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ABSTRACT

Question: How is the process of evolutionary branching influenced by demographic
stochasticity?

Mathematical methods: Adaptive dynamics of (i) a simple consumer-resource model and (ii)
an analogous but individual-based model with finite population size.

Key assumptions: Consumers have access to two habitats with dynamic resources. The
fraction of time spent in each habitat is the evolving trait. System size influences absolute
population size and hence demographic stochasticity but not the expected population densities.
Reproduction is asexual.

Predictions: Absolute population size is an ecological factor that controls the outcome of
evolutionary dynamics by modifying the level of demographic stochasticity. Small populations
are predicted to remain monomorphic generalists while large populations are predicted to split
evolutionarily into specialized sub-populations. Underlying the delayed or absent evolutionary
branching in small populations are (i) random genetic drift and (ii) extinction of incipient
branches due to near-neutral stability.

Keywords: adaptive dynamics, demographic stochasticity, evolutionary branching, extinction,
finite population size, incipient species, random genetic drift.

INTRODUCTION

‘Adaptive dynamics’ is a theoretical framework for studying evolutionary dynamics in an
ecological context. This theory asserts that evolution takes place in a dynamic fitness
landscape in which fitness is the outcome of ecological interactions between individuals
such as competition for food or for mates (Metz et al., 1992). Central to the theory are the
classification of evolutionary scenarios based on the geometry of the invasion-fitness
function (Metz et al., 1996; Geritz et al., 1998) and the so-called canonical equation of adaptive
dynamics, which predicts the rate and direction of evolution (Dieckmann and Law, 1996; Champagnat

et al., 2001).
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A great deal of the theory, including the above-mentioned classification and canonical
equation, is based on simplifying assumptions that allow for the derivation of analytical
results (Metz et al., 1996). Two of these assumptions – i.e. that (i) mutations are rare and (ii)
mutations have small phenotypic effect – have recently been discussed extensively in the
literature (Van Dooren, 2005; Waxman and Gavrilets, 2005a, 2005b, and references therein). Here we focus
on another common assumption, which is that (iii) the current population is large enough
that demographic stochasticity and random genetic drift in the resident population can
be ignored. Although demographic stochasticity in the mutant populations is implicitly
incorporated in the canonical equation, it is ignored for the resident population. Demo-
graphic stochasticity results from discrete random events such as birth and death. In very
large populations, these events have tiny effects and occur frequently enough to result in
predictable and almost smooth changes of population density. The population dynamics
are then well-approximated by a deterministic model. In small populations, however, the
discrete events occur less frequently and moreover each event has a greater influence on
the state of the population. In this case the population size and genetic composition
may deviate significantly from the expectation based on a deterministic model. Natural
populations are of finite size and hence subject to demographic stochasticity, and therefore
the sensitivity of theoretical predictions to relaxing assumption (iii) is of great importance,
especially in the context of confronting model predictions with empirical data on ecological
systems. Note that natural populations are also subject to environmental stochasticity; this,
however, is outside the scope of this paper.

Analytical predictions of adaptive dynamics have often been tested with individual-based
simulation models in which population numbers are finite (and in which assumptions (i–iii)
may be relaxed) (e.g. Dieckmann and Doebeli, 1999; van Doorn et al., 2004). The analytical predictions are
usually found to hold in such simulations but a full understanding of the effect of absolute
population size is still lacking.

One line of studies on evolutionary dynamics in finite populations is game-theoretic
and investigates the consequences of the fact that a single mutant cannot play against itself
(Riley, 1979; Schaffer, 1988). The evolutionarily stable strategy (ESS) then appears to depend on
absolute population size: the smaller the population, the more spiteful the ESS (Schaffer, 1988).
A second line of research addresses the effect of demographic stochasticity on evolutionary
dynamics. Proulx and Day (2001) argue that the expected growth rate of a small mutant
population [the standard definition of fitness in adaptive dynamics theory (Metz et al., 1992)]
may not accurately predict the direction and endpoint of evolution in finite populations
subject to environmental stochasticity. In the absence of demographic stochasticity, alleles
with a negative expected growth rate have zero probability to reach fixation. Proulx and
Day (2001) show that in a finite population they may yet have a fixation probability that
is greater than that of a neutral allele. They argue that it is hence more correct to use
the fixation probability of rare alleles to describe the evolutionary dynamics of small
populations. Cadet et al. (2003) and Parvinen et al. (2003) study the evolution of the dispersal
rate in a metapopulation model and demonstrate that accounting for finite population size
in local patches alters the evolutionary prediction. They propose two explanations for the
difference. First, when local populations are small, the relatedness of individuals is high,
leading to kin competition. Second, demographic stochasticity results in variation in local
population size such that a disperser from a non-empty patch always has a chance to find a
patch with fewer competitors. Both explanations favour the evolution of a higher dispersal
rate under the influence of demographic stochasticity. In conclusion, these studies show that
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the direction of evolution in finite populations may differ from the expectation based on a
deterministic model.

An important finding of adaptive dynamics theory is that ‘upward’ movement in a
dynamic fitness landscape (i.e. resulting from directional selection) can take an evolving
population towards a fitness minimum referred to as an ‘evolutionary branching point’
(Metz et al., 1992). At this point, selection turns disruptive and (depending on the mating system)
the population may branch into two sympatrically diverging subpopulations (Metz et al.,

1992; Dieckmann and Doebeli, 1999) or a genetic polymorphism (Kisdi and Geritz, 1999). In this paper, we
focus specifically on the effect of finite population size on the dynamics of evolutionary
branching. We ask the question: ‘How is the process of evolutionary branching influenced
by demographic stochasticity?’ The answer to the question may be used to confront
theoretical predictions with a comparative study of empirical data on a range of population
sizes.

As the starting point for our study, we choose a very simple model for which evolutionary
branching is predicted according to current adaptive dynamics theory. Several modelling
studies have demonstrated that a consumer population exploiting two distinct food popu-
lations or habitats can evolve to an evolutionary branching point and hence potentially
speciate or give rise to a genetic polymorphism (e.g. Kisdi and Geritz, 1999; Day, 2000; Claessen and

Dieckmann, 2002; Schreiber and Tobiasen, 2003; Rueffler et al., 2004, 2006). Generally, the condition for
evolutionary branching in such models is that the generalist strategy exploiting both
resources has a lower fitness than mutant strategies with a slightly higher degree of
specialization in either direction. In other words, the shape of the trade-off between the
performance (contribution to fitness) in the two habitats determines the outcome of the
evolutionary dynamics. When fitness is a linear combination of performance in two habitats
(as is the case here), evolutionary branching is expected if the trade-off is ‘strong’ (convex),
whereas an evolutionarily stable generalist is expected if the trade-off is ‘weak’ (concave) or
‘neutral’ (linear) (Rueffler et al., 2004, 2006).

We model a consumer population feeding on two resource populations that are assumed
to occur in different habitats. The evolutionary trait is assumed to be the fraction of time
spent in each habitat. If the functional response in each habitat does not depend directly on
the trait value (but only indirectly through the effect on prey density), such time splitting
amounts to a linear trade-off. The reason is that individuals cannot be in two habitats at the
same time. However, if the functional response is a function of the trait value, the trade-off
becomes non-linear. We assume that the habitat-specific foraging capacity increases with the
time spent in the habitat. The foraging performance of individuals in a given habitat may
improve with time by, for example, phenotypic plasticity or learning. Our deterministic
model is very similar to that of Schreiber and Tobiasen (2003), who model the effects of
different resource relations (essential, substitutable, antagonistic) and find that antagonistic
resources may induce evolutionary branching. In our model, however, the resources are
always substitutable and branching is caused by the trade-off in attack rates.

Our model is loosely based on the ecology of lake fish such as Arctic charr (Salvelinus
alpinus), perch (Perca fluviatilis), and sticklebacks (Gasterosteus aculeatus). Such species
often have access to two resources in different habitats: zooplankton in the pelagic habitat
and macroinvertebrates in the benthic habitat. For a number of fish species, it has been
demonstrated that diet influences individual development and morphology, resulting in
increased habitat-specific foraging capacity (Robinson and Wilson, 1995; Day and McPhail, 1996; Andersson,

2003; Andersson et al., 2005). A strong trade-off results if the resources occur in different habitats

Delayed evolutionary branching 53



and habitat-specific foraging ability is positively related to the amount of time spent in the
habitat.

We use an individual-based model to show that absolute population size influences the
probability of successful evolutionary branching. In our model, lake volume scales the total
population size without affecting the ecological interactions. The only difference between
small and large systems is thus the level of demographic stochasticity. By studying
the evolutionary dynamics for different lake sizes, we gain insight into the effect of this
stochasticity on evolutionary branching.

Since we are specifically interested in the effect of stochasticity on evolutionary branch-
ing, we choose to keep the model as simple as possible. The species that inspired this
study (Arctic charr) is a sexual species whose populations are size structured (J. Andersson et al.,

submitted). However, in this paper we choose to ignore both these aspects in order to focus
exclusively on the effect of absolute population size.

THE MODEL

Deterministic model

We model an unstructured, asexual consumer population whose density is denoted by N(t)
and two resource populations whose densities are denoted by F1(t) and F2(t) and which are
assumed to occur in two different habitats. We assume that the consumers have a heritable
trait denoted by u, which is the fraction of their lifetime they spend foraging on resource 1,
while they spend the remaining fraction (1 − u) foraging on the other resource. Note that u is
hence restricted to the interval (0, 1). For simplicity, we assume a Holling type 1 functional
response, i.e. linear in prey density (but we have checked a model with a type 2 functional
response that gave qualitatively the same results). We assume that the per capita birth rate is
proportional to the consumption rate:

β(u) = k1F1(t)A1(u)u + k2F2(t)A2(u)(1 − u) (1)

where k1 and k2 are the efficiencies of converting food into offspring. A1(u) and A2(u) are
the search rates in the two habitats (or ‘attack rates’; volume cleared of prey per unit of
time). They are functions of u because we assume that the foraging ability on a resource
depends on the time spent foraging on that resource. As a phenomenological model, we
assume simple linear relations between u and the search rates:

A1(u) = a1 + b1u (2)

A2(u) = a2 + b2u (3)

The assumption that foraging capacity depends on the time spent foraging is based on
experimental measurements in freshwater fish species (Andersson, 2003; Andersson et al., 2005). For
Arctic charr, it has been demonstrated that exposure of juveniles during ontogeny to zoo-
plankton prey, macroinvertebrate prey or a mixture of both influences the foraging per-
formance at the end of the experiment [associated with a morphological effect (Andersson,

2003)]. A zooplankton diet increases the search rate on zooplankton, but diet has no effect on
the search rate for macroinvertebrates. In terms of equations (2) and (3), this is modelled as
b1 > 0 and b2 = 0 (assuming that habitat 1 is the pelagic habitat). We assume b1 = 1, b2 = 0,
a1 = 1, and a2 = 1.5, resulting in an asymmetric, strong trade-off (Fig. 1e,f).
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The total per capita search effort in a habitat equals the time that an individual spends
in that habitat, multiplied with the search rate: x1(u) = uA1(u) for habitat 1 and
x2(u) = (1 − u)A2(u) for habibat 2. A strong trade-off between search effort in the two

Fig. 1. (a–d) The symmetric trade-off a1 = 1, a2 = 2, b1 = 1, b2 = −1. (a) The search rate (equations 2–3)
in habitat 1 (solid) and habitat 2 (dashed) vs. time spent in habitat 1. (b) The per-capita search effort in
habitat 2 versus the one in habitat 1 reveals a strong (i.e. convex) trade-off. (c) The pairwise-invasibility
plot (PIP). Shown is the invasion fitness (black: positive; white: negative) of a mutant with trait u�
given the resident has trait u and is at ecological equilibrium. The point u* = 0.5 is an evolutionary
branching point (EBP). (d) The trait evolution plot (TEP). The black area is the co-existence area
defined as the set of pairs of traits which can mutually invade each other (set of protected polymor-
phisms). The arrow indicates the expected trajectory of divergence of u1 and u2. (e–h) The same as
(a–d) but for Arctic charr parameters a1 = 1, a2 = 1.5, b1 = 1, b2 = 0. The point u* = 0.58 is an EBP.
Other parameters: K1 = K2 = 1, δ1 = δ2 = 1, µ = 0.1.
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habitats is obtained if b1/(a1 + b1) > b2/a2, and a weak trade-off with the opposite inequality.
Plotting x1(u) versus x2(u) shows the shape of the trade-off. Figure 1a shows an example
where the search rates in both habitats increase with time spent in that habitat (b1 = 1,
b2 = −1, a1 = 1, and a2 = 2). Figure 1b shows the resulting strong trade-off in the plot of
x1(u) versus x2(u). Figure 1e shows a parameterization of the search rates based on the
observations in Arctic charr, which also leads to a strong trade-off (Fig. 1f).

The resources are assumed to have no direct interaction with each other, and to follow
semi-chemostat dynamics, which has been argued to appropriately describe resource
dynamics in systems of size-selective fish foraging on zooplankton (Persson et al., 1998).
Assuming a consumer population monomorphic in trait u, the deterministic dynamics of
the three populations are described by the following set of ordinary differential equations
(ODEs):

dN

dt
= (β(u) − µ)N(t) (4)

dF1

dt
= δ1(K1 − F1(t)) − F1(t)N(t)A1(u)u (5)

dF2

dt
= δ2(K2 − F2(t)) − F2(t)N(t)A2(u)(1 − u) (6)

where µ is a constant mortality rate, β(u) is the per capita birth rate as defined in equation
(1), and δ1 and δ2 are the renewal rates of the two resource populations. This deterministic
formulation is appropriate for very large systems only; the model for populations in smaller
lakes needs to incorporate demographic stochasticity and is described in the next
sub-section.

Stochastic model

In finite populations, the number of consumer individuals is an integer number denoted
by n(t). The consumer density N(t) is found by dividing by the lake volume V, thus
N(t) = n(t)/V. Very large systems (i.e. V → ∞) have so many individuals that discrete events
at the level of individuals (i.e. births and deaths) each have very small effects. The changes
in the population density N(t) are then well-approximated by the deterministic model
(equations 4–6). For small systems, however, these discrete events cannot be ignored. The
deterministic (mean field) model can still be used to estimate the long-term average densities
Ñ, F̃1, and F̃2 by the equilibrium of equations (4–6), but the actual values will deviate from
these values due to demographic stochasticity.

Each of the n(t) consumer individuals is characterized by its trait value ui (where i = 1,
. . . , n(t)), which determines its use of the resources as described in the ODE model. The
number of individuals changes through discrete birth and death events. The rate at which
birth and death events occur depends on the number of individuals, their individual birth
rates β(ui), and the death rate µ. We describe the dynamics of a finite population using an
individual-based, discrete event simulation model (i.e. a birth–death process in continuous
time). Details of the simulation procedure are given in the Appendix.

In this paper, we assume clonal reproduction (sexual reproduction is discussed elsewhere).
Offspring have the same genotype u as their parent unless, with probability P, a mutation
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occurs. In the case of a mutation, the newborn’s trait value is drawn from a truncated
normal distribution with standard deviation σ around the trait value of its clonal parent. If
the drawn value is below 0 or above 1, it is replaced by 0 or 1, respectively.

Compared with the consumer population, the resources (zooplankton and macro-
invertebrates) are much more numerous, with smaller body sizes and shorter generation
times. Therefore, we choose to model their dynamics with ODEs analogously to equations
(5–6) (see Appendix).

In the absence of mutations (P = 0), the individual-based model (IBM) defined like this is
completely analogous to the deterministic model. In the limit of a very large lake volume
(V → ∞), the dynamics of n(t)/V and the resource densities converge to equations (4–6).

RESULTS

Population dynamics

Deterministic

First, we scale away the conversion efficiencies by choosing scaled prey densities F 1� = F1/k1

and F2� = F2/k2. Below, we assume parameter values that allow a monomorphic consumer
population to have a positive population density in the entire interval of u ∈ (0, 1). In terms
of the model parameters, this requires that δ1, δ2, K1, and K2 are positive and

0 < µ < k1K1(a1 + b1u)u + k2K2(a2 + b2u)(1 − u)

for all u. We also require that a1 and a2 are positive and b1 > − a1 and b2 > − a2 such that the
functions A1(u) and A2(u) have positive values for all u.

For the limiting cases u = 0 and u = 1, it can be shown analytically that the equilibrium of
equations (4–6) is always stable (results not shown). An analytical result for the stability
of the equilibrium for 0 < u < 1 could not be obtained. Instead, the dynamics of equations
(4–6) were studied using the software Content for numerical bifurcation analysis (Kuznetsov,

1995). We studied the stability of the internal equilibrium (i.e. positive densities of all three
populations) for large ranges of all parameters. The dynamics were always found to con-
verge to a stable equilibrium point (Ñ, F̃1, F̃2) (results not shown). Population cycles or
alternative stable states were not found. Note that a linear functional response and semi-
chemostat resource growth tend to produce more stable dynamics than a saturating
functional response and/or logistic growth.

Stochastic

The dynamics of the individual-based model were studied with simulations. All else being
equal, the variability around the expected steady state increases if the lake volume V
decreases: according to the scaling rule for demographic stochasticity (Desharnais et al., 2006),
the coefficient of variation of population size is expected to scale like CV(n) ∝ n−0.5 (or,
equivalently, CV(n) ∝ V−0.5). To establish a relation between the coefficient of variation
(CV) of population abundance and lake volume, we used simulations without mutations
(P = 0) and with a generalist consumer strategy (u = 0.5), for 104 time units and for a
range of lake volumes between V = 1 and V = 1000. For each lake volume, we computed
the CV of abundance as SD(n(t))/ñ, where ñ denotes the average abundance and SD
denotes the standard deviation. A power function CV = c1V

c2 was fitted to the measured
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coefficient of variation of population abundance n(t). Simulations of the IBM with u = 0.5
and P = 0 show that the coefficient of variation of abundance scales like

CV(n) ≈ 0.3(V)−0.5 = 1.3(ñ)−0.5

For the parameter values used in Fig. 2 and with u = 0.5, the expected number of
consumers equals Ñ = 18.7 V, while for û = 0 it is Ñ = 9.5 V. Demographic extinction
occurs frequently when lake volume drops below V = 2, yet all runs with V = 2 persisted for
more than 105 generations and all runs with V = 3 for at least 107 generations.

Adaptive dynamics in large systems

In large lakes, the adaptive dynamics of our stochastic model are straightforward (Fig. 2a).
In the initial phase of the evolutionary dynamics, the resident population is monomorphic
with u ≈ 0. Habitat 1 is more or less unexploited and hence close to its carrying capacity,
while habitat 2 is depleted. Directional selection then leads to the invasion of mutants that
spend more time in habitat 1 and less time in habitat 2. This can be seen from the pairwise-
invasibility plot (PIP) (van Tienderen and de Jong, 1986): if the resident has a low trait value,

Fig. 2. Examples of adaptive dynamics in a big lake (a, V = 1000) and a small lake (b, V = 40),
assuming a symmetric trade-off (Fig. 1a–d). Depicted is the trait distribution n(u) at time t. Maximum
divergence (∆u = 1) is reached after t = 8600 and t = 69,000 generations, respectively. Time axes in (a)
and (b) have the same scale. Other parameters: K1 = K2 = 1, δ1 = δ2 = 1, µ = 0.1, P = 0.1, σ = 0.002.
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then only mutants with a higher trait value (u� > u) have positive invasion fitness (Fig. 1c).
As the average trait value û gradually increases, the population feedback results in a
balancing of the two resources: habitat 1 becomes more exploited while habitat 2 is released,
reducing the selection gradient. The two habitats are ‘balanced’ when the consumption
rate from the two habitats is equal: F1(t)A1(û)û = F2(t)A2(û) (1 – û), at which point the
directional selection vanishes. The resident trait value that balances the resources is
the evolutionary attractor of the monomorphic dynamics and is denoted by u*. The value
of u* depends on the parameter values: u* = 0.5 with the symmetric trade-off (Fig. 1c) and
u* = 0.58 with the trade-off based on Arctic charr (Fig. 1g), assuming K1 = K2 = 1 and
µ = 0.1.

When the resources are balanced, evolution is no longer driven by resource densities but
by the constraints imposed by the trade-off. In the case of a strong trade-off, the resident
with trait û = u* is located at a fitness minimum: mutations in both directions have positive
invasion fitness (Fig. 1c). Consequently, selection becomes disruptive when û approaches u*
and the asexual population can split into two sub-populations (Fig. 2a). A trait value that
is both convergent stable (in the monomorphic dynamics) and evolutionarily unstable is
referred to as an evolutionary branching point (EBP hereafter) (Geritz et al., 1998). By contrast,
in the case of a weak trade-off, selection becomes stabilizing at this point and the popula-
tion remains monomorphic with trait û = u* (not shown).

After the split of the population into two incipient species, a rough demarcation of
the course of the co-evolution of the two populations can be derived from a graph referred
to as the ‘trait evolution plot’ or TEP (Geritz et al., 1998). This plot is constructed in three steps.
The first step is to mark the areas for which a population with trait u2 can invade the
monomorphic equilibrium of a population with trait u1 (i.e. the PIP). The second step is to
mark the areas for which u1 can invade u2 (i.e. the PIP mirrored in the diagonal y = x).
The areas that where marked twice (black areas in Fig. 1d) correspond to combinations of
u1 and u2 which are mutually invasible and is referred to as the co-existence area or the set of
protected polymorphisms (Metz et al., 1996). The third step is to mark, in the co-existence area,
the points at which the fitness gradient is zero for one of the two branches, i.e. isoclines
of the co-evolutionary dynamics. In the current model, the TEP has no isoclines; rather,
the TEP predicts divergent co-evolutionary dynamics to (û1, û2) = (0, 1) if u* is an EBP
(Fig. 1d).

Co-existence of two emerging branches is likely only if their mean strategies, referred to
as û1 and û2, are within the co-existence area. When a pair of traits of the incipient species
(u1, u2) moves out of the co-existence area (for some reason), one of the two branches is
forced to extinction (i.e. its expected population size becomes zero), while the other one
settles at its monomorphic equilibrium density (Metz et al., 1996). In Fig. 2a, branching is
followed by symmetrical divergence of û1 and û2. Projected onto the TEP the trajectory of
(û1, û2) is expected to be well inside the co-existence area, close to a straight line from the
evolutionary branching point (u*, u*) to the final point (0, 1) (Fig. 1d), but will deviate
from it because mutations make random and finite steps.

The effect of lake size on evolutionary branching

The effect of lake volume on the adaptive dynamics in the IBM model is clearly illustrated
with two examples in Fig. 2 showing the dynamics of the trait distribution in simulations of
two lakes of different volume (V = 1000 and V = 40 units, respectively, corresponding to
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ñ = 18,700 and ñ = 748 for u = 0.5). Both runs start with ten individuals with a trait value of
u = 0. Note that the only ecological difference between the two lakes is their volumes. Hence
given the same monomorphic trait value, the expected time-averaged densities (Ñ, F̃1, F̃2)
are the same in the two lakes. The two examples demonstrate three ways by which the
evolutionary dynamics differ in the two lakes. First, in the small lake evolutionary change is
slower; it takes longer both to approach the evolutionary attractor u* and to diverge after
branching. Second, in the small lake evolutionary branching is frequently followed by
extinction of one of the incipient branches. Third, in the small lake the trait distribution
fluctuates around u*, such that the mean trait in the population, û, spends little time at u*.
The waiting time to eventual branching is much larger in the small lake, mainly for the two
latter reasons.

These three observations are quantified more thoroughly in Fig. 3, which summarizes
results for a range of lake volumes between V = 1 and V = 1000. For each lake volume ten
simulations of the individual-based model were run, starting with ten individuals with a
trait value of u = 0. Simulations ran for a maximum of 108 time units or shorter if branching
occurred before that time.

Figure 3a shows the approach time, denoted by tA and defined as the period until the
mean trait û(t) has approached the evolutionary attractor u* to within 5%. The approach
time tA decreases gradually with increasing lake volume because mutants appear more
frequently in large populations than in small ones. Figure 3b shows the ‘branching delay’,
denoted by ∆B, defined as the time elapsed between approaching the attractor and the
moment of branching: ∆B = tB − tA, where tB is the time at branching. To detect branching,
we subdivide the trait distribution into a lower, middle, and upper class. The middle class
is defined as the central 10% of the current range of u in the population. Branching is
defined as a moment when the middle class becomes empty. If during a single run multiple
branching events occur (due to extinction of incipient branches), then tB is defined as the
last one. A striking result is that the branching delay (∆B) increases dramatically when lake
volumes drop below V = 100; in lakes with a volume below V = 20, branching is not
observed within 108 time units (107 generations). The cause of this result will be discussed
below. Figure 3c shows the divergence delay, denoted by ∆D and defined as ∆D = tD − tB,
where tD is the first moment that the population contains individuals with u = 0 and u = 1 at
the same time. The divergence delay ∆D decreases slowly with lake volume, again because
mutants appear more frequently in large populations than in small ones.

Sensitivity to mutation rate and step size

Quantitative aspects of the pattern in Fig. 3 depend on the width of the mutation distribu-
tion and hence on the mutation probability P and the standard deviation of the mutation
steps σ. Figure 4 shows results for the Arctic charr parameters and four different com-
binations of P and σ. The figures show the same pattern of tA and ∆B as discussed above
(cf. Fig. 3a,b). Increasing σ or P has a large quantitative influence; it results in a reduction
of both the smallest observed time to branching and the minimum lake volume in which
branching can occur. The smallest observed branching delay in large lakes ranges from 100
generations (σ = 0.05, P = 0.01) to 5000 generations (σ = 0.01, P = 10−4). These patterns are
confirmed by the results with a symmetric trade-off over the entire range of P and σ (data
not shown). Despite these quantitative differences, for all values of P and σ a qualitative
result holds: there is a critical lake volume Vcrit below which evolutionary branching is not
expected to occur within an ecologically realistic time scale (if ever).
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Why is branching hard in small lakes?

Inspection of Fig. 2b suggests two processes that make branching hard in small lakes. First,
the mean trait in the monomorphic resident drifts around u* such that during extended
periods selection is directional rather than disruptive. Second, incipient branches may go
extinct soon after branching.

Drift away from the evolutionary branching point

The first process, movement of the monomorphic resident away from u*, may be explained
by either a direct or an indirect effect of demographic stochasticity: (i) random genetic drift,

Fig. 3. The three phases of adaptive dynamics computed for ten simulations per lake volume,
assuming a symmetric trade-off (Fig. 1a–d). Time is expressed in units of the average life span (1/µ).
All runs with V = 1 are extinct before approaching the attractor. (a) Approach time tA. (b) Branching
delay ∆B. (c) Divergence delay ∆D. Parameters: K1 = K2 = 1, δ1 = δ2 = 1, µ = 0.1, P = 0.1, σ = 0.002.
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in which case û changes randomly and hence possibly against the fitness gradient; or (ii)
the consequence of variation in the fitness gradient caused by random variation in the
consumer population (in terms of abundance and trait distribution). In the former case,
demographic stochasticity affects the trait distribution directly (e.g. by chance individuals
on one end of the distribution reproduce more frequently or die less frequently than on the
other side). In the latter case, the stochastic effect is indirect: random effects in the consumer
population result in an imbalance of the two resources, creating a fitness gradient pointing
away from the evolutionary singular point u*. To distinguish between these two alternative
explanations, we analyse a time series of the dynamics in a lake volume of V = 40 and a
symmetric trade-off. During an interval of 20,000 generations, the consumer population
fluctuates steadily around n ≈ 748 (ñ for u = 0.5) while the two resources display
complementary trends in their densities (Fig. 5a, b). The trends in the resources are strongly
correlated to fluctuations in the mean trait value, û (Fig. 5d). The instantaneous fitness
gradient is found by differentiating the per capita growth rate W = β(u) − µ (cf. equation 4)
with respect to u:

dW

du
= F1(t)(a1 + 2b1u) − F2(t)(a2 − b2 + 2b2u) (7)

Fig. 4. Approach time tA (plus symbols) and branching delay ∆B (solid circles) for four different
combinations of P and σ and trade-off parameters based on Arctic charr (Fig. 1e–h). Time is
expressed in units of the average life span (1/µ). All runs with V = 1 are extinct before approaching the
attractor. Parameters: K1 = K2 = 1, δ1 = δ2 = 1, µ = 0.1.
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At regular intervals of 10 time units, the fitness gradient was plotted against the average
trait in the population, û. Figure 5c shows that only in a very narrow range around
u* (0.497 < û < 0.503) does the fitness gradient change sign due to random fluctuations. Yet
Fig. 5d shows that û moves away from u* even outside this range (e.g. during the last 1500
generations). This implies that the mean trait moves against the fitness gradient during
long periods, corresponding to the direct effect of demographic stochasticity (i.e. random
genetic drift).

Extinction of incipient branches

The second process, extinction of incipient branches, may result from two causes: (i) drift-
induced ‘forced’ extinction, or (ii) demographic ‘chance’ extinction. Random genetic drift
could result in the pair of incipient species (û1, û2) moving out of the co-existence area
(Fig. 1d), followed by the sure extinction of one of the two branches. To investigate this
possible explanation, we analyse a number of extinction events in detail. Figure 6 shows the
dynamics of two incipient branches in terms of their abundances, n1(t) and n2(t), and their
mean traits, û1(t) and û2(t). According to our criterion for branching (see definition of tB,

Fig. 5. A time series of the stochastic model in which no branching occurs, assuming a symmetric
trade-off (Fig. 1a–d) and V = 40. (a) Consumer population abundance n(t). (b) Food populations
F1(t) and F2(t). (c) Instantaneous fitness gradient (equation 7) vs. the mean trait in the population
û(t). (d) The mean trait in the population û(t). The horizontal dotted lines indicate u = 0.497 and
u = 0.503, respectively (see text). Parameters: K1 = K2 = 1, δ1 = δ2 = 1, µ = 0.1.
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p. 60), the population branches at tB = 7800 generations. At their origin, the two incipient
branches have similar abundances (n1(tB) = 393, n2(tB) = 349). The numbers in the two
branches, however, fluctuate considerably and these fluctuations are reflected in the resource
densities (Fig. 6b, d). Figure 6c shows the trajectory of (û1, û2) in the trait evolution plot
(cf. Fig. 1d). The expected path of (û1, û2), based on the deterministic model, is along

Fig. 6. Time series of the stochastic model: branching is followed by extinction of an incipient
branch. Trade-off is symmetric (Fig. 1a–d) and V = 40. Vertical dashed lines indicate the moment of
evolutionary branching at time tB = 7800 generations. (a) Mean trait in the two branches û1 and û2.
During the monomorphic phases, the mean trait û is given. (b) Abundance of the two branches n1 and
n2 and total abundance n1 + n2. (c) Trajectory of (û1, û2) in the trait evolution plot (TEP) (cf. Fig. 1d).
Lines E1 and E2 are the extinction boundaries of n1 and n2, respectively, and limit the co-existence
area. Note that when n1 goes extinct, (û1, û2) is close to E1. (d) The food populations F1(t) and F2(t).
Parameters: K1 = K2 = 1, δ1 = δ2 = 1, µ = 0.1.
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the sub-diagonal from the EBP (0.5, 0.5) towards complete divergence (0, 1) (see arrow in
Fig. 1d). Branch n1 goes extinct eventually; if this were a ‘forced’ extinction owing to
random drift, then the actual trajectory of (û1, û2) should drift towards the extinction
boundary of n1 (E1 in Fig. 6c). The plotted trajectory does indeed drift in this direction.
The extinction of n1 may thus be the result of random drift of (û1, û2) reducing the expected
abundance of this branch, although extinction occurs already before reaching the limit of
the co-existence boundary.

To verify the generality of this observation, we analysed 33 simulations of 20,000
generations with parameters as in Fig. 6, in which 90 extinction events were recorded. We
determined the trajectory of (û1, û2) prior to extinction. In 79% of cases, we found that the
extinct branch was closer to its extinction boundary than the other branch (as in Fig. 6).
This result suggests that the extinction events can be partly attributed to random drift. The
21% of cases, however, suggest that ‘chance’ extinction occurs as well.

With respect to ‘chance’ extinction, we note that during the initial phase of divergence
û1 and û2 are so similar that the dynamics of n1 and n2 are almost neutral (n1 and n2 are
interchangeable for u1 = u2). In mathematical terms, if u1 ≈ u2 there is a stable equilibrium
but its leading eigenvalue is almost zero such that fluctuations in n1 and n2 are not easily
dampened. To check this idea we extended the deterministic model (equations 4–6) to two
consumer populations N1 and N2, and computed the eigenvalues of the equilibrium of
the ecological dynamics, assuming symmetric divergence (u2 = 1 − u1). The first eigenvalue
λ1 ≈ 0 for û1 ≈ 0.5 and decreases slowly as û1 and û2 diverge. This deterministic model
predicts that, following a perturbation, the total consumer density N1 + N2 converges
quickly to its equilibrium value, while N1 and N2 converge very slowly to their respective
steady states, mirrored by F1 and F2. Analogously, in the IBM the large fluctuations of n1

and n2 are complementary such that n1 + n2 remains more or less constant (Fig. 6b). The
near-neutral stability (λ1 ≈ 0) of the dimorphic equilibrium with small divergence (û1 ≈ û2)
means that fluctuations of n1 and n2, caused by demographic stochasticity, are not readily
dampened. This permits large, long-term fluctuations, which may lead to extinction of one
of the branches.

We postulate that incipient branches are sensitive to ‘chance’ extinction owing to the
near-neutral stability of the dimorphic equilibrium. Drift, however, results in a bias in the
extinction probability: the branch that is closest to its extinction boundary is most likely to
go extinct.

DISCUSSION

With a simple model we have shown that the absolute population size may influence the
outcome of evolutionary dynamics. Only in large populations is evolutionary branching
predicted to occur upon reaching the evolutionary branching point (EBP). In small
populations, branching is predicted to be delayed. The delay increases quickly with
decreasing absolute population size. Below a certain population size, the delay can be so
long that on any relevant time scale (say, up to 106 generations) branching is not expected to
occur at all. Based on this result, we expect that evolutionary branching has occurred more
frequently in large than in small populations.

We identified two mechanisms that contribute to the delay in evolutionary branching.
First, random genetic drift of the mean trait in the population causes the population to
spend long periods (many consecutive generations) away from the EBP. During such time
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intervals, selection is not disruptive but directional and branching is hence not expected to
occur.

Second, soon after branching the incipient branches are prone to ‘chance’ extinction.
The reason is that individuals of the two branches are almost substitutable because
their trait values are very similar. The relative dynamics of the two branches are hence
almost neutral: a perturbation in the ratio n1/n2  is restored very slowly. The contrast in
time scales between (slow) relative dynamics of similar phenotypes and (fast) aggregate
dynamics of the total consumer density was recently analysed by Meszéna et al. (2005),
who studied the dynamics of a number of similar clones in a (unimodal) distribution. Our
result suggests that their result is relevant even for the dimorphic dynamics soon after
branching. We hypothesize that the contrast between relative and aggregate dynamics
explains the frequent extinction of incipient branches in small systems with demographic
stochasticity. However, owing to random drift, the two branches do not have equal
probability to go extinct. The one that is closest to its extinction boundary is most likely
to disappear.

We have shown that quantitatively, these effects depend on the mutation rate and step
size. In addition, they depend on the strength of directional and disruptive selection.
Increasing the curvature of the trade-off (Fig. 1b) reduces the branching delay (especially in
small lakes) and allows for branching in smaller lakes. The qualitative pattern, however, of
the relation between V and ∆B remains the same (data not shown).

The role of random genetic drift

Random genetic drift, resulting from ‘sampling error’ and finite population size, is one of
the basic mechanisms of evolution, together with mutation and natural selection. Drift may
decrease genetic variation or produce large shifts in allele frequencies (e.g. the founder
effect) (Gavrilets, 2004). Allopatric speciation is usually seen as a by-product of divergence by
random genetic drift (or by directional selection) in geographically isolated populations
(Mayr, 1963; Provine, 2004). Yet in adaptive dynamics theory, the roles of drift and finite
population size have received little attention (but see Proulx and Day, 2001; Cadet et al., 2003; Parvinen et al.,

2003). In the recent polemic on adaptive dynamics and population genetics, it has been
suggested that the effect of absolute population size on evolutionary dynamics can be scaled
away by tuning the mutation rate (criticized by Waxman and Gavrilets, 2005b). Our results clearly falsify
this assertion: the absolute population size per se may influence evolutionary dynamics
through both drift and demographic extinction.

We found that random genetic drift can give rise to long delays of evolutionary banching.
This means that random drift demotes speciation, a result that is in contrast with its role in
classic allopatric speciation theory.

In small populations, random drift results in a weak coupling of changes of the genotype
distribution and the fitness gradient. We found that the mean trait û may move against the
fitness gradient during long periods, spanning many generations. This observation has
implications for the evolution of small populations and of exploited fish populations
in particular. It has been argued that exploitation of fisheries stocks has caused a fast
evolutionary response (Olsen et al., 2004). However, most stocks are heavily depleted and hence
at very low densities. This means that based on our results we do not expect genetic changes
directed by the fitness gradient imposed by fisheries, but rather by random drift.
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APPENDIX: DISCRETE EVENT SIMULATION

The simulation proceeds by stepping from one discrete event (birth or death) to the next. In
between events, the model allows for resource dynamics. At time t, the timing of the next
event to take place (be it a death or birth event) is determined from the total event rate,

E(t) = n(t)µ + �
n(t)

i = 1

β(ui)

where β(ui) is the rate at which an individual with trait ui gives birth (equation 1). Assuming
the events are exponentially distributed, the timing of the next event is chosen as

tnext(t) = t +
ln(1 + z)

E(t)

where z is a random number drawn from a uniform distribution. In between discrete events,
the food populations change according to differential equations (equations 8–9) that are
integrated with a simple Euler method (or assumed to be in quasi-steady state; see below).
The integration step size ∆t is either tnext(t) – t or τ, whichever is smaller (τ = 0.1 by default).
After each event and each integration step, the rates β(ui) and E(t) and the event time tnext

are updated to the current food densities. If the time of the next event is reached, an
individual is chosen from the population randomly but weighed by the individuals’ event
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rates µ + β(ui). With probability β(ui)/(β(ui) + µ), the chosen individual reproduces one off-
spring, otherwise it dies.

The ordinary differential equations for the dynamics of the food populations in the
individual-based model are:

dF1

dt
= δ1(K1 − F1(t)) − F1(t) �

n(t)

i = 1

A1(ui)ui

V
(A1)

dF2

dt
= δ2(K2 − F2(t)) − F2(t) �

n(t)

i = 1

A2(ui)(1 − ui)

V
(A2)

Since resource dynamics are fast relative to consumer dynamics (δi � µ), F1(t) and F2(t)
can be assumed to be in steady state with the current consumer population. By setting
dF1/dt = 0 and dF2 /dt = 0, we find the quasi-steady state resource levels:

F̄1(t) =
K1

1 +
1

δ1V
 �n(t)

i = 1
A1(ui)ui

(A3)

F̄2(t) =
K2

1 +
1

δ2V
 �n(t)

i = 1
A2(ui)(1 − ui)

(A4)

We use either equations (A1–A2) or equations (A3–A4); the results are indistinguishable.
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