
Discrete consumers, small scale resource

heterogeneity, and population stability

Abstract
We present a consumer-resource model in which individual consumers subsist on a
continuum of resource distributed over a very large number of small ``bite-sized''
patches, each patch being sufficiently small that all its resource is eaten whenever a
consumer visits. This form of consumer±resource interaction forces a heterogeneous
distribution of resource among the patches, and may dampen out the large amplitude,
consumer-resource cycles that are predicted by traditional models of well-mixed,
spatially homogeneous systems. The resource equilibrium does not increase with
enrichment, a prediction that distinguishes this model from models that invoke direct
or indirect consumer density dependence as a stabilizing mechanism.
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I N T R O D U C T I O N

Many simple models of coupled prey-predator or con-
sumer-resource systems predict large-amplitude cycles in
both populations whenever the equilibrium density of the
resource in the presence of consumers is much lower than
its carrying capacity K (e.g. Rosenzweig & MacArthur
1963; May 1972; Murdoch & Oaten 1975; Brauer 1979; de
Roos et al. 1990; Murdoch 1994; Gurney & Nisbet 1998;
Murdoch et al. 1998). This phenomenon has come to be
known as the ``paradox of enrichment,'' because if K is
interpreted as a measure of enrichment, there is an
implication that increases in K will lead to unstable
equilibrium and large cycles ± contrary to observations on
many systems (Murdoch et al. 1998 and references therein).
The instability involves the resource (prey) population
growing faster than the consumer following a perturba-
tion; for this reason the cycles are sometimes called ``prey
escape cycles'' (e.g. de Roos et al. 1990).

In this letter, we introduce a consumer±resource model
that recognizes individual consumers subsisting on a
continuum of resource distributed over a very large
number of small ``bite-sized'' patches, each patch being
sufficiently small that all its resource is eaten when a

consumer visits. This form of consumer±resource
interaction ensures local resource extinction on the
smallest meaningful spatial scale, yielding a heterogeneous
distribution of resource among the patches. This hetero-
geneity may dampen out the large consumer±resource
cycles predicted by analogous ordinary differential
equation (ODE) models. The resource equilibrium
density does not increase with enrichment, a prediction
that distinguishes the mechanisms in the new model from
alternative stabilizing mechanisms that involve density
dependence of the consumer vital rates.

M O D E L F O R M U L A T I O N

The paradox of enrichment is commonly demonstrated
using a model put forward by Rosenzweig & MacArthur
(1963); for an elementary treatment of this model, see
Gurney & Nisbet (1998). In the absence of consumers, the
resource grows logistically with parameters r and K.
Consumers have a type II functional response with search
rate s and handling time b, and a density-independent per
capita death rate m. Resource is converted into new
consumers with efficiency c. There is no explicit con-
sumer density dependence (sensu Murdoch 1994). The
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dynamics of the resource density X(t) and the consumer
density C(t) are given by two ODE:

dX

dt
� rX

�
1ÿ X

K

�
ÿ �XC

1� �bX
; �1�

dC

dt
�  �XC

1� �bX
ÿ mC : �2�

The new discrete-consumer model embodies the same
assumptions, except that the resource is not assumed to be
well mixed. It is a variant of a model developed by Nisbet et
al. (1997) to describe short-term (intragenerational) con-
sumer±resource dynamics in open systems, and the reader
is referred to that paper for a more detailed account of the
model concepts. The resources are modelled as a
metapopulation distributed over a large number of cells,
each of which is assumed large enough to allow us to model
resource dynamics within the cell as a continuous process,
but small enough that all resource biomass in the cell is
consumed if the cell is visited by a consumer. Thus,
following an attack on a cell by an individual consumer, the
resource density on that cell is set to zero. We have in mind
examples like a benthic mat of microalgae with invertebrate
consumers that completely clear any local area they attack.

The model equations (Table 1) are based on formalism
used by Hastings (1991) to describe metapopulation

dynamics in a system with intermittent, uncorrelated,
local catastrophes. Each cell is characterized by its age, t,
where ``age'' refers to the time since the last visit by a
consumer, and we define n(t,t) to be the ``age distribu-
tion'' of cells at time t. This allows the resource dynamics
to be described by a partial differential equation (PDE),
very similar to those used in age structured population
dynamics (e.g. Metz & Diekmann 1986; Tuljapurkar &
Caswell 1996). If the dynamics within a patch subsequent
to a visit by a consumer are deterministic, then all patches
of the same age have the same biomass density and we can
define a continuous variable x(t,t) to represent the
resource density on any patch aged t at time t. This
variable also obeys a PDE (Table 1).

Resource can only start growing on an empty patch if
it is ``seeded'' from elsewhere in the system. Thus we
assume that there is a continuous redistribution of
resource. A cell with resource density x(t,t) loses
resource at a rate ex(t,t); resource is mixed uniformly
and is immediately redistributed equally among all cells,
so that individual cells receive resource at a rate eX(t),
where X(t) represents the average resource density at
time t. Following recolonization, the local resource
density exhibits logistic growth as in the well-mixed
system, modified by these redistribution terms. The
parameter e characterizes the rate of resource mixing in
the system.

To model the consumer dynamics we assume that the
number of cells is sufficiently large that, although we treat
consumers as discrete on the scale of an individual cell, we
can treat the total density of consumers in the system as a
continuous variable. Consumers attack cells randomly at a
rate m(t) that may depend on average resource level X(t)
(through satiation), but is independent of local resource
density, i.e. the consumers exercise no foraging pre-
ference. In summary, the consumers obey the same ODE
as in the well mixed system.

R E S U L T S

The qualitative dynamics of the Rosenzweig±MacArthur
(ODE) model are controlled by three dimensionless
groups of parameters: m'=m/r, C'=C/bm, and
K'=sbK. These parameters represent, respectively, the
ratio of per capita consumer death rate to intrinsic growth
rate of the resource (m'), the ratio of the maximum per
capita consumer birth and death rates (C'), and the ratio
of resource carrying capacity to the half saturation
constant in the consumer's type II functional response
(K'). The dynamics of the discrete grazer model involve a
fourth dimensionless group, e'= e/r, representing the
ratio of the interpatch mixing rate to the resource's
intrinsic growth rate.
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Table 1 PDE for the ``discrete consumer'' model

t=``age'' of a patch (time since last attack)
n(t,t)dt=fraction of patches aged t?t+dt at time t
x(t,t)=resource density on a patch aged t at time t

X(t)=
�1
0

x(t,t)n(t,t)dt=average resource density at time t

C(t)=consumer density at time t
m(t)=attack rate per patch at time t
g(t)=biomass growth rate on a patch aged t at time t
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The dynamics of the Rozenzweig±Macarthur model are
well documented (see earlier references). It has a unique
equilibrium state with positive values for both popula-
tions provided K' 4 m'/(e' + m'). The resource
equilibrium level is obtained from the consumer eqn 2,
and hence does not involve the parameters that char-
acterize resource growth. The equilibrium is stable only if
K' 4 (e'±m')/(e' + m'); otherwise the system exhibits
stable limit cycles. This result is the basis of the paradox of
enrichment; high enrichment (large K) has no effect on the
equilibrium resource density, but implies instability.

The analysis of the discrete discrete consumer model
is much more complex. The equilibrium level of the
average resource density, X, is again obtained from eqn 2,
and is thus unaffected by enrichment. With consider-
able algebraic effort, it is possible to linearize the dynamic
equations, and obtain a condition for the transition from
stability to instability (for details of the mathematical
approach, see de Roos 1996). From the linearized
equations, it can be proved that as the scaled mixing
rate, e', becomes very large, the stability condition
approaches that of the Rosenzweig±MacArthur model.
Lower values of e' stabilize the system in the sense that for
any given value of C', the transition from stability to
instability occurs at larger values of scaled resource
carrying capacity and/or consumer death rate. This is
illustrated in Fig. 1.

D I S C U S S I O N

The discrete grazer model introduced in this letter is of
course a caricature of any real consumer±resource system.
However, the idealization of an immobile resource with
small enough individuals that its local density may be
treated as a continuous variable, interacting with a
population of highly mobile, discrete consumers, has
wide applicability. We already mentioned the example of a

benthic mat of microalgae with invertebrate consumers,
but the continuous/discrete distinction may even be
important at the smallest spatial scales when considering
the interaction of single cells with the continuum of
substrate that limits their growth.

Traditional ODE models are appropriate if population
sizes are large and organisms are homogeneously
distributed within the system, so that all per capita rates
depend on average population densities. This idealization
is never wholly plausible; in particular, many spatially
explicit, individual-based, consumer±resource models
exhibit much more stable dynamics than their ODE
counterparts, (e.g. de Roos et al. 1991; McCauley et al.
1993; Wilson 1996; Donalson & Nisbet 1998). Stability in
these models arises because the limited spatial range of
interactions desynchronizes local dynamics in different
regions of the system. Two recent papers (Wilson et al.
1998; Gurney et al. 1998) suggest that ephemeral regions
of local extinction of consumer or resource may play a key
role in achieving this decoupling of local from global
dynamics. In the present model, such local extinction is
forced by the feeding rules.

However, more than one stabilizing mechanism is
possible in models with resource heterogenity. Many
mechanisms lead to stability via some form of density
dependence that reduces the effectiveness of the consumer
at high consumer density. In such models, equilibrium
resource density increases with enrichment. An example is
a model by de Roos et al. (1998), similar to ours except
that the time spent by consumers on resource patches is
much longer than the handling time per resource item, so
that the functional response depends on local resource
density. The stabilizing mechanism described here is very
different: the efficiency of the consumers is unaffected by
the resource heterogeneity, but there is a reduction in the
total rate of resource production, relative to the well-mixed
situation. This is illustrated in Fig. 2.

Finally, we note that mechanisms capable of stabilizing
consumer±resource interactions, commonly also promote
coexistence of multiple consumers competing for a single
resource. Wilson et al. (in preparation) show that the
``discrete consumer'' mechanism indeed has this potential,
provided the competitors reduce the resource level to
different thresholds after attacking a patch.
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Figure 1 Stability boundaries for the discrete consumer model
with scaled parameter C'=1. The equilibrium is unstable above
the lines.
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Roger Nisbet's recent research has emphasized individual-
based population models that relate population dynamics to
the physiology and behaviour of individual organisms. These
models, as well as more traditional population models, are
being used in studies of population regulation and response
to environmental stress.

Figure 2 Continuous curve, typical form for a plot of
equilibrium value of the total rate of resource production in
the discrete consumer model (equal to�1
0

rx�t�
�
1ÿ x�t�

K

�
exp�ÿmt�dt

where x(t) is the resource density on a cell of age t and m is the
rate of attack on patches by consumers) against average resource
density X. Broken curve, analogous plot for the well-mixed
(ODE) model.
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