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Abstract. We investigate the properties of an (age, size)-structured model for a
population of Daphnia that feeds on a dynamical algal food source. The stability of
the internal equilibrium is studied in detail and combined with numerical studies on
the dynamics of the model to obtain insight in the relation between individual
behaviour and population dynamical phenomena. Particularly the change in the (age,
size)-relation with a change in the food availability seems to be an important
behavioural mechanism that strongly influences the dynamics. This influence is partly
stabilizing and partly destabilizing and leads to the coexistence of a stable equilibrium
and a stable limit cycle or even coexistence of two stable limit cycles for the same
parameter values. The oscillations in this case are characterized by drastic changes in
the size-structure of the population during a cycle. In addition the mode! exhibits the
usual predator-prey oscillations that characterize Lotka—Volterra models.
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1. Introduction

Especially in many ectothermic animal species the body size of an individual has a
strong influence upon dynamical processes like its feeding, growth and reproduction
[15, 18], which in turn affect the dynamics of the population as a whole. When we
study the dynamics of and the interactions between populations within an ecosystem,
we therefore cannot in general neglect the internal characteristics of these popula-
tions. In recent years the notion that the individual should be treated as the basic
element in studying ecological systems has led to the development of various types of
meodels that describe the dynamics of the total population in terms of the processes
taking place at the level of the individual. In these models the behaviour of the
individuals is allowed to differ due to differences in their physiological characteristics
[5, 9] or differences in their spatial location [5, 17]. For example, if we want to take
setiously the observation that body size is very important in determining individual
behaviour (“behaviour” is used here in a population dynamical sense, i.e., to indicate
feeding, growth, reproduction, etc.), we can turn to the class of “‘physiclogically
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structured population models” [9]. In these models the behaviour of an individual
is assumed to depend on a limited set of its physiological characteristics only. The
gain in biological realism, is, however, unavoidably coupled to an increased model
complexity.

In classical, Lotka—Volterra type models of predator-prey interactions all prey
individuals are lumped together, as well as all predator individuals, on the assump-
tion that the interaction between the two populations can be completely described in
terms of their total sizes. These models comprise only a limited number of mechanis-
tic components: a component describing the autonomous growth in numbers of the
prey and components describing the functional response, the numerical response and
the death rate of the predator, respectively. The range of dynamics exhibited by the
two populations is also limited: the sizes of the two populations either converge to a
stable equilibrium or exhibit a specific type of oscillations, which will be more
accurately described in a later section (in the biological literature the mechanism
underlying the swtich from a stable equilibrium to a stable limit cycle is usually
referred to as “the paradox of enrichment™ [14]). Below we will refer to this type of
models as unstructured ones, since the internal structure of both populations is
neglected.

Incorporating more of the individual biology into a population dynamical model
considerably increases the number of mechanistic components of the model. On the
one hand the increased number of components may allow accounting for a much
larger range of population dynamical phenomena. On the other hand it will become
more and more difficult to assign any particular observed phenomenon to the action
of particular mechanistic components. In-depth investigations into the relation be-
tween the mechanistic components of a physiologically structured population model
and the dynamics exhibited by the total population are very rare. The recent
development of an appropriate numerical method that is especially suited for physio-
logically structured population models makes studies of this type more feasible [3, 4].
In this paper we explore this field of investigation by studying the properties of a
model for the dynamics of an (age, size)-structured predator population in interac-
tion with its prey. For the prey population we assume that all individuals are
essentially identical and therefore can be lumped together. Hence the prey population
is only represented by its total size. We study the existence and stability properties of
possible equilibria and try to unravel the mechanisms determining the stability.
Numerical simulations of the dynamics of the two populations reveal characteristic
dynamical phenomena which can be related to mechanistic components of the model.
A wider range of dynamics than in the unstructured predator-prey models is ob-
served, even to the extent that in some simulations the prey population seems to
pursue the predator instead of vice versa.

2. The model of the individual behaviour

The model that we used for the population dynamical behaviour of an individual was
introduced by Kooijman and Metz [7]. The Kooijman-Metz model was developed to
describe the feeding, growth and reproduction of an individual Daphnia magna
(waterflea) under various food conditions. Daphnids are filter feeders, using an
assemblage of algae as their food source in a fairly indiscriminate way. Kooijman and
Metz (7] used data on Daphnia magna feeding on Chlorella sp. to estimate the
parameters of the model. The interaction between Daphnia and its algal food
represents a more general class of biological systems in which a size-structured
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predator population interacts with an unstructured population of prey. Although we
will continuously refer to our populations as Daphnia and algae we will stress the
properties and characteristics of the model that possibly generalize to the much wider
class of predator-prey interactions. In the following we derive the model equations
from the basic assumptions. For an experimental underpinning of these assumptions
we refer to Kooijman and Metz [7].

Individual Daphnia of different sizes are assumed to have similar geometries, so
that surface area and (wet) weight are proportional to the square and the cube of the
individual length, respectively. In the following / will denote the size (length) of an
individual, while a will denote its age. Instead of the surface area and (wet) weight of
an individval we will just use /* and I*, respectively. This will only affect some
proportionality constants in the model. The concentration of algae, which can be
taken as a measure of the food availability of the Daphnia, will be denoted by x.
Table 1 summarizes the symbols used in the model to denote the various variables
and parameters, the latter with their default value for Daphnia magna as inferred from
[71.

The energy channelling within an individual Daphnia is schematically depicted in
Fig. 1. The ingestion rate of algal cells by an individual is assumed to be proportional
to its surface area, as is plausible for a filter-feeder. In addition this food intake rate,

Table 1. Symbol reference list for the variables and parameters used in the Kooijman—Metz model.
The default parameters are extracted from {7)

Symbol Default Description Units
value
Variables
a Age d(ays)
! Length mm
x Concentration of edible algae cell - ml—!
Parameters
IA 0.8 Length at birth mm
I 2.5 Length at maturation mm
. 6.0 Maximum attainable length under
infinite food availability mm
y 0.15 Time constant of growth d-!
¢ 7.0x10-¢ Shape parameter of the
functional response ml - cell !
v, 1.8 x 10° Maximum feeding rate per
unit surface area cell - mm~2-d~!
K 0.3 Default fraction of ingested energy
channelled to growth and maintenance -
T 0.1 Maximurm reproduction rate
per unit surface area mm~2 4!
u variable Random death rate of Daphnia d-!
A 70 Maximum lifetime of Daphnia d
Xoan variable Maximum concentration of algae cell ' mi~!
in the absence of Daphnia
o 0.5 Flow-through rate in case of
chemostat algal dynamics d-!
B 0.5 Maximum algal growth rate

in case of logistic algal growth d-!
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Fig. 1. A schematic representa-

A tion of the energy channelling in
OSSOSO the Daphnia model

denoted by I(x, [), at any given individual size depends on the prevailing algal density
following a Holling type II functional response. Hence,

Ex

14+ &7 (0

where v, is the product of the maximum intake rate of algal cells per unit surface area
and the proportionality constant relating surface area to /2. The function f(x) equals
a Holling type II functional response scaled between 0 and 1. £ is the shape parameter
of the functional response. Equation (1) can equivalently be expressed in terms of the
amount of energy assimilated per unit time, by replacing v, with its analogue v, : the
product of the maximum energy assimilation rate times the proportionality constant
relating surface area to /2. The quotient v, /v, then determines the conversion of
ingested algal cells to assimilated energy, i.e., v./v, is the product of the energy
content per algal cell and the assimilation efficiency, which is assumed to be constant.

Under conditions of sufficient food availability the ingested energy is allocated in
fixed proportions k¥ and 1 —x to growth plus maintenance on the one hand and
maturation plus reproduction on the other. Here, sufficient means that the default
allotment of ingested energy to growth plus maintenance can at least cover mainte-
nance requirements alone. These requirements are assumed to be proportional to an
animal’s wet weight and therefore to /3, with proportionality constant {. Further-
more, growth in size only occurs when maintenance has had its share. The energy
requirements for growth per unit weight increase are assumed to be constant. The
product of these energy requirements and the proportionality factor relating weight
to 12 will be called #.

Individuals are assumed not to shrink in size. Therefore, in case the default
allotment of ingested energy to growth plus maintenance is not sufficient to cover
maintenance alone, energy rechannelling takes place. Ingested energy is then allocated
in such a way that growth stops, maintenance requirements are just met and the
remaining energy is channelled to maturation plus reproduction. The Kooijman-
Metz model does not account for the presence of energy reserves within an individual.
If the ingested energy is less than the maintenance requirements, the individual is
assumed to die instantaneously (see below). _

These assumptions lead to a slightly adapted von Bertalanffy growth equation [2]
for the growth in weight under sufficient food conditions. If the weight of an
individual is denoted by w, this growth equation can be expressed as

Ix, ) =v f()?  fx)=

dw %(m’.zf(x)wzf3 —{w) for w< %f(x)wzn

dr |
0 otherwise.

The proportionality assumptions now imply that w =/ and w?? = /2. Substituting
these equalities into the equation above yields the following equation describing the
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growth in length:

1 KV
— —¢tn A £

U _ 1y = i 070D for [<
0 otherwise.

Defining /,,:=xv,/{ as the maximum length that an individual can attain under
unlimited food availability and y:={/3n as the rate constant of growth this equation
can be rewritten as

d (W f @ 1) for [<f(%)
dt g, 1) = {0 otherwise. 2

in which /., f(x) represents the maximum attainable length under the prevailing food
conditions. This length /,. f(x) equals the length at which growth just stops and the
default allocation of energy to growth of maintenance can just cover maintenance
completely. At time of birth all the individuals are assumed to have an identical size
1.

A juvenile individual is assumed to become an adult on reaching a fixed length /.
The energy channelled to maturation plus reproduction is assumed to be used solely
for maturation while / < /; and solely for reproduction while / > /. The energy costs

for producing one young we wiil call 1/8. The reproduction rate b(x, {) hence equals
r

0 for [, <!<
bix, 1) =< 6(1 — kv, f (I for | <i< fg— £
kﬂ(ve F? = (13) otherwise

or, defining r,,:=60(1 — k)v, as the maximum reproduction rate per unit surface area

times the proportionality constant relating surface area to /2
s

0 for I, <I<
bz, 1) =< o f (0 for I, <l<i,f(x) (3)
’ r. ( kl? .
[l — —) otherwise.
\(1 — k) .

The latter parts of these formulae express that for / >/, f(x) the reproduction rate
changes due to the rechannelling of ingested energy to cover maintenance. These
formulae indicate that in principle b(x, /) can drop below 0, due to this rechannelling
of ingested energy. However, this will only occur if the ingested energy is not
sufficient to cover the maintenance requirements. In this case the individual is
assumed to die instantaneously, as mentioned above.

Individual Daphnia are assumed to die at random due to, for example, predation.
Additional causes of death that are accounted for in the model are death from old age
and death from starvation. Death from old age is incorporated into the model by
assuming instant death on reaching the maximum lifetime A_,,. Death from starva-
tion means that an individual dies instantaneously when it cannot cover its mainte-
nance requirements anymore. The individual death rate can therefore be expressed as

bnf (%)
X

u fora<d and / <

max

d(x,a,l) = (4)

> otherwise,
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in which p is the random death rate and /,,f(x)/k is the length at which maintenance
requirements just equal the amount of energy ingested.

Since we will not discriminate between individual algal cells, we will treat the
concentration of edible algae as one dynamically varying quantity. Therefore, in the
following the phrases “population” and “individuals” will be exclusively used for the
Daphnia (or predator, in general), unless explicitly stated otherwise. The population
of edible algae (or prey population in general) will frequently be referred to as “food
availability”.

For the autonomous rate of change of the algae in the absence of Daphnia,
denoted by R(x), we will choose

R(x) = o(Xpax — X) (53)

Oor.

R(x) = fx (1 _ :Y-f--) (5b)

Equation (5a) represents a chemostat type dynamics of the algae, in which X, is the
algal concentration in the input and « is the relative flow-through rate. This type of
dynamics reflects an experimental situation in which a Daphnia population is contin-
uously fed with an algal suspension of constant density. Equation (5b) represents a
logistic type of dynamics, in which § is the maximum rate of increase and X, the
carrying capacity of the algal population. This latter type of dynamics reflects a more
natural population growth process. In both cases X, is the maximum algal density
that can be reached in the absence of Daphnia. It is obvious that R(x) >0 for
0<x < Xpax-

3. The model for the population dynamics

As the individual Daphnia can attain ages within [0; 4,.,,,) and lengths within [},; [,)),
the biological population can be represented by a density function n(z, a, /) over
Q:=[0, A_,,) x [l,;1,): the rectangle spanned by the attainable age- and size-ranges.

The quantity
h fax
J J n(t,a,!) dadl
1 Jaj

then represents. the number of individuals with an age between @, and @, and an
individual size between /, and /,. On the basis of the modelied individual behaviour
from the previous section a set of equations for the density function n(¢, a, I) can be
formulated, which describe the dynamics of the total population. Following the lines
set out by Metz and Diekmann ([9], see also [10]) we arrive at

on On  oOgn

'a—t+’a—a+-"67—-—dn, (6a)

n(t,0,1) =6(1 —1,) J b(x, Dn(t, a, ) da di, (6b)
12

n(0,a, 1) =Y¥(a,l). (6c)

In these equations (and in all the following) we have refrained from writing the
argurnents_ of any function in full if the context makes clear what these arguments are.
The functions g, b and d are the individual behaviour functions given in formulae
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(2)—(4). The “function” § denotes the Dirac delta function and ¥(a, /) represents the
inital (age, size)-distribution, which is assumed to be known. The hyperbolic partial
differential equation (PDE) (6a) describes the growth, ageing and dying of the
individuals in the population, while the side condition (6b) represents the reproduction
of all the individuals. The appearance of the Dirac delta function 6(/ — /,) results from
the assumption that all individuals are born with the same size /,. Since we assume that
all individuals in the population experience the same environmental conditions and the
growth of an individual is deterministic, the “‘equal size at birth’ assumption causes
all individuals that are born at one particular time to stay together as a cohort (= a
group of identical individuals) during their entire life. This leads to a degeneracy of
the density function ». Although the initial (age, size)-distribution can have the whole
state-space 2 as its support, the density function » will ultimately settle down on an
only one-dimensional support in {2, representing the current (age, size)-relation. On
the one hand the “equal size at birth’ assumption thus makes the system (6) slightly
unpleasant, inter alia, for the calculation of equilibria. On the other hand, however,
particularly this assumption ensures that we can derive a characteristic equation to
study the stability properties of the equilibria, as is noted in [10].

For the calculation of the equilibria and the analysis of their stability we will
reformulate the system of Egs. (6). The “equal size at birth” assumption implies that
a every time ¢ there exists a unique relation between the size and the age of the
individual (at least after the initial population has died out). This (age, size)}-relation,
which will be denoted by I(7, a), essentially specifies at every time ¢ the characteristic
of the PDE (6a), i.e., the one-dimensional support of the density function r in Q.

The original set of equations can now be rewritten using a technique that has been
called the “Murphy trick” [9, 11]. Here we will only briefly outline this technique.
Instead of a representation by means of one density function n(t, a, /), the Daphnia
population is equivalently characterized by the current (age, size)-relation (¢, a) in
combination with a separate density function m(t, a), which describes the age-distribu-
tion of the Daphnia population. The equations for the dynamics of m(¢, @) and i(t, a)
can be derived by following one cohort of identical individuals through time, i.e., by
focussing on the value and dynamics of m(t, a) and K, a) at a fixed time ¢ and a fixed
age a. Essentially this means that the model is reformulated in terms of the derivatives
along the characteristics of the original PDE (6a).

Let 7 denote a variable equivalent with time except for an arbitrariness of its origin.
If we follow one cohort of identical individuals, we can intuitively write down that

da oa dl
=3 +3_a = g(x, [{t, a))
and
dm dm dm
_&}_ —_ E + E = —-—d(x, da, l(t, a))m(ta a):
which eventually leads to the reformulated set of equations:
om  om
S = —d(x, a Kt, Ym(t, @), (7a)
Amax
m(t, 0) = f b(x, (1, a))m(, a) da, (70)
0
ol al
oo = glx, (2, @), (7¢)

ot da
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1(t,0) = Iy, (7d)
m(0, a) = ¥(a), (0, a) =T'(a) (7e)

provided the initial state of the population is such that a well-defined (age, size)-rela-
tion '(a) exists at ¢ = 0. The PDE (7a) describes the evolution of the age-distribution
m(z, @) in time, while the side condition (7b) again represents the reproduction
process. Equations (7¢) and (7d) describe the evolution of the current (age, size)-Te-
lation in the population. The initial condition consists of two functions: @(a) and
I'(a), which describe the initial age-distribution and the initial {age, size)-relation,
respectively.

Since the food availability is a dynamically varying quantity we have to add the
following equation for the food dynamics to the system (N:

dx = R(x) ~- JAmu Ix, I(t, a))m(1, a) da, x(0) = x, (&)

dt
in which R(x) describes the autonomous dynamics of the algal population as given by
Eq. (5a) or (5b) and I(x, 1) is the food intake rate given by Eq. (1).

Together the system of Eqs. (7) and (8) specify the model of the predator-prey
interaction under consideration. In the following sections we will focus upon the
existence and stability of internal equilibria and the possible types of dynamics in the
model. We will pay no attention to the trivial equilibrium (x = Xy, m(t, a) = 0) in
which the algal population is at its maximum density and the Daphnia are absent.

4. Equilibria

First we will introduce some notation: the food availability at equilibrium will be
denoted by % The age-distribution and the (age, size)-relation of the Daphnia
population at equilibrium will similarly be denoted by #(a) and T(a), respectively.

The growth of an individual Daphnia is described by Eq. (2) as a function of its
size and and the current food availability. If the food level x is constant in time, this
equation can be solved, yielding

1*(a, x) =l f (%) — (L f(X) =) e™™ (9a)

Here we have used the notation [*(g, x) to denote the size of an individual with age
a, that has been living at the constant food level x. Equation (9a) represents a von
Bertalanffy growth curve.

The equilibrium (age, size)-relation within the Daphnia population can be ob-
tained from (7c), assuming 8!/t =0 and solving the resulting equation. Necessarily,
however, the equilibrium (age, size)-relation is of the form (9a) and we can therefore
write

Ha) = I*(a, X). (9b)

E_quations (9) also make clear that death by starvation does not occur in equilibrium
situations, because Xa) < 1,.f (%) for all a. In equilibrium Eq. (4) hence becomes

. for a < 4.«
d(%,a, Ta) ={fjo NI

The age-distribution in equilibrium, (a), can now be derived by putting dm /0t = 01in
(7a), substituting the above expression for d(X, 4, Tl@)) and solving the resulting
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equation. This yields

m{(0)F(@) for a <A,
(a )_{ forazA_,, (10)

with F(a) = exp(—ua) the survival function up to age a of an individual Daphnia.
Since f{a) <! .f(%), Eq. (3) simplifies in equilibrium to

for 1, < Ka) <!
b3 fay = { ST for @) 31,

The age at which reproduction starts can be derived from solving the set of Egs. (9)
for I{a) = I,. This age value will be called the age at maturation and will be denoted
by A,. Obvxously, A; depends on the food availability X. Substituting the expression
above for b(%, l(a)) and the expressions (9) and (10) for {a) and r(a), respectively,
into the side condition (7b) yields the following, implicit equilibrium equation:

P(E) =1 (11a)
with

P(x) = j "™ b(x, 1*(a, )F () da = J‘Am" ruf COI*(a, X))2F () da | (11b)
. o )

-t (0

As mentioned before, A, (x) represents the age at maturation under the constant food
availability x, ie., [*(4,(x), x) =/,. The function P(x) can be interpreted as the
expected number of offspring that an individual Daphnia becomes during its entire
lifetime, when experiencing a constant food availability x. In equilibrium (x = %) this
should clearly equal 1.

The unknown variable, for which the system of Eqs. (11) has to be solved, is the
food density X (or equivalently the quantity f(X), the value of the functional response
at %). This result shows that the food level at equilibrium is determined completely by
the characteristics of the Daphnia population. As a consequence also the internal
structure of the Daphnia population at equilibrium is completely set by the parame-
ters of the functions (1)—(4), describing the individual behaviour. Only the absolute
density of Daphnia at equilibrium is derived from Eq. (8) for the algal dynamics:

0= %3;- - RG) — J ™ 1. yila) da

Amlx
- &0 = | " s OO @) da (12)
V)
which explicitly yields /#(0) as a function of ¥ and hence determines the total
population size.
The function P(x) defined in (11b) has the following properties:

P(x.) =0, (13a)
P
5;>0 for x > x,, (13b)

in which x, is the unique solution of 4,(x) = 4_,. . This food level x_ represents the
food level, below which an individual Daphnia would never reach adulthood during
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its entire lifetime. Hence for x < x. a Daphnia population can never survive and no
equilibrium can exist. The property (13b) also follows intuitively from the biological
interpretation of the function P(x).

Equations (11) and (12) hence specify a unique, internal equilibrium
(%, i(a), i(a)), if and only if P(X,..) > 1. These conditions imply that the minimum
value of X, (given by P(X..) = 1), for which an internal equilibrium can just exist,
exactly equals the food availability X at equilibrium. In other words, in equilibrium
the Daphnia population exploits its food source to the utmost. The equilibrium food
availability % is an increasing function of the death rate u of the Daphnia, as can be
inferred from Eq. (11b) by taking the derivative of P(x) with respect to u. Moreover,
the equilibrium Daphnia density #(a) is at every age value an increasing function of
R(%) and hence also of X_,,,.

5. The stability analysis

The main purpose of this paper is to establish relations between behavioural mecha-
nisms on the level of the individual and dynamical phenomena on the level of the
population. We will therefore study in detail the stability of the internal equilibrium
from the previous section and combine the insights obtained from this stability
analysis with the results obtained from numerical simulations of the dynamics of the
model.

The stability analysis of the internal equilibrium is not a straightforward proce-
dure. At present the existing general theory on structured population models of the
type that we study in this paper is not yet sufficiently developed to answer even the
first questions about the existence and uniqueness of solutions and the validity of the
linearized stability principle. In principle this means that at present there exists no
valid and mathematically rigorous technique to analyze the stability of the internal
equilibrium. Moreover, Thieme [16] has shown that with very specific initial condi-
tions the Kooijman—Metz model as specified by (7) and (8) does not guarantee the
uniqueness of a solution, i.e., the model that we are studying is essentially not well
posed. Fortunately, these specific conditions are such that from a biological point of
view we can safely ignore this complication.

The lack of rigorous mathematical theory and theorems that are formally neces-
sary to study the stability of the internal equilibrium left us only one route to follow:
relying on the analogy with the existing theory on dynamical systems we straightfor-
wardly linearized the model equations around the internal equilibrium state and
substituted trial solutions of the form ¢ - exp(4f). As a result we were able to derive
a characteristic equation in the single variable 1. The roots of this characteristic
equation determine the stability of the equilibrium. The results of this procedure were
continuously checked and compared with numerical simulations of the dynamics of
the model like we present in a later section. The fact that the results from these two
routes of investigation matched, inspires some trust in both the validity of the
performed stability analysis and the correctness of the numerical scheme.

As was shown in the previous section an internal equilibrium exists if
P(X,_.) > 1. (Note that P(X_,,) > 1 also implies X_,, > x..) Moreover, the equi-
librium food availability X is completely determined by the parameters /,, I, L., 7, 7, 4
and A_,, that occur in the functions (1)—(4) describing the Daphnia individual
behaviour. Hence, using X_,, as a bifurcation parameter we can deduce that the branch
of internal equilibria bifurcates from the trivial equilibrium (X_,,, 0) at X, = %. The
general results from bifurcation theory then suggest that at least for X, slightly
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larger than X the internal equilibrium is stable. The uniqueness of the internal
equilibrium subsequently implies that a destabilization of the equilibrium can only
occur if a conjugate pair of complex eigenvalues passes the imaginary axis from left
to right, presumably coinciding with a Hopf bifurcation. From this a stable or
unstable limit cycle arises.

Deriving a characteristic equation in the single complex variable 1 was only
possible because all individual Daphnia are born with the equal size /, [10] and was
greatly facilitated by rewriting the original system of Egs. (6) into the system (7. In
the appendix the derivation of the characteristic equation by linearization of (7) and
(8) and substitution of trial solutions of the form ¢ - exp(4z) will be outlined in more
detail. Here we will only give the final equation as we intend to study the stabilizing
and destabilizing components in it.

In the following we will write 5 instead of #(0) to denote the birth rate of the
total Daphnia population in equilibrium. We also introduce the functions

A6 =5 [ e, f@H1F (@) da, (14a)
Ay (Z)
A =6 I o sy (D] F(a) da. (14b)

A,(s) and A,(s) are the Laplace transforms of the density functions that describe the
reproduction rate and the food intake rate, respectively, for the total Daphnia
population in equilibrium. Using this notation, the equilibrium equations (11) and
(12) can be written as

A,(0) =5, (13a)
A,(0) = R(®). (15b)

After linearization and substitution of exponential trial solutions (see the ap-
pendix) a system of equations results of the form:

f
S()».) , A d; (sli 312)(‘415)’ (16)
S21 Sp/\4,
in which 4, and 4, denote small deviations from the equilibrium values of the
population birth rate 4 and the food availability ¥, respectively. The stability matrix

S only depends on 4 and the equilibrium state values of the whole system. The
eigenvalues of the system are now the roots of

det (1) = 0. (17a)
The elements of the matrix § are given by

sn=A’5('U—1, (17b)
S = — %(‘i_) ) (17¢c)

A0S E | S @@ e Gtn4@

312 = f(f) "+{ ([mf(f) _{,) EF(AJ-(X)) 1+'}’

. - Amax | — e—(l-i-)f)a f’(x“‘)

291 f (DU () j RO da} f9.
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e, AOF
S, =R'(X) -2 @
_ . . [Amax ] — g~ @+na f'(f)

with f'(x) and R’(x) the derivatives of f(x) and R(x), respectively, to x.

In the next section we will consider the numerical exploration of the characteristic
equation (17). It 1s, however, very informative to compare the stability matrix S with
the stability matrix of an equivalent, unstructured predator-prey model for the
interaction of the Daphnia population with its algal food source. Let in this context
x,(f) denote the number of algae and m, (/) the number of Daphnia present at time ¢.
An unstructured caricature of the population model that we study in this paper is

d:;:u =T Ilzlf(xu)mu - #mu! (183)
B Rex) —w ., (18

in which /, now is a parameter that denotes the identical size characterizing all the
individual Daphnia. The parameters v,, r, and u and the functions R{x,) and f(x,)
are the same as in the structured model. The food availability at equilibrium %, and
Daphnia density at equilibrium i, in this unstructured model now satisfy

ral2f (%) = p, (19a)
v I f (&), = R(X,). (19b)

The stability of this equilibrium is governed by the following characteristic
equation, that results from straightforward linearization:

det U d:det(u” “‘2)

Uzyy Uy

ral2f (%), )= 0. (20)

def —
= det ( —Vf(%) R(E)— 4 —vlif (&),
Applying the Routh—Hurwitz criterion [12] to the quadratic expression in A that
follows from Eq. (20) results in the single condition for stability:

vl (X )m, > R(4,). (21

Condition (21) can be interpreted in the following way: the equilibrium specified by
(19) is stable if the food intake rate of the total predator population in equilibrium
increases (decreases) faster than the growth rate of the prey population with an
increase (decrease) in the prey density. Or conversely, instability of the equilibrium
results only if the prey population can escape the control imposed by the feeding of
the predator population. For this reason we will refer to this destabilizing mechanism
as prey escape mechanism.

If we want to compare the stability matrices S and U (Egs. (17) and (20)) we first
have to identify some quantities from the size-structured predator-prey model with
their unstructured equivalents: in the structured model the Daphnia population birth
rate in equilibrium was denoted by b and was equal to A4,(0). We will denote the
equivalent quantity in the unstructured model by _, which now equals r,[2f (X, )m,.
In the same way the food intake rate of the Daphnia population, which was denoted
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by 4,(0) in the structured model, can be related to the quantity v./; f(%,)%, in the
unstructured model.

An obvious difference between the structured and the unstructured model is the
presence of a delay 4,(x) in the structured model between the birth of an individual,
at which time it also starts feeding, and the onset of reproduction by that specific
individual. Generally speaking such a delay will have a destabilizing influence upon
the equilibrium. Apart from this difference the first columns of the two matrices,
although not identical, are at least comparable. To show this we notice that the
equilibrium Daphnia population in the unstructured model can also be described by
the density function 5,F(a), in which F(a) = exp(—ua) represents the exponential
survival function of the Daphnia (compare Eq. (10)) and b, is the population birth
rate as defined above. The quantity 1, that appears in the preceding Eqgs. (19)-(21)
is obviously related to this density function in the following way:

mu=Jw&Fmpm. (22)
0

(Note that the substitution of r,,[2f (X, )m, for b, in this equation would result in the
first equilibrium equation as specified by (19a).)

Using this density function b, F(a) we can derive the functions A4,.(s) and A,(s)
that are analogous with the functions A4,(s) and A,(s), respectively, from the struc-
tured model (Eqs. (14a) and (14b)):

i) =B, j o ey 120G F(a) da =2 B (23a)
0 54+ pu

Tt [ sy e _ v l2fG)b.

,@@_aﬁ ey 12f(%,)F(a) da = ot (23b)

In accordance with the interpretations of the functions A4,(s) and A,(s) in the
structured model, the functions 4,,(s) and A () from the unstructured model are the
Laplace transforms of the density functions that describe the reproduction and the
food intake rate, respectively, for the total Daphnia population in equilibrium. We
can now write for w,, and u,,:

w=| 21w (242)
=20, (240)

from which we conclude that the first column of U is comparable with the first
column of S, except for a scaling factor (A + ). This scaling factor is due to the fact
that the linearization in the unstructured model was done in terms of the quantity 1,
the total Daphnia population size in equilibrium, as opposed to b, the population
birth rate in equilibrium, used in the structured model. The scaling factor (1 + 1) will
obviously occur in both terms of det U(1) (see Eq. (20)) and its influence will hence
be limited to the introduction of a root A = —yu of the characteristic equation
det U(X) = 0. Therefore, the factor will not influence the roots of the characteristic
equation that determine the stability of the unstructured model.

The main differences between the two matrices § and U hence are the terms
between braces in the elements s, and s,,. These differences indicate the additional
mechanisms present in the structured predator-prey model that can stabilize or
destabilize the steady state and hence induce a wider range of dynamics. Apart from
these terms within braces the second column of the matrix S is completely identical
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with the second column of U, given the equivalences between A,(0) and r,/2f (%, )%,
and between 4,(0) and v, /if (%, )5, mentioned before.

In both the structured and the unstructured mode] a slight deviation in the food
availability at equilibrium will directly affect the reproduction and the food intake
rate of the Daphnia population, as is reflected in the common terms in the second
column of the matrices S and U. In the structured model, however, such a slight
deviation also has indirect effects upon the reproduction and the food intake rate of
the Daphnia via a change in the current (age, size)-relation within the population.
These indirect effects are reflected by the terms within braces in (17d) and (17¢). The
effect upon the reproduction rate is even twofold, as is clear from the two terms
within braces in s;; ((Eq. 17d)): a change in the food availability changes the current
(age, size}-relation of the adults and thus the reproduction capacity of the individual
Daphnia, but also changes the duration of the juvenile period. The food intake rate is
only affected by the change in the (age, size)-relation, because this induces a change
in the feeding capacity of the individuals. This interpretation of the origin of the
braced terms in s, and s, is deduced from the derivation of the characteristic
equation (see the appendix).

From the foregoing comparison between the stability matrices S and U it is clear
that in addition to a juvenile delay some less obvious mechanisms are present in the
size-structured model that can affect the dynamics: the current (age, size)-relation, or
growth curve, changes due to a change in the food availability. We will refer to this
process as growth curve plasticity. This plasticity obviously influences both the feeding
and the reproduction of the Daphnia population. The importance of the mechanism
is somewhat elucidated if we focus upon the prey escape criterion from the unstruc-
tured model (Eq. (21)). The prey escape mechanism was the only way that the
equilibrium in the unstructured model could become unstable. The criterion (21)
stated that the equilibrium in the unstructured model was stable when the food intake
rate of the total predator population increased (decreased) faster than the growth rate
of the prey with an increase (decrease) in the prey density. If we, for the time being,
assume that the same mechanism would also completely determine the stability of the
equilibrium in the structured model, we thus have to compare in equilibrium the
change in the food intake rate of the total predator population with the change in the
growth rate of the prey that would result from a slight change in the prey density.
This literal interpretation of the criterion (21) would yield the following stability
criterion;

dA,(0)

dR(x)
dx >

X=X dx

: (25)

X = X

which can be rewritten as
A____f?()ff) @ | o, [ " @D — e @ def () > R(D  (260)

or

R la)l, e ~"bF (a) daf' (%) > R'(%). (26b)

It can be shown that taking the limit y - o0 and 4, — co in the characteristic
equation (17) for the structured model and taking the same limit in the criterion (26)
yields identical results. We therefore conclude that for y =00 and A, — ¢ the
s_tability of the internal equilibrium is completely determined by criterion (26). In this
limiting case we can conceive a neonate Daphnia to exhibit an instantaneous jump in

0

JAOr® f
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length from its length at birth J, to its ultimate length /, f(x), which depends on the
current food availability. There hence is no juvenile delay between birth and onset of
reproduction and the stability of the equilibrium is entirely governed by the control
that the feeding of the Daphnia imposes upon the growth of the algae. If we, however,
would have used the criterion (21) literally instead of its interpretation and replaced
the quantity v /2, with its equivalent 4,(0)/f(%X) from the structured model we
would have obtained

A4,(0)f (%)

S

This inequality only incorporates the direct influences of a change in the prey density
upon the total food intake rate of the predator and the growth rate of the prey. The
differences between (26} and (27) are exactly due to the influence of the growth curve
plasticity upon the feeding behaviour of the population. The inequalities (26a) and
(27) suggest that the latter mechanism has a considerable stabilizing influence upon
the system. The control of the Daphnia population exerted upon the algae is now
enhanced, because the growth curve plasticity of the Daphnia changes the (age,
size)-relation in accordance with the prevailing food availability, which constitutes an
indirect way to adjust the feeding rate of the population. From (26b) we infer that
this stabilizing influence is maximal for very high values of the growth rate 7.
Moreover, it is intuitively clear that the influence of the growth curve plasticity will
be larger if the ultimate size can vary over a larger size range. This also follows from
the criterion (26).

> R(%). (27)

6. Numerical computations of the stability boundaries

In the previous section we studied the general structure of the characteristic equation
(17). This enabled us to distinguish a few mechanisms that are specifically due to the
internal size-structure of the Daphnia population and the processes on the individual
level related to it. As was noted in that section, the internal equilibrium, if it exists,
can only become unstable if it merges with a stable or unstable limit cycle when a pair
of complex, conjugate roots of (17) cross the imaginary axis from left to right.
Numerically we can study this Hopf bifurcation by putting A = iw in (17) and solving
the resulting complex equation for @ and one free parameter.

For the Kooijman—Metz model applied to Daphnia magna all but one of the
parameters concerning the individual behaviour of Daphnia are experimentally deter-
mined with reasonable accuracy. Only the random death rate u of the individuals 1s
very variable, since it is influenced strongly by the environmental and experimental
conditions experienced by the population. For the same reason the growth parame-
ters for the algal food population are very variable. We will therefore solve the
complex equation (17) after substitution of A = i®w to obtain branches of solutions in
the parameter plane spanned by the random death rate x4 and the maximum algal
concentration X ... This procedure will be carried out separately for the two possible
growth equations (Eqgs. (5a) and (5b)) for the algae.

Figure 2a shows the computed stability boundary in the (4, X_.,)-plane for the
chemostat algal dynamics (Eq. (5a)) with « =0.5. The second line in the figure
represents the existence boundary of the internal equilibrium, defined by P(X,,) = 1.
For values of X, above this boundary the internal equilibrium exists. As mentioned
before, the equilibrium algal density X equals the value of X, on this particular
boundary. Figure 2b shows the equivalent diagram in case of logistic algal growth
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(Eq. (5b)) with 8 = 0.5. Again also the existence boundary of the internal equilibrium
is drawn.

To compare Figs. 2a and 2b it is instructive to investigate if there are parameter
combinations for which the two types of algal dynamics (Eqs. (5a) and (5b)) are
comparable. The logistic algal growth equation can also be written as

R =B —— (Xpax — %), (5D

X
Xmax
and hence for x/X,,, only slightly smaller than 1 the two types of algal dynamics
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seem equivalent. Indeed, if we set x = X, — € and neglect second and higher order
terms in ¢, Eq. (5b") yields R(x) = fe, which matches with R(x) = ze, resulting from
setting x = X, — € in Eq. (5a). Hence, for values of x just below X, the two types
of algal dynamics are comparable.

A major difference between the two types of algal dynamics is the absence of the
prey escape mechanism in case of the chemostat algal dynamics (Eq. (5a)): because
R’(x) is always negative there is no possibility that the algal population can escape the
control imposed by the predator (refer to Egs. (21), (26) and (27)). With logistic algal
growth, however, the prey escape mechanism is present. Figure 2b therefore contains
an additional third line, given by 4,(0)f"(%}/f(X¥) = R'(X) (see Eq. (27)). This addi-
tional line represents the boundary at which the equilibrium in an unstructured model
would become unstable. We paid special attention to the chemostat type of algal
dynamics, precisely because it lacks the prey escape mechanism. This type of dynam-
ics enables us to study exclusively the influence of the mechanisms inherent in the
size-structure of the Daphnia population.

With higher values of « and p the stability diagrams for chemostat and logistic
algal dynamics start to display more common characteristics. A larger value of «
primarily results in a scaling down of the X_,.-axis: the peninsula with unstable
parameter combinations at low values of X, shrinks, but the vertical asymptote of
the stability boundary remains the same. Figure 2¢ shows for comparison the stability
diagram for logistic algal dynamics with the rather high value § = 2.0. The appear-
ance of a peninsula of instability at low values of X, strongly suggests a relation
with the comparable unstable region in case of chemostat algal dynamics (compare
Fig. 2a). In the following sections it will be shown that the dynamics of the model
exhibited with parameter values in this part of the parameter plane are very similar
for both logistic and chemostat algal dynamics.

In view of the above-mentioned similarities and dissimilarities we can distinguish
analogous regions in the stability diagrams of the two types of algal dynamics (Fig.
2). Region 1 is identical for both types of algal dynamics and represents the region in
‘which the internal equilibrium does not exist. In this region P(X,,,) < | and hence on
average an individual Daphnia does not replace itself during its lifetime. The regions
I1 and III represent the parameter combinations which give rise to an unstable and a
stable equilibrium, respectively. These regions differ for the two types of algal
dynamics. In case of logistic algal growth (Fig. 2b,c) both these regions can be
subdivided into two parts: the unstable region II in Fig. 2b,c can be conceived to
consist of a region IIa that corresponds to the lower part of the unstable region II
from Fig. 2a, and by a region IIb that is apparently due to the prey escape
mechanism. We can also distinguish parameter combinations (region IIIa, Fig. 2b,c),
for which A,(0)f'(%)[f (%) < R'(X) (the prey escape boundary from Eq. (27)), while
the equilibrium is nonetheless stable. Presumably this is an effect of the stabilizing
influence of the growth curve plasticity, as described in the previous section.

The stability diagrams from Fig. 2 give some insight in the relative importance of
the mechanisms that were distinguished in the previous section. From Fig. 2b,c we
infer that the prey escape mechanism, if present, has a considerable influence upon
the stability of the equilibrtum. These diagrams suggest that this mechanism accounts
for a large proportion of the unstable region in case of logistic algal dynamics: only
at low vatues of x4 and low values of X, the prey escape mechanism is second in
importance and the stability is more determined by the mechanisms inherent in the
life history of Daphnia. The latter mechanisms of course determine completely the
stability of the equilibrium in case of chemostat algal dynamics.

The separate influences of these mechanisms, i.e., the juvenile delay and the
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influences of the growth curve plasticity upon feeding and reproduction, can only be
studied in detail using numerical simulations of the dynamics of the model (see
following section). However, some clues to their influence can already be inferred
from a, rather unconventional, numerical study of the stability equation (17). By
subsequently dropping some or all of the terms within braces in Eqgs. (17d) and (17¢)
and solving numerically the stripped equation in the same manner as before we
constructed the diagram in Fig. 3. This figure shows, in principle, the same stability
diagram as in Fig. 2a with two additional lines: the first additional line (a) resulted
ffom dropping in Egs. (17d) and (17¢) for s,, and s,,, respectively, all terms within
braces which concern the growth curve plasticity. The equation that we study after
dropping these terms can be interpreted (see the appendix) as reflecting a situation in
which the growth curve always equals the equilibrium growth curve corresponding to
the parameter values under consideration: small perturbations in the food availability
are assumed not to influence the growth curve. The only destabilizing mechanism that
remains is the, now fixed, maturation delay between birth and onset of reproduction.
The second additional line (b) resulted from only dropping the terms within braces in
Eq. (17e) for s,,. These terms concern the influence of the growth curve plasticity
upon the feeding of the daphnids. In this case the influence of the growth curve
plasticity upon the reproduction is retained.

The results in Fig. 3 suggest that the growth curve plasticity determines to a large
extent the stability of the equilibrium, in case of chemostat algal dynamics. Its
influence upon the Daphnia reproduction seems to have a destabilizing effect, while its
influence upon the feeding of the Daphnia seems to stabilize the system.

To determine the relative importance of the two separate effects of the growth
curve plasticity upon the reproduction (i.e., the change in aduit fecundity and the
change in juvenile delay), we also computed the branch of solutions in case only the
first term within braces in s,, (Eq. (17d)) was retained while the other terms within
braces in both s, and s,, were dropped. This resulted in a line almost equal to line
(b), though slightly shifted to the left. We conclude that the shift from line (a) to line
(b) by including the influence of the growth curve plasticity upon reproduction is
largely due to its effect upon the juvenile delay and only partly to its effect upon the

20
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T
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represent the branches of solutions of Eq. (17)
when no growth curve plasticity occurs (g) and
i the growth curve plasticity influences
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adult fecundity. Although we cannot make these effects more explicit, the numerical

§imulations in the next section equally suggest that these two mechanisms are very
important for the dynamics of the population.

7. The population dynamics

The dynamics of the model was studied using a recently developed numerical method,
called the Escalator boxcar train [3, 4], which is specifically tailored for the numerical
integration of the equations that occur in physiologically structured population
models. These numerical integrations were carried out with many different combina-
tions of the parameters «, 4 and X_,,, in case of chemostat algal dynamics and B, u
and X, in case of logistic algal growth. Moreover, the integration runs were
frequently repeated with a higher numerical accuracy to rule out the possibility of
numerical artefacts. The numerical integration technique turned out to yield very
reliable results that were hardly influenced by a change in the integration accuracy.

A large number of the numerical integrations were done to check the correctness
of the computed stability boundaries from the previous section. If the initial condi-
tion of the system was sufficiently near to the equilibrium state, damped oscillations
in the total population sizes of Daphnia and algae were observed at the stable and
persistent oscillations at the unstable side of the stability boundary. Hence, these
numerical integrations confirm the position of the boundary, which inspires some
trust in the validity of the stability analysis presented.

7.1. Chemostat algal dynamics

We will first discuss in more detail the dynamic behaviour of the model in case of
chemostat algal dynamics with « =0.5. The corresponding stability diagram was
already shown in Fig. 2a. The figure also indicates the values of u and X_,, that were
used in the numerical integrations presented below. These parameter combinations
are indicated by means of the figure numbers in which the results of the numerical
integrations are shown.

In Fig. 4a the dynamics of both the Daphnia and the algae is shown for values of
u and X, within the peninsula of instability jutting out from the main unstable
region (Fig. 2a). The oscillations in total Daphnia density exhibited in the numerical
integration are characterized by a relatively rapid increasing phase and a slower
decreasing phase. The amplitude of these fluctuations appears to be larger than the
amplitude of the algal oscillations. The phase difference between the oscillations in
both populations is approximately 1/2 period between the moments at which both
populations attain their minimum density, and approximately 1/4 period at the
maximum densities. Figure 4a also indicates the minimum food level below which an
individual Daphnia would never reach maturity, irrespective of its chance to die
before its maximum lifespan. During a large part of the population cycles the food
availability drops below this minimum food leve] for maturation.

The demography of the Daphnia population changes quite drastically during one
population cycle (Fig. 4b). Juvenile and adult individuals alternately make up a large
part of the population. During one complete cycle the Daphnia population is
apparently dominated by the same cohort of individuals in successive stages of their
life history. This dominant cohort is founded at the start of the increasing phase in
Daphnia density, due to a pulse of reproduction (Fig. 4b). This reproduction pulse is
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Fig. 4a-d. Dynamical behaviour of the Daphnia model with chemostat algal dynamics (x =05,
4 =0.055and X, = 2.0 x 10%). a Simulated Daphnia (— - - - —) and algal (——) densities, and PSS
agal (- -~ ) density (see text). The bar at the left axis indicates the minimum algal density for
maturation. b Population birth rate (——), density of juvenile (- - - - - ) and adult Daphnia (— -- - —).

¢ Mean fecundity of an adult Daphnia ( ) and the age of the youngest adult individual, (- - - - ).
d Mean individual surface area for the whole Daphnia population (——) and for the adult Daphnia
[CERRE ) separately

caused by two effects: just prior to the increase in Daphnia density the food availability
has recovered and reached levels above the minimum level for maturation. This results
in (1) an increase in fecundity of the remaining adult Daphnia (Fig. 4c) and (2) a burst
of juvenile individuals that mature into adults (Fig. 4b). The newly formed cohort of
neonates starts growing, but in joint action with their mothers they bring down the
food level below the minimum level of maturation. This induces that the growth in size
of the formed cohort stops and that the fecundity of their mothers drops. The
suppression of the growth in size leads to an increased tightening of the size range of
the dominating cohort, while it is still captured in the juvenile phase. This situaticn
lasts till the population has been decimated due to natural mortality and the food
availability has recovered. The tightening of the size range of the dominant cohort now
induces that the individuals mature almost in one burst. Hence, the cohort almost
instantaneously replaces its adult predecessor and initiates a new cycle.

The life history of Daphnia obviously plays an important role in the dynamics.
Especially the change in the length of the juvenile period with the fluctuations in food
availability, the first effect of the growth curve plasticity upon reproduction, seems to
have a profound influence. The graph of the age of the youngest adult individuals
versus time ( Fig. 4c) shows that for a large part of the cycle no maturation at all takes
place with a subsequent rapid maturation of all the adolescent individuals present.

The second effect of the growth curve plasticity upon reproduction, ie., the
change in adult fecundity due to a change in the size at every age, has no notable
effect (Fig. 4¢). Since the observed food levels are only just above the minimum level
for maturation the ultimate size that an individual can attain is only slightly above /.
This implies also that the mean size of the adults is almost constant in time and only
slightly larger than /.. In Fig. 4d this phenomenon is exemplified by plotting the mean
surface area of an adult individual versus time. This mean individual surface area ts
a direct measure of the maximum fecundity of an individual.
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The stabilizing influence of the changing individual food intake rate due to the
growth curve plasticity shows up in the dynamics of the mean surface area of all the
Daphnia present (Fig. 4d). This mean area is a direct measure of the maximum
feeding capacity of an average individual. The fluctuations in the mean individual
surface area are in exact antiphase with the oscillations in Daphnia density, thus
reducing the impact of these oscillations upon the algal population.

In a previous section we already noted that in case of chemostat algal dynamics
the prey escape mechanism was absent. Indeed the contribution of the chemostat
algal dynamics to the oscillations is negligible. Even at these low values Of X the
algal density is almost equal to the density that would result in case of a pseudo-
stcady-state (PSS) between the algae and the total grazing surface area of the Daphnia
(Fig. 4a). This PSS value of the algal density can be calculated from Eq. (8) by setting
dx/dt =0 and solving for the food availability x, given the values of the grazing
surface area of the Daphnia population at that time. The PSS food availability
determined in this way can be viewed as set completely by the dynamics within the
Daphnia population and especially the dynamics of its internal structure. Obviously,
the observed algal density tracks the PSS algal density very closely with a negligible
influence of the algal growth dynamics; the prey meticulously follows the PSS density
which is set by the predator. Note that this dynamical behaviour is essentially
different from the usual predator-prey oscillations that occur in unstructured models,
due to the phase lag between the populations of approximately 1/2 period.

The numerical integrations that were carried out with chemostat algal dynamics
show that at high values of X,,, the observed food availability is even graphically
indiscernible from the PSS food availability. At low values of X, there still exists a
tiny influence of the algal dynamics itself (Fig. 4a). Also an increasing value of «
results in an observed food availability that is more and more equal to the PSS food
availability. These observations can be understood by investigating how quickly the
actual algal density approaches the PSS algal density set by the Daphnia. The time
constant, which characterizes this approach, can be inferred from Eq. (8) by lineariza-
tion of the equation around the PSS value. It is intuitively clear that this time
constant is determined by the value of a and the feeding rate of the total Daphnia
population. The size of the Daphnia population is in turn positively correlated with
X_.. as was seen before. High values of « and/or high values of X, hence result in
a large time constant and thus an algal density that very quickly approaches the PSS
density. With an increasing value of « the unstable peninsula in the stability diagram
is seen to shrivel away, while a decrease in « induces an increase in the size of the
peninsula. This leads us to conclude that the unstable peninsula is at least partly the
result of the actual algal density lagging behind the PSS algal density. Moreover, the
fact that for high values of X, the algal dynamics is completely determined by the
Daphnia dynamics via the PSS algal density also explains why the stability boundary
tends to a vertical asymptote that is independent of the parameters of the chemostat
algal dynamics.

The described pattern of oscillation is more or less characteristic for the whole
unstable area in chemostat algal dynamics (Fig. 2a). Outside this unstable parameter
area the internal equilibrium is stable, as is confirmed by numerical integrations that
are started with an initial condition very similar to the equilibrium state. However,
when a numerical integration is started with a parameter combination in the (stable)
region above the unstable peninsula (Fig. 2a) and an initial condition quite different
from the steady-state distribution, a persistent limit cycle behaviour results. In this
part of the parameter plane we thus find coexistence of a stable equilibrium and a
stable limit cycle. Obviously at the part of the stability boundary bordering this stable
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region the Hopf bifurcation that gives rise to the limit cycle behaviour is subcritical.
The persistent oscillations that occur in this stable region show characteristics similar
to those described before (see Fig. 4). The main differences are a smaller (now
negligible) discrepancy between the observed food availability and the PSS value of
the food availability, a shorter oscillation period and a slightly larger amplitude. The
shorter period might be the result of the diminished influence of the algal dynamics,
as can be inferred from the similarity between observed and PSS food availability.
The larger amplitude is possibly due to the higher Daphnia densities that are found
with these values of X ;.

The analysis of the stability diagram as outlined in Fig. 3 suggested that the
stability boundary eventually results from a balance between the opposing influences
of the growth curve plasticity upon reproduction and feeding. Consequently these
influences counteract each other particularly in the region bordering the stability
boundary. For this reason we conjecture that the suberitical Hopf bifurcation is due
to the fact that the growth curve plasticity exerts a destabilizing (via the reproduc-
tion) as well as a stabilizing influence (via the food intake) upon the system. The
latter influence is possibly only effective when the system is in the neighbourhood of
its equilibrium state. This conjecture about the cause of the subcritical Hopf bifurca-
tion could in principle be tested by systematically varying the relative effect that the
growth curve plasticity has on reproduction and feeding. It should be noted that the
occurrence of a subcritical Hopf bifurcation in a biological model is not new (see, for
instance, [1] and [19]). However, the fact that the internal structure of the predator
population and the growth process related with the structure induces such a subcrit-
ical bifurcation is a novelty.

At higher values of X, (>2.0 x 10° cells/ml) the Hopf bifurcation even turns
out to be more complicated: with parameter values at the stable side of the stability
boundary again coexistence of a stable equilibrium and a stable limit cycle is
observed, as described above. However, with parameter combinations at the unstable
side of the stability boundary two stable limit cycles appear to coexist (Fig..5). If a
numerical integration is started with an initial condition in which there is only one
cohort of individuals present, the system tends to a stable limit cycle with all the
characteristics described before (Fig. 5a). If a numerical integration is started with an
initial condition similar to the (unstable) equilibrium state the system exhibits a
different type of cyclic dynamics (Fig. 5b). The limit cycle observed now is character-
ized by a shorter period and a smaller, more irregular amplitude. For values of X .,
below 2.0 x 10° cells/ml our numerical studies did not reveal this coexistence of two
stable limit cycles.

The shorter period and smaller amplitude of the second limit cycle obviously
influence the dynamics of the demographic characteristics of the Daphnia population
(mean size, fecundity, age at maturation, etc.), but in a relative sense the dynamics
seems to bear the same characteristics as described for the long period-large ampli-
tude limit cycle. In the presented numerical integrations (Fig. 5) the ratio between the
short period and the long period is about 1/2, although this ratio can be larger with
other values of u and X,.,, for which coexistence of two stable limit cycles occurs.
We have not been able to find an appropriate explanation for the coexistence of the
two stable limit cycles in this part of the parameter space (X, > 2.0 x 10° cells/ml).

On the basis of extensive numerical integrations in the parameter regions, where
coexistence of a stable equilibrium and a stable limit cycle or coexistence of two stable
limit cycles is found, we constructed a hypothetical scenario of the type of Hopf
bifurcation that occurs at the stability boundary. This hypothesis is summarized in
Fig. 6. The same stability and existence boundaries are shown as in Fig. 2a for



632 A. M. De Roos et ak.

2.0 - a -| 08
i N 7 T N
B A N N N
~ | \ : s N
£ ] ; \ / \ :/ ."\ ; \'-. 10.¢ hé
"% "o WW ;
3 -
-.-;2 jo.2 g
0.5
0.0 1 L L 0.0
20 b 108
15 ™~ Lt “ - ~~,
':é ~.. N g -.\_._/ VARV ™, AN -g
3 N
3 1.0 T .g
= <
o g
S Joz |
0.5
0.0 L : 1 0.0
0 50 100 150 200

days

Fig. 5. As Fig. 4a with « = 0.5, y = 0.045 and X, =3.0x 106 and an initial condition that consists
of one cohort of individuals only (a) and an initial condition very similar to the equilibrium state (b)

« = 0.5. In addition, however, we indicate the (approximate) region where coexistence
of a stable equilibrium and a stable limit cycle is found. A relatively accurate
boundary of a comparable region where coexistence of two stable limit cycles occurs
is unfortunately hard to track down with numerical integrations. We do, however,
indicate the conjectured type of Hopf bifurcation at the different parts of the
boundary. These are depicted by means of gualitative plots, which show (1) the total
population size in equilibrium and (2) the way in which this equilibrium merges with
a stable or unstable limit cycle (represented by the minimum and maximum popula-
tion size observed during the cycle). Stable equilibria and limit cycles are always
indicated with solid lines, unstable ones with dotted lines. Once again we emphasize
that this picture is entirely based on a careful interpretation of numerous numerical
integrations. We do not have the technical means to investigate the bifurcations
analytically, nor do we know how and why the different conjectured types of
bifurcation arise out of each other.

As was noted before, the Daphnia population is in general dominated by one
cohort of individuals. This means that the oscillations (with the exception of the short
period-small amplitude cycles, see below) are of the ‘“single-generation” type
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Fig. 6. The (i, X,,,,)-parameter plane for chemostat algal dynamics (z = 0.5) with the same stability
(—) and existence (- - ) boundary as in Fig. 2a. The shaded area indicates the region with
parameter values for which coexistence of a stable equilibrium and a stable limit cycle occurs. The
right-hand boundary of this region is determined on the basis of extensive numerical integrations.
The icons a, & and ¢ qualitatively illustrate the type of Hopf bifurcation that occurs at the indicated
peint of the stability boundary. The horizontal direction in these icons represents the death rate u,
the vertical direction represents the total population size of Daphnia. The central horizontal line in
each icon qualitatively indicates the total population size in equilibrium as a function of y. The
curved branches indicate, again as a function of yx, the maximum and minimum value of the total
population size, which occur during the limit cycle arising from the Hopf bifurcation. Sofid lines for
the equilibrium and maximum and minimum population size indicate a stable equilibrium and limit
cycle, respectively. Dotted lines indicate an unstable equilibrium or limit cycle

described by Nisbet and Gurney [13] (see also [6]). These authors argue that these
“‘single-generation™ cycles ‘arise when changes in the number of juveniles present
have an immediate effect upon the adult recruitment. This happens, for example, if
the time lag between the birth of an individual and the onset of its reproduction
depends on the number of juveniles present. In our model an increase in the juvenile
density indeed induces such an increase in the time till maturation. Particularly this
maturation delay and the changes therein seem to be the driving factor of the
observed oscillations. The presented results suggest, however, that the tightening of
the size range of the dominant cohort, which occurs during the slowing down of
juvenile growth, is also a very important mechanism that adds to the oscillatory
tendency.

These remarks are not at all true for the short period-small amplitude cycles
that can arise with values of X_, > 2.0 x 106 cells/ml in case of the coexistence of
two stable limit cycles. The period length is considerably shorter than the (mean)
time lag between the birth of an individual and the onset of its reproduction. Hence
the oscillations cannot be of the “single-generation” type. Obviously these oscilla-
tions are due to a density dependent regulation within one generation, although the
nature of this regulation is unclear to us.
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7.2. Logistic algal dynamics

The stability diagram for logistic algal dynamics was shown in Fig. 2b for f = 0.5.
This stability diagram also shows the parameter combinations of the numerical
integrations presented below. These combinations are labelled in the same way as
explained in the previous section on chemostat algal dynamics. Figure 7 shows the
dynamic behaviour of the Daphnia and algal populations with values of g and X,
which equal the parameter values used for the numerical integration from Fig. 4 with
chemostat algal dynamics. In general, we can conclude that the observed dynamics
with logistic algal growth at these parameter values (Fig. 7) resembles the results with
chemostat algal dynamics (Fig. 4).

Especially the demography of the Daphnia population during a cycle shows the
same pattern under the two types of agal dynamics (compare Figs. 4b and 7b).
Obviously the prey escape mechanism, which constitutes the main difference between
logistic and chemostat algal dynamics, is not very important yet. Hence, with low
values of u and X, the life history of Daphnia always determines to a large extent
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Fig. 7. As Fig. 4, but now for logistic algal growth with § =0.5, 4 =10.055 and X, =2.0x10°

the oscillatory behaviour, irrespective of the type of algal dynamics. Some influence
of the logistic algal growth can be seen in the larger discrepancy between the PSS and
the observed algal density (Fig. 7a), the larger fluctuations in the adult fecundity (Fig.
7c) and the lower overall density of Daphnia (Fig. 7a). Nonetheless, during one cycle
the population is again dominated by one cohort of individuals in successive stages of
its development. :

In Fig. 8a the dynamics of both the Daphnia and the algae is shown for a high
value of u and a high value of X,... This dynamics is very different from those
presented before. Some eye-catching properties are the larger amplitude of the algal
fluctuations in comparison with the Daphnia fluctuations and the phase lag between
algae and Daphnia. The Daphnia lag behind by about 1/4 period at their population
minimum and by about 1/3 period at their maximum. The demography of the
Daphnia population during the oscillations (Fig. 8b) suggests that with these parame-
ter values the life history characteristics of Daphnia hardly play any role. The relative
proportion of juvenile versus adult Daphnia is more or less constant during a cycle,
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Fig. 8. As Fig. 4, but now for logistic algal growth with § =0.5, ¢ =0.25 and X_,, = 1.0 x 10°

while the population birth rate is also almost in phase with the total population
fluctuations.

The high food densities that are found with these parameter values result in a
rapid growth in size during an individual’s lifetime and hence in a very short juvenile
period (Fig. 8c). In contrast with the observations in the previous section, the mean
surface area of an adult individual now fluctuates strongly (Fig. 8d). These fluctua-
tions moreover coincide exactly with the fluctuations in food availability (Fig. 8a)
and hence result in large fluctuations in adult fecundity during a cycle (Fig. 8¢). For
these parameter values the dynamics are primarily driven by the adult fecundity as
opposed to the delay-driven dynamics discussed in the previous section.

The observed dynamics resembles the dynamics exhibited by the unstructured
Lotka—Volterra type models of a predator-prey interaction (such as specified by
Egs. (18)). In particular, the larger amplitude of the prey population and the phase
lag between predator and prey of appoximately 1/4 period should be men-
tioned. Altogether these observations support the earlier hypothesis that in part IIb
of the parameter space from Fig. 2b the prey escape mechanism plays an important
role.

An oscillation cycle is initiated as the algae escape the control imposed by the
Daphnia, since the reaction of the latter in terms of feeding is slower than the increase
in algal growth rate. The algal density rises, which induces an increase in fecundity of
the adult Daphnia and a subsequent increase in Daphnia density. This increase is,
however, overcompensative and causes the algal density to decrease strongly. The
fecundity of the adult Daphnia drops again and so does the total population size. This
leads to the onset of the next cycle. With a change from high values of u and X__, to
low values the algae and Daphnia thus seem to exchange roles: in the first case the
Daphnia population clearly pursues the algae, while in the second case the algal
population passively follows the regime set by the dynamics of the Daphnia.

When numerical integrations are carried out with intermediate values of u and
Xoax the prey escape mechanism and the life history of Daphnia both determine to
some extent the dynamics of the system. With a change from high to low parameter
values we actually observe a shift in importance from the prey escape mechanism to
the life history of Daphnia as the determining factor.
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In case of logistic algal growth with § =0.5 always a supercritical Hopf bifurca-
tion is found at the stability boundary. Comparing the stability diagrams for the
chemostat and logistic algal dynamics from Fig. 2, this is also to be expected: with
B = 0.5 the prey escape mechanism already dominates the dynamics in the parameter
region where a subcritical Hopf bifurcation could occur. In case f equals 2.0,
however, we do find a region just above the unstable peninsula (Fig. 2¢) where a
subcritical Hopf bifurcation occurs. Here the influence of the prey escape mechanism
is not yet that important and coexistence of a stable equilibrium and a stable limit
cycle and even of two stable limit cycles is found.

All these numerical integrations were carried out with parameter values from the
unstable region in the neighbourhood of the stability boundary. With values further
away from this boundary the dynamics becomes very irregular or even chaotic. In
these cases the more unrealistic aspects of the model strongly influence the dynamics,
since, for example, death from starvation is starting to play a role in contrast with the
dynamics of the system near the stability boundary. We therefore have not focussed
upon this irregular dynamic behaviour of the model.

8. Concluding remarks

In this paper we have investigated the possible effects of the internal structure of a
population upon its dynamics. We have tried to disentangle the influences upon the
population dynamics of the various mechanisms that were incorporated in the model
for the individual behaviour of Daphnia. A quite complicated pattern resulted. The
methods that we used are by no means well established. Much of the theory, used
implicitly in our formal stability analysis, is not yet built on a rigorous basis, but the
fact that the relations between mechanisms and dynamics are confirmed when
following several different routes of investigation leads us to accept them.

Another point is that the relations between the observed characteristics of the
dynamics with the underlying mechanisms on the individual level are by no means
corroborated by experimental evidence. Moreover, in real populations individuals
which do not notably differ in their physiological state often display differences in
their behaviour. This non-deterministic variation can obscure the causal relations or
even weaken the effects on stability of the internal predator {age, size)-dynamics.
Hence, the sketched image of relations is not more than a hypothetical one. Although
a large body of experimental observations on Daphnia population dynamics is
available (see [8] for an overview) this study poses a lot of new questions to be
verified. Already this generating of new hypothesis is in our opinion a valuable result
of the model analysis.
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Appendix
In this appendix we will present the derivation of the characteristic equation (17).

This derivation is not at all straightforward, since (a) the growth function g (Eq. (2))
18 not differentiable in /=/, f(x), (b) the reproduction function b (Eq. (3)} is
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discontinuous in / = /; and not differentiable for / =/, f(x} and (c) the death rate d is
discontinuous for a=A_,, and !/ =1,f(x)/x. For these reasons we outline the
analysis in detail. We start with defining a small perturbation from the equilibrium
state (%, #i{a), l(a)) as follows:

Ex(t) = X(t) - is
emlt, @) :=m(1, a) — ri(a), (Al)
E[([, a) = l(ts a) - T(a)

We will derive a system of linear equations for the dynamics of such a small
perturbation to determine the stability of the internal equilibrium. As before we will
not always write the arguments of all functions in full, if the context makes clear what
these arguments are. Linearization and substitution of exponential trial solutions for
the small perturbations ¢,, ¢, and ¢, will be carried out using the system of Egs. (7),
in combination with the ordinary differential equation (8) describing the dynamics of
the algal food population.
First we make the important assumption that

gF +e., @) +¢)>0, foralle (o), €l a) (A2)

Since we assume that the perturbations from the equilibrium state are small, we may
expand the function g in terms of ¢, and ¢, and neglect all terms of second and higher
order. In first approximation the assumption (A2) is then equivalent with

&1, 8) — LS (e (1) <1,.f (%) —a) for all €,(8), &(t, a). (A3)

The assumption (A2) is seen to hold good only if ¢, and ¢, are sufficiently small for
all ¢ and only if 4_,, < co. The latter inequality is crucial for the (age, size)-relation
in equilibrium to stay bounded away from /,f(%), the ultimate length under the
current food availability. This ultimate length is also the threshold value at which
rechannelling of ingested energy to cover maintenance requirements starts to play a
role (see Egs. (2) and (3)). The assumption (A2) hence implies that this rechannelling
of ingested energy and therefore also death of starvation does not occur in the
linearized problem. For this reason we can assume the following formulations for the
functions I, g, b and d in the neighbourhood of the equilibrium state:

I(x, ) =v_f(x)* for I, <i<1,f(X),
glx, ) =y(.f(x) =1 forl, <I<l f(X),

bix, ) =r, f()?  for [ <1<l f(®)

(Ad)

dix,a,)=p for 0<a <A, -

These functions are clearly differentiable within their domain of definition. For our
local linearization around the equilibrium state (%, #{a), [(a)) we can thus neglect the
undifferentiable points in the original formulae for the functions g, # and 4.

The equalities (A1) are subsequently used to replace the quantities x(f), m(t, a)
and [(t, a) in the system of Eqs. (7). However, since the age at which the reproduction
starts, occurs in the side condition (7b) and since this age at maturation depends
on the food availability, we introduce another perturbation quantity ¢, that indicates
the perturbation of the age at maturation from its equilibrium value A4;(X). This
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quantity ¢, can be related to the perturbation quantity ¢;:
Li=1t 4;(%) +€,) =HA4;(D) +¢,) + 6, 4, +¢,)
N4, (%)
da
_ —elt, 4,(®)
g%, )
After substitution of the quantities x(¢), m(, @) and (¢ a), we expand all the functions
in terms of the perturbation quantities ¢ and obtain the following linearized system of

equations. In this system all terms of second and higher order are consequently
neglected:

~ I(4, (%) + €.+ €(t, A, (%) (AS)

=

de Je
m mo_ A
N + PPt ue,. (1, a), {A6a)

Amax
€m(t, 0) = j (%, e + bo(%, TyR(a)e, + b(%, Tit(a)e, da
A

(%)

— b(x, [;)(A4,;(5))e,, (A6b)
O, 0, .
5 T 35 = & Dex + 21(%, Dey, (A6¢)
(1,0) =0, (A6d)

The functions g,, g, b, and &, indicate the partial derivatives of the functions g(x, /)
and b(x, /) with respect to x and /, respectively. Equation (A6b) is derived from the
linearization of the original side condition (7b). Especially this part of the lineariza-
tion procedure is not straightforward and therefore presented here in more detail.
Starting with the side condition (7b), Eq. (A6b) is obtained as follows:

fAmax

€,,(t,0) = b(% + €., Ka) +€,)((a) +¢,) da — #K0)

vAj (B} +ea

”
Amax

Q

b(% + ¢, (@) + ¢ )(r(a) + ¢,,) da — M(0) — b(Z, LA, (X))e,

Ly Aj (%)

'.Amﬂl

&

b(Z, Ne, + b (%, Dri(a)e, + b,(%, Dina)e, da — B(Z, [, yi(A,(D))e,.
| (A7)

VA7 (E)

This derivation particularly shows how the perturbation in the age at maturation is
accounted for in the linearized system of Eqs. (A6).
Carrying out the same substitution and expansion procedure for the ODE (8) as

was done for the system of Egs. (7) results in the linearized ODE:

d Anu.x

%z}i’(i +e,) —.[ IG + e, T+6)07 +e,) da

1)

A

~ R'(Re, — J G Dey + LG D@, + I, Dina)e,da,  (AS)
0

which, in combination with the equations in (A6), constitutes the complete, linearized

set of equations of our model. In Eq. (A8) R’(x) denotes the derivative of R(x), while

1, and I, denote the partial derivatives of I(x, /) with respect to x and /, respectively.
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To derive a characteristic equation in the complex variable 4, we next substitute
the exponential trial solutions:

(D=4, e",

Em (t, a) p— A,,,(a) e).:’

(t, @)= 4,(c) e, (A%
€, =4,e".
into (A6) and (A8), which leads to
24,, :
e —(u+ 14, (Al0a)

4,(0) = fAm b(%, DA, + be(%, (@) A, + b,(%, Dyia)d, da — b(%, 1, Y4, ()4,
Ap(®)

(A10b)
24,
= g5 DA, + g, 4, A, (A100)
4,(0) =0, (A10d)
4, = R(D4, — .[ fimes 1%, D4, + LG D@4, + 1L, Ni(a)A, da. (A10e)
. 0 i

Using the formulas for the functions 7, g, b and d as given by Eq. (A4) and the
partial derivatives that can be derived from these formulae:

IL(x, I} = v f (X)), Ii(x, 1) = 2v, f (x)a),
g:0x, 1) = yl,.f (%), gi(x, )= —v, (ALl)
b(x, ) =r, S (@)  bi(x, 1) =2, f()a),

the differential equations (A10a) and (A10c) for 4,(a) and 4,(@) can be solved
explicitly. We can therefore express the quantities 4,,(a), 4,(a) and 4, (see Eq. (A5))
in terms of A, and 4,, which we write instead of 4,,(0):

4,(a) = 4,F(a) e,

4,(a) = Tl;i(f) (1 —e=“+na)4q | (Al12)

_mAA@) SR e i@
g& L) US® - A+y T

When we now substitute the formulas for the functions 7, g, b and 4 (A4) and their
partial derivatives (Al1) and the equalities (A12) into the two remaining Eqgs. (A10b)
and (A10e) we directly end up with the characteristic equation (17). This completes
our derivation. '
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As a last point we show the explicit results of the substitutions into the last two
terms of the Eq. (A10b):

T W f ()17

| — e~ GHNa (3

—b(X, I )i(A4;(X)d, = @ =1 bF (A,(%)) pp 5 4., (Al3a)
Amax N . _ . . Amax 1 —e — (4 + e fl(j)
L " b,(%, Di(a)4, da = 2yr, f (DI, f(F) L o [(a)bF(a) p da 7@ &
(Al3b)

The quantity 4, denoted a deviation from the equilibrium value of the age at
maturation, which was directly related to 4, (see (A5) and (A12)). The quantity 4,
represents a deviation from the equilibrium (age, size)-relation that was in turn
related to a deviation from the equilibrium food availability, according to (A12). The
equalities (A13) therefore show that the braced terms in the element s,, of the
charactenistic equation indeed concern the influence of the growth curve plasticity
upon reproduction. The first braced term in (17d), which is derived in Eq. (Al3a),
reflects the influence of the growth curve plasticity upon the age of maturation, while
the second braced term in (17d) reflects the influence upon adult fecundity. Similarly
the explicit result of the substitutions into the last term of (A10e) is

Aman _ 3 [ Ame 1 —e—U+me  £(5)
L I(x, (@) 4, da = 2yv f ()],.f () J; Ka)bF (a) PR da Rk

(Al4)

which shows that the braced term in the element s5,, of the characteristic equation
reflects the influence of the growth curve plasticity upon the food intake rate of the
Daphnia population.
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