in the following box:

Command box 16.C: Demographic analysis call for a parameter range

~/programs/PSPManalysis/Tests: Medflydemo -par1 2 11 0.1 11 20
2 1.10000E+01 4.19057E-01

1.11000E+01 4.15884E-01
4 1.12000E+01 4.12763E-01

<...output suppressed in this box...>
6 1.98000E+01 2.53880E-01

1.99000E+01 2.52772E-01
8 2.00000E+01 2.51674E-01

Notice that the placement of the options and their subsequent values likes -par1 2 on
the command-line is arbitrary, but that the initial value, step size and minimum and
maximum parameter value should be specified in this specific order.

Executing a compiled program for bifurcation analysis from the bash command-line (with
or without an option -?) also prints out a help message that reveals the syntax to be used
for such programs, as shown in the following box:

~/programs/PSPManalysis/Tests: PNAS2002equi
2

Usage: PNAS2002equi [<options>] <Type> <Initial values> <max. parameter step> <index par.1> <min. par.1> <max. par.1> ...
4 ... [<index par.2> <min. par.2> <max. par.2> ... <index par.n> <min. par.n> <max. par.n>]

6 Aim: Continuation of trivial or non-trivial equilibria, transcritical and saddle-node bifurcations
of structured populations as well as transcritical bifurcation in one of its environment variables

8 and evolutionary continuation as a function of one or two parameters

10 <Type>: Type of curve computation to be performed, either BP, EQ, LP, BPE, ESS or PIP

12 Possible options are:

14 -envBP <index> : Index of environment variable, of which to continue the transcritical bifurcation
-popBP <index> : Index of structured population, of which to continue the transcritical bifurcation

16 -popEVO <index> : Index of structured population, for which to compute selection gradient or perform ESS or PIP continuation
-parEVO <index> : Index of parameter to compute selection gradient for during EQ continuation

18 -envZE <index> : Index of environment variable in trivial equilibrium (can be used multiple times)
-popZE <index> : Index of structured population in trivial equilibrium (can be used multiple times)

16.2. EXECUTING A COMPILED PROGRAM 135

20 -evoPars <number>: Number of life history parameters of structured population at their ESS value
-isort <index> : Index of i-state variable to use as ruling variable for sorting the structured populations

22 -noBP : Do not check for branching points while computing equilibrium curves
-noLP : Do not check for limit points while computing equilibrium curves

24 -single : Only compute the first point of the solution curve, do not continue the curve
-test : Perform only a single integration over the life history, reporting dynamics of survival, R0,

26 i-state and interaction variables

28 The value for -evoPars defaults to 0 unless set on the command-line
The values for -envBP, -popBP, -popEVO, -parEVO, -envZE and -popZE are undefined unless set on the command-line

30
./PNAS2002equi, Copyright (C) 2015, Andre M. de Roos, University of Amsterdam

32
This program comes with ABSOLUTELY NO WARRANTY; without even the implied warranty of

34 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
License (<http://www.gnu.org/philosophy/why-not-lgpl.html>) for more details

This help message becomes more specific once the type of computation that has to be
carried out is specified, as illustrated in the code box below:

~/programs/PSPManalysis/Tests: PNAS2002equi BPE
2

Set the environmental variable index for BPE continuation (0 <= i < 3) using the 'envBP' option!
4

Usage: PNAS2002equi [<options>] BPE Par.1 E[0] E[1] E[2] b[0] Par.2 <max. parameter step> <index par.1> <min. par.1> ...
6 ... <max. par.1> <index par.2> <min. par.2> <max. par.2>

8 Aim: Continuation of a transcritical bifurcation in one of the environment variables
of a structured population as a function of two parameters.

10 Only works if the dynamics of the environment variable
is linear in the variable itself

12
Possible options are:

14
-envBP <index> : Index of environment variable, of which to continue the transcritical bifurcation

16 -popBP <index> : Index of structured population, of which to continue the transcritical bifurcation
-popEVO <index> : Index of structured population, for which to compute selection gradient or perform ESS or PIP continuation

18 -parEVO <index> : Index of parameter to compute selection gradient for during EQ continuation
-envZE <index> : Index of environment variable in trivial equilibrium (can be used multiple times)

20 -popZE <index> : Index of structured population in trivial equilibrium (can be used multiple times)
-evoPars <number>: Number of life history parameters of structured population at their ESS value

22 -isort <index> : Index of i-state variable to use as ruling variable for sorting the structured populations
-noBP : Do not check for branching points while computing equilibrium curves

24 -noLP : Do not check for limit points while computing equilibrium curves
-single : Only compute the first point of the solution curve, do not continue the curve

26 -test : Perform only a single integration over the life history, reporting dynamics of survival, R0,
i-state and interaction variables

28
The value for -evoPars defaults to 0 unless set on the command-line

30 The values for -envBP, -popBP, -popEVO, -parEVO, -envZE and -popZE are undefined unless set on the command-line

32 PNAS2002equi, Copyright (C) 2015, Andre M. de Roos, University of Amsterdam

34 This program comes with ABSOLUTELY NO WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public

36 License (<http://www.gnu.org/philosophy/why-not-lgpl.html>) for more details

The help message in the boxes above show that executing the computations from the
command-line is quite similar to executing the module from Matlab as explained in sec-
tion 8.2. I will hence not discuss in detail the structure of the command-line, the meaning
of the options and the required input variables for the program as the help message
shown above in combination with the explanation about the bifurcation analysis program
in section 8.2 should suffice to infer the correct use of the program. One thing to notice,
though, is that in all calls to a bifurcation analysis program the option -par1 <index>

has to be specified. If this option is not specified on the command-line the program exists
with an appropriate error message. The placement of the options and their subsequent
values on the command-line is again arbitrary, but all other input quantities, such as the
initial values of all variables, the step size along the curve and minimum and maximum
parameter values should be specified in the specific order as shown in the help message.

As an example the box below shows how to execute the same calculation for the PNAS
model as illustrated in Matlab command box 8.B.

Command box 16.D: Command-line example of a bifurcation analysis program

136 CHAPTER 16. UNIX COMMAND-LINE USAGE

~/programs/PSPManalysis/Tests: PNAS2002equi -par1 1 -popZE 0 -envZE 1 -envZE 2 EQ 1.0E-06 1.0E-06 0.5 0 4E-4
2

1.00000E-06 1.00000E-06
4 1.03536E-06 1.03536E-06

1.07071E-06 1.07071E-06
6 <...output suppressed in this box...>

9.18697E-06 9.18697E-06
8 8.85690E-06 8.85690E-06 **** BP #0 ****

9.54052E-06 9.54052E-06
10 <...output suppressed in this box...>

3.33749E-04 3.33749E-04
12 3.69104E-04 3.69104E-04

4.04460E-04 4.04460E-04
14

The output in the box above is identical to the output shown in box 8.B. For further
details I therefore refer to the explanation of the use of the computational program from
Matlab in sections 8.2 and 8.4.

Furthermore, in the directory Tests of the package a shell script allequitests.sh is
provided that illustrates a large number of computations using command-line execution.
Executing . allequitests.sh from the command line not only tests that the package
functions correctly, but also illustrates how to use the program for different types of
computations and with a variety of options.

16.3 Output files

When executing a compiled program from the command line the same output files are
produced as discussed in sections 5.2 and 8.5, except for the files with an extension
.mat that are Matlab-specific files. Instead, the information about the stable pop-
ulation states are written to a binary file with extension .csb. Hence, the call to
the program Medflydemo as shown in command box 16.C generates the output files
Medfly-PGR-0001.err, Medfly-PGR-0001.out and Medfly-PGR-0001.csb, as opposed
to the files Medfly-PGR-0001.err, Medfly-PGR-0001.out and Medfly-PGR-0001.mat

produced by the corresponding Matlab command in command box 5.B (the nu-
meric identifier 0001 results because the Medfly program was first executed
without parameters, which produces output files with identifier 0000). Simi-
larly, the call to the program PNAS2002equi in box 16.D above produces out-
put files PNAS2002-EQ-0000.bif, PNAS2002-EQ-0000.err, PNAS2002-EQ-0000.out

and PNAS2002-EQ-0000.csb, as opposed to the files PNAS2002-EQ-0000.bif,
PNAS2002-EQ-0000.err, PNAS2002-EQ-0000.out and PNAS2002-EQ-0000.mat produced
by the corresponding Matlab command in command box 8.B.

The files with extensions .bif, .err and .out will not be discussed further here. Refer
to the sections 5.2 and 8.5 for details about their contents. The files with extension .csb,
which from hereon will be referred to as CSB file, are binary files with a specific structure.
The format of these files is inherited from the software package called ‘EBTtool’ that I de-
veloped to perform numerical integrations of PSPMs and which is freely available from my
webpage: http://staff.fnwi.uva.nl/a.m.deroos/EBT/Software/index.html. The
EBTtool program contains a graphical interface that allows you to graphically inspect
the population states stored in the CSB file, browse through the various states in a file
and also output the population states to a text file. It hence provides an easy approach for
graphical investigation of the stable population states at different values of the bifurcation
parameter.

http://staff.fnwi.uva.nl/a.m.deroos/EBT/Software/index.html

16.3. OUTPUT FILES 137

For those users that do not want to install the EBTtool program, however, a utility
program is include, called csb2txt.c that will read the binary CSB file and translate it
to plain text. The source file csb2txt.c can be found in the same directory as where
the files PSPMdemo.c and PSPMequi.c are located. This source file can be compiled into
an executable program by issuing the command make csb2txt in the directory with the
source file csb2txt.c. The compilation should not pose any major problems as the
program is written in fairly standard C.

Executing the csb2txt program by itself generates a help message that explains its usage
as shown below:

~/programs/PSPManalysis: csb2txt
2

Usage: csb2txt [-f "printf() format string"] <CSB filename> [parameter value]
4

When the program is called with the name of a CSB file (with or without the extension
.csb does not matter), it will write the information in the entire CSB file to the terminal
(unless of course this output is piped into an output file). Alternatively, the name of
the CSB file can be followed by a particular parameter value, in which case the program
searches in the CSB file for the population state that is closest to the specified value and
writes this single population state to the terminal.

Hence, the stable population distribution for the third population state (for parameter
value 11.1908) stored in Medfly-PGR-0001.csb, which results from the calculations il-
lustrated in box 16.B above, can be inspected with the following call to the csb2txt

program:

~/programs/PSPManalysis/Tests: ../csb2txt Medfly-PGR-0001 1.12000E+01
2 # Population growth rates for parameter value 11.2

11.2000000000 0.4127626846
4

State of population #0 for parameter value 11.2
6 1.0000000000 0.0000000000 1.0000000000

0.8129899031 0.5004188126 1.2300275762
8 0.6609431768 1.0008376252 1.5129893689

<...output suppressed in this box...>
10 1.536459E-09 48.5406248235 8.9188991230

1.239653E-09 49.0410436361 5.2194771968
12 1.000000E-09 49.5413326488 0.0000000000

A large number of intermediate lines are suppressed in the output of the command, as
it would take up too much space. The population distribution displayed is, however,
identical to the population distribution that is presented as an example in section 5.2
when discussing the contents of the Medfly-PGR-0001.mat file. The first line of output
specifies the value of the bifurcation parameter as the first entry on the line and the
calculated population growth rate value as the second entry. The following 3 columns
represent the stable population density, the corresponding age as well as the reproductive
value of the individuals at that age, respectively.

Similarly, the last population state stored in the file PNAS2002-EQ-0000.csb can be in-
spected by executing the following command, which uses the last parameter value of the
computations 4.04758E-04 for selecting the state:

138 CHAPTER 16. UNIX COMMAND-LINE USAGE

~/programs/PSPManalysis/Tests: ../csb2txt PNAS2002-EQ-0000 4.04460E-04
2 # Environment variables for parameter value 0.00040446

0.0004044597 0.0004044597 0.0000000000 0.0000000000
4

State of population #0 for parameter value 0.00040446
6 0.0000000000 10.0040106825 23.2738732599

0.0000000000 30.7272765409 54.3743905369
8 0.0000000000 51.4505423942 81.8386322000

<...output suppressed in this box...>
10 0.0000000000 2020.1607969467 289.2703746568

0.0000000000 2040.8840627837 289.2705544476
12 0.0000000000 2061.6073286205 289.2707132173

As before, a large number of intermediate lines are suppressed in the output of the com-
mand for brevity.

The layout of the stable population distribution is always the same, irrespective of the
type of bifurcation computation that has been carried out. The first line of the output
contains the value of the bifurcation parameter as first entry and the equilibrium values of
all environment variables as subsequent entries. After an empty line, the stable population
distribution is printed. Each line of this distribution corresponds to a cohort of individuals
with the first entry on a line specifying the number of individuals in that cohort and the
subsequent entries on the line the average values of the individual state variables of the
individuals in the cohort, in the order as adopted in the model specification file. Hence, for
the PNAS model the second and third entry on a row specifies the average age and length,
respectively, of the individuals in a cohort (see code box 7.3). The example of the stable
population distribution shown in the box above is of course rather special, because the
computations pertain to a curve with a zero equilibrium state of the structured consumer
population. For this reason, the cohort density in the first entry on each row is consistently
0. This would, however, be different in the more general case of an equilibrium curve with
a non-zero equilibrium state of the consumer.

17

Optional numerical settings

The values of the following options, modifying the numerical program settings, can be
changed by means of #define statements in the model-specific file as illustrated in the
code boxes 4.1 and 7.1.

Setting name Default Interpretation
value

MIN_SURVIVAL 10−9 Minimum survival probability at which an indi-
vidual is considered dead

MAX_AGE 106 Absolute maximum age after which an individ-
ual is considered dead

DYTOL 10−7 Variable tolerance. The Newton iteration has
converged when the norm of the right-hand side
of the equations is less than RHSTOL and the
norm of the consecutive adjustments to the so-
lution vector of unknowns is less than DYTOL

RHSTOL 10−8 Right-hand side tolerance. The Newton itera-
tion has converged when the norm of the right-
hand side of the equations is less than RHSTOL

and the norm of the consecutive adjustments
to the solution vector of unknowns is less than
DYTOL

ALLOWNEGATIVE 0 If equal to 1 negative solution values are permis-
sible, otherwise the program stops when a com-
ponent of the solution vector becomes negative

FULLSTATEOUTPUT 2 If equal to 0 no output of the complete popu-
lation state is produced. If equal to 1, output
of the population state is produced, either in a
Matlab file with .mat extension or in a binary
file with .csb extension, with individuals origi-
nating from different states-at-birth weighted ac-
cording to the stable distribution of produced
offspring over states-at-birth and lumped into
cohorts. If equal to 2, output of the popula-
tion state is produced and individuals originat-
ing from different states-at-birth are stored as
separate subpopulations.

139

140 CHAPTER 17. OPTIONAL NUMERICAL SETTINGS

Setting name Default Interpretation
value

COHORT_NR 100 Sets the number of cohorts in the output of the
population state

ODESOLVE_INIT_STEP 0.1 Initial step size in the numerical integration of
the ODEs

ODESOLVE_MIN_STEP 10−8 Smallest possible step size in the numerical inte-
gration of the ODEs

ODESOLVE_MAX_STEP 10.0 Largest possible step size in the numerical inte-
gration of the ODEs

ODESOLVE_FIXED_STEP - If defined, determines a value ∆t, which forces
the ODE integration method to include all time
values t = n∆t with n = 0, 1, . . . among its in-
tegration time steps in addition to possibly in-
tervening time values enforced by the adaptive
step size mechanism.

ODESOLVE_ABS_ERR 10−10 Absolute error in the numerical integration of
the ODEs

ODESOLVE_REL_ERR 10−8 Relative error in the numerical integration of the
ODEs

ODESOLVE_FUNC_TOL 10−8 Threshold value determining whether a stopping
event in the numerical integration routine has
been detected

JACOBIAN_MIN_STEP 10−7 Absolute minimum change in variable when
computing Jacobian matrix

JACOBIAN_STEP 10−4 Relative change in variable when computing Ja-
cobian matrix

JACOBIAN_UPDATES 5 Number of Newton adjustments before the Ja-
cobian matrix is computed anew

18

Analytical background

In this chapter I give a brief sketch of the computational approach, which is discussed
in detail in Kirkilionis et al. (2001), Diekmann et al. (2003) and De Roos (2008). The
description is far from complete, but only captures the basic idea of the computational
machinery implemented in the package.

Consider the following generic model for the interaction of a size-structured consumer
population foraging on an unstructured resource:

∂n(t, s)

∂t
+

∂ (g(s,R)n(t, s))

∂s
= −µ(s,R)n(t, s) (18.1)

g(sb, R)n(t, sb) =

∫ sm

sb

β(s,R)n(t, s) ds (18.2)

dR

dt
= G(R) −

∫ sm

sb

γ(s,R)n(t, s) ds (18.3)

In this model n(t, s) represents the size distribution of the consumer population at time
t and R(t) is the resource density. The functions g(s,R), β(s,R) and µ(s,R) represent
the growth rate in size of an individual with size s, its fecundity and its mortality rate,
respectively. The function G(R) described the autonomous dynamics of the resource R
in the absence of consumers.

The computational approach is based on the idea that this model can also be expressed
as a system of integro-differential equations of the following form:

b(t) =

∫ ∞
0

β(s(t, a,Rt), R(t))F(t, a,Rt) b(t− a) da (18.4)

dR

dt
= G(R(t)) −

∫ ∞
0

γ(s(t, a,Rt), R(t))F(t, a,Rt) b(t− a) da (18.5)

in which b(t) is the population birth rate of the consumer population at time t and Rt
represents the history of the resource density prior to time t, i.e. the function R(ξ) with
ξ ∈ (−∞, t].

The function s(t, a,Rt) represents the body size of an individual consumer that is of age
a at time t and has been exposed to the resource densities Rt since its birth. This body
size is the integrated result of the growth rate g(s,R) that the individual has experienced

141

142 CHAPTER 18. ANALYTICAL BACKGROUND

since birth:

s(t, a,Rt) = s0 +

∫ a

0
g(s(t− α, α,Rt−α), R(t− α)) dα (18.6)

The function F(t, a,Rt) represents the probability that an individual that is of age a
at time t and has been exposed to the resource densities Rt since its birth is still alive.
F(t, a,Rt) is related to the mortality rate µ(s,R) following:

F(t, a,Rt) = exp

(
−
∫ a

0
µ(s(t− α, α,Rt−α), R(t− α)) dα

)
(18.7)

Figure 18.1 illustrates how the integro-differential equation system relates the birth rate in
the past to the birth rate at time t through the intervening history of the resource density
and the development of the consumers that have experienced this resource history.

Figure 18.1: Schematic representation of the integro-differential equation system for
the size-structured consumer-resource model, showing how the population birth rate at
time t− a contributes to the birth rate at time t through consumers of age a that
have grown during their life from their size at birth sb till their current body size
s(t, a, Rt) and have survived with a probability F(t, a, Rt), which both depend on the
history of the resource Rt that these consumers have experienced.

18.1 The system of equations determining the population
growth rate

For demographic analysis of a linear PSPM only the integral equation 18.4 is relevant. In
linear PSPMs the individual life history is not influenced by any density dependence or

18.1. POPULATION GROWTH RATE EQUATIONS 143

by any dependence on environment variables. We can hence drop the dependence of the
development rate, fecundity and mortality rate on environment variables and generalize
the integral equation 18.4 for an arbitrary choice of the individual state to:

b(t) =

∫ ∞
0

β(χ(a))F(a) b(t− a) da

in which χ(a) is the state that individuals reach at age a provided they were born with
state χb. χ(a) is formally given by:

χ(a) = χb +

∫ a

0
g(χ(α)) dα

and F(a) is the probability of survival up to age a:

F(a) = exp

(
−
∫ a

0
µ(χ(α)) dα

)

Assuming exponential growth of the population birth rate:

b(t) = erab(t− a)

leads to Lotka’s integral equation for the population growth rate r:∫ ∞
0

e−raβ(χ(a))F(a) da = 1 (18.8)

Define the function H(a, r) as the value of Lotka’s integral up to age a:

H(a, r) =

∫ a

0
e−rαβ(χ(α))F(α) dα

Equation 18.8 can then be expressed as:

H(∞, r) = 1 (18.9)

which is a non-linear equation for the population growth rate r. This is the equation that
is solved by the software package for the unknown quantity r using an iterative approach
based on the Newton-Chord method. For more details of the Newton-Chord method I
refer to Kuznetsov (1995), which source I have used to a large extent for the iterative
calculation of the solution r̃.

The central idea of the computational approach relates to the evaluation of the function
H(∞, r), which is computed by solving an ordinary differential equation. To derive this
ODE differentiate F(a) with respect to a using the chain rule:

d

da
F(a) = − exp

(
−
∫ a

0
µ(χ(α)) dα

)
d

da

(∫ a

0
µ(χ(α)) dα

)
Applying Leibniz rule for differentation of an integral:

d

dθ

(∫ b(θ)

a(θ)
f(χ, θ)dχ

)
=

∫ b(θ)

a(θ)
fθ(χ, θ)dχ + f(b(θ), θ)b′(θ)− f(a(θ), θ)a′(θ)

144 CHAPTER 18. ANALYTICAL BACKGROUND

then leads to:

dF
da

= −µ(χ(a))F(a), F(0) = 1

Similarly, differentiate H(a, r) with respect to a and applying Leibniz rule yields:

dH

da
= e−ra β(χ(a))F(a), H(0) = 0

The value of H(∞, r) can hence be calculated by (numerical) integration of the ODEs:

dχ

da
= g(χ), χ(0) = χb

dF
da

= −µ(χ(a))F(a), F(0) = 1

dH

da
= e−ra β(χ(a))F(a), H(0) = 0

In practice numerical integration of these ODEs is carried out up to a = Amax with
Amax either a fixed value or by F(Amax) = ε with ε a very small value (i.e. ε = 10−9).
Whenever an evaluation of the function H(∞, r) is required in the Newton iterations of
equation 18.9 this system of ODEs has to be integrated numerically. Once, a solution r̃
has been found, the sensitivities of this solution with respect to the model parameters are
calculated using numerical differentiation.

18.2 The system of equations determining an equilibrium

The idea discussed above for the demographic analysis of a linear PSPM extends to the
computation of an equilibrium of a nonlinear PSPM. In such a nonlinear PSPM the
fecundity and the development and mortality rates of individuals does depend on their
environment, but in equilibrium this environment is necessarily constant: Ẽ. Therefore,
Lotka’s integral equation should determine as before the population growth rate r:∫ ∞

0
e−raβ(χ(a, Ẽ), Ẽ)F(a, Ẽ) da = 1

(Note that all parts of life history now depend on E. χ and F do because of g(χ, E) and
µ(χ, E)). However, r should equal 0 for equilibrium of the structured population:∫ ∞

0
β(χ(a, Ẽ), Ẽ)F(a, Ẽ) da = 1

In addition, the autonomous dynamics of the environment should be balanced by the
impact of the population:

G(Ẽ) = b̃

∫ ∞
0

γ(χ(a, Ẽ), Ẽ)F(a, Ẽ) da

The survival rate F(a, Ẽ) and the value of the cumulative reproduction integral:

H(a, Ẽ) =

∫ a

0
β(χ(α, Ẽ), Ẽ)F(α, Ẽ) dα

18.3. CONTINUATION AND BIFURCATION DETECTION 145

can be computed as before by solving the corresponding ODEs. To compute the impact
of the population on the environment, define the function I(a, Ẽ) as:

I(a, Ẽ) =

∫ a

0
γ(χ(α, Ẽ), Ẽ)F(α, Ẽ) dα

I(a, Ẽ) represents the cumulative, expected impact that a single individual exerts on its
environment until age a. Differentiating I(a, Ẽ) with respect to a yields after applying
Leibniz rule:

dI

da
= γ(χ(a, Ẽ), Ẽ)F(a, Ẽ), I(0) = 0

The equilibrium of a nonlinear structured population model is therefore determined by
the system of equations:

H(∞, Ẽ) = 1

b̃I(∞, Ẽ) = G(Ẽ)

which has to be solved (numerically and iteratively) for the unknowns Ẽ and b̃. These
equations are solved by the software package for the unknown quantities using the Newton-
Chord method as discussed before. Whenever the functions H(∞, Ẽ) and I(∞, Ẽ) have
to be evaluated in this iterative procedure, the following system of ODEs is integrated
numerically:

dχ

da
= g(χ(a, Ẽ), Ẽ), χ(0, Ẽ) = χb

dF
da

= −µ(χ(a, Ẽ), Ẽ)F(a, Ẽ), F(0, Ẽ) = 1

dH

da
= β(χ(a, Ẽ), Ẽ)F(a, Ẽ), H(0, Ẽ) = 0

dI

da
= γ(χ(a, Ẽ), Ẽ)F(a, Ẽ), I(0, Ẽ) = 0

18.3 Curve continuation and detection of bifurcation
points

The package uses the Newton-Chord method with Broyden updating of the Jacobian
matrix to solve for the root of the nonlinear system of equations that determines the
population growth rate of linear PSPMs or the equilibrium of nonlinear PSPMs. In ad-
dition, pseudo-arclength continuation is used to compute a curve of either the population
growth rate or the equilibrium as a function of a single parameter. The numerical details
about the Newton-Chord method as well as the pseudo-arclength continuation will not be
discussed here. For details I refer to the appropriate sections in Kuznetsov (1995), which
has been used as the basis for the implementations in the package. Both the Newton-
Chord method as well as the pseudo-arclength continuation method make extensive use
of partial derivatives of the system of equations with respect to variables and parameters.
These partial derivatives, which for example make up the Jacobian matrix of the system
of equations, are always computed numerically using a central-differencing approach.

The partial derivatives also play a role in the detection of bifurcation points, as explained
in chapter 9. For example, the evolutionary analysis of PSPM using Adaptive Dynamics

146 CHAPTER 18. ANALYTICAL BACKGROUND

(AD) centers around the analysis of sx(y), which is the population growth rate of a mutant
with trait y in an environment that is completely determined by a resident population
with trait x (Geritz et al., 1998). An evolutionary fixed point occurs at x = x∗ where

∂sx(y)|x,y=x∗

∂y
= 0

The evolutionary fixed point can be classified as a convergent stable strategy (CSS), an
evolutionary repellor (ERP) or evolutionary branching point (EBP) based on the value
of (Geritz et al., 1998):

∂2sx(y)|x,y=x∗

∂y2
and

∂2sx(y)|x,y=x∗

∂x2

Because the equilibrium conditions for a structured model∫ ∞
0

β(χ(a, Ẽ), Ẽ)F(a, Ẽ) da − 1 = R0 − 1 = 0

is sign-equivalent with sx(y) AD analysis can be performed using R0 and its (partial)
derivatives with respect to resident and mutant traits x and y, respectively (Geritz et al.,
1998). Hence, the detection of evolutionary fixed points, their classification as convergent
stable strategies, repellors or branching points, as well as the continuation of these evolu-
tionary singularities as a function of two parameters, which is discussed in chapters 9 to
11 relies on the computation of these partial derivatives, which are computed numerically
as pointed out above.

Bibliography

De Roos, A.M., 1997. A gentle introduction to physiologically structured population mod-
els. In: S. Tuljapurkar & H. Caswell (Eds.), Structured population models in marine,
terrestrial and freshwater systems, pp. 119–204. Chapman-Hall, New York.

De Roos, A.M., 2008. Demographic analysis of continuous-time life-history models. Ecol-
ogy Letters 11: 1–15.

De Roos, A.M. & L. Persson, 2002. Size-dependent life-history traits promote catastrophic
collapses of top predators. Proceedings of the National Academy of Sciences 99 (20):
12907–12912.

De Roos, A.M. & L. Persson, 2013. Population and Community Ecology of Ontogenetic
Development , Monographs in Population Biology 51. Princeton University Press,
Princeton

Dieckmann, U. & R. Law, 1996. The dynamical theory of coevolution: A derivation from
stochastic ecological processes Journal of Mathematical Biology 34(5-6): 579–612.

Dieckmann, U., 1997. Can adaptive dynamics invade? Trends in Ecology & Evolution
12(4): 128–131.

Diekmann, O., M. Gyllenberg & J.A.J. Metz, 2003. Steady-State Analysis of Structured
Population Models. Theoretical Population Biology 63 (4): 309–338.

Geritz, S.A.H., E. Kisdi, G. Meszéna, & J.A.J. Metz, 1998. Evolutionarily singular strate-
gies and the adaptive growth and branching of the evolutionary tree. Evolutionary
Ecology 12 (1): 35–57.

Geritz, S.A.H., J.A.J. Metz & C. Rueffler, 2015. Mutual invadability near evolutionarily
singular strategies for multivariate traits, with special reference to the strongly conver-
gence stable case. Journal of Mathematical Biology, doi:10.1007/s00285-015-0944-6.

Hairer, E., S.P. Norsett & G. Wanner, 1993. Solving Ordinary Differential Equations I:
Nonstiff Problems. Springer-Verlag, Berlin.

Kirkilionis, M.A., O. Diekmann, B. Lisser, M. Nool, B. Sommeijer, & A.M. De Roos, 2001.
Numerical continuation of equilibria of physiologically structured population models. I.
Theory. Mathematical Models & Methods in Applied Sciences 11 (6): 1101–1127.

147

148 BIBLIOGRAPHY

Kuznetsov, Y.A., 1995. Elements of Applied Bifurcation Theory. Springer-Verlag, Hei-
delberg.

Leimar, O., 2005. The evolution of phenotypic polymorphism: Randomized strategies
versus evolutionary branching. American Naturalist 165(6): 669–681.

Metz, J.A.J. & O Diekmann, 1986. The dynamics of physiologically structured populations,
Lecture Notes in Biomathematics 68. Springer-Verlag, Heidelberg.

Metz, J.A.J., S.A.H. Geritz, G. Meszéna, F.J.A. Jacobs, & J.S. van Heerwaarden. 1996.
Adaptive Dynamics, a geometrical study of the consequences of nearly faithful repro-
duction. In: S.J. van Strien & S.M. Verduyn-Lunel (Eds.), Stochastic and spatial
structures of dynamical systems, pp. 183–231, KNAW Verhandelingen, Amsterdam.

	Introduction
	Short setup guide for Matlab
	Prerequisites
	Package installation and testing
	Using the mex compiler under Matlab
	Max OS X and Linux
	Windows

	Model formulation and ingredients
	Implementation of an example model
	Dimensions, settings and model parameters
	Definition of problem dimensions and optional numerical settings
	Definition of parameter names and values
	Definition of aliases to simplify implementation

	Definition of the individual life history
	Specifying the number of possible states-at-birth
	Specifying the value of all possible states-at-birth
	Definition of boundaries between discrete stages
	Specification of continuous individual state development
	Specification of discrete individual changes at stage transitions
	Specification of fecundity
	Specification of mortality

	Model analysis in Matlab
	Executing of the PSPMdemo script
	Output files generated by the PSPMdemo script
	Required and optional arguments of PSPMdemo

	Model formulation and ingredients
	Implementation of an example model
	Dimensions, settings and parameters
	Definition of problem dimensions and numerical settings.
	Definition of parameter names and values
	Definition of aliases to simplify implementation

	Definition of the individual life history
	Specifying the number of possible states-at-birth
	Specifying the value of all possible states-at-birth
	Definition of boundaries between discrete stages
	Specification of continuous individual state development
	Specification of discrete individual changes at stage transitions
	Specification of fecundity
	Specification of mortality

	Feedback and equilibrium of the environment
	Specification of feedback impact on the environment
	Specification of equilibrium conditions of the environment

	Model analysis in Matlab
	Computation of curves and detections of bifurcation points
	Arguments of the PSPMequi script
	Output variables of the PSPMequi script
	An example session using the PSPMequi script
	Output files generated by the PSPMequi script

	Theoretical and computational background
	Example model for evolutionary analysis
	Model analysis in Matlab
	Simulating evolutionary dynamics
	Theoretical background
	Simulating evolutionary dynamics in Matlab
	An example session using the PSPMevodyn script
	Output files generated by the PSPMevodyn script

	Simulating individual life histories in specific environments
	Arguments of the PSPMind function
	An example using the PSPMind function

	Multiple states at birth
	Demographic analysis
	Two different offspring body sizes
	Periodic environments

	Equilibrium and evolutionary analysis
	Other applications of multiple states-at-birth

	Pulsed reproduction
	UNIX command-line usage
	The Makefile and compilation of a program
	Executing a compiled program
	Output files

	Optional numerical settings
	Analytical background
	Population growth rate equations
	The system of equations determining an equilibrium
	Continuation and bifurcation detection

	Bibliography

