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Abstract. Under certain conditions a cannibalistic population can survive 
when food for the adults is too scarce to support  a non-cannibalistic popula- 
tion. Cannibalism can have this lifeboat effect if (i) the juveniles feed on a 
resource inaccessible to the adults; and (ii) the adults are cannibalistic and 
thus incorporate indirectly the inaccessible resource. Using a simple model 
we conclude that the mechanism works when, at low population densities, 
the average yield, in terms of new offspring, due to the energy provided by 
one cannibalized juvenile is larger than one. 

Key words: Structured population model - -  McKendrick equation - -  Sub- 
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I. Introduction 

Populations of  predators are sometimes observed to live for a considerable period 
of time with very little or no prey available. For example, Johnson and Walker 
(1973), reported a population of the predatory cyclopoid copepod Cyclops strenuus 
abyssorum in Loch Leven, which lived for three successive years with extremely 
low levels of  zooplankton available as food for the adults. They argued that the 
amount  of  prey present was far too little to sustain a population. Cannibalism, 
regularly observed in live and preserved samples, was considered to be an 
important factor. Similarly, Collette et al. (1977) state that in some perch popula- 
tions juveniles represent the major food source for the adults. According to 
Nikolskii (1969) cannibalism often enables perch to live in lakes with no other 
prey available for the adults. Popova and Sytina (1976) report that in some lakes 
in the USSR, the fish fauna is composed only of perch (Perca fluviatilis). 

In his review on intraspecific predation Polis (1981) lists an additional three 
examples all of  which concern fish species. He also indicates a mechanism that 
allows these populations to survive by means of cannibalism. Firstly, the juveniles 
have to feed on a resource inaccessible to the adults. Secondly, the adults are 
cannibalistic and thus incorporate indirectly the inaccessible resource. Using this 
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extra energy, an adult can increase its reproductive rate or decrease its death 
rate. Of  course, cannibalism also increases the juvenile death rate. 

The mechanism which we refer to as the "life boat mechanism",  can work in 
species whose juveniles use substantially different food from the adults, such as 
is the case in scorpions, waterbugs, squid, newts, frogs, some copepod species 
and several fish species (Polis 1981). 

Of  course the examples about populat ions sustaining on cannibalism are 
extreme cases where one is inclined to search for possible causes. The life boat 
mechanism can, however, also be important  in situations with a prey population 
present but not productive enough to support  a non-cannibalistic population. 

Gabriel (1985a, b, c) was the first to study this life boat mechanism in a 
theoretical context. He showed that cannibalism can indeed decrease the risk of  
extinction. Due to the complexity of  the simulation model used, no simple rule 
could he obtained about  the conditions under which cannibalism allows the 
populat ion to persist. An analytical approach may facilitate the derivation of 
such a rule. 

Hence, in this paper  we use a simple model, to answer the question: Under  
what conditions can a cannibalistic population survive when food for the adults 
is too scarce to support  a non-cannibalistic populat ion? 

2. What to look for? 

A central quantity throughout this paper  will be the net reproduction, R0, which 
we define as the expected number  of  female offspring produced by one female 
throughout her life at infinitesimally low populat ion density where density depen- 
dent factors, including cannibalism, can be neglected. 

Note. It should be pointed out that, in the ecological literature "Ro" and the 
term "net-reproduct ion" are sometimes used also for the density dependent  case. 
Other sources do restrict the interpretation of R0 to the density independent 
situation and use Rn, or some equivalent notation, for the density dependent  
situation. We prefer to restrict the use of  Ro, where the 0 refers to zero (read 
infinitesimally low) populat ion density, to the density independent situation only. 

In models for the dynamics of  a population it is commonly assumed that the 
per capita birth rate decreases and /o r  the per capita death rate increases, for at 
least some age classes, with increasing populat ion density. In such situations it 
can usually be shown that when Ro < 1 only the trivial steady state exists, while 
a branch of  non-trivial steady states bifurcates supercritically from Ro = 1. The 
trivial steady state is stable for Ro<  1 and unstable for Ro> 1. When a species 
is cannibalistic increasing juvenile populat ion density results in a larger birth 
rate and /o r  a smaller death rate for the adults. Cushing (1985) showed that it is 
possible, in such situations, that the branch of  non-trivial steady states bifurcates 
subcritically from R0= 1. In some situations the branch bends back again to 
values of  Ro > 1. 

Given that there exists a non-trivial steady state for Ro<  1, there might be 
some populat ion trajectories that remain bounded away from zero for all time. 
Then a cannibalistic populat ion can survive when a non-cannibalistic populat ion 
goes extinct. Finding such situations is the subject of  the next sections. 
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3. The model 

Symbols that are frequently used in the subsequent description of  the model  are 
summarized in Table 1. 

Assume that the amount  o f  food eaten by a juvenile of  a certain age is constant 
through time. This assumption allows us to write down an age structured model  
for the juveniles because there is a fixed relation between age, a, and energy 
content, E(a). Furthermore, assume that a juvenile becomes an adult at a fixed 
age, & Let n (t, a) denote the age distribution of  the juveniles. The time evolution 
of this distribution is governed by a McKendrick type equation, 

On On 
- - + - -  = -[p .  + i ( a ) A ( t ) ] n ( t ,  a ) ;  a ~ a ( l a )  
3t 3a 

w h e r e  /~ is t h e  p e r  c a p i t a  n a t u r a l  d e a t h  r a t e ,  w h i c h  is a s s u m e d  to  b e  age  

i n d e p e n d e n t ,  A ( t )  is t h e  t o t a l  n u m b e r  o f  a d u l t s  a n d  i ( a )  is t h e  a t t a c k  r a t e  o f  

a n  a d u l t  o n  j u v e n i l e s  o f  age  a. W e  a s s u m e  a l i n e a r  f u n c t i o n a l  r e s p o n s e .  W e  

c h o o s e  to  w r i t e  C as  t h e  p r o d u c t  

i f ( a )  = C h ( a )  

where C is the total (per adult) cannibalistic pressure an individual experiences 
during its juvenile period and h(a) is the relative vulnerability to cannibalism 
of juveniles of age a, with support [amin,  amax] c (0, a )  and 

Io ~ h(a) = 1. da 

Assume that the adults do not differ in their population dynamical behaviour. 
Their dynamics can then be described by an ordinary differential equation 

dA 
--~= n(t, ~ ) - f ( I ( t ) ) A ( t )  (lb) 

Table 1. List of important symbols 

Symbol Explanation 

a 

A(t) 
C(a) 
C 

E(a) 
f(I(t)) 
h(a) 
I(t) 
J(t) 
n(t,a) 
Ro 

Z 

Age 
Age at which an individual matures 
Total number of adults 
Attack rate per adult on juveniles of age a 
Total cannibalistic pressure (per adult) which an individual experiences during its 
juvenile period 
Energy content of an individual of age a 
Per capita adult death rate 
Relative vulnerability to cannibalism at age a 
Total rate of energy intake per adult 
Rate of energy intake per adult through cannibalism 
Age distribution of the juveniles 
Net reproduction 
Per capita juvenile death rate 
Rate of energy intake per adult from ~n extraneous food source 
Conversion efficiency of ingested energy to offspring production 
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where n(t, (t) is the influx of adults which is equal to the out-flow (maturation) 
of  juveniles at age 8, f ( I )  is the per capita death rate, which is assumed to be a 
function of  the total rate of energy intake, L We assume that f ( I )  < oo; f ' ( I )  < 0 
and limz_~o~f(I)> 0. The biology behind these assumptions is that "well fed" 
individuals are less vulnerable to infectious diseases, can escape predators more 
efficiently, etc. 

The total rate of energy intake of  an adult, I, is the sum of the energy intake 
from an extraneous food source, Z, and the energy intake through cannibalism, 
J(t). The intake from the extraneous source is assumed to be constant. 

I(t) = Z + J ( t ) .  (tc) 

The rate of  energy intake per adult through cannibalism is given by 

J(t) = C(a)E(a)n(t ,  a) da (ld) 

Finally, the per capita birth rate is assumed to depend linearly on the total 
energy intake, i.e. a linear numerical response. The population birth rate, there- 
fore, takes the form 

n(t, O) = ~(Z + J(t))A(t)  (le) 

where ~ is the conversion efficiency; i.e. r is the amount of  energy needed to 
produce one newborn. A biological restriction on r is 

~'E(O) < 1. 

Equation (le) concludes our model specification. In the following sections 
we analyze the behaviour of  the model, with particular attention to the steady- 
states. This will be done using the net-reproduction as a bifurcation parameter. 
Expressed in mechanistic parameters: 

//pr~176 �9 - / rate of  offspring ) 
Ro = I;~o | | ' [ p r ~  at age a da 

\ agea  / \ a t I ( t ) = Z  

- .rZ . e x p ( - / z a )  (2) 
- ~ f ( Z )  " 

4. The steady states 

We shall only consider steady states of  A(t), denoted by ,4. Steady state values 
of all other quantities can be expressed as monotonically increasing functions of  
.4. Among the steady states is the trivial steady state 

A = 0 .  (3) 

All non-trivial steady states are found from 

F(,4, Z ) :=  fl( .4)y(A, Z)p(,21, Z)  = 1 (4) 
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with/3 (fi,) --- exp(-/xa - CA), the probability to survive until maturity; y(.4, Z)  = 
1/f(Z+J(.4)) ,  the expected longevity of an adult; p(fil, Z ) =  ~(Z+J(i{)),  the 
number of newborns produced per unit time per adult; and 

J ( A ) -  ZC~(A) 
1 - ~ ( A )  

with 

Equation (4) is readily interpreted as the condition that every individual replaces 
itself on average. 

It can be shown that there is only one continuous branch of non-trivial steady 
states; no isolated branches of non-trivial steady states exist (Appendix 1). 

Now first note that when ,450, F(./i, Z)  --> Ro. So, the branch of steady states 
indeed bifurcates from Ro = 1. The first property to be considered is concerned 
with the direction of bifurcation. The branch of non-trivial steady states bifurcates 
sub-(super-)critically if 

d~o <(>)0. Ro=I 

Using the implicit function theorem, this derivative can be calculated from 

/ ' ~ /  / - - / / - - J  
dRo dZ dRo \aA] \ a Z ] \  dZ ] " 

Lengthy but straightforward calculations show that the condition for subcritical 
bifurcation is 

,(, (5a) 

where 

fo' qJ = h(o')E(o-) e -~" d~r. (5b) 

The quantity ~b can be interpreted as the average energy gain from cannibalizing 
one juvenile at infinitesimally low adult density. The cannibal converts this energy 
into (i) additional reproduction; and (ii) an increased lifespan during which it 
converts an additional amount of extraneous food into newborns. The number 
of newborns produced directly from ~b is equal to the product of ~ and the 
efficiency factor ~. The average contribution to the energy intake rate due to 
cannibalizing one juvenile at low population density, equals the quotient of ~b 
and the cannibals average lifespan at low population density, l / f  (Z). This 
contribution feeds through to extending the cannibals lifespan. The increase in 
lifespan per unit of additional energy intake is, at low population density: 

d 1 f ' ( Z )  
dZ f ( Z ) -  f2(Z)" 
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Dividing this by 1If(Z) gives the average amount added to the lifespan of  an 
adult by cannibalizing one juvenile. Multiplication of  the additional time lived 
with the reproductive output from the extraneous food source, ~'Z, finally gives 
the total number of newborns during the increase in lifespan. Therefore, we have 
a biological interpretation for all terms of  the criterion in (5). 

In conclusion we can say that the branch of non-trivial steady states bifurcates 
subcritically from the trivial steady state if the average yield, in terms of new 
juveniles, from cannibalizing one juvenile at low population density is larger 
than one. We will refer to (5) as the "mean yield criterion". 

A second property of  the branch is concerned with its direction when Al'oo. 
From (4) it is seen that when ~'[oo,/~ (A)$0. Because f is always larger than zero 
and bounded, y(,4) is always larger than zero and bounded. In order to satisfy 
(4).when ~ 'oo ,  it is necessary that p ( A ) ~  +oo. Furthermore, note that for A~'oo 

,4Ch(a) exp(-AC f~ h(~r) dtr) + 6(a-amin) 

where ami n is the minimum of the support of h(a). This leads to 

lim p(,4, Z)  = 1 
At~'~ ~'Z] _ ~.E(amin ) exp(_/Zamin). 

From which it can be concluded that when ,41'~, 

Z - ~ ( - ) ~  r162 R o ~ ( - ) ~  i f . O > ( < ) l  (6a) 

where 

f2 = ~'E (ar.in) exp(-/Zami~). (6b) 

When the number of adults becomes infinite the fraction of (the infinite number 
of) juveniles that fall victim to cannibalism will be cannibalized at age amin. f2 
can be interpreted as the number of newborns produced directly from the energy 
provided by one juvenile of age amin; i.e. ~2 is the minimal yield. It is obvious 
that when ~ is larger than one the population can (when started with the 
appropriate initial conditions) grow out of  bound. When ~ is smaller than one, 
the population can never grow out of bound regardless of the increased lifespan 
of an adult due to cannibalism. 

Proof by contradiction. Assume that the population grows out of bound. Then, 
the energy intake per adult through cannibalism becomes infinite (see (ld)).  
When 12 is smaller than one, the loss in number of individuals for the population 
due to the cannibalistic activity of adults becomes infinite. The finite increase in 
the adult longevity, and through this the finite increase in reproduction from the 
energy provided by the extraneous resource, can never compensate for this infinite 
loss. Thus, the population cannot grow out of bound. 

These two properties lead to four possible shapes of the branch of non-trivial 
steady states (Fig. 1). There might also exist branches with several bends, turning 
back and forth several times. We have been unable to elucidate the conditions 
under which such branches exist in the general model. 
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Fig. 1. The four simplest shapes of  branches of non-trivial steady states and their expected stability 
properties (s = stable; u = unstable; ? = unknown). Horizontal: R o is the net-reproduction. Vertical: 

is the steady state adult density. When the mean yield, in terms of  new juveniles, from cannibalizing 
one juvenile at infinitesimally low population density is smaller (larger) than unity; dfit/dRo]A=o< 
(>)0. When the yield from cannibalizing one individual at the minimal vulnerable age is smaller 
(larger) than unity; lim3,~o~ R 0 = (-)oo 

5. Some remarks about stability 

Linearization about the trivial steady state leads to the characteristic equation 

F().)  = 0 (7) 

where 

it 
F(A) = -1  + Ro exp(-A~) - - -  

f (Z)  
from which we can conclude that the trivial steady state is stable if Ro < 1 and 
unstable when Ro> 1. 

The characteristic equation associated with the non-trivial steady state turns 
out to be extremely unwieldy. An analysis, if possible in general at all, is outside 
the scope of this paper. Owing to the lack of continuity of the age specific death 
rate, model (1), unfortunately, does not fit into the framework of the general 
theory developed by Cushing (1985). The principle of exchange of stability, 
however, suggests that the non-trivial steady state is stable near the bifurcation 
point in the case of supercritical bifurcation. At larger values of Ro the steady 
state might lose stability, through a Hopf  bifurcation, and give rise to a stable 
limit cycle and possibly other dynamics at even larger values of Ro. In the case 
of subcritical bifurcation a steady state is expected to be unstable when d,4/dRo < 
0. At least near the bifurcation point the unstable steady state is expected to be 
a saddle. When in this situation the branch turns back there is a turning point 
where d.A/dRo= oo. Continuity arguments can be used to conclude that if the 
turning point is close to the bifurcation point, the upper part of the branch must 
consist of stable equilibria at least close to the turning point. In general, however, 
nothing can be said about the stability of the upper part. When the minimal yield 
is larger than one the biological interpretation leads one to expect that the part 
of the branch where d.3./dRo < 0 consists of saddles. All this is summarized in 
Fig. 1. 
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Fig. 2a-e. Branches of non-trivial 
steady states of the special case 
investigated in Sect. 6. Horizontal: 
R o is the net-reproduction. Vertical: 

is the steady state adult density. In 
all cases the widths of the vulnerable 
age window, w, is 0.6 and the death 
rate of the juveniles equals 2.0. 
a Branches for the middle of the 
vulnerability window, rn is 0.4 and 
various values of the efficiency 
factor times the growth rate of the 
juveniles, ~'a; b branches for rn =0.7 
and various value of ~'a; e branches 
for m = 0.7 and various values of ~'a 

6. A numerical example 

Although much  insight  is gained from the analysis  in the preceding sections, 
some quest ions  still remain.  These quest ions concern  the existence of branches  
with several bends ,  the b o u n d e d n e s s  of  the popu la t i on  trajectories, and  the lowest 
possible Ro for which the popu la t ion  may  survive in  the case of subcrit ical  

bi furcat ion.  In  this section a simple special case is used to il lustrate the theory 
and  to get some insight  in  the above questions.  

For  simplicity,  we assume that  the adul t  per  capita death rate is i n d e p e n d e n t  
of  the energy uptake:  

f(Z+J(t)) =f 

This allows us to rewrite the steady state equa t ion  (4) as 

1-~C Ioh(a)E(a)exp(-Iza-C foh(O') do',4) da~{ 
R~ - e x p ( -  CA) 

(8) 
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Fig. 3. The quantity 1 - Rcrit as a function of the product of the efficiency factor and the juvenile 
growth rate, ~'a; for various values of the juvenile death rate,/z. The quantity 1 - R c r i t  indicates how 
severe a food deprivation the population can cope with. In all cases the widths and middle of the 
vulnerable age window is 0.6 and 0.4, respectively 

Furthermore,  the energy content  is assumed to increase linearly with age, 

E(a)=aa, 

and the juveniles in the age window [ m - l w ;  m +�89 are all equally vulnerable 
to cannibal ism where m is the middle and w is the widths o f  the window, and 
invulnerable outside this window. For  this special case it is also possible to rewrite 
the model  as a system o f  six delay differential equations,  (see Appendix  2) which 
facilitates s tudying its dynamical  behaviour  numerically. 

As we see f rom Eq. (8), C can be absorbed into .4. Furthermore,  ti is a scaling 
factor  o f  the time. Without  loss o f  generality we can put  ~i = 1. 

Steady states. Figure 2a illustrates the change f rom super- to subcritical bifurca- 
t ion in the case where the minimal yield is smaller than one. In  some situations 
a non-trivial steady state exists for Ro = 0, i.e. with no extraneous food  available. 
This might  explain the extreme cases discussed in the Introduct ion.  For  this type 
o f  b ranch  it is relevant to know how small Ro can become before the popula t ion  
goes extinct. Denote  by Rcrit the value of  R0 at the turning point  o f  the branch. 
The popula t ion  can cope with any food  deprivat ion smaller than the quanti ty 
1 - R c d t .  Figure 3 depicts this quanti ty as a funct ion o f  Ca for  various values o f  
/~. We see that  small changes in the parameter  values can have a large effect on  
1 - Rcrit. This figure gives the impression that  if the mean  yield o f  one cannibalized 
juvenile is only slightly larger than one, the popula t ion  can survive periods o f  
severe food  deprivation. 
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Fig. 4. Subdivision of the ~a - m (i.e. product of the efficiency factor and juvenile growth rate - -  
middle of the vulnerable age window) parameter space into areas where the various shapes of branches 
of non-trivial steady states occur. The widths of the vulnerable age window is 0.6 and the juvenile 
death rate is 2.0. To ease the interpretation of how various branches develop from each other a 
branch is drawn in each area; also values for ,4 < 0 are depicted 

Figure 2b illustrates the change from super- to subcritical bifurcation when 
the minimal yield of  a cannibalized individual is larger than one. 

In this special case branches with two bends exist (Fig. 2c). Situations with 
more bends have not been found. We do not yet have a clear biological interpreta- 
tion for the existence of these double bended branches. 

Figure 4 gives an overview of  the (~'a, m)-parameter  space with the regions 
where the different types of  branches occur. In all cases investigated, the region 
with double bended branches is rather small. Also note that these branches bend 
back far below R0 = 1, while the criterion for subcritical bifurcation is not yet 
fulfilled. 

Population trajectories and stability. To simplify the discussion we define a 
" larger"  ("smaller")  steady state as one having a larger (smaller) steady state 
value for ,A than the one under consideration. Furthermore, starting a simulation 
"be low" ("above")  some steady state means that we take a value of ,~ slightly 
smaller (larger) than the steady state value of  A, fill this value into the equations 
for the steady states of  all other variables and use the values calculated to start 
the simulation. The stability properties of  the steady states closely agree with the 
expected properties discussed in the previous section. Parts of  branches for which 
dA/dRo<O, always consists of  unstable steady states showing saddle like 
behaviour. If, in such a situation, a simulation is started below the steady state, 
the populat ion trajectories converge to (i) the lower steady state if it is stable 
(be it the trivial one or some non-trivial one) or (ii) to the periodic solution 
around the lower steady state. Starting a simulation above the steady state, the 
populat ion either grows out of  bound, when there is no larger steady state, or 
converges to the larger steady state if it is stable and to the periodic solution 
around it otherwise. 
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When d,4/dRo > 0 the steady state is either stable or unstable. If  it is unstable 
the population trajectories converge to a stable limit cycle. Simulations up to 
Ro = 10 did not show other types of dynamics. All steady states were found to 
be stable when the complete juvenile period is vulnerable. When there is a stable 
limit cycle for Ro<~ 1, the lowest values of the variables always exceeded one 
third of these steady state values. 

7. Concluding remarks 

We have shown that under certain conditions a cannibalistic population can 
survive when food for the adults is too scarce to support a non-cannibalistic 
population. This phenomenon is based on the capability of  the adults to incorpor- 
ate indirectly a resource which is only accessible to the juveniles. Using the 
analytical results of Sect. 4 and generalizing from the numerical example we may, 
with some reservations, conclude that a cannibalistic population can survive 
periods of  food deprivation if, at low population densities, the average yield in 
terms of new juveniles produced from the energy provided by one cannibalized 
individual is larger than one. 

Increasing juvenile population density increases the total reproductive output 
of an adult. In a more general sense this phenomenon is known in ecology as 
the Allee-effect (Allee 1938). In this light the life boat mechanism can be inter- 
preted as a somewhat unusual kind of Allee-effect. 

In order to keep the model tractable many simplifying assumptions were 
made. Some of them can, however, be relaxed without changing the mean yield 
criterion. Assume, for instance, that the death rate of the juveniles is age depen- 
dent. This only changes the expression (and not the interpretation) of the probabil- 
ity to survive till age ~ in (5). 

A more realistic satiating functional response, R(Z, n), would take the form 

R(Z, n) = C*h(a)O(Z, n) (9) 

where 0 is the correction factor for density dependent effects. For a two prey 
Holling type II (Murdoch and Oaten (1975)) age structured functional response 

1 O(Z,n)- 

fo l+e lZ+C* h(a)n(t, a)e2(a) da 

Where el is the handling time of the extraneous food source and e2(a) is the 
handling time of a juvenile of age a. At infinitesimally low population densities, 
at which the mean yield criterion is derived, Eq. (9) simplifies to 

R(Z, n) = C*h(a)O(Z, 0). 

For the Holling functional response, 

1 
O(Z, O) = - -  

1 +r 

Redefining C := C* 0 (Z, 0), C can be interpreted as the total cannibalistic pressure 
a juvenile experiences at extraneous food level Z. The total cannibalistic pressure 
does not appear in the mean yield criterion. 
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Fo r  a more  genera l  numer ica l  response  the  pe r  cap i ta  r e p r o d u c t i o n  rate o f  
an adul t ,  d e n o t e d  by  P, takes  the  form 

P(Z, J,) = g(Z + J(t)), 

where  g is the  rate o f  offspr ing p r o d u c t i o n  as a funct ion  o f  the energy intake.  
At  low p o p u l a t i o n  densi t ies  this  becomes  

P( Z, J) = g'( Z ) [ ~  + J( t ) ], 

where  g'(Z) can be in t e rp re t ed  as the efficiency factor ,  #, at a given ex t raneous  
food  level Z. g / g '  r epresen ts  the  effective rate  o f  ex t raneous  food  intake,  which  
is s imply  a redef in i t ion  o f  Z. So, a more  genera l  numer ica l  r e sponse  will  also not  
change  the  m e a n  y ie ld-cr i te r ion .  

In  the  de r iva t ion  o f  the  mode l ,  we a s sumed  tha t  the  energy in take  rate of  a 
juven i le  is constant .  I t  is more  real is t ic ,  however ,  to assume that  the  food  source 
for  the juven i les  is a d y n a m i c  var iab le  itself. We  then  have to wri te  down  a size 
s t ruc tured  m o d e l  where  E is a func t ion  o f  bo th  age and  t ime,  and  h is a func t ion  
o f  size. However ,  at  inf in i tes imal ly  low p o p u l a t i o n  densi t ies  this food  source  is 
at  its ca r ry ing  capac i ty  a n d  the size o f  a juven i l e  becomes  a fixed func t ion  o f  age. 

O f  course  the shape  o f  the  b r anch  o f  non- t r iv ia l  s t eady  states,  inc lud ing  its 
A 

di rec t ion  when  Al'oo, can  be  inf luenced by  the above  modif ica t ions .  Since our  
ma in  p u r p o s e  here  was to invest igate  when cann iba l i sm  can sus ta in  a p o p u l a t i o n  
af loat  t h rough  pe r iods  o f  adu l t  food  shor tage  (which  tu rned  out  to be  de t e rmine d  
by  the m e a n  y ie ld  cr i te r ion)  fur ther  e l abo ra t i on  on this po in t  is b e y o n d  the scope 
o f  this pape r .  In  conc lus ion  we expect  the b io log ica l  in t e rp re ta t ion  o f  the  mean  
y ie ld -c r i t e r ion  to be fa i r ly  i n d e p e n d e n t  o f  the  exact  m o d e l  specif icat ions.  There-  
fore,  the p re sen ted  l i feboa t  mechan i sm and  the mean-y i e ld  cr i te r ion  is o f  some 
genera l  use  and  may  mot iva te  more  theore t ica l  and  expe r imen ta l  work  on the 

subjec t  o f  cann iba l i sm.  
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Appendix 1: The branch of non-trivial steady states 

In this appendix we show that there is only one continuous branch of non-trivial steady states for A > 0. 
In equilibrium the following holds: 

{ ~(a)=~(O)exp(-p.a-Cfoh(a)dce.~ ) 

,~ =- ~([t) .l= C fa h(ce)E(ce)~(a) ace. 
f(Z+J)' Jo 
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From these equations we conclude, using the assumption 0 < f ( l ) <  oo, VI, that 

. 4 > 0  r162 r~(a)>0 r ~ ( 0 ) > 0  r J > 0  

and 

A < o o  r ~ ( a ) < ~  ~ ~ ( 0 ) < ~  r J < ~ .  

Now we note the following: 
(i) In Sect. 4 we showed that any branch of  non-trivial steady states bifurcated at R o = 1 from 

the trivial steady state 3, = 0. 
(ii) Since J = [ Z ~ ( A ) / 1  - q~ (,3,)] and 0 < r < ~ for 0 < ,3 < oo, the condition 0 < J < ~ implies 

that for a fixed value A = ,4", all the corresponding values Z = Z*,  which together constitute solution 
pairs (.4", Z*)  of  Eq. (4) are strictly positive if 1 - q~(A,*) > 0 and strictly negative if 1 - q~(.,~*) < 0. 

(iii) From Eq. (4) we find 

Op ~ oy  
0 F _ f l ( ~ ) { , ( A , Z ) ~ + p ( A , Z ) ~ }  
aZ  

= ~ ( A )  ~ ( A , / ) - p ( A ,  z )  1 - 4~(A) 

Our assumptions  concerning f require that y(A, Z)  > 0 and f '  < 0. Moreover, since solutions of Eq. 
(4) only exist for Z and 1-q~( ,4)  both positive or both negative, p ( A , Z ) = 7 , ( Z + ] ) =  
[ ( Z / 1  - 4~(,4)] > 0. In these cases F(A, Z)  is increasing monotonically if 1 - ~( ,4)  > 0 and Z > 0 and 
decreasing monotonically if 1 - ~ ( A ) <  0 and Z < 0. Together with (ii) this leads to the conclusion 
that for 0 < ,4 < oo there is at most  one value of Z, such that (A, Z)  is a solution of Eq. (41. 

(iv) If .4 < co, then 

f l ( . 4 )>0  and y(.4, Z ) > 0 .  

The latter inequality always holds, due to our assumptions o f f  If Z and 1 - ~ ( A )  are both positive 
or both negative, then 

I l z l l - ~  ~ p ( ~ i , Z ) - ~  

and therefore Eq. (4) has no solut ion for  Z ->  ~=r provided ,4 < oo. Since Z is directly l inked to Ro, 
the same holds for  R 0--> • and ,4 < r In Sect. 4 we concluded that 

.4~'oo r Ro~+oo  

from which we conclude that the only solution for Ro~  • is . ~  co. 
Together (i)-(iv) imply that there exists exactly one branch of  non-trivial steady states, which 

bifurcates at R o = 1 from the trivial steady state .4 = 0, while for .4~'oo R o-> +c~, dependent  upon the 
value of  .0 in Eq. (6b). 

Appendix 2: Model equations of the numerical example 

In the special case of Sect. 6 the population can be divided into four age classes. Define S(mall), 
V(ulnerable), L(arge), and A(dults)  to be the numbers  of  individuals in the age interval (0, al); 
(a l ,  a2); (a2, ~) and (ti, co), respectively where a I = m -�89 and a2= m+�89 Following Gurney et al. 
(1983), define R i ( t )  to be the recruitment into age class i (i = $, V, L, A) from the preceding age class 
and b( t )  to be the birth rate. The differential equations for the numbers  of  individuals in the various 
age classes are (writing C* for C / ( a  2 -  al)  ) 

dS  
- - = b ( t ) - R v ( t ) - t ~ S ( t  ) 
dt  

d V  
~ t  = R v ( t )  - RL( t )  - C*  V ( t ) a ( t )  - I zV( t )  

dL  
- -  = RL( t  ) - R a ( t  ) - txL( t )  
dt  

d A  
- - = R A ( t ) - f A ( t  ) 
dt  
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with 

b( t )  = ( ( Z  + J ( t ) ) A ( t )  

R v (  t ) = b( t - a 0 exp(- /~al)  

R L ( t )  = R v ( t  - a2+ a O P v ( t )  

R A ( t )  = R L ( t  - ~ + a2) exp(- /z  (a - a2) ) 

where P v ( t )  is the probability to survive the vulnerable period. This probability can be calculated from 

P v ( t )  = exp - [/.~ + C*A(o-)] do- . 
o t  a 2 + a  I 

Differentiation with respect to time yields a differential equation for P v ( t )  

dPv 
- P v ( t ) C * ( A ( t  - a 2 + al)  - A(t)}. 

dt 

As a last step we define a differential equation for J ( t ) .  Differentiating Eq. ( ld) with respect to time 
yields 

d__S= ~C* [ a~aOn da 
dt J ~  Ot 

and substitution of  Eq. (la) gives 

d J = a c *  l a l - - - - t z n - C * n A  da 
dt .) a, \ ?)a 

= a C * { - a 2 R v ( t )  + a i R s ( t ) +  V(t)} - (/~ + C * A ( t ) ) J ( t )  

completing the system of equations. 
For this system of  equations numerical solutions can be obtained using the program template 

SOLVER (Maas et al. (1984)). Differentiating the integral equation for P v ( t )  has one drawback; it 
introduces an eigenvalue zero into the system. Discretization can subsequently induce numerical 
instability. A variety of  cases is known in which the solutions of  such possibly numerically unstable 
systems are accurate as long as small integration time steps are used (Nisbet, personal communication). 
For this reason numerical solutions were often recalculated with a smaller time step. Furthermore, 
some of  the numerical solutions were checked using a very general method for the numerical integration 
of  the type of  partial differential equations occurring in structured population models (de Roos 1988). 
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