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Natural ecological communities are diverse, complex, and often
surprisingly stable, but the mechanisms underlying their stability
remain a theoretical enigma. Interactions such as competition and
predation presumably structure communities, yet theory predicts
that complex communities are stable only when species growth
rates are mostly limited by intraspecific self-regulation rather than
by interactions with resources, competitors, and predators. Cur-
rent theory, however, considers only the network topology of
population-level interactions between species and ignores within-
population differences, such as between juvenile and adult indi-
viduals. Here, using model simulations and analysis, I show that
including commonly observed differences in vulnerability to pre-
dation and foraging efficiency between juvenile and adult indi-
viduals results in up to 10 times larger, more complex communities
than observed in simulations without population stage structure.
These diverse communities are stable or fluctuate with limited
amplitude, although in the model only a single basal species
is self-regulated, and the population-level interaction network
is highly connected. Analysis of the species interaction matrix
predicts the simulated communities to be unstable but for the
interaction with the population-structure subsystem, which com-
pletely cancels out these instabilities through dynamic changes
in population stage structure. Common differences between juve-
niles and adults and fluctuations in their relative abundance may
hence have a decisive influence on the stability of complex natural
communities and their vulnerability when environmental condi-
tions change. To explain community persistence, it may not be
sufficient to consider only the network of interactions between
the constituting species.

food webs | community dynamics | community complexity |
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Ecological communities have traditionally been conceptual-
ized as collections of species that are connected with each

other through a network of positive and negative interactions.
This species-based paradigm adopts the population as the fun-
damental unit of measurement or modeling, altogether ignores
differences between individuals within populations, and hence
considers the vital rates of all conspecific individuals to be identi-
cal. Yet, it is individuals, not species, that interact. Furthermore,
in real populations no two individuals are alike, mostly because of
differences in their developmental stage (1). And vital rates are
definitely not the same for all individuals as only juveniles grow
and mature, while only adults reproduce. This raises the question
of to what extent current theoretical insights about dynamics of
ecological communities are robust or, alternatively, are artifacts
of the species-level scale of study of ecological communities (2).

One of the core elements of the theory about ecological com-
munity dynamics pertains to the relationship between commu-
nity complexity, diversity, and stability, which has been explored
at length through dynamic simulations of the network of species
interactions (3, 4) or through analysis of the community matrix
(5), the elements of which measure how strongly the species

in a community affect each other’s growth rate. Using commu-
nity matrices, Robert May (6, 7) theoretically predicted almost
half a century ago that large, complex ecological communi-
ties are less stable than simpler ones, refuting prevailing ideas
that complexity begets stability (8, 9). He challenged ecologists
to “. . . elucidate the devious strategies which make for stability
in enduring natural systems” (p. 174 in ref. 7). May’s find-
ings initiated the diversity–stability debate in ecology (10) and
the search for special characteristics and constraints on natu-
ral communities promoting stability (11). Analysis of different
types of community matrices (12) has uncovered a range of
mechanisms that benefit community stability, such as weak inter-
action strength (13); adaptive foraging (14); allometric scaling of
interaction strength (15); and omnivorous (16), mutualistic (17),
or high-order interactions (18). The diversity–stability conun-
drum seems, however, far from resolved, given that a recent
review concluded that for community stability to occur “at least
half—and possibly more than 90%—of species must be subject
to self-regulation to a substantial degree” (p. 1873 in ref. 19),
even though clear empirical evidence for self-regulation is lack-
ing and the extent to which it occurs in natural populations is
debated (16, 20–22). Paradoxically therefore, while competitive
and predatory interactions between species are considered the
two most important, structuring forces of ecological communi-
ties (23), direct, negative effects of species on their own growth
rate seem crucial for community stability (19).

The network of population-level interactions between species
in the community, its topology, the nature of these interactions,
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and their strength have been the conceptual foundation of vir-
tually all existing studies on ecological community stability (24).
Even studies assessing stability of real-life communities (25) aim
at estimating how species in a community affect each other’s
population-level growth rate to construct the community matrix
(5). But within populations individuals by definition differ and
not only because juveniles grow and mature while adults repro-
duce. Juveniles and adults also differ in their body size and
therefore in their ecology (26, 27). Because juveniles are smaller,
they generally feed at lower rates (28), are more food limited
(29), and are more vulnerable to predation (30, 31). These body
size-dependent differences translate into an asymmetry in for-
aging and predation risk between juveniles and adults, which
has been shown to affect structure and dynamics of ecological
communities (32).

To study the impact of these asymmetries in foraging and pre-
dation risk between juvenile and adult individuals on community
diversity and stability I simulated dynamics of randomly con-
structed, stage-structured model food webs, in which juveniles
were more food limited and more exposed to predation than
adults, and compared them with dynamics of an analogous model
without stage structure (Materials and Methods). Species in the
food web differed in body weight with only the smallest—basal—
species following self-regulating population dynamics. Foraging
interactions between all nonbasal species were modeled based
on their difference in body weight (Materials and Methods). To
focus exclusively on differences between juveniles and adults
in foraging rate and predation mortality and to allow compar-
ison between models with and without population structure, I
assumed juveniles and adults to forage at different rates on the
same range of prey species with the same preferences and thus
have overlapping diets. Juveniles and adults are furthermore
preyed upon by the same predator species but at different rates.
Asymmetry in resource foraging is represented phenomenolog-
ically by a foraging asymmetry factor q , ranging between 0 and
2, with juvenile and adult resource ingestion rate taken pro-
portional to q and (2� q), respectively (Fig. 1). Asymmetry in
vulnerability to predation is represented analogously by a pre-
dation asymmetry factor �, also ranging between 0 and 2, with
predation mortality of juveniles and adults taken proportional
to � and (2��), respectively (Fig. 1). For q =1 juveniles and
adults hence forage at the same rate, such that maturation and
reproduction are limited by food to the same extent. If in addi-
tion �=1, juveniles and adults do not differ in their rates of
predation mortality either. Juvenile and adult dynamics were
modeled using a juvenile–adult structured model (33) in terms
of numerical abundances that explicitly accounts for mainte-
nance requirements, which cause maturation and reproduction
to halt at low food availabilities. For q =1 and �=1 this stage-
structured food web model can be shown to be identical to a food
web model without stage structure (SI Appendix, Model simpli-
fication in case of ontogenetic symmetry). Community dynamics
were simulated until density fluctuations of the persisting species
had stabilized (Materials and Methods).

Generally, juvenile individuals are far more vulnerable to pre-
dation than adults (30, 31). Empirical observations on predator–
prey body size ratios have revealed that this ratio is roughly an
order of magnitude smaller when it is computed on the basis
of the average body size in the predator and prey population
than when it is computed as the average body-size ratio between
individual predators and the individual prey in their gut (34,
35). This order of magnitude difference suggests that small indi-
viduals in a prey population are up to 10 times more likely to
be preyed upon than large individuals. Furthermore, per-capita
reproduction rates are for most species less limited by food than
juvenile maturation rates, in particular because offspring sizes
are small compared to adult body sizes (32). A competitive asym-
metry between juveniles and adults is further supported by the

Fig. 1. Basic juvenile–adult structured food web module. Juveniles and
adults are assumed to forage with identical preferences on the same prey
species at per-capita rate qF and (2 � q)F, respectively, where q represents
the juvenile–adult ingestion asymmetry and F the functional response of the
species. Juveniles and adults are preyed upon by the same predator species,
dying from predation at per-capita rates �M and (2 ��)M, respectively,
where � represents the juvenile–adult asymmetry in vulnerability to pre-
dation and M represents the species-specific predation pressure. Per-capita
maturation and reproduction rates equal (�qF � T)+ and (�(2 � q)F � T)+,
respectively, where the superscript + indicates restriction of these rates to
nonnegative values. Maturation and reproduction stop when food availabil-
ity F drops below T/(�q) and T/(�(2 � q)), respectively, and all ingestion
is used to cover maintenance requirements. Default parameter values are
q = 0.7 and �= 1.8, reflecting that maturation is more resource limited than
reproduction and juveniles are more vulnerable to predation than adults
(graphically represented by arrows of different thickness). See Materials and
Methods for more details.

occurrence of stunted populations in fish (36, 37), shellfish (38),
and dragonflies (39) and the asymmetry observed in intraspecific
competition experiments (29, 40, 41). Therefore, q =0.7 and �=
1.8 are adopted as default values for the juvenile–adult ingestion
and predation asymmetry parameter (but see SI Appendix, Fig.
S1 for the effect of varying q and �).

When juveniles are more limited by food and are more preda-
tor sensitive than adults (q =0.7, �=1.8), the structured model
results in communities with on average 20 or more nonbasal
species persisting on the single basal species (Fig. 2). In con-
trast, food web simulations with the corresponding unstructured
model result in persistence of on average 3 to 4 nonbasal species
(Fig. 2 and SI Appendix, Fig. S1). This increase in community
diversity due to juvenile–adult asymmetry is larger at higher sys-
tem productivity (SI Appendix, Fig. S2). In addition to increasing
community diversity juvenile–adult asymmetry also increases the
complexity of the food web that structures the community. Food
webs resulting from model simulations without stage structure
are simple, mostly linear food chains, with most species foraging
on a single prey and vulnerable to a single predator (Fig. 2 and
SI Appendix, Fig. S3). In contrast, food webs resulting from sim-
ulations with juvenile–adult asymmetry are complex with most
species foraging on multiple prey species and exposed to preda-
tion by multiple consumer species (Fig. 2 and SI Appendix, Fig.
S3). Diverse and complex communities occur in particular when
predation on juveniles is 8 to 10 times larger than on adults and
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Fig. 2. Juvenile–adult stage structure increases community size and complexity. (A) Frequency distribution of community sizes (nonbasal species only) and
(B) examples of food webs resulting from 500 replicate food web simulations without stage structure (Top) and including stage structure with foraging and
predation asymmetry between juveniles and adults (Bottom). In B vertical positions indicate trophic level. Inner circles in Bottom row indicate the density
of juveniles as fraction of total population density. Arrow widths indicate the relative feeding preference of consumers for a particular prey species.

is less dependent on foraging differences (SI Appendix, Figs. S1
and S7).

Temporal dynamics of food webs that result from model
simulations without stage structure are characterized by large-

amplitude fluctuations in species abundances reminiscent of clas-
sical predator–prey cycles (Fig. 3). The cycle amplitudes more-
over increase with increasing community size especially because
minimum species densities during the cycle decrease (Fig. 3),

BA

Fig. 3. Juvenile–adult stage structure stabilizes community dynamics. (A) Examples of dynamics of all species in food web simulations without stage
structure (Top) and including stage structure with foraging and predation asymmetry between juveniles and adults (Bottom). Corresponding food web
structures are shown in Fig. 2 B, Right. (B) Boxplot of minimum (blue bars) and maximum (red bars) total densities of all populations as a function of
community size for all persisting species in 500 replicate food web simulations without (Top) and with stage structure and foraging and predation asymmetry
between juveniles and adults (Bottom).
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ultimately leading to species extinction and reductions in com-
munity diversity. In contrast, the complex food webs resulting
from the structured model with juvenile–adult asymmetry either
are stable or exhibit small-amplitude fluctuations in total species
densities (Fig. 3). Furthermore, if fluctuations in total species
densities occur, their amplitude is unaffected by community
size (Fig. 3).

When juveniles are more limited by food and more preda-
tor sensitive than adults, 22% of the food webs generated by
the structured model approach a stable community equilibrium
(Materials and Methods and SI Appendix, Computing eigenvalues
of the stage-structured model). These stable communities allow for
disentangling how food web interactions and population struc-
ture together affect community stability. The structured model in
terms of juvenile and adult abundances can be transformed into
an equivalent model, in which each species is represented by its
total density and the fraction of juveniles in it. The transforma-
tion separates the model into a “total species-density subsystem”
and a complementary “species-structure subsystem.” Commu-
nity stability is now determined by the stability of each of these
two subsystems on their own and their interactions (Materials
and Methods). The stability of the species-density subsystem on
its own is determined by the usual community matrix, measur-
ing the per-capita effect of species on each other’s growth rate.
For all stable communities resulting from the structured model
in the case of juvenile–adult asymmetry the dominant eigenvalue
of this community matrix is positive and large (Fig. 4A). The
community matrix hence predicts these communities to be highly
unstable, which mostly results because only the basal species is
regulated by a negative self-effect, top predators have no self-
effect, and all other nonbasal species exhibit positive self-effects
(Materials and Methods and SI Appendix, Fig. S5). The dominant
eigenvalue of the Jacobian matrix determining the stability of the
coupled subsystems of species density and species structure, how-
ever, has a negative real part for all stable communities (Fig. 4A)

mostly because the species-density subsystem is connected to and
interacts with the species-structure subsystem and the dominant
eigenvalue of the matrix determining the stability of this species-
structure subsystem on its own has a negative real part. The
large differences between the dominant eigenvalues of the com-
munity and Jacobian matrices indicate that the dynamic nature
of the fraction of juveniles of the species is key to community
stability.

Simulations of community dynamics starting from stable com-
munity states confirm the stabilizing impact of dynamic pop-
ulation structure and how it increases the resilience of the
community: Even after a disturbance that reduces the density
of all species by 50% the complete model involving the cou-
pled species-density and species-structure subsystems predicts
a rapid return to the stable community equilibrium (Fig. 4C).
The reduction in density at most results in the extinction of
a few species (SI Appendix, Fig. S6). In contrast, when start-
ing in the undisturbed community equilibrium and simulating
dynamics using only the species-density subsystem with for each
species the fraction of juveniles constant and equal to its equilib-
rium value, species densities soon start to fluctuate wildly (Fig.
4C). Consequently, most species eventually go extinct and the
community ends up being of similar size to the communities
predicted by the food web model without population struc-
ture (SI Appendix, Fig. S6). Similar results were obtained with
an alternative method (42) to represent the stage structure of
each species by a single measure of species density. Likewise,
starting in the undisturbed community equilibrium and simu-
lating dynamics using a corresponding, age-structured model,
in which the juvenile maturation rate is set constant in time
and equal to its equilibrium value, wild fluctuations in species
density soon develop (Fig. 4C) and the community eventually
ends up being of similar size to the communities predicted by
the food web model without population structure (SI Appendix,
Fig. S6).

CBA

Fig. 4. Adaptive stage structure stabilizes community dynamics. (A) Real part of the dominant eigenvalue of the community matrix (Top) and the Jacobian
matrix determining community stability (Bottom) as a function of community size for all stable communities resulting from simulations with the stage-
structured model and foraging and predation asymmetry between juveniles and adults (Materials and Methods). (B) Example of a stable community with 21
nonbasal species. (C) Dynamics of the community shown in B with a constant juvenile–adult density ratio equal to its equilibrium value for each species and
initial densities equal to their equilibrium densities (Top Left), with a constant juvenile maturation rate equal to its equilibrium value for each species and
initial densities equal to their equilibrium densities (Top Right, model equivalent with an analogous age-structured model), and with dynamic juvenile–adult
stage structure following a disturbance event that reduces the densities of all species in the community by 50% (Bottom) (Materials and Methods).
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Stability of these model communities therefore depends on the
dynamic changes in juvenile–adult ratio in the population and on
the food dependence of both the maturation and the reproduction
rate. The dynamics of the juvenile fraction in each of the species
dampen density fluctuations in the community in various ways.
For example, increases in reproduction of one particular species
have more limited effects on its prey species and are more quickly
quenched by its predators, when juveniles forage at lower rates
and are more vulnerable to predation, than in the absence of any
population structure. Increases in food availability for a particular
focal species will lead to modulation of the interaction strength
with its prey, as higher prey densities will speed up maturation,
increase the fraction of adults, and thus increase the average per-
capita impact of the species on its prey. Furthermore, a dynamic
population stage structure also buffers against fluctuations in pre-
dation pressure, as increases in predation will primarily affect the
juveniles that are limited most by food availability. Higher mor-
tality under these conditions has been shown to relax possible
bottlenecks in juvenile maturation and to increase the efficiency
with which resources are used for population growth as opposed to
being used for somatic maintenance (33, 43). Thus, dynamic popu-
lation stage structure leads to adaptive modulation of the average
interaction strength between species that counters fluctuations in
bottom-up and top-down effects.

The presented results are robust to changes in the popula-
tion stage structure as well as the model describing dynamics
of each of the species. Similar results regarding community
diversity, complexity, and dynamics are obtained under even
wider parameter ranges when populations are represented by
the biomass densities in three life history stages (small juveniles,
larger immatures, and adults) as opposed to numerical abun-
dances of juveniles and adults only and the dynamics of each
population are modeled using a stage-structured biomass model
that approximates the dynamics of a complete population body
size distribution (Materials and Methods and SI Appendix, Stage-
structured biomass model of species dynamics and Figs. S7–S9).
The communities resulting from this more detailed model tend
to be even larger with on average 25 to 30 species coexisting on a
single basal species.

The topology of the interaction network between species in a
community, which forms the theoretical foundation of existing
studies on community stability, may hence provide only partial
insight into the mechanisms stabilizing complex communities
and may even suggest necessary conditions for stability, such
as ubiquitous self-regulation, that might prove too restrictive
once the dynamics of population stage structure are taken into
account. As shown here, the dynamic population structure can
simply overrule the destabilizing effects of the species interac-
tion network. This within-species mechanism thus breaks up in a
realistic and natural way the constraints on community complex-
ity that were originally identified by May (6, 7) and extends the
range of mechanisms and constraints on community interactions
that have been identified to promote stability using species-based
approaches (13–18). If we are to model the impact of envi-
ronmental change on complex ecological communities, we need
models that can fully capture the diversity, complexity, stability,
and vulnerability of these systems—this study represents a major
advance on existing approaches that consider only species-level
interaction networks.

Materials and Methods

Food Web Construction. Model food webs are constructed by assigning each
of an initial N = 500 species random niche values ni between 0 and 1.
Niche values are related to body size wi following wi = (wmax)ni (wmin)(1�ni )

with minimum and maximum species body size equal to wmin = 10�8

and wmax = 104 g, respectively (SI Appendix, Fig. S10). To represent doc-
umented prey–predator body size ratios (35, 44) more faithfully than in
the niche model (45) the center ci of the feeding niche of consumer

species i is uniformly distributed between ni � 2.5/10log(wmax/wmin) and
ni � 0.5/10log(wmax/wmin), resulting in median prey–predator body size
ratios between 10�2.5 and 10�0.5. The width ri of the feeding niche
equals 1/10log(wmax/wmin), such that consumer species i feeds on prey
species with body sizes ranging between (wmax)(ci�ri/2)(wmin)(1�(ci�ri/2)) and
(wmax)(ci+ri/2)(wmin)(1�(ci+ri/2)). The relative preference ik of consumer i for
prey k follows a piecewise continuous hump-shaped distribution with finite
range (Bates distribution of order 3):

 ik =

8
>>>>>>>>>>>>><

>>>>>>>>>>>>>:

6
✓

nk � ci

ri
+

1
2

◆2
if �

1
2


nk � ci

ri
<�

1
6

�12
✓

nk � ci

ri
+

1
2

◆2

+12
✓

nk � ci

ri
+

1
2

◆
� 2 if �

1
6


nk � ci
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<

1
6

6
✓

nk � ci

ri
�

1
2

◆2
if

1
6


nk � ci

ri
<

1
2

0 otherwise.

[1]

Food Web Dynamics without Stage Structure. Species are ranked according
to their niche value (i.e., body size) and their numerical abundances are
indicated with Ci . The basal species (with index 1) is assumed to forage on
its own exclusive resource R, the dynamics of which are described by

dR
dt

= P � �R �↵1RC1 [2]

with P the productivity of the resource and � its turnover rate, while
↵1 scales the predation pressure of the basal species on its resource.
The resource dynamics are assumed to be in pseudo-steady state, such
that R = P/(�+↵1C1) at all times. The (linear) functional response of the
basal species, indicated with F1, is consequently assumed to equal the
pseudo-steady-state value of R:

F1 =
P

�+↵1C1
. [3]

Nonbasal species are assumed to forage following a type II functional
response on all other species in the community at a relative rate  ik
(Eq. 1) determined by the species body size ratio. The encounter rate of
a consumer species with index i with all its prey species (indexed with k)
therefore equals

Ei =
X

k<i

 ikCk [4]

and its functional response Fi (scaled between 0 and 1) equals

Fi =
Ei

Hi + Ei
[5]

with Hi the consumer’s half-saturation density. Because the prey–predator
body size ratio is assumed to be strictly smaller than 1, consumer species i
can only forage on all species with index k < i.

The dynamics of all species densities are now described by

dCi

dt
= �iFiCi � (Ti +µi)Ci � Ci

X

k>i

↵k ki
Ck

Hk + Ek
, [6]

where Ei and Fi represent the value of the food encounter rate and the
scaled functional response of species i, respectively. The parameter �i relates
the growth rate of species i to its functional response Fi , while ↵i scales the
predation pressure of species i on its prey species. The parameters Ti and
µi represent the population loss rate through somatic maintenance costs
and background mortality, respectively. Note that all species are ordered
according to their body size and hence only species with an index k > i can
feed on species i.

Food Web Dynamics with Stage Structure. Numerical abundances of juve-
nile and adult individuals of consumer species i are indicated with Ji and
Ai , respectively. Juveniles and adults are assumed to feed on the same
range of prey species, have the same prey preferences, and thus have over-
lapping diets. However, juveniles and adults feed at different rates, such
that the foraging rates of juveniles and adults of species i equal q↵iFi

and (2 � q)↵iFi , respectively, with proportionality constants ↵i and Fi the
functional response of species i.
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Juveniles and adults are also assumed to differ in their sensitivity to
predation, such that the predation mortality experienced by juveniles and
adults of species i equals �Mi and (2 ��)Mi , respectively, where Mi rep-
resents the predation pressure exerted on species i by all of its predators.
The parameters q and � are referred to as the foraging and predation
asymmetry between juveniles and adults.

The functional response for the basal species is defined analogously
to the model without stage structure, taking into account the foraging
asymmetry between juveniles and adults,

F1 =
P

�+↵1 (qJ1 + (2 � q)A1)
, [7]

while the encounter rate with prey for nonbasal species equals

Ei =
X

k<i

 ik (�Jk + (2 ��)Ak). [8]

The expression for the functional response of nonbasal species remains the
same (Eq. 5). In addition to decreasing through background mortality the
numerical abundances of juvenile and adult individuals change through
reproduction and maturation. These processes are described by a stage-
structured model (33) that assumes maturation and reproduction to stop
when food availability drops below a threshold level and food intake is
not sufficient to cover basic maintenance costs. In particular, maturation of
juveniles of species i depends on its functional response Fi , following

mi(Fi) = max(�iqFi � Ti , 0), [9]

while reproduction by adults follows

bi(Fi) = max(�i(2 � q)Fi � Ti , 0). [10]

Analogous to the model without stage structure the parameter �i relates
maturation and reproduction to the food availability, qFi and (2 � q)Fi , for
juveniles and adults, respectively. The maximum functions in the expres-
sions for mi(Fi) and bi(Fi) ensure that maturation and reproduction halt
whenever food availability Fi drops below Ti/(q�i) and Ti/((2 � q)�i), respec-
tively. The parameter q hence determines in a phenomenological manner
whether maturation (q < 1) or reproduction (q > 1) is more limited by food
availability.

Dynamics of the juvenile–adult structured food web model are described
by

dJi

dt
= bi(Fi)Ai � mi(Fi)Ji �µiJi ��JiMi [11]

dAi

dt
= mi(Fi)Ji �µiAi � (2 ��)AiMi [12]

with

Mi =
X

k>i

↵k ki
qJk + (2 � q)Ak

Hk + Ek
[13]

the predation pressure exerted on species i by all of its predators.

Model Parameterization. Parameter values were randomly selected, but con-
strained by default scaling relationships with species body size as presented
by de Roos and Persson (ref. 32, boxes 3.3 and 3.4), except that the time
variable and hence all rate parameters have been scaled by a factor of
10 to speed up numerical computations. The default parameter scaling
relationships with body size reflect documented generalities (28, 46, 47)
that maximum ingestion rates are roughly an order of magnitude larger
than maintenance rates, that conversion efficiency is roughly 60%, and
that losses through background mortality are 7 to 10 times smaller than
losses through maintenance. More specifically, for each nonbasal species,
the half-saturation density Hi occurring in its functional response Fi was sam-
pled uniformly from the interval [0.5,2.5]. The parameters ↵i , �i , Ti , and µi

were assumed to scale with w�0.25
i . For each species i the values of these

parameters were generated using the equations

↵i =↵0 (1 + 2�↵(xi1 � 1/2))w�0.25
i

�i = �0 (1 + 2�� (xi2 � 1/2))w�0.25
i

Ti = T0 (1 + 2�T (xi3 � 1/2))w�0.25
i

µi =µ0 (1 + 2�µ(xi4 � 1/2))w�0.25
i

with ↵0 = 1.0, �0 = 0.6, T0 = 0.1, and µ0 = 0.015 the default mean values
of the species-specific parameters (32). The species-specific parameters ↵i ,

�i , Ti , and µi were for each species randomly selected from a Bates distri-
bution of degree 3 around these mean values. The Bates distribution is the
continuous probability distribution of the mean, X, of three independent
uniformly distributed random variables on the unit interval. Random val-
ues from this distribution range between 0 and 1 with mean value of 1/2.
The quantities xij are independent realizations of the random variable X,
while �↵, �� , �T , and �µ represent the one-sided, relative width of the
distributions of the species-specific parameters ↵i , �i , Ti , and µi , respec-
tively, around their mean values. Default values for these relative widths
equal 0.1, such that all species-specific parameters range between 0.9 and
1.1 times their default, mean value and follow hump-shaped distributions
within these ranges. Finally, the productivity P and turnover rate � of the
exclusive resource for the basal species were taken equal to 60 and 2.0,
respectively, in all computations, unless stated otherwise. The two remain-
ing parameters in the model, the foraging asymmetry parameter q and
the predation asymmetry parameter �, were varied between the different
computations to assess their effect on community dynamics.

Numerical Simulation Procedure. Numerical integrations of the food web
with N = 500 species were carried out using an adaptive Runge–Kutta
method implemented in C. Relative and absolute tolerances during the
integration were set to 10�7 and 10�13, respectively. During the first 104

time units no species were removed from the community, even if they
attained very low density. For t > 104 each species, whose total density
Ji + Ai dropped below 10�8, was removed from the community. This per-
sistence threshold ensures that the product of the relative tolerance (10�7)
and the lowest species density (10�8) is larger than the machine precision
(equal to 1.11 · 10�16 according to the Institute of Electrical and Electronics
Engineers (IEEE) 754-2008 standard in the case of double precision). Dur-
ing numerical computations mean and variance as well as the maximum
and minimum values of the total species density Ji + Ai were continuously
monitored for all species. The values of these measured statistics are reset
whenever the community structure changes as one or more species in the
community go extinct. Numerical integrations are halted whenever the com-
munity structure has not changed for 106 time units and no change has
occurred from one time unit to the next in the values of these statistics
(mean, minimum, maximum, and variance of total species density) for all
species in the community.

Sources of Community Stability. Through analytical manipulations the
model in terms of juvenile abundances Ji and adult abundances Ai can
be recast into an equivalent model in terms of total species abundance
Ci = Ji + Ai and the fraction of juveniles in a population Zi = Ji/Ci . In terms
of these alternative model variables the functional response value for the
basal species can be written as

F1 =
P

�+↵1 (qZ1 + (2 � q)(1 � Z1))C1
[14]

while the encounter rate with prey for nonbasal species equals

Ei =
X

k<i

 ik (�Zk + (2 ��)(1 � Zk))Ck. [15]

The dynamics of total species density and fraction of juveniles in all
populations are then described by

dCi

dt
= bi(Fi)(1 � Zi)Ci �µiCi � (�Zi + (2 ��)(1 � Zi))CiMi [16]

dZi

dt
= bi(Fi)(1 � Zi)

2 � mi(Fi)Zi � 2(�� 1)(1 � Zi)ZiMi [17]

with

Mi =
X

k>i

↵k ki
(qZk + (2 � q)(1 � Zk))Ck

Hk + Ek
[18]

the predation pressure exerted on species i by all of its predators.
The resulting system of differential equations can hence be written as

dC
dt

= K(C, Z) [19]

dZ
dt

= L(C, Z) [20]

in which C and Z indicate vectors of all total species abundances and frac-
tions of juveniles in all populations, respectively. The vector-valued functions
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K(C, Z) and L(C, Z) contain the right-hand side of the differential equations
dCi/dt for the species-density subsystem and dZi/dt for the species-structure
subsystem, respectively. For a system with m species the Jacobian matrix J of
the ordinary differential equations above is a 2m⇥ 2m matrix of the form

J =

0

BB@

@K
@C

@K
@Z

@L
@C

@L
@Z

1

CCA. [21]

Each of the four parts of J is a m ⇥ m matrix containing the partial
derivatives of the functions K(C, Z) and L(C, Z) with respect to the total
species densities (C1, . . . , Cm) and fractions of juveniles (Z1, . . . , Zm). Expres-
sions for these partial derivatives are provided in SI Appendix, Computing
eigenvalues of the stage-structured model.

All communities resulting from the stage-structured model with asymme-
try in feeding and predation between juveniles and adults (q= 0.7, �= 1.8)
for which the minimum and maximum values of the total species density
differ less than 10�6 for all species are classified as stable. Communities for
which minimum and maximum values of total density of at least one species
differed more than 10�6 from each other are considered unstable (cycling).
For both stable and unstable communities the average total abundance and
fraction of juveniles observed in the simulation were used as starting values
to numerically solve for the equilibrium state using the package “rootSolve”
(48, 49) in R (50). For all 115 stable communities the equilibrium commu-
nity state was successfully located and was numerically indistinguishable
from the average densities and juvenile fractions observed in the numerical
simulations. For 147 communities that were considered unstable (cycling)
the numerical solution procedure also converged to an equilibrium com-
munity state with all species present, while for 238 unstable communities
the numerical solution procedure did not converge to such an equilibrium
state. For all equilibrium community states found, the Jacobian matrix J is
evaluated by substituting for all species the equilibrium value for total abun-
dance and fraction of juveniles as well as all general and species-specific
parameters into the expressions for the elements of J. The eigenvalues of
the Jacobian matrix are subsequently computed using the routine eigen() in
R (Fig. 4 A, Bottom, for stable communities only; see SI Appendix, Fig. S4 for
both stable and unstable communities).

To evaluate how dynamic changes in population stage structure (i.e.,
changes in the juvenile–adult ratio) affect community stability, the eigen-
values of the Jacobian matrix J of stable communities are compared with
the eigenvalues of the top-left submatrix of J, the m ⇥ m matrix @K/@C.
The latter matrix determines the stability of the species-density subsystem
on its own with the juvenile fraction of each species equal to its equilibrium
value. This matrix also corresponds to the community matrix with elements
@(dCi/dt)/@Cj capturing the per-capita effect of the species in the commu-
nity on each other’s growth rate. The community matrix determines the

stability of a model, in which the dynamics of total species densities follow
the same set of equations as in the full model, but the fraction of juveniles
in the populations is constant over time and equals the fraction of juveniles
of the species at equilibrium (Fig. 4 A, Top). Comparing the eigenvalues
of the Jacobian matrix J and the community matrix reveals the impact of
dynamic changes in the population structure of the species on the stability
of the community equilibrium (SI Appendix, Computing eigenvalues of the
stage-structured model).

To further assess the differences between constant and dynamic juvenile
fractions in the populations, for all stable communities resulting from the
stage-structured model with asymmetry in feeding and predation between
juveniles and adults (q = 0.7, �= 1.8) community dynamics were computed
starting from the equilibrium community state using the reduced model
including the differential equations dCi/dt for the species-density subsys-
tem only, with the juvenile fraction Zi in each of the populations taken
equal to its equilibrium value inferred from the stable community state
(Fig. 4 C, Top Left and SI Appendix, Sources of community stability and Fig.
S6). Similarly, community dynamics were computed with an age-structured
analogue of the full model including differential equations dCi/dt for the
species-density subsystem and dZi/dt for the species-structure subsystem,
but with the juvenile maturation rate mi(Fi) for each of the species in the
community taken constant in time and equal to the maturation rate in the
equilibrium community state. These simulations were also started from the
equilibrium community state (Fig. 4 C, Top Right and SI Appendix, Sources
of community stability and Fig. S6). Finally, community dynamics were com-
puted with the full model including the differential equations dCi/dt for
the species-density subsystem and dZi/dt for the species-structure subsys-
tem and dynamic changes in the juvenile maturation rates starting from a
community state in which the initial density of each species was exactly 50%
of its equilibrium value as inferred from the stable community state (Fig. 4
C, Bottom and SI Appendix, Fig. S6).

Extent of Self-Regulation. For stable communities the extent of self-
regulation of species is assessed with the diagonal elements of the com-
munity matrix, the m ⇥ m matrix @K/@C, which measures the positive or
negative effect of the total species abundance Ci on its own rate of change
dCi/dt (SI Appendix, Fig. S5).

Data Availability. All code, data files, and R scripts used to generate
the figures are available in Bitbucket at https://bitbucket.org/amderoos/
structuredfoodweb/.
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Model reformulation and analysis13

The stage-structured model in terms of the juvenile and adult densities Ji and Ai, respectively, can be reformulated into a14

model in terms of the total number of individuals of species i and the fraction of juveniles in the population of species i. Define15

Ci as the total density, Ci = Ji + Ai, and Zi as the fraction of juveniles of species i, Zi = Ji/Ci. Using these alternative16

model variables the functional response value for the basal species can be written as:17

F1 = P

” + –1 (qZ1 + (2 ≠ q)(1 ≠ Z1)) C1
[1]18

and the encounter rate of all non-basal species with their prey as19

Ei =
ÿ

k<i

Âik („Zk + (2 ≠ „)(1 ≠ Zk)) Ck [2]20

From the ordinary di�erential equations (ODEs) for the juvenile and adult densities Ji and Ai presented in the Materials21

and Methods section, the following system of ODEs for the alternative model variables Ci and Zi can then be derived through22

analytical manipulation:23

dCi

dt
= bi(Fi)(1 ≠ Zi)Ci ≠ µiCi24

≠ („Zi + (2 ≠ „)(1 ≠ Zi)) Ci

ÿ

k>i

–kÂki
(qZk + (2 ≠ q)(1 ≠ Zk)) Ck

Hk + Ek
[3]25

dZi

dt
= bi(Fi)(1 ≠ Zi)2 ≠ mi(Fi)Zi26

≠2(„ ≠ 1)(1 ≠ Zi)Zi

ÿ

k>i

–kÂki
(qZk + (2 ≠ q)(1 ≠ Zk)) Ck

Hk + Ek
[4]27

Model simplification in case of ontogenetic symmetry. Assuming ontogenetic symmetry in ingestion and per-capita predation28

risk between juveniles and adults is equivalent to setting both q and „ equal to 1, which simplifies the per-capita reproduction29

and maturation rate to:30

bi(Fi) = mi(Fi) = max (“iFi ≠ Ti, 0)31

while the expressions for the encounter rate of non-basal species with their prey, Ei, equals:32

Ei =
ÿ

k<i

ÂikCk [5]33

The functional response for species i is hence given by:34

Fi =

Y
__]

__[

P

” + –1C1
i = 1

q
k<i

ÂikCk

Hi +
q

k<i
ÂikCk

otherwise
[6]35

The equations describing the dynamics of total species densities Ci and fractions of juveniles Zi therefore simplify to:36

dCi

dt
= max (“iFi ≠ Ti, 0) (1 ≠ Zi)Ci ≠ µi Ci ≠

ÿ

k>i

–kÂki
Ck

Hk + Ek
Ci [7]37

dZi

dt
= max (“iFi ≠ Ti, 0)

!
1 ≠ 3Zi + Z

2
i

"
[8]38

For all populations (basal and non-basal) the dynamics of the fraction of juveniles Zi hence follows a separable function,39

consisting of a factor max (“iFi ≠ Ti, 0) that only depends on the total species densities Ci and a factor
!
1 ≠ 3Zi + Z

2
i

"
that only40

depends on the fraction of juveniles Zi. Irrespective of the fluctuations in the total species densities Ci, the fraction of juveniles41

in each population will therefore approach the unique root in the interval [0,1] of the quadratic condition
!
1 ≠ 3Zi + Z

2
i

"
= 042

for t æ Œ, i.e. approach the constant value:43

Z = 3
2 ≠ 1

2
Ô

5 ¥ 0.38 [9]44

In the long run the dynamics of this juvenile-adult abundance model are therefore captured by a model that only considers45

total species abundances:46

dCi

dt
= max (“iFi ≠ Ti, 0) (1 ≠ Z)Ci ≠ µi Ci ≠

ÿ

k>i

–kÂki
Ck

Hk + Ek
Ci [10]47

with Ei and Fi given by Eq. (5) and Eq. (6), respectively.48
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Computing eigenvalues of the stage-structured model. To verify the local stability of the community states that appear to be49

stable based on numerical simulations I compute the eigenvalues characterising the dynamics in the neighbourhood of the50

equilibrium using the Jacobian matrix. In the neighbourhood of an equilibrium of the stage-structured model persistence51

of a species in the community guarantees that starvation does not occur for the juveniles nor the adults. In such a close52

neighbourhood of an equilibrium state the reproduction and maturation rate of adult and juvenile consumers are therefore53

necessarily positive, such that54

bi(Fi) = max ((2 ≠ q)“iFi ≠ Ti, 0) = (2 ≠ q)“iFi ≠ Ti [11]55

mi(Fi) = max (q“iFi ≠ Ti, 0) = q“iFi ≠ Ti [12]56

The dynamics of the total species densities Ci and the fraction of juveniles in the populations Zi can then be described by57

simplified versions of the ODEs. (3) and (4):58

dCi

dt
= ((2 ≠ q)“iFi ≠ Ti) (1 ≠ Zi)Ci ≠ µiCi59

≠ („Zi + (2 ≠ „)(1 ≠ Zi)) Ci

ÿ

k>i

–kÂki
(qZk + (2 ≠ q)(1 ≠ Zk)) Ck

Hk + Ek
[13]60

dZi

dt
= ((2 ≠ q)“iFi ≠ Ti) (1 ≠ Zi)2 ≠ (q“iFi ≠ Ti) Zi61

≠2(„ ≠ 1)(1 ≠ Zi)Zi

ÿ

k>i

–kÂki
(qZk + (2 ≠ q)(1 ≠ Zk)) Ck

Hk + Ek
[14]62

The whole system of di�erential equations can be summarised as:63

dC
dt

= K (C, Z) [15]64

dZ
dt

= L (C, Z) [16]65

in which C and Z are the vectors of total species abundances and fractions of juveniles in all populations, respectively. The66

vector-valued functions K(C, Z) and L(C, Z) contain the right-hand side of the ODEs dCi/dt (13) and dZi/dt (14) for the67

species-density subsystem, respectively.68

For a community with m species the Jacobian matrix of this model is a 2m ◊ 2m matrix J of the form:69

J =

Q

ca

ˆK
ˆC

ˆK
ˆZ

ˆL
ˆC

ˆL
ˆZ

R

db =

Q

a
V1 + W1 V2 + W2

V3 + W3 V4 + W4

R

b [17]70

Each of the 4 parts of J is a m ◊ m matrix containing the partial derivatives of the functions K(C, Z) and L(C, Z) with71

respect to the total species densities (C1, . . . , Cm) and fractions of juveniles (Z1, . . . , Zm). V1, V2, V3 and V4 are 4 m ◊ m72

matrices that capture the direct e�ects of two species in the community on each other, while W1, W2, W3 and W4 are 473

m ◊ m matrices that capture the indirect e�ects between two species that operates through a third species. More specifically,74

indirect e�ects occur between species because changes in the total density Cj and the fraction of juveniles Zj influence the75

encounter rate Ek of a consumer species k, which in turn a�ects the predation rate of species k on species i (last summation76

terms in ODEs above). Indirect e�ects hence involve interactions between a predator species k and two of its prey species with77

indices i and j.78

The elements of the matrices V1, V2, V3 and V4 are defined as:79

V
1

i,j = d

dCj
(dCi/dt) , V

2
i,j = d

dZj
(dCi/dt) , V

3
i,j = d

dCj
(dZi/dt) , V

4
i,j = d

dZj
(dZi/dt)80

Notice however that the derivatives with respect to Cj and Zj in these expressions are evaluated while ignoring the indirect81

e�ects that will be captured by the matrices W1, W2, W3 and W4, that is, while treating the quantities Ek in the predation82

mortality terms (last summation terms in ODEs (13) and (14)) as constants.83
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The entries V
1

ij are given by:84

V
1

ij =

Y
___________________]

___________________[

3
(2 ≠ q)“1

”F
2
1

P
≠ T1

4
(1 ≠ Z1) ≠ µ1

≠ („Z1 + (2 ≠ „)(1 ≠ Z1))
ÿ

k>1

–kÂk1
(qZk + (2 ≠ q)(1 ≠ Zk)) Ck

Hk + Ek
i = j = 1

((2 ≠ q)“iFi ≠ Ti) (1 ≠ Zi) ≠ µi

≠ („Zi + (2 ≠ „)(1 ≠ Zi))
ÿ

k>i

–kÂki
(qZk + (2 ≠ q)(1 ≠ Zk)) Ck

Hk + Ek
i = j ”= 1

≠–jÂji
(qZj + (2 ≠ q)(1 ≠ Zj))

Hj + Ej
(„Zi + (2 ≠ „)(1 ≠ Zi)) Ci i < j

(2 ≠ q)“i
Hi

(Hi + Ei)2 Âij („Zj + (2 ≠ „)(1 ≠ Zj)) (1 ≠ Zi)Ci i > j

[18]85

In the above expressions for the matrix elements V
1

ij with i > j I have used the identities86

dFi

dCj
= dFi

dEi

dEi

dCj
= Hi

(Hi + Ei)2
dEi

dCj
= Hi

(Hi + Ei)2 Âij („Zj + (2 ≠ „)(1 ≠ Zj))87

and88

d(F1C1)
dC1

= d

dC1

P C1
” + –1 (qZ1 + (2 ≠ q)(1 ≠ Z1)) C1

89

= ”P

(” + –1 (qZ1 + (2 ≠ q)(1 ≠ Z1)) C1)290

= ”F
2
1

P
91

In an equilibrium state all per-capita growth rates (dCi/dt)/Ci vanish such that the entries of the matrix V1 simplify to:92

V
1

ij =

Y
________]

________[

(2 ≠ q)“1

1
”F1
P

≠ 1
2

F1(1 ≠ Z1) i = j = 1

0 i = j ”= 1

≠–jÂji
(qZj + (2 ≠ q)(1 ≠ Zj))

Hj + Ej
(„Zi + (2 ≠ „)(1 ≠ Zi)) Ci i < j

(2 ≠ q)“i
Hi

(Hi + Ei)2 Âij („Zj + (2 ≠ „)(1 ≠ Zj)) (1 ≠ Zi)Ci i > j

[19]93

The entries V
2

ij are given by:94

V
2

ij =

Y
___________________]

___________________[

≠
3

(2 ≠ q)“1
(” + –1qC1) F

2
1

P
≠ T1

4
C1

≠2(„ ≠ 1)C1
ÿ

k>1

–kÂk1
(qZk + (2 ≠ q)(1 ≠ Zk)) Ck

Hk + Ek
i = j = 1

≠ ((2 ≠ q)“iFi ≠ Ti) Ci

≠2(„ ≠ 1)Ci

ÿ

k>i

–kÂki
(qZk + (2 ≠ q)(1 ≠ Zk)) Ck

Hk + Ek
i = j ”= 1

≠–jÂji
2 (q ≠ 1) Cj

Hj + Ej
(„Zi + (2 ≠ „)(1 ≠ Zi)) Ci i < j

(2 ≠ q)“i
Hi

(Hi + Ei)2 Âij2 („ ≠ 1) Cj(1 ≠ Zi)Ci i > j

[20]95

To derive the expressions for the matrix elements V
2

ij with i > j I have used the identities96

dFi

dZj
= dFi

dEi

dEi

dZj
= Hi

(Hi + Ei)2
dEi

dZj
= Hi

(Hi + Ei)2 Âij2 („ ≠ 1) Cj97
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and98

d(F1(1 ≠ Z1))
dZ1

= d

dZ1

P (1 ≠ Z1)
” + –1 (qZ1 + (2 ≠ q)(1 ≠ Z1)) C1

99

= ≠ (” + –1qC1) P

(” + –1 (qZ1 + (2 ≠ q)(1 ≠ Z1)) C1)2100

= ≠ (” + –1qC1) F
2
1

P
101

The entries V
3

ij are given by:102

V
3

ij =

Y
_________]

_________[

≠“1
–1 (qZ1 + (2 ≠ q)(1 ≠ Z1)) F

2
1

P

!
(2 ≠ q)(1 ≠ Z1)2 ≠ qZ1

"
i = j = 1

0 i = j ”= 1

≠–jÂji
(qZj + (2 ≠ q)(1 ≠ Zj))

Hj + Ej
2(„ ≠ 1)(1 ≠ Zi)Zi i < j

“i
Hi

(Hi + Ei)2 Âij („Zj + (2 ≠ „)(1 ≠ Zj))
!
(2 ≠ q)(1 ≠ Zi)2 ≠ qZi

"
i > j

[21]103

To derive the expressions for the matrix elements V
3

ij with i = j = 1 I have used the identity104

dF1
dC1

= d

dC1

P

” + –1 (qZ1 + (2 ≠ q)(1 ≠ Z1)) C1
105

= ≠ –1 (qZ1 + (2 ≠ q)(1 ≠ Z1)) P

(” + –1 (qZ1 + (2 ≠ q)(1 ≠ Z1)) C1)2106

= ≠–1 (qZ1 + (2 ≠ q)(1 ≠ Z1)) F
2
1

P
107

Finally, the entries V
4

ij are given by:108

V
4

ij =

Y
__________________________]

__________________________[

≠“1
2–1 (q ≠ 1) C1F

2
1

P

!
(2 ≠ q)(1 ≠ Z1)2 ≠ qZ1

"

≠2 ((2 ≠ q)“1F1 ≠ T1) (1 ≠ Z1) ≠ (q“1F1 ≠ T1)

≠2(„ ≠ 1)(1 ≠ 2Z1)
ÿ

k>1

–kÂk1
(qZk + (2 ≠ q)(1 ≠ Zk)) Ck

Hk + Ek
i = j = 1

≠2 ((2 ≠ q)“iFi ≠ Ti) (1 ≠ Zi) ≠ (q“iFi ≠ Ti)

≠2(„ ≠ 1)(1 ≠ 2Zi)
ÿ

k>i

–kÂki
(qZk + (2 ≠ q)(1 ≠ Zk)) Ck

Hk + Ek
i = j ”= 1

≠–jÂji
2 (q ≠ 1) Cj

Hj + Ej
2(„ ≠ 1)(1 ≠ Zi)Zi i < j

“i
HiÂij2 („ ≠ 1) Cj

(Hi + Ei)2

!
(2 ≠ q)(1 ≠ Zi)2 ≠ qZi

"
i > j

[22]109

The derivation of the expressions for the matrix elements V
4

ij with i = j = 1 is based on the identity110

dF1
dZ1

= d

dZ1

P

” + –1 (qZ1 + (2 ≠ q)(1 ≠ Z1)) C1
111

= ≠ 2–1 (q ≠ 1) C1P

(” + –1 (qZ1 + (2 ≠ q)(1 ≠ Z1)) C1)2112

= ≠2–1 (q ≠ 1) C1F
2
1

P
113

As explained above, indirect e�ects occur between species because changes in the total density Cj and fraction of juveniles114

Zj influence the encounter rate Ek of a consumer species k, which in turn a�ects the predation rate of species k on species i.115

André M. de Roos 5 of 21



These indirect e�ects therefore always arise because of the summation terms representing predation mortality in eqs. (13) and116

(14). In the predation rate of species k only the term 1/(Hk + Ek) depends on the total density Cj and the fraction of juveniles117

Zj of species j and the derivatives of this term with respect to Cj and Zj equal118

≠ 1
(Hk + Ek)2 Âkj („Zj + (2 ≠ „)(1 ≠ Zj))119

and120

≠ 1
(Hk + Ek)2 Âkj2 („ ≠ 1) Cj121

respectively. The elements of the matrices W1, W2, W3 and W4 are hence defined as:122

W
1
i,j = („Zi + (2 ≠ „)(1 ≠ Zi)) Ci („Zj + (2 ≠ „)(1 ≠ Zj))

ÿ

k>i

–kÂkiÂkj
(qZk + (2 ≠ q)(1 ≠ Zk)) Ck

(Hk + Ek)2123

W
2
i,j = („Zi + (2 ≠ „)(1 ≠ Zi)) Ci 2(„ ≠ 1)Cj

ÿ

k>i

–kÂkiÂkj
(qZk + (2 ≠ q)(1 ≠ Zk)) Ck

(Hk + Ek)2124

W
3
i,j = 2(„ ≠ 1)(1 ≠ Zi)Zi („Zj + (2 ≠ „)(1 ≠ Zj))

ÿ

k>i

–kÂkiÂkj
(qZk + (2 ≠ q)(1 ≠ Zk)) Ck

(Hk + Ek)2125

W
4
i,j = 2(„ ≠ 1)(1 ≠ Zi)Zi 2(„ ≠ 1)Cj

ÿ

k>i

–kÂkiÂkj
(qZk + (2 ≠ q)(1 ≠ Zk)) Ck

(Hk + Ek)2126

Note that i and j may be equal to each other as changes in the total density of Ci and the fraction of juveniles Zi change the127

predation rate of species k on species i through a change in the functional response of species k, which e�ect is not captured128

by the matrices V1, V2, V3 and V4. Furthermore, note that all elements W
1
ij are positive for species that are exposed to129

predation and equal to 0 only for top predators. Together with the fact that V
1

ii = 0 for i ”= 0 this implies that the e�ect of130

species density Ci on its own rate of change dCi/dt is 0 for top predators and positive for all non-basal species experiencing131

predation.132

All communities resulting from the stage-structured model with asymmetry in feeding and predation between juveniles and133

adults (q = 0.7, „ = 1.8) for which the minimum and maximum values of the total species density di�ered less than 10≠6 from134

each other for all species were considered stable. All communities for which the minimum and maximum values of total species135

density di�ered more than 10≠6 from each other for at least 1 species, were considered unstable (cycling) communities. For136

both stable and unstable communities the average total abundance and fraction of juveniles observed in the simulation were137

used as starting values to numerically solve for the equilibrium state using the package ‘rootSolve’ (1, 2) in R (3). For all138

115 stable communities the equilibrium community state was successfully located and was numerically indistinguishable from139

the average densities and juvenile fractions observed in the numerical simulations. For 147 communities that were considered140

unstable (cycling) the numerical solution procedure also converged to an equilibrium community state with all species present,141

while for 238 unstable communities the numerical solution procedure did not converge to such an equilibrium state.142

For all communities, for which the equilibrium state was successfully located, the Jacobian matrix J was evaluated by143

substituting for all species the equilibrium values for the total abundance and fraction of juveniles as well as all general and144

species-specific parameters into the matrices V1, V2, V3, V4, W1, W2, W3 and W4. The eigenvalues of the Jacobian matrix145

J (see Eq. (17)) were subsequently computed numerically using the routine eigen() in R (3). These calculations of the Jacobian146

matrix based on the analytical expressions for the matrices V1, V2, V3, V4, W1, W2, W3 and W4 were verified by also147

computing the Jacobian matrix numerically using central di�erencing methods applied to the right-hand side of the ODEs (13)148

and (14) for dCi/dt and dZi/dt.149

For both stable and unstable communities the largest real part among the eigenvalues (i.e. the real part of the dominant150

eigenvalue) is shown in Fig. S4. For stable communities this real part was always negative, ranging between -0.061 and151

≠9.8 · 10≠5. For unstable communities this real part was always positive, ranging between 1.3 · 10≠4 and 0.124.152

Sources of community stability. For stable communities the e�ect of dynamic changes in population stage-structure (i.e. changes153

in the juvenile-adult ratio) on the stability of the community equilibrium was evaluated further. The dominant eigenvalues154

computed for these communities were compared with the eigenvalues of the top-left submatrix of J , that is the m ◊ m matrix155

ˆK/ˆC of these communities. The latter matrix determines the stability of the species-density subsystem on its own with the156

juvenile fraction of each species equal to its equilibrium value. More specifically, this reduced model of the species-density157

subsystem on its own is described by the same dynamic equations for the total species densities as in the full model (Eq. (13)),158

but with the fraction of juveniles Zi in the populations taken constant over time and equal to the fraction of juveniles of the159
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species at equilibrium Z̃i:160

dCi

dt
= ((2 ≠ q)“iFi ≠ Ti) (1 ≠ Z̃i)Ci ≠ µiCi161

≠
ÿ

k>i

–kÂki

!
„Z̃i + (2 ≠ „)(1 ≠ Z̃i)

"
Ci

Hk + Ek

!
qZ̃k + (2 ≠ q)(1 ≠ Z̃k)

"
Ck [23]162

Comparing the eigenvalues of this reduced model with the eigenvalues of the full model, in which the juvenile fraction in the163

population Zi is dynamic and changes at the same time scale as the total species density, reveals the impact of dynamic changes164

in the population structure of the species on the stability of the community equilibrium. The eigenvalues of the reduced model165

can be computed from its Jacobian matrix which equals the matrix ˆK/ˆC = V1 + W1. This matrix corresponds to the166

community matrix with elements ˆ(dCi/dt)/ˆCj that captures the per-capita e�ect of the species in the community on each167

other’s growth rate and determines stability in community models without population structure.168

To further assess the di�erences between constant and a dynamic juvenile fraction in the population, for all stable communities169

resulting from the stage-structured model with asymmetry in feeding and predation between juveniles and adults (q = 0.7,170

„ = 1.8) community dynamics were computed starting from the equilibrium community state using the reduced model including171

the di�erential equations dCi/dt for the species-density subsystem only (Eq. (23)), with the juvenile faction Zi in each of172

the populations taken equal to its equilibrium value inferred from the stable community state (see Fig. 4C, top-left panel,173

in the main text and Fig. S6). Similarly, community dynamics were computed with an age-structured analogue of the full174

model. This age-structured model includes di�erential equations dCi/dt for the species-density subsystem and dZi/dt for the175

species-structure subsystem, but substitutes the juvenile maturation rate mi(Fi) for each of the species in the community with176

a constant value. This constant value is equal to the maturation rate that juveniles of the species experience in the community177

equilibrium and is indicated with m̃i. Dynamics are then described by the equations:178

dCi

dt
= bi(Fi)(1 ≠ Zi)Ci ≠ µiCi179

≠ („Zi + (2 ≠ „)(1 ≠ Zi)) Ci

ÿ

k>i

–kÂki
(qZk + (2 ≠ q)(1 ≠ Zk)) Ck

Hk + Ek
[24]180

dZi

dt
= bi(Fi)(1 ≠ Zi)2 ≠ m̃iZi181

≠2(„ ≠ 1)(1 ≠ Zi)Zi

ÿ

k>i

–kÂki
(qZk + (2 ≠ q)(1 ≠ Zk)) Ck

Hk + Ek
[25]182

The simulations with this age-structured analogue were also started from the equilibrium community state (see Fig. 4C, top-right183

panel, in the main text and Fig. S6). For comparison, community dynamics were also computed with the full model including184

the di�erential equations dCi/dt for the species-density subsystem (Eq. (3)) and dZi/dt for the species-structure subsystem185

(Eq. (4)) starting from a community state in which the initial density of each species was exactly 50% of its equilibrium value186

inferred from the stable community state (see Fig. 4C, bottom panel in the main text and Fig. S6).187

Extent of self-regulation. For stable communities the extent of self-regulation of species is assessed with the diagonal elements188

of the community matrix, the m ◊ m matrix ˆK/ˆC (Eq. (17)), which measures the positive or negative e�ect of the total189

species abundance Ci on its own rate of change dCi/dt (Fig. S5).190

Stage-structured biomass model of species dynamics191

To check the robustness of the results obtained with the stage-structured model in terms of juvenile and adult numerical192

densities, numerical simulations of community dynamics were also carried out, using a stage-structured biomass model for193

species dynamics (4). More specifically, each species was represented by 3 life history stages, referred to as juveniles, subadults194

and adults. Such a stage-structured biomass model (4) constitutes an approximation to a size-structured population model195

that accounts for a complete size distribution of individuals between their size at birth and size at maturation, in which the196

rates of feeding, metabolic maintenance, somatic growth, and reproduction all scale linearly with individual body size (5).197

Juvenile and subadult individuals are assumed to use their net-energy production (the di�erence between assimilation and198

metabolic maintenance rate) for somatic growth, whereas adults are assumed not to grow and use their net-energy production199

for reproduction. Dynamics are in terms of juvenile, subadult and adult biomass densities, indicated with Ji, Si and Ai,200

respectively.201

In the absence of predation the life history processes in the stage-structured biomass model are described by the following202
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mass-specific rate functions:203

Juvenile somatic growth g
J
i (Fi) = max ((2 ≠ q)“iFi ≠ Ti, 0) [26]204

Subadult somatic growth g
S
i (Fi) = max (q“iFi ≠ Ti, 0) [27]205

Adult reproduction bi(Fi) = max ((2 ≠ q)“iFi ≠ Ti, 0) [28]206

Juvenile mortality d
J
i (Fi) = µi ≠ min ((2 ≠ q)“iFi ≠ Ti, 0) [29]207

Subadult mortality d
S
i (Fi) = µi ≠ min (q“iFi ≠ Ti, 0) [30]208

Adult mortality d
A
i (Fi) = µi ≠ min ((2 ≠ q)“iFi ≠ Ti, 0) [31]209

Juvenile maturation m
J
i (Fi) =

Y
]

[

g
J
i (Fi) ≠ D

J
i

1 ≠ z
1≠DJ

i
/gJ

i
(Fi)

if g
J
i (Fi) > 0

0 otherwise
[32]210

Subadult maturation m
S
i (Fi) =

Y
]

[

g
S
i (Fi) ≠ D

S
i

1 ≠ z
1≠DS

i
/gS

i
(Fi)

if g
S
i (Fi) > 0

0 otherwise
[33]211

In these equations Fi represents the functional response of species i, which for the basal species equals:212

F1 = P

” + –1 ((2 ≠ q) J1 + q S1 + (2 ≠ q) A1) [34]213

The parameter q in this expression determines the asymmetry in feeding capacity between juveniles, subadults and adults (for214

the purpose of this study taken the same for all species). Non-basal species forage following a type II functional response:215

Fi = Ei

Hi + Ei
[35]216

in which Ei represents the encounter rate of non-basal species i with prey biomass:217

Ei =
ÿ

k<i

Âik („ Jk + (2 ≠ „) Sk + (2 ≠ „) Ak) [36]218

The parameter „ represents the bias of the consumer species toward feeding on juvenile as opposed to subadult and adult prey219

(for the purpose of this study taken the same for all species). Notice that all species are ordered according to their body size220

and hence species i can only feed on species with an index k < i.221

The parameter Ti in the life history functions (26)-(33) represents the (mass-specific) loss rate through metabolic maintenance222

requirements, while the parameter µi represents the background mortality. The parameter “i determines the maximum223

assimilation rate per unit biomass, while the parameter z equals the ratio between the body size at entering and leaving each224

of the immature stages (the juvenile and subadult stage). The parameters “i, q and Ti also determine the minimum food225

availability that is needed by juveniles, subadults and adults to just keep itself alive without producing any o�spring and226

without maturing.227

D
J
i and D

S
i indicate the total mortality rate experienced by juvenile and subadult individuals, respectively, which in the228

absence of predation equals µi, but in the presence of predation also includes the predation mortality (see below; note that229

D
J
i and D

S
i do not include starvation mortality as starvation mortality only occurs when g

J
i (Fi) = 0 or g

S
i (Fi) = 0, in which230

case m
J
i (Fi) = 0 and m

S
i (Fi) = 0, respectively). Equations (28), (26), (27), (32) and (33) express that adult reproduction,231

juvenile and subadult growth in body size and juvenile and subadult maturation come to a halt under starvation conditions,232

which for juveniles, subadults and adults occur when (2 ≠ q)“iFi < Ti, q“iFi < Ti and (2 ≠ q)“iFi < Ti, respectively. Under233

these starvation conditions juveniles, subadults and adults experience increased mortality (Eqs. (29), (30) and (31)). The234

mass-specific juvenile and subadult maturation rates depends on both juvenile and subadult growth rate in body size as well235

as total juvenile and subadult mortality, D
J
i and D

S
i , respectively. The functional form of the maturation rates m

J
i (Fi) and236

m
S
i (Fi) is chosen such that any equilibrium state predicted by the stage-structured biomass model corresponds uniquely to237

an equilibrium state of a structured model that accounts for a complete size distribution of individuals between their size at238

birth and size at maturation, in which the rates of feeding, metabolic maintenance, somatic growth, and reproduction all scale239

linearly with individual body size (5).240

A representation of each species by 3 life history stages with the smallest juveniles most vulnerable to predation mortality241

and the maturation of the larger immature individuals limited most by food availability was chosen because the dynamics of242

such a 3-stage biomass model has been found to closely resemble the dynamics of population models with a complete size243

distribution that are based on a dynamic energy budget model for the individual energetics (6). Similar results as presented in244

Fig. S7, S8 and S9 have, however, also been obtained using a stage-structured biomass model with only a single juvenile and245

adult life history stage to describe species dynamics.246
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The dynamics of the juvenile, subadult and adult biomass densities of all species in the community are now described by247

the following set of ordinary di�erential equations (ODEs):248

dJi

dt
= bi(Fi)Ai + g

J
i (Fi)Ji ≠ m

J
i (Fi)Ji ≠ d

J
i (Fi)Ji ≠ „Ji

ÿ

k>i

–kÂki
(2 ≠ q)Jk + qSk + (2 ≠ q)Ak

Hk + Ek
[37]249

dSi

dt
= m

J
i (Fi)Ji + g

S
i (Fi)Si ≠ m

S
i (Fi)Si ≠ d

S
i (Fi)Si ≠ (2 ≠ „)Si

ÿ

k>i

–kÂki
(2 ≠ q)Jk + qSk + (2 ≠ q)Ak

Hk + Ek
[38]250

dAi

dt
= m

S
i (Fi)Si ≠ d

A
i (Fi)Ai ≠ (2 ≠ „)Ai

ÿ

k>i

–kÂki
(2 ≠ q)Jk + qSk + (2 ≠ q)Ak

Hk + Ek
[39]251

In these equations Ek and Hk represent the encounter rate with prey and the half-saturation density in the functional response252

of species k, respectively (Eq. (36)), while the parameters q and „ represent the asymmetry in foraging rate and predation risk,253

respectively, between juvenile, subadult and adult individuals. The default values for these parameters equal 1, implying that254

all 3 stages have identical life history rates (q = 1) and that consumers feed indiscriminately on juveniles, subadults and adults255

of their prey species („ = 1). Finally, the parameter –k represents the maximum (mass-specific) foraging rate of consumer256

species k.257

Given the above equations, the total juvenile mortality rate, on which the maturation rate (Eq. (32)) of juvenile into258

subadult biomass depends, is the sum of background (but not starvation) mortality and predation mortality:259

D
J
i = µi + „

ÿ

k>i

–kÂki
(2 ≠ q)Jk + qSk + (2 ≠ q)Ak

Hk + Ek
[40]260

Starvation mortality is excluded from D
J
i because the maturation rate equals 0 under starvation conditions. Analogously, the261

total subadult mortality rate, on which the maturation rate (Eq. (33)) of subadult into adult biomass depends, is the sum of262

background (but not starvation) mortality and predation mortality:263

D
S
i = µi + (2 ≠ „)

ÿ

k>i

–kÂki
(2 ≠ q)Jk + qSk + (2 ≠ q)Ak

Hk + Ek
[41]264

Model parameterisation and numerical simulation details. Parameterisation of the stage-structured biomass model follows the265

same procedure as the stage-structured model in terms of juvenile and adult abundance (see Materials and Methods). In short,266

half-saturation prey densities Hi for non-basal species are sampled from a uniform distribution on the interval [0.5, 2.5]. The267

ratio between the smallest and the largest body size in each of the two immature life stages, z, that occurs in the maturation268

rates of the stage-structured biomass model (Eq. (32)) and (Eq. (33)), is for all species taken the same and equal to z = 0.1.269

Individuals are hence assumed to grow 2 orders of magnitude in body size between birth and maturation. The parameters –i,270

“i, Ti and µi all represent (mass-specific) rates and are assumed to scale with w
≠0.25
i following the equations:271

–i = –0
!
1 + 2‡–

!
xi1 ≠ 1

2
""

w
≠0.25
i [42]272

“i = “0
!
1 + 2‡“

!
xi2 ≠ 1

2
""

w
≠0.25
i [43]273

Ti = T0
!
1 + 2‡T

!
xi3 ≠ 1

2
""

w
≠0.25
i [44]274

µi = µ0
!
1 + 2‡µ

!
xi4 ≠ 1

2
""

w
≠0.25
i [45]275

The default mean values of the species-specific parameters equal –0 = 1.0, “0 = 0.6, T0 = 0.1 and µ0 = 0.015 (6), while the276

species-specific parameters –i, “i, Ti and µi are randomly selected from a Bates distribution of degree 3 around these mean277

values. A Bates distribution is the continuous probability distribution of the mean, X, of 3 independent uniformly distributed278

random variables on the unit interval. Random values from this distribution range between 0 and 1 with mean value of 1/2279

and are easily generated by taking the mean of 3 independent samplings from a uniform distribution on the unit interval [0, 1].280

The quantities xij are independent realisations of the random variable X, while ‡–, ‡“ , ‡T and ‡µ represent the one-sided,281

relative width of the distributions of the species-specific parameters –i, “i, Ti and µi, respectively, around the mean values282

–0 = 1.0, “0 = 0.6, T0 = 0.1 and µ0 = 0.015. Default values for these relative widths equal 0.1, such that all species-specific283

parameters –i, “i, Ti and µi range between 0.9 and 1.1 times their default mean value and follow hump-shaped distributions284

within these ranges. The productivity P and turn-over rate ” of the exclusive resource of the basal species are taken equal285

to 60 and 2.0, respectively, in all computations. The two remaining parameters, the foraging asymmetry parameter q and286

the predation asymmetry parameter „, in the model are varied between the di�erent computations to assess their e�ect on287

community dynamics.288

As described in the Materials and Methods section food webs are generated by selecting N = 500 random niche values ni289

uniformly from the interval [0, 1] and associated with species body mass following wi = (wmax)ni (wmin)(1≠ni). Subsequently,290

the network of feeding interactions between these N = 500 species is constructed by generating for each non-basal species291

the midpoint of its feeding niche ci following the procedure and default values for the mean prey-predator body mass ratio292
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described in the Materials and Methods and Fig. S10. Numerical integrations of the food web with N = 500 species are293

carried out using an adaptive Runge-Kutta (Cash-Karp) method implemented in C. Relative and absolute tolerances during294

the integration equal 1.0 · 10≠7 and 1.0 · 10≠13, respectively. During the first 104 time units no species are removed from the295

community, even if they attain very low density. For t > 104 each species, whose total biomass density Ji + Si + Ai drops296

below 10≠8, is removed from the community. This persistence threshold ensures that the product of the relative tolerance297

(10≠7) and the lowest species density (10≠8) is larger than the machine precision (equal to 1.11 · 10≠16 according to the IEEE298

754-2008 standard in case of double precision). During numerical computations mean and variance as well as the maximum299

and minimum value of the total species biomass Ji + Si + Ai are continuously monitored for all species. The values of these300

measured statistics are reset whenever the community structure changes as one or more species in the community go extinct.301

Numerical integrations are halted whenever the community structure has not changed for 106 time units and no change has302

occurred from one time unit to the next in the values of these statistics (mean, minimum, maximum and variance of total303

species density) for all species in the community.304
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Fig. S1. Juvenile-adult asymmetry increases community diversity – Mean community size (non-basal species only) of 500 replicate food web simulations with juvenile-adult
stage-structure for different values of foraging (q) and predation („) asymmetry between juveniles and adults. Larger communities result when predation is stronger on juveniles
than on adults and maturation is more limited by food availability than reproduction.
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Fig. S2. Juvenile-adult asymmetry increases community diversity at all productivities – Boxplot of community sizes at different levels of system productivity P resulting
from 500 replicate food web simulations without (left) and with stage-structure and foraging and predation asymmetry between juveniles and adults (right ; q = 0.7, „ = 1.8,
see Materials and Methods).

12 of 21 André M. de Roos



0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Fr

eq
ue

nc
y

0 1 2 3 4 5 6 7 8
Degree of node

0

0.05

0.1

0.15

0.2

0.25

0.3

Fr
eq

ue
nc

y

Fig. S3. Juvenile-adult asymmetry increases food web connectivity – Number of prey species (black bars; incoming network node links) and predators (grey bars; outgoing
network node links) for all species in food webs resulting from 500 replicate simulations without (top panel) and with stage-structure and foraging and predation asymmetry
between juveniles and adults (bottom panel; q = 0.7, „ = 1.8).
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Fig. S4. Eigenvalues of the Jacobian matrix with largest real part determining community stability – Real part of the dominant (right-most) eigenvalue of the Jacobian
matrix determining community stability as a function of community size for all stable communities (black dots) and all unstable communities for which the equilibrium could be
solved for numerically (grey symbols) for the stage-structured model in case of foraging and predation asymmetry between juveniles and adults (q = 0.7, „ = 1.8).
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Fig. S5. Juvenile-adult asymmetry stabilises community dynamics without self-regulation – Strength of intra-specific density dependence for basal (bottom) and all
non-basal species (top) in stable communities resulting from food web simulations with the stage-structured model and foraging and predation asymmetry between juveniles
and adults (q = 0.7, „ = 1.8). Intra-specific density dependence is assessed with the diagonal elements of the community matrix, which measures for basal and non-basal
species the negative and positive effect, respectively, of total species abundance on its own rate of change (see Materials and Methods).
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Fig. S6. Dynamic juvenile-adult ratio enforces complex community stability – Frequency distribution of community sizes (non-basal species only; red bars) resulting from
simulations of dynamics for all stable communities generated by the stage-structured model in case of foraging and predation asymmetry between juveniles and adults (q = 0.7,
„ = 1.8) with different model variants (see Materials and Methods and section Sources of community stability above). Top-left panel shows results of the species-density
subsystem on its own with the juvenile-adult ratio for each species constant in time and equal to its equilibrium value when initial species densities are identical to their
equilibrium values. Top-right panel shows results of the coupled species-density and species-structure subsystem with the juvenile maturation rate for each species constant in
time and equal to its equilibrium value when initial species densities are identical to their equilibrium values (These results represent dynamics of an analogous age-structured
model). Bottom panel shows results of the coupled species-density and species-structure subsystem when initial densities for each species are reduced to 50% of their
equilibrium densities. For reference, top and bottom panels also show the frequency distribution of community sizes (non-basal species only; blue bars) resulting from 500
replicate food web simulations without and with stage-structure and foraging and predation asymmetry between juveniles and adults, respectively, that are also presented in
Figure 2 in the main text.
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Fig. S7. Juvenile-adult asymmetry in biomass dynamics increases community diversity – A: Frequency distribution of community sizes (non-basal species only) resulting
from 500 replicate food web simulations using the 3-stage biomass model including juveniles, subadults and adults (see section Stage-structured biomass model of species
dynamics above) when juveniles are most vulnerable to predation and subadults are limited most by food availability (left panel; q = 0.9, „ = 1.8) and when subadults and
adults are more vulnerable to predation and small juveniles and adults are limited most by food availability (right panel; q = 1.2, „ = 0.2). B: Mean community size (non-basal
species only) of 500 replicate food web simulations using the 3-stage biomass model including juveniles, subadults and adults for different values of foraging (q) and predation
(„) asymmetry.
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Fig. S8. Juvenile-adult asymmetry in biomass dynamics increases food web complexity – A: Examples of food webs resulting from simulations using the 3-stage
biomass model including juveniles, subadults and adults (see Stage-structured biomass model of species dynamics above) when juveniles are more vulnerable to predation
and subadults are limited most by food availability (top panel; q = 0.9, „ = 1.8) and when subadults and adults are more vulnerable to predation and small juveniles and
adults are limited most by food availability (bottom panel; q = 1.2, „ = 0.2). Vertical position indicates trophic level. Inner circles indicate the biomass fraction of juveniles
(grey) and total immatures (blue) in the population. Arrow widths indicate the relative feeding preference (Âik , see Materials and Methods) of consumers for a particular prey
species. B: Number of prey species (black bars; incoming network node links) and predators (grey bars; outgoing network node links) for all species in food webs resulting from
500 replicate simulations using the 3-stage biomass model including juveniles, subadults and adults when juveniles are more vulnerable to predation and subadults are limited
most by food availability (top panel; q = 0.9, „ = 1.8) and when subadults and adults are more vulnerable to predation and small juveniles and adults are limited most by food
availability (bottom panel; q = 1.2, „ = 0.2).
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Fig. S9. Juvenile-adult asymmetry in biomass dynamics stabilises community dynamics – A: Examples of total biomass dynamics of all species in food web simulations
using the 3-stage biomass model including juveniles, subadults and adults (see Stage-structured biomass model of species dynamics above) when juveniles are more
vulnerable to predation and subadults are limited most by food availability (top panel; q = 0.9, „ = 1.8) and when subadults and adults are more vulnerable to predation
and juveniles are limited most by food availability (bottom panel; q = 1.2, „ = 0.2). Corresponding food web structures are shown in Figure S8. B: Boxplot of minimum
(blue bars) and maximum total biomass densities (red bars) as a function of community size for all persisting species in 500 replicate food web simulations using the 3-stage
biomass model including juveniles, subadults and adults (see Stage-structured biomass model of species dynamics above) when juveniles are more vulnerable to predation
and subadults are limited most by food availability (top panel; q = 0.9, „ = 1.8) and when subadults and adults are more vulnerable to predation and small juveniles and
adults are limited most by food availability (bottom panel; q = 1.2, „ = 0.2).
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Fig. S10. Construction of the prey-predator mass ratio food web model – Species are randomly assigned niche values ni in the range [0,1]. Niche values are related to
body size wi following wi = (wmax)ni (wmin)1≠ni with minimum (wmin) and maximum body size (wmax) equal to 10≠8 and 104 gram, respectively. The center ci of
the feeding niche of consumer species is uniformly distributed between ni ≠ 2.5/10log(wmax/wmin) and ni ≠ 0.5/10log(wmax/wmin), yielding median prey-predator
body size ratio between 10≠2.5 and 10≠0.5. The feeding niche width ri equals 1/10log(wmax/wmin). Consumer species i feeds on all prey species k with body sizes
between (wmax)(ci≠ri/2)(wmin)(1≠(ci≠ri/2)) and (wmax)(ci+ri/2)(wmin)(1≠(ci+ri/2)) at a relative feeding rate Âik following a hump-shaped distribution of
prey body size (see Materials and Methods).
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