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Abstract. Cannibalism is an interaction between individuals that can produce counter-
intuitive effects at the population level. A striking effect is that a population may persist
under food conditions such that the non-cannibalistic variant is doomed to go extinct. This
so-called life boat mechanism has received considerable attention. Implicitly, such studies
sometimes suggest, that the life boat mechanism procures an evolutionary advantage to the
cannibalistic trait.

Here we compare, in the context of a size structured population model, the conditions
under which the life boat mechanism works, with those that guarantee, that a cannibalis-
tic mutant can invade successfully under the steady environmental conditions as set by a
non-cannibalistic resident. We find qualitative agreement and quantitative difference. In par-
ticular, we find that a prerequisite for the life boat mechanism is, that cannibalistic mutants are
successful invaders. Roughly speaking, our results show that cannibalism brings advantages
to both the individuals and the population when adult food is limiting.

1. Introduction

Cannibalism is an intriguing phenomenon as it seems, almost literally, like cutting
into ones own flesh. The aim of this paper is, to contribute to the weighing of
advantages against disadvantages, with due attention for the distinction between
the individual level and the population level.

To set the scene, we first give an incomplete list of relevant aspects, while refer-
ring to the survey article (Polis 1981) and to our concluding section for a more
complete and detailed list and especially to (Polis 1981) for numerous references.

By practicing cannibalism, an individual gains energy (perhaps in the precious
form of a scarce resource, like protein). Moreover, it eliminates a (potential, future)
rival (for mates), competitor (for food) and aggressor (of offspring).
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As emphasized by BSE among cattle and Kuru among humans, (involuntary)
cannibalism may strongly contribute to pathogen transmission. Moreover, it may
lead to injuries (in particular, when the size difference between agressor and po-
tential victim is not too big).

In this paper we ignore pathogens. Moreover, we take size differences between
individuals into account and assume, that the size of the potential victim is so much
smaller than that of the cannibal, that injuries of the cannibal may be neglected as
well.

When parents and offspring live close together, a cannibalistic individual has
a higher chance to consume its own offspring than that of an arbitrary individual.
We ignore such a consequence of spatial structure and pretend that the world is
well-mixed.

The (dis) advantages at the i-level resulting from cannibalism are as follows.
First, a juvenile has of course a chance of being eaten by a conspecific adult, whereas
an adult receives additional energy when cannibalizing a juvenile. But an adult also
faces a possible disadvantage related to optimal foraging: perhaps the handling time
and digestion capacity spent on intraspecific prey are better spent on other sources
of food?

What is the effect at the population level resulting from these mechanisms? If
positive aspects at the individual level do not play a role, one expects of course
negative effects at the population level. An early and detailed example of such a
negative effect is given in (Botsford 1981). In this paper cannibalism is modeled
as a density dependent phenomenon and energy gain for the predator is not taken
into account. It is analyzed how, at a low population level, the effect of population
density on individual survival to recruitment (e.g. via cannibalistic predation) can,
under the assumption that low population levels result in an increase in individual
growth rate, contribute to the maintenance of a low population level. (In fact this
cannibalism model is the first in which bistability is found).

As shown in several papers, however, see (Van den Bosch et al. 1988), (Hen-
son 1995), (Van den Bosch and Gabriel 1997), (Diekmann 1999) and (Diekmann
et al. 2003), when taking energy gain of the cannibal into account, the net effect
at the p-level may be positive, in the sense that the population persists under food
conditions such that, without cannibalism, the population would go extinct (the
name “life boat mechanism” suggests, perhaps, that such food conditions occur
only every now and then). The key point is that juveniles have access to food which
is too small (or otherwise inaccessible) for the adults themselves. So, in a sense,
the juveniles form part of the foraging strategy of the adults.

In all earlier work on the life boat mechanism that we are aware of, the juvenile
food and the non-cannibalistic adult food were taken constant, i.e., not influenced
by the population itself through consumption. Moreover, in many models juvenile
food was not considered explicitly. In the present paper we distinguish between
juvenile and adult food explicitly and incorporate that their steady state levels are
influenced via consumption by the size and composition of the population. In loose
terms our main conclusion is that the life boat mechanism manifests itself when the
adult food is the limiting resource, while being irrelevant when the juvenile food
is the limiting resource.
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Another main theme of this paper is, that from the point of view of evolution
by natural selection, the life boat mechanism is not what counts. Indeed, as the the-
ory of Adaptive Dynamics (Metz et al. 1992, 1996), (Dieckmann and Law 1996),
(Geritz et al. 1997, 1998) and (Diekmann 2004) tells us, we should investigate
whether a (slightly) cannibalistic small subpopulation starts to grow exponentially
in the environmental (= food) conditions as set by the non-cannibalistic (so called
“resident”) population. Phrased this manner, the question concerns the evolutionary
onset of cannibalism. After it has been answered, further questions arise naturally:
what degree of cannibalism should we expect? What does, apart from physiological
constraints due to size-size incompatibility, determine the size-window in which
individuals are vulnerable to intraspecific predation by an individual of a given
size? Etcetera. As we shall show, the “evolutionary onset” question is easier to
answer than the “lifeboat” question: standard optimal foraging arguments suffice.
The reason is that evolution is short sighted: only immediate gains and losses count
and not how the world will be after the successful mutant has ousted the former
resident.

Yet, fortunately, the two themes do not clash. In, once again, loose terms, the
conclusion of the analysis in adaptive dynamics spirit is, that cannibalism will
originate if adult food is the limiting resource, while it will not, if juvenile food
is the limiting resource. So, despite the fact that the quantitative details of the
“life boat” condition and the “evolutionary onset” condition differ substantially,
we can say, that at a qualitative level the population advantages of cannibalism
manifest themselves exactly when the individual advantages lead to cannibalism.
When interpreted in a certain way, the life boat population phenomenon gives a
clue concerning the evolutionary advantages of cannibalistic clans.

Exploiting the “only one state at birth” feature, we rewrite the steady state prob-
lem as a nonlinear system of equations in the so-called environmental interaction
variable I and the population birth rate c. The technical basis for the bifurcation
analysis that we outline at the beginning of Section 4, is provided in more generality
in Steady state analysis for a size structured cannibalism model with two dynamic
resources, which is a chapter in the PhD thesis of the first author (Getto, thesis) and
available on request. In the latter one finds an extension of the bifurcation analy-
sis in (Diekmann et al. 2003) to an infinite-dimensional environmental interaction
variable I , as appearing in the parametrization of (Claessen and de Roos 2002) or
(Claessen 2002), and two dynamic resources.

The bifurcation parameter that we consider is the position along a curve in the
two parameter plane of the carrying capacities of, respectively, juvenile and adult
food.

2. The model formulation

In an attempt to bring out the bare essentials, we sacrifice much of the generality of
the model proposed in (Getto, thesis). In particular we assume here that juveniles,
and only juveniles, grow and that adults, and only adults, reproduce. Only adults
cannibalise and they can only cannibalise juveniles of suitable sizes. A generality
we allow for, however, is the existence of two dynamic standard food sources, one
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for juveniles and one for adults. So juveniles compete for food among themselves
and so do adults. But adults that are cannibalistic do have an additional source of
food: the juveniles.

We assume that every individual is born with size xb and turns into an adult upon
reaching size xA. Juveniles of size x experience a force of mortality µ1(x) and,
possibly, an additional force of mortality due to cannibalism. Adults experience a
force of mortality µ2.

We now specify our assumptions on individual growth, reproduction and main-
tenance in terms of a partitioning of the individual’s energy budget. More precisely,
we use a so-called net-assimilation model, in contrast to a net-reproduction model,
see (Kooijman 2000) for details (also for the case where growth and reproduction
occur “simultaneously”). We denote by Z1 the density/concentration of juvenile
food and by Z2 that of adult food. Incorporating a Holling Type II functional
response, a juvenile individual of size x gains energy at rate

E1(x)C1(x)Z1

1 + H1(x)C1(x)Z1
, (2.1)

where C1 is the size-specific attack rate, H1 the size-specific handling time (or,
alternatively, a measure for the digestive capacity involved) and E1 the amount of
energy gained from a unit of food (which is allowed to be size-specific).

We assume that maintenance costs are proportional to size and that, in the case
of juveniles, all remaining energy is scheduled to growth. Hence we have

dx

da
= η1

(
E1(x)C1(x)Z1

1 + H1(x)C1(x)Z1
− ζ1x

)
, (2.2)

x(0) = xb

to describe how the size x of a juvenile individual changes with its age a (here η1
takes care of converting energy units into size units and ζ1 is the amount of energy
per unit of time and unit of size needed for maintenance). Implicitly we here assume
that the energy ingested exceeds what is needed for maintenance, which is always
true in a nontrivial equilibrium.

Analogously, a non-cannibalistic adult gains energy at rate

E2C2Z2

1 + H2C2Z2
(2.3)

and, after paying for maintenance, uses this energy for reproduction. In other words,
a non-cannibalistic adult produces offspring at rate

η2

(
E2C2Z2

1 + H2C2Z2
− ζ2xA

)
. (2.4)

We assume that food is produced at a constant rate and that decay of food is a linear
process. So in the absence of consumption the food density/concentration would
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stabilize at a certain level, which we denote by, respectively, K1 (juvenile food) and
K2 (adult food). If we now include the effect of consumption we arrive at equations

dZ1

dt
= r1(K1 − Z1) −

∫ xA

xb

C1(x)Z1

1 + H1(x)C1(x)Z1
n(·, x)dx, (2.5)

dZ2

dt
= r2(K2 − Z2) − C2Z2

1 + H2C2Z2
NA(·) (2.6)

to describe the dynamics of the food concentrations. Here n(t, ·) is the size-density
of juveniles at time t and NA(t) the density/number of adults at time t .

To incorporate the effects of cannibalism we adjust two model components: the
juvenile death rate and the adult energy intake rate. The quantities C, H and E

provided with an index y refer to a victim of size y. When adults are cannibalistic
we replace (2.3) by

E2C2Z2 + ∫ xA

xb
EyCyn(·, y)dy

1 + H2C2Z2 + ∫ xA

xb
HyCyn(·, y)dy

(2.7)

and adapt (2.4) and (2.6) (the latter only in the denominator) accordingly, while
putting the per capita death rate of juveniles of size x equal to

µ1(x) + CxNA(·)
1 + H2C2Z2 + ∫ xA

xb
HyCyn(·, y)dy

. (2.8)

3. The steady state equations for a noncannibalistic population

We first consider a non-cannibalistic population. Introducing (cf. (2.2)) the indi-
vidual growth rate

g(x, Z1) = η1

(
E1(x)C1(x)Z1

1 + H1(x)C1(x)Z1
− ζ1x

)
, (3.1)

we can express the probability �(Z1), that a newborn individual survives till it
reaches size xA and becomes adult, given a constant (in time) food concentration
Z1, as

�(Z1) = exp

(
−

∫ xA

xb

µ1(y)

g(y, Z1)
dy

)
. (3.2)

Once turned adult, the individual lives for an expected period 1
µ2

of time, dur-
ing which it produces offspring at the rate (2.4) when adult food has the constant
(in time) concentration Z2. So the expected number of offspring produced by an
individual just turned adult equals

RA(Z2) = 1

µ2
η2

(
E2C2Z2

1 + H2C2Z2
− ζ2xA

)
. (3.3)

Consequently the expected number of offspring produced by a newborn individual
equals

R0(Z1, Z2) = �(Z1)RA(Z2). (3.4)
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A first requirement for steady state is that the two food concentrations are such that

R0(Z1, Z2) = 1. (3.5)

If, under such conditions, the steady population birth rate equals c, the stable juve-
nile size distribution is described by the density function

n(x) = c

g(x, Z1)
exp

(
−

∫ x

xb

µ1(y)

g(y, Z1)
dy

)
. (3.6)

Therefore, the rate g(xA, Z1)n(xA) at which adults are recruited, equals c�(Z1)

and we have

NA = c�(Z1)

µ2
. (3.7)

The second and third requirements for steady state are, that the left hand sides of
(2.5) and (2.6) are equal to zero, therefore, using (3.6) and (3.7), we find

0 = r1(K1 − Z1) − cZ1

∫ xA

xb

C1(x)

1 + H1(x)C1(x)Z1

1

g(x, Z1)
e
− ∫ x

xb

µ1(y)

g(y,Z1)
dy

dx,

(3.8)

0 = r2(K2 − Z2) − C2Z2

1 + H2C2Z2

c�(Z1)

µ2
. (3.9)

Together (3.5), (3.8) and (3.9) are three equations in the three unknowns Z1, Z2 and
c. For any solution (with c, Zi ≥ 0) the steady population size and composition is
given by (3.6), (3.7), while the Zi are the steady food levels. By eliminating c from
(3.8), (3.9) one reduces the system to two equations in the two unknowns Z1 and
Z2. Each equation defines a curve in the (Z1, Z2) -plane and solutions are precisely
the points of intersection of the two curves.

4. The steady state equations for a cannibalistic population

For a cannibalistic population the situation becomes more complicated. Yet, fol-
lowing the methodology introduced in (Diekmann et al. 2003), we can derive six
equations in six unknowns. The key idea is to rewrite (2.7) and (2.8) as, respectively,

E2C2Z2 + I1

1 + H2C2Z2 + I2
(4.1)

and

µ1(x) + CxI3

1 + H2C2Z2 + I2
, (4.2)

introducing

I1 :=
∫ xA

xb

EyCyn(y)dy, (4.3)

I2 :=
∫ xA

xb

HyCyn(y)dy, (4.4)

I3 := NA.

The two following points are crucial:
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1) The dependence on the infinite-dimensional parameter n = n(y) in (2.7) and
(2.8) is replaced by a dependence on the three dimensional variable (I1, I2, I3)

in (4.1) and (4.2). So the Ii capture exactly the feedback of the population on
the individuals. We call them interaction variables and we call the vector I

environmental condition (where one should realize that we do not explicitly
consider aspects of the “true” environment that are not in one way or another
under the influence of feedback).

2) The Ii are chosen such that their dependence on n in (4.3) and (4.4) is linear.

A consequence of point 1) is that when constructing the expected lifetime off-
spring R0 from the energy uptake (4.1) and mortality (4.2) we obtain a condition
for steady state of the form

R0(I ) = 1, (4.5)

(see (4.11) below), i.e., an equation in a finite number of variables. To see the
advantage resulting from 2), note first that the expression (3.6) for the juvenile size
density is replaced by

n(x) = c

g(x, Z1)
exp

(
−

∫ x

xb

(
µ1(y) + CyI3

1 + H2C2Z2 + I2

)
1

g(y, Z1)
dy

)

(4.6)

and (3.7) now reads

NA = I3 = c�c(Z1, Z2, I2, I3)

µ2
, (4.7)

where �c is defined in (4.9) below and the superindex c refers to cannibalism (and
not to the population birth rate). Note in particular that both n and I3 depend linearly
on c. If we plug (4.6) into (4.3) and (4.4) the same applies to I1 and I2. Thus we
obtain equations of the form

Ii = cF (Z1, Z2, I1, I2, I3), i = 1, 2, 3. (4.8)

We will supplement the four equations (4.5) and (4.8) by two more equations
expressing that the food concentrations Z1 and Z2 should be steady. Thus we
obtain six equations in six unknowns, c, I1, I2, I3 and Z1 and Z2. In summary,
we have arrived at a finite dimensional problem, where the linear c-dependence in
(4.8) is tailor-made for the bifurcation analysis that we will perform in Section 6.

The steady state is completely determined by a steady environmental condition
I and a population birth rate c, see (4.6) and (4.7). The equations that these quan-
tities should satisfy are consistency conditions. Solving the steady state problem
can thus be interpreted as specifying an environment I and a “population” c such
that the basic reproduction number under this environmental condition equals one
and such that the population consistently determines the environment.
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One of the remaining tasks is hence to model R0 and in order to do so observe,
that the analogue of (3.2) is

�c(Z1, Z2, I2, I3)= exp

(
−

∫ xA

xb

(
µ1(x) + CxI3

1 + H2C2Z2 + I2

)
1

g(x, Z1)
dx

)

(4.9)

and the analogue of (3.3) is

Rc
A(Z2, I1, I2) = 1

µ2
η2

(
E2C2Z2 + I1

1 + H2C2Z2 + I2
− ζ2xA

)
. (4.10)

Thus, (3.5) becomes

Rc
0(Z1, Z2, I1, I2, I3) = 1, (4.11)

where by definition

Rc
0(Z1, Z2, I1, I2, I3) = �c(Z1, Z2, I2, I3)R

c
A(Z2, I1, I2). (4.12)

The conditions for steady food levels are

0 = r1(K1 − Z1) − cZ1

∫ xA

xb

C1(x)

1 + H1(x)C1(x)Z1

1

g(x, Z1)

× exp

(
−

∫ x

xb

(
µ1(y) + CyI3

1 + H2C2Z2 + I2

)
1

g(y, Z1)
dy

)
dx, (4.13)

0 = r2(K2 − Z2) − C2Z2I3

1 + H2C2Z2 + I2
. (4.14)

The equations (4.11), (4.13) and (4.14) are supplemented by the so called feedback
relations (4.7) and

I1 = c

∫ xA

xb

ExCx

g(x, Z1)

× exp

(
−

∫ x

xb

(
µ1(y) + CyI3

1 + H2C2Z2 + I2

)
1

g(y, Z1)
dy

)
dx, (4.15)

I2 = c

∫ xA

xb

HxCx

g(x, Z1)

× exp

(
−

∫ x

xb

(
µ1(y) + CyI3

1 + H2C2Z2 + I2

)
1

g(y, Z1)
dy

)
dx. (4.16)

Together, (4.11) and (4.7)–(4.16) constitute six equations in the six unknowns c,
Z1, Z2, I1, I2 and I3.
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5. The evolutionary onset of cannibalism

Suppose, that the food levels are set at constant values by a non-cannibalistic pop-
ulation. Suppose a cannibalistic mutant enters the scene and suppose that it repro-
duces clonally. Does it generate an exponentially growing clan or does its clan go
extinct? Ignoring the subtleties of demographic stochasticity, the answer is provided
by the quantity Rc

0(Z1, Z2, I1, I2, 0) defined by (4.12), in the sense that exponential
growth sets in if and only if it exceeds one. The fact that we have put I3 equal to zero
correponds to the assumption, that as long as the clan is small relative to the pop-
ulation at large, the chance that its juvenile members fall victim to cannibalism is
negligible. Therefore, the only possible disadvantage a cannibalistic invader faces,
is that while cannibalising it loses time it could spend on a possibly more nutritious
recource. Likewise one should put I3 = 0 in the defining expressions (4.15), (4.16)
for I1 and I2. As a result we have explicit formulas for I1 and I2 in terms of c, Z1
and Z2. Consequently, Rc

0(Z1, Z2, I1, I2, 0) is a computable number, once the c,
Z1 and Z2 are specified.

Now note, that from (4.9), it follows that �c(Z1, Z2, I2, 0) is independent of I2
andZ2 and, in fact, equal to�(Z1)defined in (3.2). HenceRc

0(Z1, Z2, I1, I2, 0) > 1
if and only if

Rc
A(Z2, I1, I2) > RA(Z2) (5.1)

(since Rc
0(Z1, Z2, 0, 0, 0) = �(Z1)RA(Z2) = 1). Therefore, the cannibalistic sub-

population will start to grow exponentially in the environmental conditions as set
by the non-cannibalistic resident if and only if

E2C2Z2 + I1

1 + H2C2Z2 + I2
>

E2C2Z2

1 + H2C2Z2
. (5.2)

This simply means, that the cannibalistic energy intake and handling time should
compensate each other in such a way, that the “overall” energy intake rate of a can-
nibal exceeds the one of a non-cannibal. Now, inequality (5.2) can also be written
as

I1

I2
>

E2C2Z2

1 + H2C2Z2
, (5.3)

which means that the ratio of cannibalism related energy intake and cannibalism
related handling time should exceed the average energy intake rate of non-canni-
balistic individuals. Hence, we deduced the standard optimal foraging criterion. A
necessary condition for (5.3) to hold is, that

Ey

Hy

>
E2C2Z2

1 + H2C2Z2
, (5.4)

for at least some y ∈ (xb, xA). This is simply a size-specific version of the criterion.
If it is satisfied, one can satisfy (5.3) by restricting Cy such that it is positive only
for y for which (5.4) holds (whether or not this is a physiologically feasible option
is another matter).
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We conclude that the evolutionary onset of cannibalism can be understood via
optimal foraging considerations. (And, actually, so is a further intensification of
cannibalistic activity: a rare type of individual does not suffer from the extra mor-
tality it generates by direct interaction, since this is a quadratic effect).

6. Population level effects

The lifeboat mechanism refers to the possibility that the steady state equations,
i.e., (4.11), (4.7)–(4.16), may have a solution for values of the carrying capacity
parameters K1 and K2 for which (3.5), (3.8), (3.9) does not have a solution, i.e.,
values where, as opposed to a cannibalistic population, a noncannibalistic popula-
tion can not persist. To investigate this possibility, we focus on a neighbourhood of
the critical set in the (K1, K2)-plane, where R0 = 1 for a population which invades
the virgin environment in which both food levels are at their carrying capacities.
Since, as indeed should be the case,

Rc
0(Z1, Z2, 0, 0, 0) = R0(Z1, Z2), (6.1)

the critical set is the same for the non-cannibalistic as for the cannibalistic popula-
tion. It is defined by the equation

R0(K1, K2) = 1. (6.2)

Since (cf. (3.4)) R0(K1, K2) is the product of two monotone functions of a single
variable, the critical set has the qualitative features depicted in Figure 1. For the
noncannibalistic population, a steady state can only exist, if (K1, K2) lies above
the critical curve, because from (3.8) and (3.9) we see, that c > 0 implies Zi < Ki

for i ∈ {1, 2} whence �(K1) > �(Z1) and RA(K2) > RA(Z2) and, consequently,

R0(K1, K2) > R0(Z1, Z2) = 1.

For the cannibalistic population it is not as simple to determine the set of
(K1, K2) values for which a non-trivial steady state (i.e., c > 0) exists. Our strategy
is to concentrate on small values of c and to do a perturbation analysis. More pre-
cisely, in the six equations (4.11), (4.7)–(4.16), we shall consider I = (I1, I2, I3),
Z = (Z1, Z2) and K2 as the unknowns and K1 and c as parameters. For c = 0 we
have the one parameter curve of solutions I = 0, Z = K , K2 = �0(K1), where
�0 is the function whose graph is depicted in Figure 1 or, in other words

�0(K1) := R−1
A

(
1

�(K1)

)
. (6.3)

Now, fix K1 and look for solutions of the form

I = ck(K1) + o(c),

Z = K + c�(K1) + o(c), (6.4)

K2 = �0(K1) + c�1(K1) + o(c),
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K1

K2

R0 (K1, K2) = 1 

Fig. 1. Graph of the critical curve R0(K1, K2) = 1. For parameters in the region above the
curve, a population introduced in the virgin environment Z = K starts growing expo-
nentially, while for parameters in the region below the curve, a small population goes
extinct. The asymptotic values are defined as the solutions of limK1↑∞ �(K1)RA(K2) =
1, limK2↑∞ �(K1)RA(K2) = 1.

where o(c) denote the higher order terms in the small parameter c. As emphasized
in (Diekmann et al. 2003), our way of pre-processing the steady state problem has
the advantage, that k and � are easily computed. Indeed, from, respectively, (4.15),
(4.16) and (4.7), we deduce

k(K1) =




∫ xA

xb

ExCx

g(x,Z1)
e
− ∫ x

xb

µ1(y)

g(y,Z1)
dy

dx∫ xA

xb

HxCx

g(x,Z1)
e
− ∫ x

xb

µ1(y)

g(y,Z1)
dy

dx
�(K1)

µ2


 . (6.5)

Likewise, we deduce from (4.13) and (4.7), plugged into (4.14), that

�(K1) = −

 K1

r1

∫ xA

xb

C1(x)
1+H1(x)C1(x)K1

1
g(x,K1)

e
− ∫ x

xb

µ1(y)

g(y,K1)
dy

dx
1
r2

C2�0(K1)
1+H2C2�0(K1)

�(K1)
µ2


 . (6.6)

It remains to determine �1(K1). To do so, in (6.4) we plug the third equation into
the second, then the first two into (4.11) and finally expand up to first order with
respect to c. This way, we obtain the equation

∂Rc
0

∂Z2
�1(K1) + ∂Rc

0

∂Z
�(K1) + ∂Rc

0

∂I
k(K1) = 0, (6.7)
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which is linear in �1, � and k (note that the last two terms are vector products). It

can be solved for �1, since monotonicity guarantees, that
∂Rc

0
∂Z2

�= 0 (note that, for
the same reason, our formal solution is justified by the Implicit Function Theorem).

Since
∂Rc

0
∂Z2

> 0, we deduce that

sign �1 = −sign

(
∂Rc

0

∂Z
� + ∂Rc

0

∂I
k

)
. (6.8)

Since K2 −→ R0(K1, K2) is monotonically increasing, it follows from the last
equation of (6.4), that the small-c-level steady state solution exists in the region
where

R0(K1, K2) < 1,

if and only if sign �1 < 0. Therefore we will say from now on, that the life boat
mechanism works when sign �1 < 0. Note, that by speaking about small-c-level
solutions, we emphasize that this is a local property: we refer to (Van den Bosch
et al. 1988) for an example of more complicated global behaviour.

7. Elaboration of the criteria

In this section we consider (5.3) and (6.8) in more detail, both separately and to
uncover their interrelationship.

At the critical curve K2 = �0(K1), the left hand side of (5.3) reduces to

∫ xA

xb

EyCy

g(y,K1)
e
− ∫ y

xb

µ1(x)

g(x,K1)
dx

dy

∫ xA

xb

HyCy

g(y,K1)
e
− ∫ y

xb

µ1(x)

g(x,K1)
dx

dy

and therefore the no-onset condition, i.e., the reverse of (5.3), can be formulated as

∫ xA

xb

(
Ey

Hy

− E2C2�0(K1)

1 + H2C2�0(K1)

)
HyCy

g(y, K1)
e
− ∫ y

xb

µ1(x)

g(x,K1)
dx

dy < 0. (7.1)

Accordingly, a sufficient no-onset condition is, that

Ey

Hy

<
E2C2�0(K1)

1 + H2C2�0(K1)
, (7.2)

for all y which correspond to vulnerable juveniles (or, in mathematical jargon, for
all y in the support of Cy).

As �0 is a decreasing function, we conclude that,
if the sufficient no-onset condition (7.2) is satisfied for some K1, it is satisfied for

all smaller values of K1 (nota bene that, along the curve, K1 and K2 are coupled!).
If we additionally assume, that Ey

Hy
is the same for all vulnerable juveniles, we

can say a little more. First, note that �0(K1) tends, for K1 −→ ∞, to the value of
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Z2, which makes RA equal to 1
�(∞)

(recall Figure 1). Therefore, we deduce from
(3.3), that

E2C2�0(K1)

1 + H2C2�0(K1)
= ζ2xA + µ2

η2�(∞)
. (7.3)

Thus, a necessary condition for onset of cannibalism is

Ey

Hy

> ζ2xA + µ2

η2�(∞)
(7.4)

for vulnerable juveniles.
At the other extreme, where K1 tends to the lower boundary of the interval on

which �0 is defined, we have �0(K1) −→ ∞. Therefore, if

Ey

Hy

>
E2

H2
, (7.5)

the necessary onset condition is satisfied for all values of K1, for which the popu-
lation can persist. Note, that implicitly we have assumed, that

E2

H2
> ζ2xA + µ2

η2�(∞)
,

since otherwise this set of K1 values would be empty. Hence, (7.5) is indeed a more
severe condition than (7.4). The meaning of (7.5) is, that cannibalistic food is more
profitable than standard adult food. If (7.5) is not satisfied, but (7.4) is, we show
that there is along the critical curve exactly one point, such that onset is impossible
to the left, but possible to the right (see Figure 2).

Above the critical curve, the inequality (5.2) can be rewritten as
∫ xA

xb

(
Ey

Hy

− E2C2Z2

1 + H2C2Z2

)
HyCy

g(y, Z1)
e
− ∫ y

xb

µ1(x)

g(x,Z1)
dx

dy > 0. (7.6)

Still assuming that Ey

Hy
is constant and that (7.4), but not (7.5), is satisfied, we will

obtain a well-defined critical Z2 level, at which the left hand side of (7.6) switches
sign. More precisely, let Zc

2 denote the unique solution of the equation

Ey

Hy

= E2C2Z2

1 + H2C2Z2
, (7.7)

then onset is impossible, if Zss
2 > Zc

2 and possible if Zss
2 < Zc

2, where Zss
2 is the

steady state adult food level. Explicitly, from (7.7) we get

Zc
2 = Ey

C2(E2Hy − H2Ey)
. (7.8)

Our next aim is to find the curve in the (K1, K2)-parameter plane, at which Zss
2 =

Zc
2. We shall find, that this is a straight line with positive slope, starting at the point

on the critical curve described above and defined (uniquely) by �0(K1) = Zc
2.
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 onset

no onset

K1

K2

R0 (K1, K2) = 1 

Fig. 2. Subdivision of the parameter plane in the region in which onset of cannibalism is
impossible and the complementary region in which onset of cannibalism is possible.

If the level of Z2 is fixed a priori, we can use (3.5) to determine the level of Z1.
Thus, define

Zc
1 = �−1

(
1

RA(Zc
2)

)
. (7.9)

Next, use (3.9) to determine c. The result is

c = r2
E2

Ey

RA(Zc
2)µ2Hy(K2 − Zc

2). (7.10)

Finally, substituting (7.9) and (7.10) into (3.8), we find a linear equation relating
K1 and K2. In the equation, the coefficient of K1 is positive and the coefficient of
K2 is negative, therefore the graph of K2 as a function of K1 is a straight line with
positive slope. Monotonicity arguments guarantee that onset is possible to the right
of this line and impossible to the left (see Figure 2).

We now turn our attention to (6.8) and first make the following sign observa-
tions:

∂Rc
0

∂Z1
> 0,

∂Rc
0

∂Z2
> 0,

∂Rc
0

∂I1
> 0,

∂Rc
0

∂I2
< 0,

∂Rc
0

∂I3
< 0,

where all quantities are evaluated at the critical curve, such that Z1 = K1, Z2 =
�0(K1) and I = 0. In addition, from (6.5) and (6.6) one sees that

θi < 0, ki > 0,
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so only

∂Rc
0

∂I1
k1

(corresponding to extra energy intake of adults) gives a positive contribution to
∂Rc

0
∂Z

θ + ∂Rc
0

∂I
k, all other terms are negative. The term

∂Rc
0

∂I2
k2 corresponds to the

diminishing of the energy intake of standard food due to time/digestion capacity

spent on intraspecific predation,
∂Rc

0
∂I3

k3 to the decreased survival probability due

to cannibalistic predation pressure and the
∂Rc

0
∂Zi

�i to the increase of energy intake
with standard food. Now note that from (4.12), (4.9) and (4.10) one computes

∂Rc
0

∂I1
k1 + ∂Rc

0

∂I2
k2

= η2�(K1)

µ2(1 + H2C2�0(K1))∫ xA

xb

(
Ey

Hy

− E2C2�0(K1)

1 + H2C2�0(K1)

)
HyCy

g(y, K1)
e
− ∫ y

xb

µ1(x)

g(x,K1)
dx

dy. (7.11)

Comparison with (7.1) and/or (7.2) immediately leads to the conclusion, that
the life boat mechanism can only work when onset of cannibalism is possible.
Since the quantity in (7.11) needs to be sufficiently positive to compensate the

negative contributions of the other three terms in

∂Rc
0

∂Z
θ + ∂Rc

0

∂I
k

(in order for �1 to be negative; recall (6.8)), we see clearly, that a more severe
condition needs to be satisfied for the life boat mechanism to work, than for mere
onset of cannibalism. Note, that unlike in the limit K2 −→ ∞, for K1 −→ ∞
the sign of � is not apparent, without further assumptions. We suspect, that the
quantity �1 switches sign at most once along the critical curve, but we did not
manage to prove this. A sufficient condition for the lifeboat mechanism, however,
can be given, by observing, that Ey

Hy
(assumed constant) appears only once in (7.11)

and not at all in the other terms of

∂Rc
0

∂Z
θ + ∂Rc

0

∂I
k.

It follows that the lifeboat mechanism manifests itself for sufficiently large Ey

Hy
.

We refer to (Diekmann et al. 2003) and (Getto, thesis) for a further elaboration of
the life boat condition in the simpler setting of constant food availability and for a
precise biological interpretation of the condition in such a setting.
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8. Concluding remarks

In the context of a size structured population model with two dynamic food sources,
one for juveniles and one for adults, we have investigated both the conditions for
the evolutionary onset of cannibalism and the condition for persistence of a canni-
balistic population, where it would go extinct in the absence of cannibalism. At a
qualitative level the conditions agree, in quantitative detail they differ considerably.
The common denominator is, that cannibalism, in the form that the big adults eat
the small juveniles, pays when adult food is limiting and does not pay when juvenile
food is limiting.

Our adaptive dynamics approach focussed on steady state attractors, mainly
since these are amenable to analysis with pencil and paper. We do think, however,
that the distinction between onset of cannibalism and the life boat mechanism might
become negligible when food fluctuates. To verify this idea one could, for instance,
repeat the analysis of this paper for the situation that one or both of the parameters
K1 and K2 is a periodic function of time. Another possibility is, to assume that
reproduction is concentrated in a short period of the year. Even with constant K the
food levels will then change during the year, due to the physiological development
of the cohorts.

In a recent review on the population dynamic theory of size-dependent canni-
balism, (Claessen et al. 2004) distinguished four critical aspects of cannibalism: 1)
victim mortality, 2) energy extraction from victims, 3) size dependence and 4) com-
petition. The size dependence of the cannibalistic interaction results from that can-
nibals are usually larger than their victims, while competition is implicated because
cannibals and victims are the same species and may hence share common resources.
Of the 30 different models of cannibalistic interactions reviewed, all accounted for
victim mortality, but only 50% of them accounted for the direct positive effect
of energy gain from killing and eating a conspecific. Few models accounted for
all four aspects of cannibalism. At the population level different types of possible
responses due to cannibalism were distinguished, among which the occurrence of
multiple equilibria and the life boat effect. (Cushing 1991) pointed out already that
the interplay between positive and negative effects of cannibalism can result in
multiple steady states. Energy extraction from victims is the direct, positive effect,
but indirect, positive effects occur as well, as cannibalism may reduce intraspecific
competition and hence benefit growth and reproduction. (Claessen et al. 2004) argue
that the life boat effect results from the disbalance between the direct, positive effect
of energy extraction and the direct, negative effect of imposing victim mortality.
The model we analyze does account for victim mortality, energy extraction and
size-dependence of the cannibalistic interaction. The fourth aspect of cannibalism,
resource competition between cannibals and victims, does not play as much of a
role as we focus on situations of low population density and moreover assume that
juveniles and adults have exclusive resources. However, in contrast to (Claessen
et al. 2004) we recognise that there are additional, indirect negative effects influ-
encing the occurrence of the life boat mechanism: any increase in density translates
into a decrease in resources and hence to a slowing down of juvenile growth. More-
over, by predating conspecifics a cannibal can forage less on alternative resources,
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as it has less time available to search for it. To our knowledge these indirect, neg-
ative effects, which are embodied in the condition (6.8), have not been recognised
before. The condition for the occurrence of the life boat effect is hence necessarily
more complicated than proposed by (Van den Bosch et al. 1988), who argued that
it occurred whenever the expected energy gain from cannibalizing a single juvenile
is sufficient to produce a new single offspring (see Section 4.1 of (Diekmann et al.
2003) for explicit incorporation of the subtle aspect that those juveniles that are
cannibalized, but wouldn’t have reached adulthood anyhow because of death of
other causes, come for free). (Polis 1981) proposed that the persistence of canni-
balistic populations under conditions under which non-cannibalistic populations
go extinct results from that adult individuals by cannibalizing offspring indirectly
gain access to a juvenile resource base, which is otherwise inaccessible to them.
The condition (6.8) relates to that, since it clearly expresses that the life boat effect
will only occur whenever adult resources are scarce and the adults require the indi-
rect access to juvenile resources for persistence. Our analysis shows furthermore
that cannibalism may evolve under a wider range of conditions, independent of the
population level effect. However, both the onset of cannibalism and the life boat
effect do depend crucially on the direct positive effect of cannibalism, the energy
gain from eating a smaller conspecific, which should be contrasted with the fact
that half of the previous models on cannibalism do not take this positive aspect into
account, including the well-studied model of the population dynamics of Tribolium
(Costantino et al. 1997).
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