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Abstract. We analyze an age-, size- and sex-structured model to investigate how the
interplay between individual-level energy budget dynamics and the feedback of population
grazing on resources shapes the individual life history and the dynamics of ungulate
populations, living in a predator-free, seasonal resource environment. We formulate a
dynamic energy budget model for individual energetics, which accounts for energy
requirements for maintenance and growth, and possibly pregnancy and lactation. Growth
in structural mass is assumed prescribed. Dynamics of energy reserves are the resultant of
energy acquisition through grazing and suckling of milk and the aforementioned energy-
consuming processes. The dynamic energy budget model is used as the core for an individual-
based population model, which captures general features of ungulate life history and
population dynamics, although it is parameterized for a particular system.

Model predictions reveal a characteristic dynamic pattern, in which years with low death
tolls (,10% of the population dying) alternate with a single year of high death toll (up to 40%
of the population dies). In these ‘‘collapse’’ years almost all individuals younger than 2 years
die, creating holes in the population age distribution. The die-off of these age classes is shown
to be caused by the energy requirements for growth that these individuals face. Individuals
between 1 and 2 years of age are more at risk than foals, because they are burdened with the
legacy of a poor body condition developed throughout their first winter. The characteristic
dynamic pattern is more pronounced at high levels of resource productivity. In contrast,
neither a period of snow cover, during which all foraging stops, nor a dependence of fecundity
on female body condition change dynamics significantly.

Key words: dynamic energy budget model; life history; population collapses; population dynamics;
structured population models; ungulates.

INTRODUCTION

Dynamics of ungulate populations are shaped by a

combination of density-dependent and environmental

factors (Gaillard et al. 2000). Density dependence tends

to kick in primarily when populations approach or

overshoot a threshold density with only weak regulation

at low densities (Fowler 1987, Sinclair 2003). As a

consequence, ungulate populations can overexploit their

food resources and fluctuate wildly (Clutton-Brock et al.

1997, Sæther 1997, Côté et al. 2004). These population

fluctuations are, however, exacerbated through interplay

with environmental fluctuations, in particular seasonal

and year-to-year fluctuations in resource availability

(Vucetich and Peterson 2004) and climate (Coulson et al.

2000, Forchhammer et al. 2001). Increasing population

densities have been correlated with changes in various

life history traits (reviewed by, among others, Fowler

1987, Sæther 1997, and Gaillard et al. 2000). In

particular, at high population densities growth in body

mass is reduced (Skogland 1983, Bonenfant et al. 2002,

Weladji and Holand 2003), reproduction is delayed

(Skogland 1986, Festa-Bianchet et al. 1995), and

fecundity of prime-aged females is lower (Clutton-Brock

et al. 1987, Albon et al. 2000, Coulson et al. 2000).

Furthermore, high densities also decrease survival of

individuals in their first year of life (Clutton-Brock et al.

1991, Albon et al. 2000, Coulson et al. 2001, Forchham-

mer et al. 2001), of yearlings (Clutton-Brock et al. 1987,

Forchhammer et al. 2001), as well as of adults (Albon et

al. 2000, Forchhammer et al. 2001, Bonenfant et al.

2002), mainly during the winter period.

Body size and growth therein play a central role in

these density-dependent effects. Body size is an impor-

tant determinant of first-year survival and age at first

reproduction (Gaillard et al. 1996, Loison et al. 1999),

while growth conditions during early development may

affect life history processes later in life (Lindström

1999). Growth in body size is related to the quantity of

food available as well as to its quality (Crawley et al.

2004). Environmental conditions that increase food

quantity and quality, such as low snow depths during

winter (Cederlund et al. 1991, Loison et al. 1999), long
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photosynthetic period during summer (Ericsson et al.

2002, Herfindal et al. 2006) and cold, wet summer

weather (Gaillard et al. 1996), are associated with large

body masses, while body mass is negatively affected by

competition for food (Skogland 1983, Gaillard et al.

1996, Forchhammer et al. 2001, Weladji and Holand

2003). As a consequence, body size and growth are

important determinants of population dynamics, espe-

cially through their effects on juvenile survival and the

age at first reproduction (Gaillard et al. 1998, 2000).

These studies on ungulate dynamics reveal that

individual life history and population dynamics are

intricately intertwined. On the one hand individual life

history, in terms of, for example, juvenile survival and

onset of reproduction, determines the resulting popula-

tion dynamics. On the other hand the type of life history

that can be realized depends on the availability of food

and hence indirectly on population dynamic feedback on

this availability. In other words, life history shapes

population dynamics, which in turn shapes individual

life history through density dependence. This complex

interrelationship between life history and population

dynamics includes three main components: (1) the

dependence of life history development (e.g., growth,

survival, maturation) on resource availability, (2) the

ability of individuals in different stages of their life history

to compete for resources, and (3) the feedback of

population grazing on resource availability. We argue

that empirical and experimental studies alone cannot fully

unravel the interrelationship, as they cannot completely

disentangle these main components. To fully understand

the interrelationship between life history and population

dynamics we therefore see a need for population dynamic

modeling that explicitly and mechanistically accounts for

individual life history and more specifically for the three

main components that link the two.

Such modeling studies of the interrelationship be-

tween individual life history and population dynamics

have been carried out for waterfleas (McCauley et al.

1996, De Roos et al. 1997) and fish (Persson et al. 1998,

Claessen et al. 2000, De Roos et al. 2003) using

(physiologically) structured population models (Metz

and Diekmann 1986, De Roos 1997). Structured

population models are based on a core model of the

individual energy budget dynamics, which describes

food intake and its subsequent use for growth,

maintenance, and reproduction as a function of food

availability and the physiological traits (age, size, energy

reserves) of an individual. A variety of dynamic energy

budget (DEB) models exist, ranging from more species-

specific (Kooijman and Metz 1984, Gurney et al. 1990,

Persson et al. 1998) to more generic (Kooijman 2000,

Lika and Nisbet 2000), which, however, all assume that

food acquisition is the limiting process in the energy

budget. Food availability therefore fully determines the

realized growth trajectory and the asymptotic body size.

This food-dependent plasticity of growth in body size

has been identified as the most important determinant of

population and community dynamics that result from

these types of DEB models (De Roos and Persson 2005,

Persson and De Roos 2007). Food-dependent growth

gives rise to distinct types of population cycles that are

either dominated by young, juvenile individuals or by

adults (Persson et al. 1998, De Roos and Persson 2003).

In contrast, little is known about the interrelationship

between individual life history and population dynamics

for the case when growth trajectories and asymptotic size

are mostly under genetic control and only influenced to a

minor extent by environmental (food) conditions (but see

Illius and Gordon 1999, Illius and O’Connor 2000). We

will refer to such a growth pattern as ‘‘prescribed’’

growth (also referred to as ‘‘constrained’’ growth; Sebens

1987). Prescribed growth is exemplified by most aquatic

and terrestrial vertebrates, including ungulates.

To investigate the link between prescribed growth in

body size, population dynamics, and density dependence

through population feedback on available resources we

formulate a dynamic energy budget model that captures

the main energetic processes in the life history of an

individual ungulate. We analyze the consequences of this

dynamic energy budget model for individual life history

and population dynamics under conditions of seasonal

variation in resource availability. The model captures

the general features of ungulate life history, in particular

foraging, maintenance, growth, and reserves dynamics.

In addition, it distinguishes between 0 and 1-year-olds,

yearlings, adult males and adult females. For adult

females the energetic costs associated with pregnancy

and lactation are explicitly accounted for. Despite its

generic nature the model is parameterized for a

particular system, the Konik horse population in the

enclosed nature reserve Oostvaardersplassen in the

Netherlands (Vulink 2001, Anonymous 2004). Konik

horses have been introduced to this nature reserve in

addition to Heck cattle and red deer for management

purposes and live there in complete absence of

predators. We choose this particular population living

under these rather artificial conditions primarily because

it has recently been the subject of a heated public debate

about the necessity for supplementary feeding during

severe winter conditions when snow cover limits the

grazing for resources (ICMO 2006).

We want to emphasize that our aim is not simply

limited to investigating plausible explanations for

observed population dynamics patterns, such as regular

fluctuations in ungulate abundance. Such an aim might

not require the use of individual-based population

models, but could be investigated using more aggregat-

ed, unstructured models instead (Owen-Smith 2002).

Nor do we restrict our focus to investigating density-

dependent effects on individual life history, which can be

addressed using time series analysis of observed popu-

lation dynamics (Coulson et al. 2004). Rather, we aim

for unraveling the mutual dependence of, and the

interplay between, population dynamics and density-

dependent life history of ungulates. We therefore focus
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our analysis on the relation between the buildup of

energy reserves by individuals of different ages and sizes

dependent on food availability and population density,

its consequences for survival during the subsequent

winter, and ultimately, the effects on population

dynamics.

MODEL FORMULATION AND PARAMETERIZATION

We formulate an individual-based model for an

ungulate population, in which individuals are distin-

guished from one another by age, sex, size, energy

reserves, and in the case of females, whether they are

pregnant or lactating. Although general in design and

structure, we have mostly parameterized the model on

the basis of data for a particular population, the Konik

horses in the nature reserve Oostvaardersplassen in the

Netherlands, which has been studied extensively for

conservation and management purposes (Vulink 2001,

Anonymous 2004). The ungulates are assumed to live in

a closed habitat area where they are not exposed to

predation. They interact with their environment and

with each other only through resource grazing. The

resource exhibits temporal variability in productivity

during the year, while spatial heterogeneity in resource

productivity is neglected. The latter assumption is

justified, as we focus on a horse population, and horses,

as hindgut fermenters, have a wide array of forage

species at their disposal, ranging from high-quality

grasses to low-quality, high-fiber reed species. The year

is subdivided into a summer and winter period of 150

and 215 days, respectively, with different resource

productivities. Without loss of generality we chose 1

April to be day 1 of the year, which roughly corresponds

to the start of the season with high productivity of the

vegetation (Vulink 2001). Birth and death of ungulates

are modeled as discrete events in time, while all other

processes, including foraging, growth, reserves dynam-

ics, and resource regrowth, progress in continuous time.

We only account for individual-level dynamics in size

and reserves, and do not take specific mineral and

protein requirements into account. Furthermore, we do

not account for a direct impact of temperature on

individual energy budget dynamics, as temperature

extremes rarely occur in the particular nature reserve

we focus on. All functions describing the individual life

history dynamics are summarized in Table 1. All model

parameters are listed in Table 2, with their interpreta-

tion, default value, and the literature sources used for

their estimation. By default we started simulations of

population dynamics always with an initial population

of 20 individuals introduced into a previously unex-

ploited habitat. In the following we briefly discuss the

important parts of the model.

Energy budget dynamics

Every individual is characterized by its individual

state or i-state (Metz and Diekmann 1986, De Roos

1997), which in our case consists of six variables: age,

sex, structural mass (i.e., muscles, bones), reserves

(mainly in the form of adipose tissue), pregnancy status,

and lactation status. Total body mass W is the sum of

both structural mass S and reserves F. For pregnant

female individuals total mass also includes the structural

mass of their developing fetus (Table 1: Eq. 5). As an

idealization of a growth pattern that is mostly under

genetic control and only to a limited extent influenced by

environmental conditions, we assume individuals to

exhibit prescribed, food-independent growth in struc-

tural mass. Following Kooijman (2000) we assume that

fetal growth in structural mass follows a cubed power of

the time since fetal development started, ending with the

size at birth Sb at the end of the fetal development

period Tp (Table 1: Eq. 3). After birth individuals follow

a von Bertalanffy growth curve with an ultimate size Sm

(Table 1: Eq. 4). We furthermore assume that there is a

target ratio of reserves to total body mass F:W referred

to with the parameter q (Illius and O’Connor 2000).

Fig. 1 shows a schematic overview of the individual

energy budget with the main processes of energy

acquisition and use. Energy acquisition occurs through

resource grazing and milk suckling, while energy is spent

on maintenance and growth in structural mass, and

possibly on energetic costs for fetal development and

milk production. Our assumption of food-independent

growth sets the model developed here apart from earlier

energy budget models (Kooijman and Metz 1984,

Gurney et al. 1990, Persson et al. 1998, Kooijman

2000, Lika and Nisbet 2000). The latter all assume

growth to be food dependent and to occur only if food

availability is sufficient. Because of the prescribed

growth in our model all energy-requiring processes are

functions of the individual state only and independent of

resource density. Where earlier models can hence

appropriately be viewed as ‘‘supply models,’’ our energy

budget model describes a ‘‘demand system,’’ as sufficient

energy has to be taken up to cover the energy demands,

including those for growth.

All individuals forage on the resource following a

grazing rate G(V, S, F, W ), which is a function of the

resource (vegetation) density V, the structural mass S of

the individual, and its reserves F (Table 1: Eq. 8).

Maximum ingestion rate follows a three-quarters power

scaling law with structural mass (Illius and O’Connor

2000, Vulink 2001, Brown et al. 2004) and a Holling type

II functional response as a function of resource density

(Illius and O’Connor 2000, Owen-Smith 2002). In

addition, ingestion is a sigmoid function of the

reserves : total mass ratio F:W, which limits resource

ingestion when this ratio approaches or exceeds its

target value q. The mean digestible energy content of the

resource generally decreases during a growing season,

which we model with an empirically established rela-

tionship (Table 1: Eq. 6; Vulink 2001). The assimilation

efficiency of ingested resource (Table 1: Eq. 6) hence

depends on the time ts (Table 1: Eq. 1) elapsed since the

start of summer.
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Individuals younger than 1 year of age (hereafter

referred to as foals) in addition acquire energy through

suckling milk from their mother. Because of this milk

suckling the model keeps track explicitly of all mother–

child relationships, stopping milk production when either

the mother or the foal dies or when the foal reaches one

year of age. The maximum rate of milk production by

adult females is assumed to be proportional to their total

body mass, but this proportion declines with time passed

since the birth of the foal (Table 1: Eqs. 10 and 14). Milk

production is further reduced when foals are satiated, as

we assume that milk production by mothers exactly

matches milk intake by their foals. Like resource

ingestion, milk intake is a sigmoid function of the

reserves : total mass ratio F:W of the foal, limiting the

intake when reaching the target ratio. The energetic yield

em for the foal and the costs rL for the mother per liter of

milk are assumed to be constant (Table 1: Eqs. 10 and

14). We model foal ingestion as the sum of resource

grazing and milk suckling without making further

assumptions. In effect, this makes foals gradually switch

from milk suckling to resource grazing during their first

year of life, as a consequence of the decreasing milk

production by the mother and the foal’s increasing

energy demands due to growth.

Maintenance costs are assumed to scale following a

three-quarters power law of total body massW (Table 1:

Eq. 11; Kleiber 1947, Reiss 1989, Flachowsky and

Kirchgessner 1998, Brown et al. 2004). Energetic costs

for growth are proportional to the rate of change in

structural mass that follows from the von Bertalanffy

growth curve (Table 1: Eq. 4). Energetic requirements

TABLE 1. Model variables and equations.

Variable Units Symbols and equations Equation no.

Model variables

Resource density kg/ha V

Age d A

Reserves kg F

Time since summer start d ts ¼ t modY (1)

Time since start fetal development d tp ¼ (t � Dp)modY (2)

Structural mass (fetus) kg Sp(tp) ¼ Sb(tp/Tp)
3 for tp , Tp (3)

Structural mass (horse) kg SðaÞ ¼ S
1=3
m � S

1=3
m � S

1=3
b

� �
e�ca

h i3

(4)

Total mass kg W ¼ Sþ Fþ SpðtpÞ for pregnant females

Sþ F otherwise

�
(5)

Resource environment

Resource energy content ERðtsÞ ¼ vm

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� vst

2
s

p
(6)

Maximum resource density
KðtsÞ ¼

Vmax þ
Vmax � Vmin

2
1þ sin

pts
Z

0
@

1
A

H2
4

3
5 0 � ts , Z

Vmax þ
Vmax � Vmin

2
1� sin

pðts � ZÞ
ðY � ZÞ

2
4

3
5

H8<
:

9=
; Z � ts , Y

8>>>>>>><
>>>>>>>:

(7)

Resource grazing GðV; S;F;WÞ ¼ /cS3=4 V

/h þ V

1

1þ e�gðqW�FÞ (8)

Energy budget processes

Resource assimilation IR(ts, V, S, F, W ) ¼ ER(ts)G(V, S, F, W) (9)

Milk suckling IMða;Wm;F;WÞ ¼ emkmWm

e�ksa

1þ e�gðqW�FÞ for a , Y (10)

Metabolic costs CM(W) ¼ rMW3/4 (11)

Growth costs CGða; SÞ ¼ 3rGejac S
1=3
m S2=3 � S

� �
(12)

Pregnancy costs CPðtpÞ ¼ 3rGSbt2
p=T3

p for tp , Tp (13)

Lactation costs CLðaf ;W;Ff ;WfÞ ¼ rLkmW
e�ksaf

1þ e�gðqWf�Ff Þ
for af , T (14)

Mortality

Background survival function HbðaÞ ¼ exp �lba� e�am=as ðea=as � 1Þ
� �

(15)

Starvation probability HsðF;WÞ ¼ e�lsðqsW=F�1Þ for F=W , qs (16)

Notes: Model variables with subscript m and f refer to the values of a mother and its foal, respectively. Parameters with default
values are described in Table 2.
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per unit structural mass increase are assumed to increase

with age (Table 1: Eq. 12) (Anonymous 1989).

Analogously, for pregnant females, energetic costs for

fetal development are proportional to the rate of change

in structural mass following from the fetal growth curve

(Table 1: Eq. 3), with a fixed proportionality constant

rG (Table 1: Eq. 13). Finally, as discussed before,

energetic costs of milk production for lactating females

are proportional to the milk intake by their foals (Table

1: Eq. 14).

Dynamics of the reserves of an individual equals the

balance of these various energy acquisition and expen-

diture processes and is different for the different types of

individuals:

dF

da

¼

e�1ðIR þ IM � CM � CGÞ for foals

e�1ðIR � CM � CG � CPÞ for pregnant females

e�1ðIR � CM � CG � CLÞ for lactating females

e�1ðIR � CM � CG � CP � CLÞ for pregant and

lactating females

e�1ðIR � CM � CGÞ for males and other

females:

8>>>>>>>><
>>>>>>>>:

ð17Þ

(For brevity all function arguments are suppressed in the

above differential equation. We refer to Table 1 and the

previous discussion for the definition of all component

functions.) Depending on ingestion rates, reserves

dynamics may be anabolic (dF/da . 0), in which case

surplus energy ingested is stored, for example, in the

form of adipose tissue. Alternatively, reserves may be

used to cover the (fixed) energy requirements under

conditions of resource scarcity, in which case reserve

dynamics are catabolic (dF/da , 0). The parameter e
determines the conversion efficiency from reserves into

energy, which is assumed different for anabolic (e ¼ ea;
Table 2) and catabolic reserves dynamics (e¼ ec; Table 2;
Baxter 1989, Illius and O’Connor 2000).

Reproduction and mortality

We assume that every year a fraction b of all female

individuals of 3 years and older are successfully

inseminated (Garrott and Taylor 1990), independent of

their reserves at that particular age and whether or not

they are lactating. This assumption is corroborated by

data of the Konik horse population (Vulink 2001). We

assume that insemination takes place at the end of

May/beginning of June, but that fetus development only

starts some two months later (Kooijman 2000). In the

TABLE 2. Model parameters, with default values.

Parameter Unit Value Description Source

Sb kg 25.5 structural mass at birth 1
Sm kg 280 maximum structural mass 2
c d�1 0.0023 growth rate in structural mass 1
q 0.3 target reserves mass as fraction of W 3
b 0.56 fraction of females becoming pregnant 4
Dp d 120 day in season that fetal development starts 4, 5
Tp d 275 duration of fetal development period 4
/c kg kg�3/4�d�1 0.156 scalar constant in maximum grazing rate 2
/h kg/ha 100 half saturation constant in grazing rate 6
g kg�1 15 steepness in satiation scaling of intake rate 7
rM MJ kg�3/4�d�1 0.6 scalar constant in metabolic costs 8
rG MJ/kg 40 initial/fetal cost of structural mass growth 9
rL MJ/kg 3.31 cost of milk production 2, 9
j d�1 0.0015 rate of increase in growth costs 9
km d�1 0.03 maximum milk production as fraction of W 2
ks d�1 0.004 rate of decline in milk production 2
em MJ/kg 1.9 milk energy content 10
ea MJ/kg 54.6 anabolic reserves conversion efficiency 3, 11
ec MJ/kg 39.3 catabolic reserves conversion efficiency 3, 11
lb d�1 3.86 3 10�5 background daily mortality 4
am d 9855 modal age of senescence 12
as d 912.5 standard deviation in age of senescence 12
ls d�1 0.012 scalar constant in starvation mortality 7
qs 0.1 reserves :mass ratio where starvation starts 7
r d�1 0.002 resource regrowth rate 2
Vmax kg/ha 6000 maximum summer resource density 2
Vmin kg/ha 2000 minimum winter resource density 2
H 0.3 steepness in seasonality shift 13
vm MJ/kg 10.7 resource energy content at start of summer 2
vs d�2 3.5 3 10�6 rate of decline in resource energy content 2
A ha 750 total habitat area 4
Z d 150 summer duration 7
Y d 365 year length 7

Sources: 1, Tischner and Klimczak (1989); 2, Vulink (2001); 3, Illius and O’Connor (2000); 4, Anonymous (2004); 5, Kooijman
(2000); 6, Owen-Smith (2002); 7, assumed in this study; 8, Kleiber (1947), Reiss (1989), Flachowsky and Kirchgessner (1998); 9,
Anonymous (1989); 10, Mariani et al. (2001); 11, Baxter (1989); 12, Garrot and Taylor (1990); 13, Turchin and Hanski (1997).
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model we hence determine at day Dp¼ 120 of each year

for every female individual of 3 years and older with

probability b whether or not she will carry a fetus. Fetus

development is assumed to last for Tp¼ 275 days, after

which period all pregnant females give birth simulta-

neously to their foals. This happens on day 31 of the

year corresponding to 1 May. Foals are born with the

same reserves : total body mass ratio as their mothers,

whose reserves are reduced at birth by the amount of

reserves provided to the foals.

Individual longevity is modeled with a Gompertz

survival function (Table 1: Eq. 15), following Garrott

and Taylor (1990). At birth every individual is assigned a

uniformly distributed value between 0 and 1, which fixes

their lifespan. Individuals die as soon as they have

reached the age at which the value of the survival

function drops below this randomly assigned value. We

assume that individuals that are running low on reserves

have an increased risk of mortality from other causes

than old age, for example, due to reduced resistance

against diseases. This additional, starvation-related

mortality is modeled by a daily survival probability,

which drops below 1 when the reserves : total mass ratio

drops below a threshold value (Table 1: Eq. 16) and

equals 0 whenever this ratio equals 0. For starving

individuals every day a uniformly distributed value

between 0 and 1 is drawn, which leads to death from

starvation when it is larger than the survival probability

Hs(F, W ) (Table 1: Eq. 16).

Resource productivity and dynamics

We assume resource productivity to be independent of

current resource density on the grounds that vegetation

regrowth is possible from plant parts not grazed by the

ungulates. Hence, resource dynamics in the absence of

grazing follows semichemostat dynamics with a season-

ally varying, maximum resource density K(ts) and
turnover rate r (Table 2). Seasonal variation in
maximum resource density is modeled with a modified

sinusoidal function proposed by Turchin and Hanski
(1997) (Table 1: Eq. 7) and parameterized for the
particular system studied (Vulink 2001). Resource

dynamics equal the balance between resource regrowth
and grazing by all ungulate individuals, as described by
the following differential equation:

dV

dt
¼ r½KðtsÞ � V� � A�1

X
i

GiðV; Si;Fi;WiÞ: ð18Þ

In this equation A represents the surface area of the

system studied (Vulink 2001), while the summation in
the last term is over all individual ungulates alive.

Studying population dynamics

To investigate dynamics at the population level we use
an existing framework for studying structured popula-

tion models to keep track of the fate of all individuals in
the population separately (De Roos et al. 1992). The
latter methodology is based on a subdivision of the

entire population into cohorts of individuals that have
equal physiological properties and that develop through-
out their lifetime without diverging. We adapted the

methodology to account for all individuals in the
population separately and to capture the discrete-event
nature of birth and death processes. The most important

reason to represent individuals separately, however, is
the fact that pregnant and/or lactating adult females

have different energy requirements than other individ-
uals. The model explicitly keeps track of these demands
as it follows each mother–foal relationship individually,

stopping lactation when either the mother or the foal
dies or when the foal reaches 1 year of age. Combined
with the fact that females only reproduce with a certain

probability each year, this leads to the situation that
each adult female has her own unique history and
current state of reserves dynamics, which can only be

represented by following each individual separately. The
resulting population model is therefore purely individual
based (individual configuration models sensu Caswell

and John 1992) with discrete birth and death events, but
nonetheless continuous dynamics of resource and
individual physiology.

Model variants

In addition to analyzing the baseline model with

default parameters we studied two slightly extended
model variants. To assess the influence of unpredictable
weather conditions during winter we studied the

influence of an uninterrupted period of snow cover.
We assumed that during such a period of snow cover all
grazing stops and individuals do not take in any

resource. Furthermore, all resource regrowth was
assumed to have stopped as well. We present results
for a period of snow cover lasting 20 days, but results

FIG. 1. Schematic overview of the individual energy budget.
Energy acquisition processes are characterized by different
intake rates I, while flows of energy expenditure are character-
ized by different rates C. Solid black lines represent energy
flows that occur in all types of individuals independent of their
age and sex. Energy flows occurring only in foals (IM), pregnant
(CP), or lactating females (CL) are indicated with gray dashed
lines.
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with a 30-day period of snow cover are essentially

similar. Whether or not a period of snow cover occurs is

determined each year with a fixed probability. The

period of snow cover is assumed to start at day 300 of

the year corresponding to 1 March. This timing is

expected to affect the population dynamics most

because of reduced individual conditions due to poor

feeding during the preceding winter months.

To analyze how density dependence in reproduction

would affect population dynamics we investigated a

model variant in which the pregnancy probability

depends on the female body condition at insemination.

Instead of a fixed probability b (see Table 2), we assume

that insemination will not lead to successful pregnancy if

the reserves :mass ratio F/W of the female individual is

below the threshold qs that marks the onset of

starvation mortality (see Table 2). Above this threshold

we assume the pregnancy probability to increase linearly

with the female reserves :mass ratio from a value of 0

when F/W¼ qs, to the default value b for the maximum

reserves : weight ratio F/W ¼ q.

RESULTS

Baseline dynamics

Fig. 2 shows the long-term dynamics of the ungulate

population over a period of 150 years as predicted by the

baseline model with default parameters. Transient

dynamics have been omitted. The figure also highlights

in detail the dynamics over the last 15 years of the

simulation period (right panels). On average the

ungulate population consists of roughly 1000 individu-

als, which keep the resource density at a level far below

its maximum. When considered over a longer time

period fluctuations in ungulate and resource densities

appear irregular. Periods with more regular, large-

amplitude oscillations in the ungulate density alternate

with periods during which oscillations are more erratic

and of smaller amplitude. The pattern is most clearly

visible in the cumulative number of deaths occurring

during an entire year (Fig. 2A, B). The detailed

dynamics shown in the right panels of Fig. 2 reveal that

the more regular fluctuations have a periodicity of three

years and are characterized by a distinct pattern in the

number of individuals dying, with two years of low

death tolls followed by a single year with large numbers

of dying individuals (Fig. 2A, B). As a result, the total

number of individuals increases in a stepwise manner

during three reproduction pulses, followed by a large

die-off of individuals in the winter following the last of

these reproduction events. The maximum number of

individuals in the population and the number of

individuals dying in the large die-off varies from period

to period. In addition, due to demographic stochasticity

the period of the regular pattern is sometimes disrupted

(e.g., at T ¼ 149 in Fig. 2), which makes the dynamics

appear irregular when viewed over longer time periods.

Despite these irregularities, inspection of the autocorre-

lation in total ungulate density clearly reveals a basic

dynamic pattern with a periodicity of three years

(autocorrelation at lag 3 measured over 10 simulations:

0.73 6 0.05 [mean and standard deviation]).

We carried out 10 different simulations of the

population dynamics over a 1000-year period. We

discarded transient dynamics by only measuring popu-

FIG. 2. Dynamics of the ungulate population as predicted by the baseline model with default parameters. (A, B) Total number
of individuals in the population including foals, yearlings, and all older horses (upper line), and the cumulative number of deaths
occurring during the entire year (lower line). (C, D) Vegetation density. Transient dynamics have been discarded. Panels B and D
zoom into the last 15 of the entire period of 150 years to elucidate details of the dynamics.
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lation statistics over the last 900 years of each

simulation. Table 3 (first row) presents the results of

these simulations in terms of total population size,

number of foals born, and the number of individuals

dying per year. Both average values and the variation in

these statistics (CV, minimum and maximum value

observed) over the 900-year measuring period are

presented. As the most remarkable feature of these

results, the coefficient of variation (CV) of the number

of individuals dying each year is roughly an order of

magnitude larger than the CV of the total population

size and the number of foals produced yearly. This high

CV value for the number of deaths results from the

periodic pattern shown in Fig. 2, with a heavy death toll

occurring roughly every three years, separated by two

consecutive years with relatively low numbers of

individuals dying. By expressing the number of individ-

uals dying in a given year as a percentage of the total

population size at the beginning of the year, we

constructed a frequency distribution of the observed

death toll per year (Fig. 3). This frequency distribution

turns out to have a bimodal shape with a large peak at

low death tolls (5–10% of the individuals dying in a year)

and a second peak at high death tolls (.30% of the

individuals dying in a year). On the basis of this

frequency distribution we distinguish between ‘‘col-

lapse’’ years with a large die-off of individuals (.20%

of the population) and ‘‘noncollapse’’ years (,20% of

the population is dying). Using this distinction, roughly

34% of all years are classified as collapse years, in

accordance with the three-year periodicity of the basic

dynamic pattern.

Fig. 4 shows the survival probability for differently

aged individuals in collapse and noncollapse years. In

noncollapse years individuals between 2 and 20 years of

age have roughly similar survival probabilities and

mostly die because of background mortality. The

survival probability of older individuals is smaller as

they suffer from senescence. Foals also have a somewhat

smaller survival probability than individuals aged

between 2 and 20 years, probably because in addition

to background mortality they also die from lack of milk

intake whenever their mother dies. Yearlings aged

between 1 and 2 years old, however, have the lowest

survival probability of all.

TABLE 3. Mean total population size, number of births and deaths, and variation therein (coefficient of variation, minimum and
maximum value observed) for different probabilities of a period of 20 days snow cover occurring toward the end of the winter.

Probability
of snow

No. in total population No. total births No. total deaths

Mean CV (%) Min. Max. Mean CV (%) Min. Max. Mean CV (%) Min. Max.

0.0 1003 7.9 818 1156 165 8.7 122 209 165 78.3 26 481
0.2 995 8.0 780 1155 164 8.8 121 211 164 78.2 26 508
0.5 983 8.3 764 1149 163 9.0 120 210 163 80.9 24 522
0.8 975 7.9 777 1138 162 8.6 119 206 162 78.4 25 498

Note: All statistics represent averages measured over the last 900 years of 10 simulations over a period of 1000 years.

FIG. 3. Frequency distribution of the yearly death toll, when expressed as a percentage of the total population size at the
beginning of the year. In both panels the distribution for the baseline model with default parameters (cf. Fig. 2) is shown for
reference (solid bars). (A) Baseline model predictions with half (Vmin ¼ 1000, Vmax ¼ 3000; open bars) and double (Vmin ¼ 4000,
Vmax¼ 12 000; hatched bars) the default value for maximum resource density. (B) Model variant with a 50% probability of 20 days
of snow cover each year (open bars), and model variant with condition-dependent fecundity with default value b¼ 0.56 (cf. Fig. 7;
hatched bars) and adjusted value of b ¼ 0.75 (cf. Fig. 7; stippled bars). Data represent averages and standard deviation of 10
simulations, each covering a period of 1000 years. The frequency distribution of the total death toll was measured over the last 900
years in each simulation.
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Fig. 5A shows that in an absolute sense the energy

demands to cover growth in structural mass are largest

between 1 and 2 years of age. Absolute energy

requirements, however, do not correctly reflect vulner-

ability to starvation, as individuals of different sizes also

have different amounts of energy reserves. In the

absence of any food intake the ungulate reserves

dynamics is described by the following differential

equation:

dF

dt
¼ �

rMðSþ FÞ3=4 þ D
h i

ec

:

In this equation the first term in the numerator

represents maintenance costs and the constant D

represents all other energy demands (cf. Eq. 17). Using

Maple, this differential equation can be solved explicitly

(solution not shown) to compute the time it takes to

deplete the reserves F to the threshold qs, below which

starvation mortality is nonzero, when starting from an

initial reserves :mass ratio equal to the maximum F/W¼
q. Fig. 5B shows the time until the onset of starvation in

case only energy requirements for maintenance are taken

into account [D ¼ 0], and in case energy demands for

growth in structural mass are also considered [D¼CG(a,

S)]. Irrespective of whether growth costs are taken into

account, the time period until the onset of starvation

increases with individual body size. On the basis of

purely energetic considerations, one would hence expect

foals and not yearlings to be most vulnerable to

starvation mortality. To some extent the higher vulner-

ability of yearlings arises because they do not profit from

additional energy intake through suckling and rely

completely on resource grazing for their energy intake.

Most importantly, however, foals have the advantage to

be born with a relatively high reserves :mass ratio, which

equals their mother’s, whereas yearlings are burdened by

a significantly lower body condition than foals at the

start of summer. Foals suffer depletion of body reserves

during their first winter because of their growth

demands (Fig. 6), and hence start their second summer

with a significantly lower reserves :mass ratio than they

were born with. Yearlings remain affected by this legacy

of their first winter starvation period, as the difference

persists during the remainder of summer. The following

winter the difference results in yearlings entering

starvation mortality earlier than foals (Fig. 6), which

causes them to suffer higher mortality and explains their

lower survival probability.

In collapse years the survival probability of yearlings

is virtually 0 (Fig. 4), while the survival probability of

foals is significantly lower as well. In some collapse years

all individuals from both youngest cohorts die (Fig. 6; T

¼ 139 and T ¼ 143), while in other collapse years a

FIG. 4. Fraction of the different age classes of individuals
dying during years of a population collapse (open bars) and
during other years (filled bars) as predicted by the baseline
model with default parameters (cf. Fig. 2). Collapse years are
defined as years when .20% of the population dies. Data
represent averages and standard deviation of 10 simulations,
each covering a period of 1000 years. The age-dependent
survival probability was measured over the last 900 years in
each simulation.

FIG. 5. (A) Energetic demands at various ages required to cover maintenance of an individual with optimal reserves :mass ratio
(solid line) and to cover the costs for growth in structural mass (dashed line). (B) Time required to deplete reserves to the
reserves :mass threshold qs below which starvation mortality starts, when starting from an optimal reserves :mass ratio. The solid
line indicates the case of negligible energy demands for growth in structural mass; the dashed line shows the case including energy
demands for growth in structural mass at every age (cf. panel A).
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number of foals still survive (Fig. 6; T ¼ 146 and T ¼
148). Yearlings almost never survive during a collapse
year (but see Fig. 6; T ¼ 148). Considered over the

lifetime of a single individual, its reserves :mass ratio is
lowest at the end of its second winter (Fig. 6). This dip in

the body condition carries over to its third summer,
during which its condition slowly recovers if population

densities are not too high and vegetation is relatively
abundant. During collapse years, however, population
densities are so high and competition so intense that the

condition of individuals between 2 and 3 years of age
does not recover sufficiently and leads to some

starvation mortality the following winter. For this
reason the survival probability of individuals between
2 and 5 years of age is slightly lower in collapse years

than during noncollapse years. In contrast, survival of
individuals of 5 years and older is not significantly

different in collapse and noncollapse years (Fig. 4).
Summarizing, the intrinsic dynamics of the ungulate

population under these conditions is characterized by a
dynamic pattern with an alternation between years with
low death tolls and years with heavy death tolls. This

dynamic pattern arises as a consequence of increasing
ungulate densities overexploiting the resource to such an

extent that foals and yearlings enter starvation condi-

tions during winter. Once every three years this results in

an almost complete eradication of the yearling class and

a significant decimation of the foal age class. After a

collapse year, the population expands over a period of

three years to densities that overexploit the resource

once again. Although all individuals in the population

suffer from density dependence, the energy demands for

growth result in foals and yearlings being more

vulnerable to starvation than older individuals, while

yearlings suffer more than foals due to their poorer

reserves status. This age-dependent vulnerability to

starvation also results in a punctuated age composition

of the population, such that the age distribution consists

of an alternation of a single abundant and two

consecutive missing year classes (results not shown).

This clustered age distribution in turn contributes to the

oscillatory behavior, as it implies that recruitment to the

adult class varies over time.

We have found that the characteristic dynamic

pattern with an alternation between collapse and non-

collapse years is more pronounced at higher productivity

levels of the resource. Our default parameters imply that

resource productivity varies from 4 kg/ha in winter to 12

kg/ha in summer, which allows the persistence of a

population with on average 1000 individuals. Since this

density roughly corresponds to the densities observed in

the nature reserve that the model is parameterized for

(Vulink 2001, Anonymous 2004), we conclude that our

default parameters correctly reflect the average system’s

productivity of resources that are available for the

ungulates to forage on. If we assume the average system

productivity to be half the default value, while keeping

the ratio between winter and summer productivity the

same (Vmin ¼ 1000, Vmax ¼ 3000), the characteristic

alternation between collapse and noncollapse years

disappears. Although the autocorrelation of the total

ungulate density is still indicative of a three-year

periodicity (autocorrelation at lag 3: 0.57 6 0.02), the

frequency distribution of the yearly death toll now has a

unimodal shape, and shows that each year 10–20% of

the population dies (Fig. 3; left panel). Both good (with

,10% of the population dying) and bad (.20% dying)

survival years are scarce and the year-to-year variability

in yearly death toll is smaller. In contrast, doubling the

average system productivity, while keeping the ratio

between winter and summer productivity the same (Vmin

¼ 4000, Vmax ¼ 12 000), strengthens the characteristic

pattern with alternation between collapse and non-

collapse years. The frequency distribution of the yearly

death toll is more bimodal than for default parameters

(Fig. 3; left panel), especially because the occurrence of

years during which .30% of the population dies,

increases, while the number of years during which

between 5% and 30% of the population dies decreases.

Because the frequency of years with 5–10% mortality

decreases to the same extent as the frequency of years

with 0–5% increases, it can be argued that the years with

good survival become even better at higher productivity,

FIG. 6. Dynamics of the reserves :mass ratio during the last
12 years of the population dynamics shown in Fig. 2. (A)
Dynamics of the reserves :mass ratio of foals (light-gray lines
with circles), yearlings (dashed, dark-gray line), and all other
individuals (solid black line). Breaks in the lines for the foals
and yearlings occur at the moment that the current cohort
progresses to the next age class, and the following data
represent a new cohort of foals and yearlings. Light-gray circles
and dark-gray diamonds indicate the times that an entire cohort
of foals or yearlings, respectively, has died out. (B) Total
number of individuals in the population including foals,
yearlings, and all older horses (upper line), and the cumulative
number of deaths occurring during the entire year (lower line)
as also shown in Fig. 2B, D.
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while the bad ones get worse. The autocorrelation of

total ungulate density in this case not only reveals a

three-year periodicity (autocorrelation at lag 3: 0.31 6

0.01), but also a five-year periodicity (autocorrelation at

lag 3: 0.36 6 0.06). The high productivity levels lead to

high population densities, which more rapidly expand to

levels where they overexploit the available resources.

Hence, the population dynamics in this case reveals that

sometimes a population collapse already occurs after

two years of expansion, which is usually followed by a

three-year period during which the population expands

and collapses. The latter alternation explains the five-

year periodicity in the autocorrelation function.

Effect of periods with snow cover

As described for the baseline model we also carried

out 10 different simulations of the population dynamics

over 1000-year periods with the model variant in which

every year, with a particular probability, a 20-day period

of snow occurred starting at day 300 of the season (1

March). Snow cover is assumed to completely prevent

both resource regrowth and ungulate grazing. Transient

dynamics were discarded, as before. Table 3 summarizes

the results of these simulations in terms of total

population size, number of foals born, and the number

of individuals dying per year (average, minimum, and

maximum value observed and CV). The results reflect

our general finding that independent of its probability of

occurrence, a period of snow cover does not affect the

baseline dynamic in any major aspect. The autocorre-

lation function of total ungulate density is again

indicative of a three-year fluctuation period (50%

probability of snow cover; autocorrelation at lag 3:

0.55 6 0.05). The frequency distribution of the death toll

in terms of the percentage of individuals dying in a year

is also not affected by the occurrence of a period of snow

cover (Fig. 3B). Fig. 5B shows that the energy demands

for growth significantly shorten the time until the onset

of starvation mortality, but that all individuals can

sustain at least a 30-day period without food when their

energy reserves at the start of the period are maximal.

Therefore, in noncollapse years when individual body

conditions are not significantly reduced by deteriorating

food conditions, a period of snow cover will not

significantly reduce the survival probability of the

various age classes in the population. In collapse years

the snow cover will expedite the extinction of the foal

and yearling cohorts, but they would also have died

without the snow cover. As a consequence, snow cover

does not significantly change the baseline dynamics of

the ungulate population.

Condition-dependent reproduction

Fig. 7 shows the population dynamics for the case

when the probability of pregnancy depends linearly on

the reserves :mass ratio of the mother at the time of

insemination, starting at 0 for F/W ¼ qs and rising to b
at F/W ¼ q. As for the baseline model, Fig. 3 presents

the frequency distribution of the death toll in terms of

the percentage of individuals dying in a year. Charac-

teristics of the population dynamics are, as before,

measured over the last 900 years of 10 replicate

simulations covering a total period of 1000 years. The

condition-dependent fecundity does not qualitatively

FIG. 7. Dynamics of the ungulate population for the case when the probability of insemination depends on the current body
condition of the female (cf. Fig. 2). (A, B) Total number of individuals in the population including foals, yearlings, and all older
horses (upper line), and the cumulative number of deaths occurring during the entire year (lower line). (C, D) Vegetation density.
Transient dynamics have been discarded. Panels B and D zoom into the last 15 years of the entire period of 150 years to elucidate
details of the dynamics. The default parameter values have been used.
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change the basic three-year pattern that characterizes

the baseline dynamics (compare Fig. 2 with Fig. 7), as

shown by the autocorrelation function of total ungulate

density (autocorrelation at lag 3: 0.74 6 0.03). The

pattern of age-dependent survival in collapse vs. non-

collapse years is also similar to the pattern shown in Fig.

4 for the baseline model dynamics. However, the

condition-dependent fecundity does reduce the occur-

rence of collapses of the population, in which .25% of

the individuals die (Fig. 3). Instead, population declines

of between 10% and 25% during a year occur more

often.

The condition-dependent fecundity reduces the aver-

age number of foals produced each year, because

individuals always have a reserves :mass ratio which is

lower than its maximum value (Fig. 6). The pregnancy

probability is hence always smaller than b. On average

41 foals are produced every year per 100 adult females in

the baseline model, while in the case of condition-

dependent fecundity, only 33 foals are produced.

Assuming a higher value for b than the default we can

compensate for this decreasing effect of condition-

dependent fecundity on the average number of foals

produced. With b¼ 0.75 the average fecundity is similar

to that of the baseline model with default parameters (41

foals per 100 adult females). At the same time, the

frequency distribution of death tolls regains its bimodal

shape with this higher value of b and closely resembles

the distribution observed for the baseline model with

default parameters (Fig. 3). We hence conclude that it is

the decrease in average fecundity and not the change in

fecundity with body condition that causes population

collapses, in which more than 25% of the individuals die,

to occur less frequently (Fig. 3). Because of the lower

fecundity, the overshoot of the population is less

pronounced, leading to less severe overexploitation of

the resource and smaller collapses. Otherwise, depen-

dence of fecundity on year-to-year variability in

reserves :mass ratio at the time of insemination does

little to buffer fluctuations in population density.

DISCUSSION

On the basis of our analysis, competition for resources

permits, on average, only every third year-class of

newborns in a Konik horse population to survive in

considerable numbers and contribute to future genera-

tions. These successful year-classes, which are born right

after the population has decreased to relatively low

densities, hence dominate and make up the largest part

of the entire population. The intervening two year-

classes experience high death rates as foals and yearlings

and are basically wiped out during the years of a

population collapse. During a collapse almost all

yearlings die, while some 75% of the foals perish as

well. Yearlings suffer more than foals mostly because

they are burdened with the legacy of their first winter

starvation period, during which they developed a

shortage of reserves, while still having considerable

energy demands for growth in structural mass. The

disappearance of two consecutive year-classes creates a

hole in the population age structure, which results in a

lack of recruitment to the adult population for two

consecutive years and gives rise to the oscillations in

population abundance.

Population dynamics and especially population feed-

back on resources therefore determines life history of

individual ungulates that are born in different years and

hence experience different population densities during

their initial development. As a consequence, we expect

ungulate populations to exhibit an alternation between

years with a relatively low death toll, in which ,10% of

the individuals die, and collapse years with .30% of the

population dying. These collapse years result from the

intrinsic dynamics of the population, in particular

intraspecific differences in vulnerability to resource

overexploitation, and occur independent of environ-

mental conditions. They are, however, more likely to

occur at high resource productivity even though this

change in productivity does not significantly change

population fecundity (roughly 41 foals per 100 adult

females at both low and high productivity). Our results

agree with earlier findings that ungulate population

dynamics are mostly influenced by density dependence

in juvenile survival (Gaillard et al. 1996, Loison et al.

1999) rather than by density dependence in fecundity

(Bonenfant et al. 2002). In contrast, we did not find a

significant effect of a period of snow cover during winter

on dynamics (Coulson et al. 2000, Forchhammer et al.

2001), which we could explain in terms of the underlying

energy budget processes and the amount of reserves of

well-fed individuals.

Previous modeling studies have used more aggregated

models, such as matrix models (Eberhardt 1991, Grenfell

et al. 1992), simple predator–prey models (Owen-Smith

2002), or differential equation models representing

age- and sex-classes (Illius and Gordon 1999, Illius and

O’Connor 2000) to analyze ungulate dynamics. In

contrast, we used an individual-based, structured popu-

lation model, based on a core representation of the

individual energy budget and life history. Consequently,

this model is rather complex and detailed, and therefore

necessarily tailored to a particular system. Only such an

individual-based model, however, allows us to unravel

the complete and two-way interrelationship between

individual life history and population dynamics. This

advantage can be appropriately clarified by a compari-

son with the study of Grenfell et al. (1992). Using a

matrix model, these authors showed that highly over-

compensating density-dependent mortality can generate

recurrent population crashes occurring roughly every

three years, which are consistent with those observed in a

naturally limited population of Soay sheep. In other

words, by assuming both the form and strength of

density dependence, these authors revealed how aspects

of individual life history shaped population dynamics. As

we argued in the Introduction, however, this is only one
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leg of the interrelationship between life history and

population dynamics, as population dynamics in turn

shape life history through density dependence. Our

individual-based population model does not explicitly

or a priori assume a specific form of density dependence.

Rather, the density-dependent influence on juvenile

survival emerges as a result of an interaction between

the population feedback on resources and the mechanis-

tic model of individual energetics and life history. By the

same token, before analyzing the model results we

considered density dependence in reproduction just as

likely to emerge, given that pregnancy and lactation

represent considerable energy demands that increase the

risk of starvation for pregnant and lactating females. An

individual-based, structured population model, based on

a core representation of individual energetics and life

history, reveals the ultimate effect and strength of density

dependence on different aspects of individual life history,

and hence unravels both legs of the interrelationship

between life history and population dynamics. The

strength of this approach is illustrated by the relationship

that we revealed between age-dependent survival in

collapse years and size-dependent energy requirements,

as well as by the explanation for the insensitivity of

dynamics to snow conditions during winter in terms of

depletion times of individual energy reserves.

Although our population model has a general

structure, we parameterized it for a particular system,

the Konik horse population in the Oostvaardersplassen

(OVP) in the Netherlands. This nature reserve is a highly

productive wetland (Vulink 2001), which sustains a

population of roughly 1000 Konik horses in addition to

populations of Heck cattle and red deer. The population

has recently been the subject of a public debate about

the likelihood and naturalness of large die-offs during

winter (ICMO 2006). For simplicity we did not account

for any competition among the three grazer populations,

and simply assumed that only part of the resources were

available for the horse population independent of the

other two grazers. The model predictions regarding the

total population size are in close agreement with the

currently observed abundance of Konik horses. Given

the rather high density in a productive environment, we

would expect population collapses, in which 20–40% of

all individuals die, to occur regularly. The grazer

populations in the OVP were introduced in the early

1980s, and hence were below carrying capacity for most

of the last 30 years (ICMO 2006). High death tolls are

likely to occur more frequently in the years to come

(ICMO 2006), but as of yet have only been observed for

Heck cattle (five times, with a range of 20–35% in the

last 10 years; F. Vera, personal communication), and are

starting to emerge for Konik horses (reaching .20% for

the first time in 2007; F. Vera, personal communication).

On the basis of our model results, however, we expect

population collapses exceeding 40% of the population to

be unlikely. Observations on the Konik horses in the

OVP show that mortality mostly affects the young

individuals that fail to survive their second winter (F.

Vera, personal communication). The latter observation is

in line with our model predictions that yearlings,

particularly, are at risk of starvation.

As the most novel result, our analysis suggests a

potential, mechanistic explanation for the observed high

mortality among horses in their second winter, which we

argue results primarily from the reduced body condition

developed by yearlings during their first winter. Density-

dependent, overcompensating juvenile mortality has

often been identified as an important driver of popula-

tion fluctuations in ungulates (e.g., Gaillard et al. 1996,

Loison et al. 1999). However, the mechanism that gives

rise to this mortality, be it the relatively high energetic

requirements for growth in juveniles, or their poorer

reserve status at the beginning of winter, is less well

established. It has been argued elsewhere that these

causes can only be revealed by the type of individual-

based, mechanistic modelling presented here (Illius and

Gordon 1999:417–418). Our results resemble the find-

ings of Clutton-Brock et al. (1997), who showed that

fluctuations of the Soay sheep population of Hirta (St.

Kilda) resulted from overcompensatory winter mortal-

ity, and that the interplay between individual energetics

and population feedback is more likely to give rise to

density dependence in mortality, rather than in fecun-

dity. Illius and Gordon (1999) concluded that this lack

of density dependence in fecundity of Soay sheep results

from the high rate at which female fat mass recovers

after pregnancy and lactation. On the basis of our

results, a similar conclusion can be postulated for Konik

horses, as we also have not observed any increase in

mortality of pregnant and lactating females, despite the

fact that the energetic costs involved are substantial. In

contrast to Konik horses, however, winter mortality

among Soay sheep occurs mainly among lambs, whereas

mortality of yearlings and adults does not differ

significantly. Clutton-Brock et al. (1997) argue that

lambs are more at risk than older individuals because of

their smaller body fat reserves and their higher energy

expenditure in thermoregulation. Illius and Gordon

(1999), furthermore, show that male yearlings and adults

experience stronger density dependence in mortality

than female yearlings and adults, because of their larger

energy investment into rutting behavior. In contrast to

Soay sheep, population dynamics of the deer population

on the Isle of Rhum has been argued to exhibit more

stable dynamics due to a lower fecundity and slower

maturation (Clutton-Brock et al. 1997). Accordingly,

our results also reveal that a lower average fecundity

reduces the magnitude of the population collapses, even

though the basic dynamic pattern is not changed.

Oscillations related to population age, stage, or size

structure are a well-known phenomenon, occurring in a

wide variety of species (Gurney et al. 1980, Murdoch

and McCauley 1985, Hamrin and Persson 1986, God-

fray and Hassell 1989, Murdoch et al. 2002). Persson et

al. (1998; see also De Roos and Persson 2003) show that
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such cycles may arise in populations with yearly

reproduction when offspring cohorts suffer more from

competition for resources than their parents and hence

go extinct shortly after birth. These cycles resemble the

population fluctuations we found, but in contrast to

being less effective competitors for resources, young

individuals in our model have higher energetic demands

due to their prescribed growth in structural mass.

Nonetheless, as in the study by Persson et al. (1998),

the more precarious energy balance of juveniles com-

pared to adult individuals makes them suffer to an

unequal extent from resource scarcity. This asymmetry

is one, if not the most important, mechanism causing the

fluctuations in ungulate density (see also De Roos and

Persson 2003).

Prescribed growth in body size sets our energy budget

model apart from earlier energy budget models (Kooij-

man and Metz 1984, Gurney et al. 1990, Persson et al.

1998, Kooijman 2000, Lika and Nisbet 2000), in which

food acquisition is always the limiting process rate,

determining the rate of both growth and reproduction.

In contrast, in our energy budget model demands are

fixed and independent of current food availability. Fixed

energy demands require that they have to be covered

from stored reserves in case of food scarcity and that

food acquisition is limited by factors other than food

density under conditions of ample food supply. Other-

wise, the latter may initiate a runaway process of

reserves build-up. We assumed food intake rate to be

dependent on the current reserves :mass ratio of the

individual, limiting intake when this ratio approached a

set target value. As discussed above, the population

dynamics revealed in this paper resemble the type of

population cycles investigated by Persson et al. (1998),

despite the structural difference in energy budget model.

This resemblance supports the claim of De Roos and

Persson (2003) that intraspecific interactions among

individuals with different physiological status are a key

factor shaping population dynamics more than details of

individual energetics.

We have not been able to establish whether or not

feral horse populations exhibit the predicted, three-year

cycles due to a lack of population dynamic data over

sufficiently long time periods. Cyclic dynamics with a

three- or four-year period have been shown to occur in

Soay sheep (Clutton-Brock et al. 1997) and in musk ox

populations in certain regions of Greenland (Murdoch

et al. 2002). Nonetheless, the discrepancy that models of

ungulate dynamics readily predict population cycles

(Grenfell et al. 1992, Illius and Gordon 1999, Owen-

Smith 2002), but clear cycles are only observed in few

cases, raises the question of which types of mechanisms

might counter the inherent tendency to oscillatory

dynamics in ungulates. Heterogeneity in the vegetation

has been suggested as a possible explanation for the

stabilization of ungulate dynamics (Owen-Smith 2002),

although this mechanism seems less relevant for

populations of hindgut fermenters such as Konik horses,

given their wide array of forage species (Vulink 2001).

Other stabilization mechanisms might include behavior-

al responses to vegetation changes due to optimal

foraging (Fryxell 1991) or monopolization based on

dominance hierarchies. Lastly, interactions with patho-

gens or predators (Wilmers et al. 2006) may dampen

irruptive dynamics in ungulates. Although not relevant

in our study system, predation may especially stabilize

dynamics in case it targets small, young prey individuals

(Sinclair et al. 2003), killing them before they die of

starvation. In this paper we reveal how population

dynamics shapes individual life history plus density

dependence therein, and thus intrinsically induces

fluctuations. Investigating which mechanisms can sub-

sequently stabilize them, we consider a question for

further research.

Contrasting the dynamics of two populations of food-

limited ungulates (red deer and Soay sheep) on different

Hebridean islands, Clutton-Brock and Coulson (2002)

concluded that the devil is in the details and that small

differences in the individual life history may give rise to

significantly different dynamics. Indeed one could

rightfully pose the question to what extent our model

results generalize to different species of ungulates in

other circumstances. While formulating the model, we

have made assumptions that are specific for the

particular species and system we study. The type of

analysis we present, however, illustrates an inductive

approach to the study of ungulate population dynamics,

which adds to the more deductive approach using time

series analysis. The approach allows the unraveling of

how individual-level energy budget dynamics and other

life history processes translate to the population level

and shape ungulate population dynamics, which in turn

shape individual life history through density dependence

and feedback of population grazing on resources. The

use of structured population models based on a core

model of individual energetics and life history therefore

allows for developing a qualitative, mechanistic under-

standing of the complex and two-way interrelationship

between individual life history and population dynam-

ics, which can subsequently be used to speculate how

species-specific differences might shape life history and

population dynamics in other systems. We consider this

mechanistic understanding more important and more

likely to allow generalizations than the model itself. For

example, on the basis of our results we speculate that

species with a more rapid growth and shorter juvenile

periods will tend to fluctuate less, unless other factors,

such as high fecundity, exacerbate the oscillatory

tendency. Also, we do not expect social interactions to

play a major role in stabilizing population fluctuations,

as it is unlikely that juvenile individuals will be

sufficiently dominant to monopolize a large enough

part of the resources to prevent their starvation. In fact,

dominance hierarchies may even accentuate population

cycles if, as a consequence, juvenile individuals get less

than their fair share of available resources.
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