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TOBIAS VAN KOOTEN,1,3 ANDRÉ M. DE ROOS,1 AND LENNART PERSSON2

1Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, P.O. Box 94084,
1090 GB Amsterdam, The Netherlands

2Department of Ecology and Environmental Science, Umeå University, S-901 87 Umeå, Sweden

Abstract. Size-structured population models often exhibit single generation cycles,
which are driven by scramble competition within a generation and size-based competitive
asymmetry among generations. These cycles are characterized by the dominance of a single
cohort and thus by a high degree of synchronization of the individual life histories. The
models, however, do not generally allow for divergence in size among individuals born at
the same time. Size divergence may, for example, result from the stochasticity that arises
due to local interactions between individuals and their environment and has been shown
to affect the population dynamics within generations. We studied the effect of the size
divergence that develops as a result of stochasticity over many generations, considering
the full population dynamical feedback, including resource dynamics. The stochastic var-
iation in our model was generated by local interactions of individuals with the environment.
We varied the mobility of individuals, which regulated the strength of the local resource
feedback on the consumers. We found that at very high mobility our model provided a
good correspondence to similar but fully deterministic models, showing the single gener-
ation cycles typical for a size-structured consumer–resource interaction. Intermediate levels
of mobility had no notable effect on the dynamics of our model population. At very low
mobility, the dynamics appeared to be strongly influenced by stochasticity. We showed that
by superposition of the underlying deterministic dynamics and the stochasticity induced
by local interactions we could fully understand the dynamics of the model. This finding
led us to conclude that, while individual variability may have an impact on population
structure and dynamics, it does not necessarily change the deterministic interactions that
determine global population dynamics. More specifically, our study highlights the robust-
ness of single generation cycles, showing that even at high levels of individual variability
the population dynamics will intermittently exhibit patterns resembling these cycles.

Key words: cohort competition; consumer–resource interaction; demographic stochasticity; life-
history variability; mobility; physiologically structured population models.

INTRODUCTION

Ecologists have for a long time pointed out the im-
portance of size or physiological structure in popula-
tions (Lindström 1955, Ebenman and Persson 1988).
Classical ecological theory is based on modeling ap-
proaches that describe populations in terms of density
or numbers of individuals. Only recently, with the
availability of new analysis and simulation tools the-
orists have begun to rigorously explore the dynamical
consequences of physiological structure (Metz et al.
1988, de Roos et al. 1992, Gurney et al. 1996, Mc-
Cauley et al. 1996, Murdoch et al. 1998). This has led
to a general understanding of how size-based interac-
tions can shape population and community dynamics
(de Roos et al. 1992, 2002, Persson et al. 1998, Claes-
sen et al. 2000, de Roos and Persson 2001). Most of
the models employed in these papers are based on the
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formalisms and algorithms derived in Metz and Diek-
mann (1986) and de Roos (1989), in which a population
is described by a frequency distribution over one or
more physiological traits. The framework is based on
an assumption that individuals born at the same time
remain identical throughout life history, i.e., variability
among such individuals cannot develop (Metz and de
Roos 1992). While the models are formulated in terms
of individual level processes, they do not consider in-
dividuals as discrete, independent units.

Another method that has gained momentum since
the 1980s is the individual based simulation model
(IBSM). Rather than using mathematics to arrive at an
acceptable simplification of natural systems, this ap-
proach relies on computer power to simulate a large
number of individuals as discrete units (for references
see reviews by Tyler and Rose [1994] and Grimm
[1999]). These individuals are represented by an ar-
bitrary number of relevant individual-level variables,
such as age, mass, social status, or any property im-
portant for the problem under consideration. The in-
dividual-level variables are supplemented by a set of
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rules defining the interaction of individuals with the
environment and each other.

In contrast to structured population models sensu
Metz and Diekmann (1986), these simulation models
keep track of all individual-level variables for each
individual separately, and are hence perfectly capable
of dealing with development of variation between ini-
tially similar individuals. In our paper we use the
terms variation or variability to refer to such differ-
ences between initially similar individuals. Using
IBSMs, several influential papers have tackled the
problem of how individual variation affects life his-
tory and population dynamics (Thompson et al. 1974,
DeAngelis et al. 1979, 1993, Pacala and Silander
1985). However, as stated by Tyler and Rose (1994),
these papers study the within-generation effects of
individual variation on the population size distribu-
tion. More recent IBSMs do take recruitment into ac-
count (Schmitz and Booth 1997, Dong and DeAngelis
1998, Schmitz 2000), but do not explicitly study the
effects of individual-level variation on population dy-
namics. Hence, a discrepancy exists in that generally,
individual variation is considered to be an important
factor in population dynamics, but all knowledge
about its influence is based on within-generation mod-
eling excercises. The long-term effects of individual
variation on population dynamics thus remain largely
unknown.

In this paper we study this relationship between in-
dividual variability and the global and local feedback
via the population dynamics, on the individuals, bridg-
ing the gap between on one hand the modeling ap-
proaches that ignore variation between individuals and
on the other hand the individual based simulation ap-
proaches. To this end, we derive a model that is based
on the approach pioneered in Metz and Diekmann
(1986), with the numerical integration techniques de-
veloped in de Roos et al. (1992). We adapt the model
formulation to account for a one-dimensional spatially
structured environment. In our model, all individuals
that are born at a particular time are subdivided into a
fixed number of groups (schools), which move inde-
pendently through this space. While this is not an in-
dividual based simulation model sensu Huston et al.
(1988), the subdivision of cohorts into schools allows
for variation between individuals of the same age to
develop. We consider the consumer-resource model
studied in Persson et al. (1998) and de Roos et al.
(2002) as a limiting case and starting point of our study.
As schools of individuals move through space, they
depress the resource locally. Since a location can be
populated by any number of schools, containing any
number of individuals, spatial heterogeneity in the re-
source level develops. The life history of individuals
in a school depends on the resource levels it has ex-
perienced since its birth, thus the spatial heterogeneity
in the resource will cause the state of individuals (e.g.,
their reversible and irreversible mass) to vary. We vary

the extent of this divergence by varying the mobility
of the schools. We analyze how the single cohort cycles
that characterize the dynamics of size-structured mod-
els (Persson et al. 1998) are affected by the variation
within year classes that arises when mobility of indi-
viduals is limited. Furthermore we look at the different
growth trajectories exhibited by the individuals in the
population, and relate these to the global population
dynamics.

MODEL FORMULATION

We model the interaction between a size structured
consumer and a resource following the approach de-
veloped in Persson et al. (1998) in a spatially structured
environment. We use the parameter set for Eurasian
perch (Perca fluviatilis) that is used in Claessen et al.
(2000) and de Roos et al. (2002). For reference, all
parameters of the model are listed in Table 1. Perch is
a well-studied organism, and a very common species
in temperate aquatic systems throughout Europe. The
parameter set we use is valid for perch that occur in
lakes in central Sweden. The growth season for perch
at this latitude is 90 days, due to low water temperature
and ice cover during the rest of the year. All individual
level processes in the model are continuous, except
reproduction and movement of consumers through
space. Reproduction is a pulsed event, occurring only
at the start of each growth season. For computational
reasons we allow movement of consumers through
space to occur once per day, at the end of the day. We
use a structured environment that consists of 40 sep-
arate resource populations interlinked in a circular
fashion, creating a discrete one-dimensional circular
space. All resource compartments have identical char-
acteristics and hence approach the same equilibrium
resource density in the absence of consumers. Next we
discuss the formulation of the three states (the i-state,
the environment, and the population bookkeeping) used
in the model.

The i-state processes

An individual, in this model, is characterized by its
mass. We make a distinction between reversible mass
and irreversible mass (y and x, respectively in Table
1). All other characteristics except those related to spa-
tial position of the individual can be derived from these
two quantities. Reversible mass consists of all tissue
that is lost during starvation. This includes fat, muscles,
and gonads. Irreversible mass consists of all vital or-
gans that are never subject to starvation such as bones,
heart, and intestines. The ratio of reversible to irre-
versible mass is used as a measure of the condition of
an individual. If the proportion of reversible mass be-
comes too low, individuals suffer increased mortality
due to starvation. Maturation of individuals occurs at
a fixed irreversible mass. In adult individuals, we as-
sume that the standardized somatic mass is the irre-
versible mass plus a fixed fraction of irreversible mass.
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TABLE 1. Variables and model parameters for Eurasian perch (Perca fluviatilis) feeding on a zooplankton resource (Daphnia
sp., length 1 mm).

Variable and
symbol Value Unit Interpretation Source†

Consumer variables
N
x
y

no.
g
g

no. consumers in a school
irreversible mass of a consumer
reversible mass of a consumer

Season
Y 90 days (d) length of year

Ontogeny
wb

xf

qJ

qA

kr

1.8 3 1023

4.6
0.74
1.37
0.5

g
g

egg mass
maturation size
maximum juvenile condition
maximum adult condition
gonad–egg conversion

1, 2
1, 2
3

15

Planktivory
a
Â
wopt

0.62
3.0 3 1024

8.2
L/d
g

allometric exponent
maximum attack rate
optimal forager size

1, 2
4
5

Handling

j1

j2

5.0
20.8

(11j )2d/g allometric scalar
allometric exponent

2, 7
2, 7

Metabolism
r1

r2

ke

0.033
0.77
0.61

(12r )/d2g allometric scalar
allometric exponent
intake coefficient

8–11
8–11
8, 10–13

Mortality
m0

mJ

qs

s

0.01
varied

0.2
1.0

d21

d21
background rate of mortality
additional juvenile background rate
starvation condition
starvation coefficient

1, 2, 6

Resource
r
K
m

0.1
100.0

3.0 3 1025

d21

L21

g

population growth rate
carrying capacity
wet mass, 1.0 mm Daphnia

14, 15
1, 2

Notes: All parameters except Y, r, K, and m refer to individual-level processes.
† Sources: 1, Byström et al. (1998); 2, P. Byström (unpublished data); 3, Treasurer (1981); 4, Persson (1987); 5, Persson

and Greenberg (1990); 6, B. Christensen (unpublished data); 7, Lessmark (1983); 8, Karås and Thoresson (1992); 9, Kitchell
et al. (1977); 10, Elliott (1976); 11, Beamish (1974); 12, Solomon and Brafield (1972); 13, Rice et al. (1983); 14, E. Wahlström
(unpublished data), 15, L. Persson (unpublished data).

Any reversible mass in excess of this fraction is con-
sidered gonad mass. We use this standardized somatic
mass for size-dependent processes that are independent
of the condition of individuals (de Roos et al. 2002).
All individual level equations we use in our model are
listed in Table 2.

For the resource consumption we use a Type II func-
tional response, with a size-dependent attack rate and
a size-dependent handling time. The attack rate is a
hump-shaped function of consumer standardized mass,
identical to the attack rate used in Persson et al. (1998),
Claessen et al. (2000), and de Roos et al. (2002). Han-
dling time of perch decreases with standardized so-
matic mass, due to gape and gut size increases. A dis-
cussion of the shape of the attack rate and handling
time functions can be found in Persson et al. (1998)
and de Roos et al. (2002). We assume that a school in

compartment u spends 60% of its time foraging in that
compartment, and 20% in each of the adjacent com-
partments. Biologically, this assumption reflects spatial
wandering of schools on time scales smaller than we
use for modeling consumer dispersal. Numerically, it
avoids extreme differences between adjacent compart-
ments, which are likely to introduce numerical arte-
facts. Including this assumption in the biomass zoo-
plankton encounter rate leads to the function

1

h (w) 5 A(w)P(s)R m (1)Ou u1s
s521

which is the instantaneous biomass zooplankton en-
counter rate of a school j with standardized mass w,
residing in compartment u. P(s) is the foraging distri-
bution, with s 5 {21, 0, 1} and P(s) 5 0.6 if s 5 0
and 0.2 otherwise, which is the fraction of foraging
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TABLE 2. The i-state model equations.

Subject Equation

Standardized mass w(x) 5 x(1 1 q )J

Attack rate
a

w(x)
[12w(x)/w ]ˆ optA(x) 5 A e5 6wopt

Food intake rate of a consumer in compartment u
h [w(x)]uI (x) 5u 1 1 H [w(x)]h [w(x)]u

Handling time j2H(x) 5 j w(x)1

Zooplankton encounter rate in compartment u
1

h (x) 5 A[w(x)]P(s)R mOu u1s
s521

Energy balance E (x, y) 5 E (x) 2 E (x, y)g a m

Acquired energy E (x) 5 k I(x)a e

Maintenance requirements r2E (x, y) 5 r (x 1 y)m 1

Fraction of energy used for growth in irreversible mass

 1 y
if x # x and E . 0f g(1 1 q )q xJ J

1 yk(x, y) 5 
if x . x and E . 0f g(1 1 q )q xA A

0 otherwise

Starvation mortality s(q x /y 2 1) if y , q xs sm (x, y) 5s 50 otherwise

Juvenile mortality m (x) 5 varied, 0 if x . xJ f

Total mortality m(x, y) 5 m 1 m (x, y) 1 m (x)0 s J

Fecundity
k (y 2 q x)/w if x . x and y . q xr J b f J

F(x, y) 5 50 otherwise

effort spent in compartment u 1 s, which has resource
density Ru1s. We use the wet mass of a 1-mm Daphnia
individual (m) to convert the zooplankton particle den-
sity to biomass density. Thus, total instantaneous bio-
mass encounter rate is a weighted sum of biomass en-
counter rate in a school’s present location and those
adjacent to it. A(w) is the hump-shaped size-dependent
attack rate (Persson et al. 1998, and see Table 2 for
equations). From the total energy intake, the basic met-
abolic costs are subtracted first. Any surplus energy
intake that is left after individuals cover their basic
metabolic costs goes into growth. A fraction of this
energy is always converted into irreversible mass, in-
dependent of the condition of individuals. This fraction
is larger for juvenile individuals than for adults, be-
cause adults allocate energy to gonads. A thorough
discussion of this energy allocation rule can be found in
Persson et al. (1998) and Claessen et al. (2000). All i-
state functions described previously are listed in Table 2.

The attack rates, handling time, and energy alloca-
tion functions together define the size-based competi-
tive relations in our model population. The parameter
values in Table 1 imply that individuals with higher
irreversible mass always have a higher minimum re-
source requirement (the resource level where total en-
ergy intake equals basic metabolic requirements) than

smaller individuals. Thus, at the parameter settings we
use, smaller individuals are competitively superior to
larger individuals. Persson et al. (1998) show that this
is a defining element of population dynamics of phys-
iologically structured consumer–resource models.

Reproduction occurs once per year, at the start of the
growing season. At these events, all gonad mass is
removed from all adult consumers, and is converted to
offspring.

We assume that all individuals suffer a constant
background mortality. Juvenile individuals (individu-
als with standardized mass smaller than the maturation
threshold) suffer an additional mortality rate. Any star-
vation mortality comes on top of this total background
mortality.

We model dispersal of consumers as a random prob-
abilistic process. Once per day all schools in the pop-
ulation move. The exact shape of the dispersal kernel
is chosen for its computational convenience rather than
its biological accuracy. The function describing this
distribution is a piecewise quadratic polynomial (Eq.
3). For each school, we draw an uniformly distributed
random number v between 0 and 3. We use the integral
of the dispersal kernel and a rescaling procedure (Eq.
2) to calculate the new location Lt11 for each school:
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v2
L 5 L 1 int M M(n) dn 2 1 (2)t11 t max E[ ]3 n50

 0 n , 0, n . 3

1
2n 0 , n , 1

2
(3)M(n) 5  3

22 1 3n 2 n 1 , n , 2
2

9 1
2 2 3n 1 n 2 , n , 3.

2 2

This function is highly similar to the normal distri-
bution, but has the advantage of having finite tails. The
width of this dispersal kernel is controlled by a single
parameter, Mmax. This is the maximum distance a school
can move from one day to the next. Another advantage
of using this particular shape is that the integral in Eq.
2 is generated by the sum of three uniformly distributed
random variables (for a formal proof see Papoulis
1965). This obviously makes it very easy to simulate.

In this paper we study two values of the mobility of
individuals, which we indicate as limited (Mmax 5 10)
and low (Mmax 5 1) mobility. At limited mobility, in-
dividuals can move a maximum distance of one-fourth
of the total size of the environment in one movement
step. However, the chance of this occurring is ;0.001
per school per movement step. The average distance
(independent of the direction) a school travels in one
movement step is 2.7 compartments. At low mobility,
each school has a two-thirds chance of staying where
it is per movement event, and the average distance
traveled is one-ninth of a compartment.

If we run the model with a large number of schools
that all start in the same location, the spatial distri-
bution at the end of the season gives us an intuitive
notion of what these Mmax values mean in terms of
mixing. For limited mobility (Mmax 5 10), the variance
(mean squared displacement) of the spatial distribution
after one season of movement is 120.56. In comparison,
the variance for a uniformly distributed population is
126.79 (which is what we expect in the case of a well-
mixed system). Hence, while on a daily scale move-
ment is local, the limited mobility setting leads to an
almost homogeneous system within one season. For
low mobility (Mmax 5 1), the variance is only 12.18,
indicating that the distribution is far from uniform. The
interaction between individuals and the environment at
low mobility is local even on the timescale of seasons.

To confirm that our model is analogous to its non-
spatial ancestors (such as Persson et al. 1998), we have
constructed an approximation of such a well-mixed
system, by setting the mobility parameter to a very high
value (Mmax 5 100). This leads to a completely random
redistribution of schools over space at each movement
occasion, a so-called mean-field approximation. While
the effect of the consumer on the resource is local, the
consumers spend so little time in one location that the

local feedback of the resource on the consumer is lost.
This parameter setting should result in dynamics that
approach those of the nonspatial model, and thus allows
us to link our model directly with existing theory for
the dynamics of size-structured populations.

The environment

Each resource grows according to semi-chemostat
dynamics, as described in Persson et al. (1998). Semi-
chemostat dynamics is presumed to be an appropriate
description for a resource population with small sizes
that are invulnerable to predation. We further assume
diffusive flow between resource compartments. Thus,
resource dynamics for compartment u are given by

dRu 5 r(K 2 R ) 1 D(R 1 R 2 2R )u u11 u21 udt
1 A(w )Nj j

2 P(s)R (4)O Ou 1 1 H(w )h (w )s521 j∈L j u2s ju2s

where Lu2s 5 {k z school k is in compartment u 2 s}.
The first term in Eq. 4 describes the dynamics of the

edible fraction of a Daphnia population (semi-che-
mostat dynamics). This formulation of resource dy-
namics is identical to that used in Persson et al. (1998),
Claessen et al. (2000), and de Roos et al. (2002). The
second term is the discretized diffusion process of re-
sources between adjacent compartments, which is con-
trolled by the diffusion parameter D (we assume D 5
0.01d21). The last term is the total consumption by the
consumer population. A(w), H(w), and hi(w) are the
size-dependent attack rate, handling time, and intake
rate, respectively (equations are listed in Table 2). The
set Lu2s gives the subset of all schools that forage in
compartment u from compartment u 2 s. Summing
over all schools j in Lu2s for s 5 {21, 0, 1} gives the
total resource consumption in compartment u. Note that
since we assume a circular space, u is only a relative
index.

Population bookkeeping

Consumers are assumed to feed, grow (or shrink in
case of starvation), and die continuously, but reproduce
only at the start of a growth season in a sharply pulsed
event. Furthermore, movement of schools through the
environment is a discrete probabilistic process. The
model is thus a combination of a continuous dynamical
system, describing growth and survival of the consum-
ers and production and consumption of the resource
during the growth season, and a discrete map describ-
ing the movement and reproduction of consumers. Nu-
merically, the model can be studied using the EBT
(Escalator Boxcar Train) framework (de Roos et al.
1992, Persson et al. 1998). The EBT method is spe-
cifically designed to handle the numerical integration
of the equations that occur in physiologically structured
models. Next follows a description of how the EBT
method is applied to keep track of the consumer pop-
ulation in our model.
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The pulsed reproduction process ensures that there
exists a natural subdivision of the population into co-
horts of individuals. At the beginning of each growth
season, all gonad mass is removed from all adults, and
converted to a number of offspring, which make up a
cohort or year class. These newborn individuals are
allocated to a fixed number of newly formed schools,
which are added to the population. In the current study,
we added 100 newborn schools per reproduction event,
irrespective of the number of offspring involved. Tests
where we varied this number have shown that 100 is
large enough to allow for variation between schools,
but still computationally feasible. All newborn indi-
viduals are identical in all respects except their location
in space. Each new school is assigned a random initial
location. In the similar models studied previously
(Persson et al. 1998, Claessen et al. 2000, de Roos and
Persson 2001, de Roos et al. 2002), all newborn in-
dividuals are pooled into one large cohort of individ-
uals, which are identical throughout their life history.
The introduction of schools is a modification of the
EBT algorithm. By breaking each reproductive pulse
into independent schools, we allow life-history varia-
tion between individuals of the same age to develop.
While variation between schools may develop, within
schools all individuals are identical, and remain so for
the duration of their life.

The discrete nature of the population distribution in
the i-state space allows us to describe each school with
a set of differential equations. For each school in the
population, we need one differential equation to de-
scribe the change of each i-state variable, and an ad-
ditional one that describes the number of individuals
in the school. The dynamics of the entire consumer
population, both in terms of its abundance and its com-
position, can be followed throughout the growth season
by numerically integrating this system of ordinary dif-
ferential equations for each cohort separately. Changes
in the resource population are calculated by simulta-
neously integrating Eq. 4. At the end of each day, the
integration is interrupted, and the movement of schools
of consumers is processed.

Overall, the simulation of physiologically structured
populations thus involves the numerical integration of
a (large) system of ordinary differential equations,
which is extended in dimension at the beginning of
each season with a concurrent reset of some of the
variables. The dimension of the system is reduced
whenever the number of individuals in a given cohort
has become negligible, at which time the differential
equations for such a cohort are removed.

RESULTS

The population dynamics of the mean-field model
(as approximated by Mmax 5 100, Fig. 1) show the
typical single cohort cycles, which are discussed in
detail by Persson et al. (1998). Reproduction occurs in
large bursts, once every seven years for the parameters

used in Fig. 1. The newborn cohorts reduce the resource
to such low levels that they themselves barely survive,
and all larger individuals in the population starve and
die. Scramble competition for food leads to a very slow
increase in size of individuals in these year classes.
Death in these large year classes occurs due to back-
ground mortality. This leads to a gradual release of
scramble competition, since there are less and less in-
dividuals to share the available food with. Body growth
speeds up as the number of individuals decreases. Dur-
ing their sixth year, the individuals reach maturation
size, and start allocating mass to gonads. At the first
possible occasion, their seventh birthday, reproduction
takes place, a new dominant cohort monopolizes the
resource, and the cycle starts again. When juvenile
background mortality (mJ) increases, the decrease in
numbers speeds up, which causes a quicker release of
competition. Eventually, the timing of maturation shifts
over a year boundary. When this happens, individuals
can reproduce one year earlier, and the length of the
cycle shortens by one year. Hence, we expect a pattern
of stepwise decrease in the period of the cycle, until
at a certain juvenile background mortality, individuals
mature within one growth season, and reproduce when
they are one year old. When mortality increases even
more, the population eventually goes extinct.

The above shows the pivotal role of the juvenile
mortality parameter mJ in shaping the dynamics of size-
structured consumers. Juvenile mortality is also a pa-
rameter for which we have no empirically determined
value. Such a value is hard to obtain, since it represents
all mechanisms (predation, disease, and other factors)
that make juvenile individuals more likely to die than
adults. In this paper we focus on the relation of de-
creasing single cohort cycle length with increased ju-
venile mortality. This relation is well documented for
similar systems (Persson et al. 1998, de Roos and Pers-
son 2001, de Roos et al. 2002) and is clearly present
in our mean-field approximation. Based on this simi-
larity we conclude that our model results at lower mo-
bility can be attributed to the consequences of space-
induced individual variation.

Limited mobility

The bifurcation diagram at limited mobility (Mmax 5
10, Fig. 2A) is highly similar to both that of a nonspatial
variant of the model and our well-mixed version. Fig.
2A is constructed by calculating time series for a large
number of values of juvenile additional mortality (mJ).
After removal of transient dynamics, the population is
sampled at the beginning of each season, and the num-
ber of non-newborn individuals is plotted. Thus, the
one-year cycle at high juvenile mortality shows as a
single dot in the graph (the population state is the same
each year), the two-year cycle shows up as two points
(one for the high and one for the low year) and so on.
The period of the cycles varies from one year at high
juvenile mortality to a seven-year cycle, identical to
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FIG. 1. Single cohort cycles generated by the model with
high mobility. The upper panel shows the growth curves of
schools (standardized mass), the middle panel shows the re-
source (res.) biomass dynamics, and the lower panel shows
the numbers of individuals in the population. In the lower
panel, triangles represent newborn individuals, dashed lines
are juveniles, and solid lines indicate the number of adults
in the population. Parameter settings for this realization are
mJ 5 0.001 and Mmax 5 100; all other parameters are as in
Table 1.

FIG. 2. Numerical bifurcation diagram of the one-year and
older consumer population, varying additional juvenile mor-
tality for (A) limited mobility (Mmax 5 10) and (B) low mo-
bility (Mmax 5 1). The population is sampled once per year,
at the beginning of the season. Each dot in the graph repre-
sents a sampling occasion. The black symbols indicate the
state of the system when the bifurcation is started at zero
additional juvenile mortality and then increased; the gray
symbols show the same plot when mortality is reduced, start-
ing at 0.1. For clarity, newborn individuals are omitted.

that in Fig. 1. Small regions of noisy and irregular
dynamics are located at the boundaries where the pe-
riod of the single cohort cycles shifts. These ‘‘inter-
periodic’’ areas are also found by Persson et al. (1998)
and de Roos et al. (2002), even though they use a fully
deterministic model. They are due to the fact that at
parameter values close to the period transition, the mat-
uration age alternates between two consecutive values.
The only alternative attractor that coexists with the
single-cohort cycles for a significant parameter range
is the one-year cycle present at 0.044 # mJ # 0.073.
Extensive examination of model dynamics for the lim-
ited mobility model have revealed that there is no di-
vergence in the life history of individuals. Apparently,
limited mobility creates enough randomization for all
individuals to experience approximately the same en-
vironment and thus all individuals have approximately
equal life histories.

Low mobility

Decreasing mobility to Mmax 5 1 significantly chang-
es the dynamics of the population (Fig. 2B). At low

mobility the clear relation between juvenile mortality
and cycle length disappears. The bifurcation shows two
qualitatively different regions. At low juvenile mor-
tality (mJ , 0.015), the dynamics appear noisy and
aperiodic. At higher mJ, it is more regular, and corre-
sponds more clearly to dynamics at higher mobility.
The cycles with a three-, two-, and one-year period can
be clearly distinguished. The maximum value of mJ is
also unchanged at low mobility. Below we examine in
more detail the periodic dynamics at high juvenile mor-
tality, and the seemingly aperiodic dynamics at low
juvenile mortality.

Periodic dynamics.—The cyclic dynamics at mJ 5
0.03 is very similar to the dynamics expected from the
mean field approximation and its nonspatial archetype
(Fig. 3 and Persson et al. 1998). There is a dominant
pulse of newborns that is generated every second year
(t 5 1, 3, 5, . . . ). At lower juvenile mortality, the cycle
length changes to three years, and the dynamics bear
the same resemblance to the mean field dynamics. Even
when mobility is greatly reduced, the population dy-
namics exhibited by the model is roughly identical to
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FIG. 3. Single cohort cycles generated by the low-mo-
bility model. Parameter settings for this realization are mJ 5
0.03 and Mmax 5 1; all other parameters are as in Table 1.
The upper panel shows the dynamics of the resource, the
lower panel that of the consumer. Triangles represent the new-
born individuals, dashed lines are juveniles, and solid lines
represent the number of adults in the consumer population.

FIG. 4. Growth curves of individuals in the two-year cycles corresponding to the realization in Fig. 3. Each line depicts
the growth trajectory of one school of individuals. Lines end when the number of individuals in the school falls below 1.
Parameter settings for this realization are mJ 5 0.03 and Mmax 5 1, all other parameters as in Table 1. The year classes shown
in black are representative of the different life histories experienced by individuals in the population.

that of the well-mixed model, indicating strong ro-
bustness of the mechanism that causes the single cohort
cycles to the stochasticity induced by low mobility. On
the individual level however, considerable variation is
present (Fig. 4). At t 5 9, a large year class is born

(marked in black in Fig. 4). Initially, this year class
shows the life history corresponding to cohort cycles,
with very slow growth due to low resource levels. Over
time, the number of individuals drops and the resource
recovers, speeding up individual growth. This leads to
a roughly exponentially shaped initial growth trajec-
tory. Over time, variation between schools increases.
At the age of two years (t 5 11) the cohort is mature,
and produces a new large recruitment pulse (again
marked in black in Fig. 4). This new year class again
depresses the resource to a low level. The high juvenile
mortality and high local variation in resource density
ensure that not all the adult schools are outcompeted
(Fig. 3). Instead, the growth of these adults is effec-
tively stopped. Some of the adults can reproduce once
more in later years, but their contribution to the total
reproduction is marginal. Fig. 4 shows that although
the cyclicity apparent from the population dynamics
(Fig. 3) is clearly reflected in the individual life his-
tories, the high level of stochasticity induced by the
low mobility facilitates extensive variation in life his-
tory between individual schools within year classes,
which leads to frequent coexistence of adults from sev-
eral different year classes.

Aperiodic dynamics.—At low juvenile mortality,
there is no clear fixed-length cycle that dominates the
dynamics (Fig. 5). On a longer time scale, an alter-
nation between two dynamical modes develops: irreg-
ular dynamics (t 5 7–17 and t 5 32–26) alternate with
cohort cycle-like dynamics. In the intervals of irreg-
ularity, the population exhibits dynamics that appear
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FIG. 5. Dynamics of the model population at low mobility
and low juvenile mortality (mJ 5 0.001 and Mmax 5 1). All
other parameters are as in Table 1. The upper panel shows
the dynamics of the resource, the lower panel that of the
consumer. The triangles represent the newborn individuals,
dashed lines are juveniles, and solid lines represent the num-
ber of adults in the population.

FIG. 6. Growth curves of individuals at low additional juvenile mortality (mJ 5 0.001) and low mobility (Mmax 5 1),
corresponding to the dynamics shown in Fig. 5. Each line depicts the growth trajectory of one school of individuals. Lines
end when the number of individuals in the school falls below 1. All other parameters are as in Table 1. The schools from
three year classes with distinctly different life-history trajectories are marked black.

highly stochastic. Reproduction occurs practically ev-
ery year in this time span, and fluctuations in the re-
source are small, indicating that there is no single dom-
inating year class. Eventually, a very large pulse of
recruits is born, which strongly decreases the resource.
Such a mass-reproduction event marks the beginning
of a time interval of highly cyclic dynamics. The cy-
clicity eventually breaks down again due to stochas-
ticity, until the next mass reproduction. In Fig. 5, sev-
eral dynamical mode switches are present. At t 5 17,
mass reproduction occurs. Until t 5 32, a large year
class arises every fourth year, which is clearly reflected
by the strong periodicity in the resource dynamics.
Around year 32 the cyclicity breaks down, until at t 5
36 there is again a strong pulse of offspring, which
outcompetes most other individuals. The dynamics be-
come more regular again, eventually leading to a type
of dynamics very similar to single cohort cycles with
a period of five years (from t 5 47 onward). Some
adults survive from one period to the next, but only in
small numbers. Clearly, the competitive relations that
lead to single cohort cycles in better mixed models have
a strong influence on the dynamics, even at low mo-
bility.

In addition to the population effects, the individual
level dynamics is significantly affected by the induced
stochasticity (Fig. 6). In general, a large range of sizes
is present in the population. The size-based difference
in competitive ability is visible. Each newborn year
class grows to ‘‘catch up’’ with the broad band of sizes
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formed by the rest of the population. The three year
classes (born at t 5 3, t 5 20, and t 5 35) marked in
black in Fig. 6 are illustrations of the large variation
that exists both within and between year classes. The
large offspring cohort born at t 5 3 initially grows
slowly. Eventually, growth speeds up as the number of
individuals decreases. This pattern of increasing
growth rate is reminiscent of the growth patterns ob-
served in the single cohort cycles. The variation be-
tween individuals from this year class is small initially,
but increases as growth speeds up. At age 5 (t 5 8),
individuals from this year class range from 4-g juve-
niles to 12-g adults. Eventually the individuals born at
t 5 3 reach a mass of up to 16 g, and live for up to
14 years. In contrast, individuals born in the small year
class born at t 5 20 may reach up to 25 g, and do so
in a much shorter time (they reach their maximum size
in six years, as opposed to 10 years for their t 5 3
ancestors). Shortly after birth, large variation in mass
develops between schools born at t 5 20. However,
before maturation this initial variation decreases again.
The year class produced at t 5 35 exhibits a rather
different life-history trajectory. After a very short in-
terval of slow growth, these individuals grow quickly
until reaching maturity. After maturation, some diver-
gence in size occurs. Eventually, these individuals
reach a maximum size of ;17 g, at an age of 10 years.
This high variation over time illustrates the whimsical
environment that individuals experience.

DISCUSSION

This paper deals with the interaction between overall
population dynamics and life history of individuals, in
particular the variation between individuals that are
born at the same time. Such individuals have experi-
enced the same global, but not necessarily local en-
vironment. In the absence of divergence between in-
dividuals born at the same time, the model predicts
single cohort or generation cycles, which are the most
predominant type of cyclic population dynamics, ac-
cording to a recent analysis in Murdoch et al. (2002).
This goes to show that although we use perch as a
model organism, our results are applicable beyond the
specific field of perch population dynamics. In these
generation cycles, individual life histories become
highly synchronized. The generality of our work comes
from the fact that we address the question of how robust
these cycles are against the buildup of variability and
the consequent breakdown of the life-history synchro-
ny. We use the spatial component merely as a way to
facilitate the stochasticity that leads to life-history di-
vergence among individuals of the same age.

The global reproduction process that we use can ar-
guably be viewed as a reasonable approximation of the
reproductive process of egg-laying species without ex-
tensive parental care, where the location of a parent is
not tightly coupled to the place of birth of its young.
More important, treating reproduction as a global pro-

cess prevents the formation of spatial patterns. We
study the occurrence and effects of divergence of ini-
tially similar individuals resulting from stochasticity.
The possible spatial pattern formation associated with
local reproduction would greatly complicate the mech-
anisms leading to the model dynamics, clouding the
interplay between the stochasticity-induced individual
variability and the single cohort cycle dynamics, which
is the focus of this study.

Both the dynamics and the bifurcation pattern of our
model correspond well to earlier deterministic models
of size-structured populations (Persson et al. 1998,
Claessen et al. 2000, de Roos and Persson 2001, de
Roos et al. 2002) when we use parameter settings that
approximate a well-mixed system. By reducing mo-
bility of individuals we allow stochastic variation to
develop. In our limited mobility scenario (Mmax 5 10,
Fig. 2A), we find no effect on either population dy-
namics or the individual level. This is surprising con-
sidering the mechanism that drives the cycles. For sin-
gle cohort cycles to occur, newborn year classes must
depress the resource to such low levels that the
‘‘parent’’ year classes starve, or at least remain in a
bad condition, unable to reproduce. Intuitively, this
condition could be sensitive to limited mixing. When
the schools that make up a year class of newborns are
not homogeneously distributed in space, some more
fortunate schools of adults may survive the period of
low resource availability following the birth of a large
offspring cohort. These surviving adults could then re-
produce in ‘‘off-beat’’ years, and in principle cause the
collapse of the recruit-driven cycles. However, the only
effect we find on the population dynamics when mo-
bility is limited, is an increase in the duration of tran-
sient dynamics (not shown), and a widening of the
interperiodic attractors at period shifts of the cycles.

When mobility of individuals is low (Mmax 5 1), the
bifurcation structure of the model changes consider-
ably. It can roughly be divided into two areas. One
characterized by noisy, irregular dynamics at low ju-
venile mortality, the other at high juvenile mortality
where the cyclic dynamics is still apparent. The border
between these regions falls at the transition from three-
to four-year cycles. All recruit-driven cycles with a
period larger than three years seemingly disappear, and
cycles with period two and three years persist. While
on a population level these cycles are similar to recruit-
driven cycles, they exist despite considerable variation
in the life history of individuals, and a population that
consists of several year classes simultaneously, span-
ning a wide range of sizes. This discrepancy between
the orderly dynamics at the population level and the
large variation between individuals within year classes
shows that differences between individuals are not al-
ways important factors in determining population dy-
namics, a view which is strongly advocated in several
influential papers (Huston et al. 1988, DeAngelis et al.
1993, Rice et al. 1993).
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At lower juvenile mortality, the periodicity in the
model dynamics apparently disappears. However, clos-
er analysis shows that the mechanisms that drive the
population dynamics are the same as those found at
high or intermediate mobility. Large newborn cohorts
have a strong effect on the resource, preventing or
strongly hampering the reproduction in the years fol-
lowing their birth. They also cause large scale star-
vation among larger individuals. At low mobility, cy-
cles tend to break down due to high stochasticity. Con-
secutively, the competitive advantage of small indi-
viduals leads to convergence in size of individuals of
(weak) offspring cohorts. Eventually this culminates in
a high number of adults in the population, which pro-
duce a large pulse of offspring that temporarily dom-
inates the resource and thus population dynamics.

DeAngelis et al. (1993) study the influence of sto-
chasticity in growth rates of individuals on the dynam-
ics of a fish cohort. They show that stochastic pertur-
bation of these rates over time per se has no significant
effect on the developing size distribution of the cohort.
However, if the stochastic variation is correlated pos-
itively with size (i.e., larger individuals on average
have a larger growth rate), then the cohort size distri-
bution significantly widens. In our current work, we
assume a positive relation between attack rate and size
for the entire juvenile size range. Hence, in this respect,
our model corresponds to that of DeAngelis et al.
(1993); when food is not limiting, larger individuals
grow faster than smaller individuals. However, we con-
sider the complete population dynamical feedback
loop, including the resource dynamics. In our model,
while a larger size is generally associated with a larger
attack rate, it is by no means a guarantee for faster
growth. Realized growth rates of individuals depend
crucially on the resource density that individuals en-
counter. In previous work (Persson et al. 1998, de Roos
and Persson 2003) it has been demonstrated that this
population dynamical feedback loop plays a defining
role in shaping multigenerational population dynamics,
and in this study we show that the same feedback is a
strong regulatory force in intra-cohort dynamics and
variation as well, even when mobility of individuals is
strongly limited.

De Roos et al. (2002) and Rice et al. (1993) study
the effects of flexible habitat choice of a size-structured
consumer population. In addition to a large, profitable
habitat with high juvenile mortality, their model in-
corporates a small, less profitable habitat, which is also
less dangerous to juveniles that continuously choose
their habitat based on a profitability vs. mortality risk
criterion. In this system, individual variability could in
principle develop when different juveniles grow up in
habitats of different profitability. De Roos et al. (2002)
show that juveniles distribute themselves such that each
habitat has approximately equal profitability. This
equal profitability is attained through the effect of these
juveniles on the resource density. Hence, in their mod-

el, the occurrence of individual variability is con-
strained by the population dynamical feedback.

Our results show a similar effect, in that at low mo-
bility and mortality, it is the accumulation of variation
between individuals that eventually leads to a large
pulse of offspring, which synchronizes population dy-
namics and reduces variability. In other words, the in-
dividual variability not only affects the population dy-
namics, it can actually be considered to amplify the
effect of the population dynamical feedback loop to
such an extent that it eventually resets the variability
in the consumer population. Our intuitive expectation
that individual variability would weaken the effects of
size-based competition and hence would lead to the
disappearance of single cohort cycles is contradicted
by our results. While the single cohort cycles do break
down, the size-based mechanisms that shape the dy-
namics of the population are to a large extent the same
mechanisms that are important in nonspatial versions
of the model. The apparent change in the bifurcation
structure of the model at low mobility can on a short
time scale be fully explained in terms of the mecha-
nisms that Persson et al. (1998) identify as building
blocks of the single cohort cycles. On a longer time
scale a new phenomenon appears in the dynamics. A
dynamical pattern similar to single cohort cycles grad-
ually becomes less regular, accompanied by an upward
trend in the number of adults in the population. This
eventually leads to strong recruitment and a temporary
reinstatement of the single cohort cycle regime. The
phenomenon can be explained by a superposition of
two main components of the model, the original de-
terministic model and the stochasticity induced by local
interactions. While the complexity of the model dy-
namics may seem intimidating, it can be fully under-
stood by a combination of the model components. At
the parameter values we have studied, there are no new
emergent properties in the dynamics of the model pop-
ulation. This result illustrates the importance of the
type of understanding that is gained by studying de-
terministic simplifications of natural systems, as the
knowledge of the mechanisms that shape population
dynamics of the deterministic analogue of our model
(Persson et al. 1998), allows us to understand the ap-
parent complexity of the dynamics discussed here.

One of the features of individual based simulation
models (IBSMs) that we have not addressed is the fact
that they often deal with small population sizes. Our
analysis does not cover such situations, and hence our
conclusions can not be applied. In such cases, sto-
chasticity may play a more important role than for the
population studied here. Another argument that is often
considered a boon of the IBSM approach and that is
often used to advocate it, is the interaction between
individuals and the environment, which is considered
on a local scale (for references see the review by Grimm
1999). Here, we have extensively studied the effects
of the stochasticity induced by such local interactions
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in the context of single cohort cycles, and we find little
influence on the mechanisms that shape population dy-
namics. Although we have studied the effects of only
one kind of stochasticity, our results indicate that it
should not be taken as self-evident that individual var-
iability has a major impact on population dynamics and
persistence in all contexts.
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