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11.1 Introduction
Throughout the history of ecology, the interaction between predators and
their prey has received attention from ecologists. Some of the longest and
most well-known data series in ecology are from predator and prey popula-
tions, and predator–prey models are among the oldest in the field. Despite
these efforts, a discrepancy exists between the behavior of most models and
that of natural predator and prey populations. Most predator–prey models
predict lasting periodic oscillations in population densities. Oscillations
have been observed in nature, but they do not seem nearly as common or as
pronounced as models predict.

Several explanations have been suggested for the qualitative difference
between the behavior of the models and reality. Most of these involve ad-
ditional mechanisms, such as invulnerable life stages of the prey or optimal
foraging behavior of the predator. However, experimental studies show that
the equations used in classical models do indeed give a reasonable quali-
tative description of the behavior of predator and prey populations (Gause
et al. 1936; Maly 1969; Harrison 1995). All these studies compare model
predictions with laboratory-scale experiments in which the densities often
exhibit oscillations that can lead to population extinction (Huffaker 1958;
Gause 1969; Luckinbill 1974). The models thus seem to describe the inter-
action between predators and their prey in laboratory experiments reason-
ably well, but fail to capture the properties of natural populations. Because
there is no reason to believe that laboratory and natural populations are
fundamentally different, the spatial scale at which the predator–prey sys-
tem exists must play a crucial role in preventing population oscillations in
the field.

183



184 B · When the Mean-field Approximation Breaks Down

The spatial scale at which observations of ecological systems are car-
ried out strongly influences their outcome. Hence, explanations for these
observations should also take into account the spatial extent of the mech-
anisms considered. Modeling population dynamics should intuitively start
at the level of the individual, at which the organisms reproduce, die, and
interact, thus giving rise to population dynamics. At the individual level, it
is appropriate to use a model that describes the whereabouts of all individ-
uals and the interactions between them. However, describing the dynam-
ics of the local or the global population in this manner is a daunting task.
To unravel the dynamics at larger spatial scales, it would be preferable,
or even necessary, to abstract individual-based descriptions of dynamics
in terms of variables that are measurable at the scale of the local popula-
tion. Subsequently, descriptions of the dynamics of the global population
can be cast in terms of coupled local populations. The key issue is to find
a non-phenomenological procedure to bridge the spatial scales – an issue
that pervades many chapters in this book.

In this chapter, we describe models for three different spatial scales:
those of the individual, the local population, and the global population. We
first discuss some results from individual-based models. We then present a
simple two-patch model for predator–prey interaction, followed by a gen-
eralization of this model to an arbitrarily large number of patches. Finally,
we discuss how these results may be related to each other.

11.2 Individual-based Predator–Prey Models
For a spatially explicit description of interacting predator and prey individ-
uals, one needs to keep track of all individuals and their positions. It will
come as no surprise that these models are computationally complicated and
intensive. Finding simplified models for such spatial, individual-based sys-
tems is an art in itself. Here, we try to make inferences directly from an
individual-based, stochastic simulation model and argue that the emerging
spatial dynamics reflect a system of coupled local populations where the
local populations have a characteristic spatial extent. The dynamics of the
(local) populations as observed at the characteristic spatial scale are close to
the dynamics of the nonspatial, or homogeneously mixed, analogue of the
spatial model. This naturally reduces the study of the global population dy-
namics to (1) finding the characteristic spatial scale of the local populations
and (2) studying the dynamics of the coupled set of local populations.

The results we discuss are from “discrete-entity simulations” (de Roos
et al. 1991; Wilson et al. 1993, 1995b; McCauley et al. 1993). These
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simulations describe a large lattice (128 × 128) on which predators and
prey live. Every grid point can either be empty or occupied by at most one
predator or one prey at a time. Hence, the whereabouts of every individual
are known at every point in time. Predators and prey can move around in-
dependently in various ways. For instance, all individuals can be randomly
redistributed over the entire lattice at every time step, resulting in homoge-
neous movement. Another possibility is diffusive movement in which the
individuals randomly walk through the grid for a variable number of steps.
The third option is a stationary population that can only occupy new space
by growing into it. If a destination site is already occupied by an individual
of the same species, movement does not take place. Once movement has
taken place, a sequence of interactions follows: Prey individuals reproduce
with a certain probability into a neighboring site. If no free site is available,
the offspring is aborted. Similarly, predators die with a certain probabil-
ity. If, as a result of individual movement, a prey and a predator end up at
the same site, the predator eats the prey and subsequently reproduces with
a certain conversion efficiency. The offspring is placed on the grid in the
neighborhood of the parent. (For details of this simulation procedure see
McCauley et al. 1993.)

Within this framework, the rules at the individual level can be varied
to reflect different types of behavior for the predator and prey. We dis-
cuss some results from rules that have effects comparable to logistic prey
growth and a type II functional response, given by the Holling disk equa-
tion (Holling 1965). This choice enables us to compare the behavior of this
model with that of the classic nonspatial predator–prey model of Rosen-
zweig and MacArthur (1963), which is based on similar assumptions. In
the simulations, prey growth is locally density dependent, because a prey
offspring is aborted if the neighboring site where it attempts to establish
itself is occupied. The type II functional response is mimicked by prevent-
ing the predators from eating for a number of time steps after they have
consumed a prey. This results in a handling time for the predators (de Roos
et al. 1991).

The simulation model behaves very much like the Rosenzweig–
MacArthur ordinary differential equation (ODE) model when the prey is
stationary and the predators move homogeneously. Both models have two
qualitatively different types of dynamics: either the densities approach
a stable equilibrium or they exhibit stable oscillations. Decreasing the
predator death rate causes a transition from stable to oscillatory dynamics.
Quantitatively, the transition occurs at similar values for the predator death
rate in both the simulation and the ODE models (McCauley et al. 1993).
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In contrast, when the predators move diffusively and the prey remain
stationary the simulation model behaves very differently: a decrease in the
predator death rate has very little effect on the observed dynamics, and for
all parameter combinations the densities deviate little from constant densi-
ties (de Roos et al. 1991; McCauley et al. 1993).

Why the difference? One possible explanation is that the classic ODE
model does not accurately represent the interactions among the individu-
als when they move diffusively. For example, even though the rules for
predator behavior in the simulations lead to a type II functional response at
the population level when movement is homogeneous, diffusive movement
might lead to a type III functional response when measured at the popula-
tion level. It could be argued that the latter causes the observed stabilization
of dynamics. However, as the observed functional responses in the simu-
lation model with homogeneous or diffusive predator movement are very
much like those in the classic model (de Roos et al. 1991), this explanation
seems unlikely. A similar conclusion holds for the prey growth function.
Hence, the explanation is probably not that the ingredients of the classic
model are wrong, but that the spatial character of the interactions in the
simulation model qualitatively changes the dynamics.

Spatial interactions can only influence the population dynamics if the
population densities are not spatially homogeneous. Indeed, under diffusive
predator movement the populations in the simulation model are clustered.
Such clusters imply that, from an individual’s point of view, the environ-
ment looks relatively homogeneous as long as it is perceived through a spa-
tial window of about the size of the cluster. This locally experienced density
might bear no relation to the overall densities as measured on large spatial
scales. However, the dynamics at such local scales are similar to those
predicted by the nonspatial model, where individuals mix homogeneously
(de Roos et al. 1991). Figure 11.1 shows the coefficient of variation (the
standard deviation divided by the average) of the time dynamics in prey
density versus the size of the spatial window within which these dynamics
are observed. For very small window sizes the coefficients of variations
for diffusive movement and homogeneous movement are comparable; for
larger window sizes the curves deviate. Also, the (temporal) autocorrela-
tion function of these dynamics in prey density shows a convergence to the
autocorrelation predicted by the nonspatial model when the observations on
prey density are carried out at smaller spatial scales (de Roos et al. 1991).

The window size where the curves start to deviate can be designated as
the characteristic spatial scale of the system. Measured at spatial scales
much larger than this characteristic scale, the dynamics are the cumulative
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Figure 11.1 Variability in prey density in terms of the coefficient of variation of the
discrete-entity simulations. Squares indicate homogeneous predator movement; circles in-
dicate diffusive predator movement. Source: de Roos et al. (1991).

result of processes in only loosely coupled regions. At much smaller spatial
scales, the dynamics are increasingly influenced by stochastic fluctuations
due to the finite number of individuals present. At the characteristic spatial
scale the system thus behaves in a more deterministic manner than at any
other scale (Rand and Wilson 1995; see Chapter 12).

11.3 A Deterministic Model of Two Coupled Local
Populations

We make the step from a description at the level of the individual to the
level of the local population using the observation that at the characteristic
spatial scale determinism is maximal and the populations behave as if they
are well mixed. This justifies a description of local populations in terms of
their mean densities only. To describe the populations beyond the charac-
teristic spatial scale, we couple a number of local populations diffusively
by assuming that every individual has a fixed probability of leaving its local
population and migrating to another.

We investigate how fluctuations in the densities in the local populations
affect the dynamics of the global population. Ideally, one would derive the
equations that describe the local populations from the rules that govern the
simulation model. Because it is still an open question how this should be
done, we make life simple by boldly assuming that the local populations
behave like standard predator–prey models. The simplest predator–prey
model is the Lotka–Volterra model, and we start our investigations with
the simplest spatial extension of this model, the two-patch Lotka–Volterra
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model (Comins and Blatt 1974). In terms of dimensionless variables, the
model can be specified as

Ṅ1 = r N1 − N1 P1 ,

Ṗ1 = N1 P1 − µP1 + m

2
(P2 − P1) ,

Ṅ2 = r N2 − N2 P2 ,

Ṗ2 = N2 P2 − µP2 + m

2
(P1 − P2) ,

(11.1)

where the dot means differentiation with respect to time. It is assumed
that the local prey density, Ni , increases exponentially with rate r in the
absence of predators and that there is a linear contact rate between local
prey and predators. The densities are scaled such that all prey mass that is
eaten reappears as predator mass. In the absence of prey the local predator
density, Pi , decreases exponentially with rate µ. The two populations are
coupled through migrating predators, which move to a neighboring patch at
rate m

2 . (The migration rate is divided by two because in the more general
situation of a chain of connected patches in which every patch has two
neighbors the migrants leave a patch at rate m. Because this system consists
of only two patches, half the emigrants will be reflected from the system’s
boundary and the effective migration rate is m

2 .) The prey are assumed to
be stationary as in the discrete-entity simulations.

As long as the densities of the predator and the prey are the same in both
patches (i.e., P1 = P2, N1 = N2, the system is completely homogeneous),
the net effect of migration is zero and the model is identical to the nonspa-
tial Lotka–Volterra model. The dynamics of the nonspatial model are well
known: a family of closed orbits surrounds a neutrally stable equilibrium,
and the densities oscillate eternally with an amplitude that depends on the
initial conditions.

For Lotka–Volterra models in a spatially continuous domain the den-
sities eventually become homogeneous (Murray 1975). The same holds
for the two-patch Lotka–Volterra model: all differences in density be-
tween the patches disappear asymptotically for any positive initial condi-
tion. [This can be shown using the Lyapunov function V1(t)+V2(t), where
Vi (t) = Ni+ Pi−µ ln Ni−r ln Pi .] One therefore might not expect the dy-
namics of the spatial Lotka–Volterra model to yield any insights that cannot
be gained from the nonspatial Lotka–Volterra model. Surprisingly, this is
not the case. Figure 11.2 shows a solution of Equations (11.1) starting with
small differences in densities between the patches. Although the differ-
ences between the prey and predator densities in the two patches eventually
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Figure 11.2 A solution of Equations (11.1) for r = µ = 1. (a) Average prey density (N ).
(b) Differences between prey densities in the two patches (ψN ). The predator densities
exhibit similar fluctuations (not shown).

disappear, they initially increase (see Figure 11.2b). As the differences in-
crease, the amplitude of fluctuations in the average densities are reduced.

To understand the behavior of the model given by Equations (11.1), it
helps to consider the geometry of the four-dimensional state space. The
part of the state space in which there are no differences in densities be-
tween the patches – that is, N1 = N2 and P1 = P2 – is represented by an
invariant two-dimensional plane. On this diagonal plane the dynamics are
given by the (nonspatial) Lotka–Volterra model: closed orbits surround an
equilibrium. The orbit shown in Figure 11.3 starts near a closed orbit in this
plane, moves away from it, and then returns to another closed orbit in the
diagonal plane on which the amplitude of the fluctuation is much smaller.
Not all closed orbits in the diagonal plane have similar stability properties:
some attract while others repel.

To establish which of the closed orbits attract and which repel, we ana-
lyze their (local) stability. To this end we introduce variables for the average
prey and predator densities, N = 1

2(N1+N2), P = 1
2(P1+P2), and a vector

that contains the differences between the patches,

ψ =
(

ψN

ψP

)
=
(

1
2(N1 − N2)
1
2(P1 − P2)

)
. (11.2)

In new variables, the system reads as follows:

Ṅ = r N − N P − ψNψP

Ṗ = N P − µP + ψNψP

ψ̇N = (r − P)ψN − NψP

ψ̇P = PψN + (N − µ− m)ψP .

(11.3)
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Figure 11.3 The solution visualized in Figure 11.2 in a projection in the N1, N2, 1
2 (P1 +

P2) space. The orbit starts at the arrow.

The dynamics of Equations (11.1) close to the diagonal plane are given by
a linearization in the neighborhood of |ψ | = 0:

Ṅ = r N − N P

Ṗ = N P − µP ,
(11.4)

and

ψ̇ =
(

r − P −N
P N − µ+ λm

)
ψ , (11.5)

where the variable λ is introduced for later use and here takes the value
−1. Notice that the system for the averages, Equations (11.4), is identical
to the nonspatial Lotka–Volterra model. The linearized equations for the
differences, Equation (11.5), are driven by the Jacobian of Equations (11.4)
with an additional diagonal term representing migration.

The closed orbits in the diagonal plane are represented by solutions of
Equations (11.4) and (11.5) with ψ = 0. To see whether a closed orbit
attracts or repels, we take an initial value for N and P and integrate Equa-
tions (11.4). Because Equations (11.4) are decoupled from Equation (11.5),
we can take ψ �= 0 without changing the solutions of Equations (11.4); in
other words, in the linearization we can introduce differences between the
patches while keeping the mean densities behaving as if there are no differ-
ences. A closed orbit repels if |ψ | increases in the long run. A more formal,
but essentially similar method of establishing the stability of the closed
orbits is determining the dominant Floquet multiplier of Equation (11.5)
(see Box 11.1).
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Figure 11.4 Minimum and maximum prey densities over the closed orbit of Equa-
tions (11.1) with a multiplier at −1 for different values of the predator migration rate.
Closed orbits with a larger amplitude than the closed orbit with multiplier at −1 are un-
stable and repel; closed orbits with a smaller amplitude are neutrally stable and attract
orbits over which the densities in the patches differ. Therefore, this graph also represents
the maximum and minimum prey densities in the two-patch Lotka–Volterra system given
by Equations (11.1) after transients have died out. Parameter values: r = µ = 1.

The closed orbits of the Lotka–Volterra model have two multipliers
equal to 1 and hence are neutrally stable. Therefore, the closed orbits on
the diagonal plane, described by Equations (11.4), also have two multipli-
ers equal to 1 and two others, determined by Equation (11.5), that represent
the spatial interactions. Because the dynamics on the diagonal are identi-
cal to the nonspatial dynamics, the spatial interactions can destabilize these
orbits but can never stabilize them.

Figure 11.3 suggests that closed orbits on which the densities oscillate
with a large amplitude can be unstable, while smaller closed orbits attract.
Figure 11.4 shows that this is indeed the case for a large range of migration
rates. The large closed orbits are unstable because the absolute value of
one of the multipliers exceeds 1 (it is real, negative, and smaller than −1).
For small closed orbits, the absolute value of the multipliers determined by
Equation (11.5) is smaller than 1. These closed orbits attract orbits from
outside the diagonal plane. (They are neutrally stable because they also
have two multipliers at 1.) Between the neutrally stable and the unstable
closed orbits lies a single closed orbit with a multiplier at −1. Figure 11.4
shows the minimum and maximum prey values attained at this closed orbit.

The two-patch Lotka–Volterra model can thus behave very differently
from its nonspatial counterpart. In the nonspatial model fluctuations of all
amplitudes are possible. In contrast, in the spatial model homogeneous
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Box 11.1 Floquet multipliers

The stability of periodic solutions is established by considering a cross sec-
tion to the periodic orbit, the Poincaré section (see illustration).

v1

-v1

v2

The Poincaré map is the next intersection of an orbit with a cross section to the periodic
solution, the Poincaré section (left). The periodic orbit is a fixed point of the Poincaré map; it
is unstable if nearby orbits move away from it (right). ν1 and ν2 are respectively the unstable
and stable eigenvectors of the linearized Poincaré map B(T ).

Starting from the intersection point of the orbit with this plane, the sys-
tem will obviously return to this same point in the state space every T time
units, where T is the period of the solution. The periodic solution is sta-
ble if orbits that are close to it in the state space converge to it over time.
Whether this occurs or not can be studied by analyzing a related discrete
time system, the so-called Poincaré map, which maps the intersection point
of a particular orbit with the Poincaré section to the intersection point after
the next turn-around. The periodic solution is stable if the fixed point of the
Poincaré map (which corresponds to the intersection point of the Poincaré
section and the periodic orbit) is stable.

The stability of the discrete system can be determined from its lineariza-
tion, but with a twist: to arrive at a computational procedure we linearize
the underlying continuous time system in the neighborhood of the periodic
orbit. The calculation is the same as for linearizing around an equilibrium,
that is, we temporarily fix a point x(t) on the periodic orbit and linearize
the right-hand side of the differential equation around this point to arrive at

dy

dt
= F(t) y , (a)

where y(t) denotes a small perturbation relative to x(t), and F(t) denotes
the local matrix of partial derivatives of the right-hand side of our original
differential equation for x , evaluated at the point x(t). The only difference
from the usual linearization around an equilibrium is that F now depends
on time in a T -periodic fashion due to the movement of x around the peri-
odic orbit, so that F(t + T ) = F(t). Periodic linear systems of differential
equations such as (a) do not allow an explicit solution. But that does not
matter as we only need numerical solutions from t = 0 to t = T for the
special initial conditions continued
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Box 11.1 continued

y(0) =

⎛
⎜⎜⎜⎝

1
0
...

0

⎞
⎟⎟⎟⎠ , . . . , y(0) =

⎛
⎜⎜⎜⎝

0
...

0
1

⎞
⎟⎟⎟⎠ . (b)

These are easily calculated. We glue the resulting columns y(t) behind
each other into a matrix B(t). B(t) indicates how the neighborhood of
x(0) is transformed into the neighborhood of x(t) by the dynamical system
acting over a time t . For the special value t = T

y(T ) = B(T )y(0) , (c)

we get a map of the neighborhood of x(0) onto itself. The eigenvalues
mi of B(T ) are the so-called Floquet multipliers of the linear system. In
the present context they are also referred to as the Floquet multipliers as-
sociated with the periodic orbit. For such special periodic systems B(T )

necessarily has one eigenvalue m1 = 1 corresponding to an eigenvector
pointing from x(0) in the direction of the orbit; the other Floquet multipli-
ers mi , i = 2, . . . , are equal to the eigenvalues of the linearized Poincaré
map (see, e.g., Hartman 1964). If all |mi | < 1 for i = 2, . . . , the periodic
orbit is asymptotically stable. If at least one |mi | > 1, it is unstable.

large amplitude solutions can be diffusively unstable; consequently, in the
long run fluctuations with a large amplitude will not be observed.

11.4 Larger Spatial Domains
The possibilities for oscillations in a two-patch Lotka–Volterra system are
restricted because closed orbits with large amplitude can be diffusively un-
stable. The coupling between the two patches can bound the oscillations
of the entire predator–prey system. Often, the spatial domain will be much
larger than twice the characteristic spatial scale. Are the oscillations in den-
sities of larger systems also reduced? If so, how do results from two-patch
systems relate to systems with more patches? To answer these questions,
we investigate the behavior of the equivalent of Equations (11.1) with n
patches:

Ṅj = r Nj − Nj Pj ,

Ṗj = Nj Pj − µPj + m
n∑

i=1

ci j Pi .
(11.6)
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Again, it is assumed that prey is stationary, hence the change in prey den-
sity in patch j , Nj , depends only on the local prey and predator densities.
The predator density in patch j , Pj , changes through reproduction after
prey consumption, through predator death (which depends only on local
densities), and through migration of predators. The rate of predator em-
igration from patch j is given by mcj j . The predator density in patch j
changes through immigration from patch i to j at rate mci j (note that the
use of indices is contrary to the convention in the deterministic literature).
The matrix C = (ci j) depends on the spatial organization and the size of
the patches. Although our analysis below holds more generally, we only
consider a linear chain of n equal-sized, identical patches. In this case,

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− 1
2

1
2 0 . . . . . . 0

1
2 −1 1

2

. . .
...

0 1
2 −1 1

2

. . .

...
. . .

. . .
...

. . . 0

...
. . . 1

2 −1 1
2

0 . . . . . . 0 1
2 − 1

2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (11.7)

The parameter m hence represents the maximum emigration rate from a
single patch.

We now analyze the stability of spatially homogeneous solutions, that is,
solutions for which the densities in all patches are equal. Because we as-
sume that all patches have the same size and their local dynamics are identi-
cal, the migration terms cancel when no spatial differences in the densities
exist, and the dynamics of Equations (11.6) again reduce to those of the
nonspatial Lotka–Volterra system. As with the two-patch Lotka–Volterra
model, the model has a two-dimensional diagonal subspace in which closed
orbits surround a neutrally stable equilibrium. Using the same method as
for the two-patch model, it can be shown that solutions of Equations (11.6)
with positive initial conditions converge to the diagonal: differences in den-
sities disappear asymptotically.

To find out whether the possible range of fluctuations is reduced in the
multi-patch model as in the two-patch model, the stability of the closed
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Box 11.2 Local stability analysis in multi-patch models

In a system of connected, identical patches, in the absence of migration the
local dynamics in all patches can generally be described by

ẋ = f (x) (a)

[x is a vector containing the k different species’ densities, f (x) : Rk → Rk

is a vector-valued function]. A homogeneous solution in such a multi-patch
system would mean that the densities in all patches are the same and thus
net migration is zero. Let s(t) denote the time-course of all densities in a
patch in the homogeneous solution, s(t) necessarily is a solution of Equa-
tion (a). In Appendix 11.A it is shown that such a homogeneous solution is
stable if, for all i , ψ = 0 is an asymptotically stable equilibrium for

ψ̇ = [D f (s(t))+ λi M] ψ , (b)

and unstable if ψ = 0 is an unstable equilibrium for at least one i . [Here
λi is an eigenvalue of the matrix C , which describes how the patches are
connected, M is a diagonal matrix with the species’ migration rates on its
diagonal, and D f (s(t)) is the Jacobian of f , evaluated at s(t).]

This offers a generally applicable method to uncouple the local dynam-
ics and reduce the complexity of spatial models.

orbits on the diagonal plane needs to be assessed. Although at first a sta-
bility analysis of a 2 × n dimensional system might seem forbidding, it
turns out to be simple: the problem can be reduced to n decoupled two-
dimensional systems similar to Equation (11.5) (see Box 11.2). This en-
ables us to relate the stability of the multi-patch model to that of the two-
patch model by a scaling of the migration rate. The only information that
is needed about the spatial structure are the eigenvalues of the connectivity
matrix C . We now demonstrate the effect of the size of the spatial do-
main on the oscillations in the predator–prey model. The eigenvalues of
the matrix C , given above, equal λi = −1 + cos i

n π , where i = 1, . . . , n.
For a chain consisting of a single patch, there are no spatial interactions
and hence no restrictions on the possible fluctuations. For a chain of two
patches, there is one eigenvalue of C different from zero with value−1 (the
value of λ used in the previous subsection). The maximum possible fluctu-
ation can be read from Figure 11.4. Next consider a chain of three patches.
The relevant eigenvalues are − 1

2 and − 3
2 . To establish the size of possible

fluctuations for a given m, we have to read the graph in Figure 11.4 at 1
2 m

and 3
2 m. Because closed orbits that are unstable for at least one of these

two values will not be observed, only the most restrictive value matters. In
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Figure 11.5 Maximum size of the neutrally stable closed orbits in a linear chain of patches
versus chain length. This also represents the maximum observable oscillation after tran-
sients have died out. The dashed lines correspond to the extrema from Figure 11.4. Param-
eters: r = µ = 1; in (a) m = 10, in (b) m = 0.2.

this way we can construct a diagram of the maximum possible fluctuations
versus the length of the chain (Figure 11.5). With increasing chain length,
the number of eigenvalues increases and it becomes more likely that a value
lies within the range of migration rates for which the oscillations are max-
imally reduced in Figure 11.4. The range of predator migration rates for
which the fluctuations will be reduced therefore increases with the size of
the spatial domain (the number of patches). For migration rates larger than
that for which the curve in Figure 11.4 attains its minimum, the amplitude
of the maximum observable fluctuations converges toward the minimum
for a two-patch system, as can be seen in Figure 11.5a. For smaller migra-
tion rates the observable fluctuations converge with increasing domain size
toward either the minimum value possible or a larger value (Figure 11.5b).
Because for a linear chain of patches the eigenvalues of C lie between 0 and
−2, this value is the maximum fluctuation possible for twice the migration
rate in the two-patch case.

11.5 The Spatial Rosenzweig–MacArthur Model
The solutions of the multi-patch Lotka–Volterra model become spatially
homogeneous, which prevents statistical stabilization as it occurs in the
discrete-entity simulations. This is not a general property of multi-patch
models. The Lotka–Volterra models are useful for obtaining some detailed
insights into spatial predator–prey systems, but the well-mixed counterparts
to the discrete-entity simulations are not of the Lotka–Volterra type but
of the more general Rosenzweig–MacArthur type. Therefore, we briefly
discuss our present understanding of the spatial Rosenzweig–MacArthur
model, starting with a two-patch version (Jansen 1994, 1995).



11 · The Role of Space in Reducing Predator–Prey Cycles 197

When the equilibrium of the nonspatial Rosenzweig–MacArthur model
is unstable a stable limit cycle exists. The two-patch version of this model
has a spatially homogeneous limit cycle that can be unstable for interme-
diate predator migration rates. This spatially homogeneous limit cycle is
stable when the predator migration rate in a two-patch model is low. Be-
yond a critical value of predator migration, the limit cycle is unstable, as are
the larger neutrally closed orbits of the two-patch Lotka–Volterra model. In
contrast to the Lotka–Volterra model, the differences between the patches
in the spatial Rosenzweig–MacArthur model persist, giving rise to qual-
itatively different dynamics. With predator migration slightly larger than
the critical value, the dynamics are intermittent: most of the time they ex-
hibit what appears to be a regular oscillation that is interrupted from time
to time by “bursts” of irregular behavior (Bergé et al. 1984). In the two-
patch Rosenzweig–MacArthur model the nearly regular oscillation appears
when orbits dwell in the neighborhood of the unstable spatially homoge-
neous limit cycle. The bursts of irregular behavior occur when orbits leave
the vicinity of the unstable homogeneous limit cycle in a fashion similar
to that shown in Figure 11.2. For a short time the densities in the patches
differ greatly and the amplitude of the oscillation is reduced. Then the dif-
ferences in density decrease again and, slowly, the amplitude of the oscilla-
tion increases as the orbit reapproaches the unstable homogeneous limit
cycle. For migration rates just over the critical value, this sequence of
events is repeated in a chaotic fashion (type III intermittency), for larger
migration rates it is repeated regularly and the dynamics are quasi-periodic
(Jansen 1994).

In larger spatial domains the stability of the multi-patch Rosenzweig–
MacArthur model can be calculated using the method described in
Box 11.2. In the two-patch model the homogeneous limit cycle can be un-
stable for a relatively small range of intermediate predator migration rates.
This range increases roughly with the square of the number of patches. In
larger spatial domains the homogeneous limit cycle is stable only for very
low or extremely high values of the predator migration rate. The homoge-
neous limit cycle loses its stability similarly to the two-patch model: for
predator migration rates exceeding a critical value the dynamics become
intermittent and a spatio-temporal pattern develops. The pattern is formed
by groups of neighboring patches that oscillate almost in synchrony and are
separated by regions in which the oscillations are reduced (Figure 11.6).

This behavior is comparable to the behavior of coupled map lat-
tices (spatio-temporal intermittency, Kaneko 1993) and forms a transition
between an ordered pattern and fully developed spatio-temporal chaos. The
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Figure 11.6 Solutions of a 90-patch Rosenzweig–MacArthur model, given by the equations
Ṅj = Nj (1 − Nj /2) − bPj Nj /(1 + Nj ), Ṗj = bPj Nj/(1 + Nj ) − Pj + m

∑n
i=1 ci j Pi .

The patches are arranged in a linear chain with reflecting boundaries; the ci j are given
in the text; b = 9.96. For these parameters the homogeneous limit cycle is unstable for
0.2736 < m < 1832; in this simulation m = 0.28. (a) Prey densities in space and time. The
darker the shading, the higher the prey densities. (b) Prey densities versus time, averaged
over all patches (c1), in patch 40 (c2), and in the nonspatial model (c3).

phases of separated groups of synchronized patches are not related to each
other. Therefore, the oscillations in the spatially averaged densities are
reduced for two reasons: (1) because of the reduction in amplitude of
the oscillations in the transition regions between groups of synchronized
patches, and (2) because of the averaging combined with the phase differ-
ences between the synchronized groups of patches. In large spatial domains
the total densities become nearly constant, again by statistical stabilization.
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11.6 Concluding Comments
We now discuss the relation between the results of the discrete-entity sim-
ulations and the simple multi-patch models. We claim that in both models
the occurrence of large amplitude oscillations is prevented by statistical
stabilization. However, the discrete-entity and multi-patch models do dif-
fer in some important aspects. First, discrete-entity simulations account for
all spatial scales, from the individual up to the system size, whereas the
multi-patch models only distinguish scales larger than the local-population
scale. Second, demographic stochasticity is an inherent part of models that
explicitly account for individual organisms, such as the discrete-entity sim-
ulations. In contrast, all processes in the multi-patch models are fully de-
terministic and phrased in terms of densities. Third, in the discrete-entity
simulations movement is accounted for at the individual level and is funda-
mental for both the interactions among individuals (e.g., predation events)
and the dispersal of individuals between different parts of the system. The
multi-patch models only account for the dispersal of individuals between
different parts of the system as a diffusion process, while mixing at the
scale of the local population, which forms the basis of individual interac-
tions, is assumed to be rapid and homogeneous.

We have indicated how the limited mobility in discrete-entity simula-
tions naturally leads to a subdivision of the spatial scales into two cate-
gories: those that are larger than the characteristic spatial scale and those
that are smaller than it. Therefore, the spatial structure in the discrete-entity
simulations is somewhat akin to the structure artificially imposed by the
multi-patch models. In addition, the prey growth rates and functional re-
sponses in regions smaller than the characteristic scale are similar to those
in the simulations with homogeneous movement, which in large systems
should be similar to Rosenzweig–MacArthur-type differential equations.

This view is based on the models we have studied so far and certainly
needs to be substantiated more rigorously. However, if it is true, only two
differences remain between the discrete-entity simulations and the multi-
patch models: (1) both the local dynamics and individual movement in the
discrete-entity simulations are strongly influenced by demographic stochas-
ticity, and (2) the purely diffusive movement of individuals in the discrete-
entity simulations need not necessarily lead to purely diffusive movement
between local populations.

The question of whether the stabilizing mechanism in the two model
frameworks is the same cannot be answered unambiguously with the in-
formation currently available. In our opinion, the key issue is to resolve
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the role of demographic stochasticity in the discrete-entity simulations. A
speculative answer would be that the mechanisms are the same in the sense
that both can be considered statistical stabilization, but that the causes of
the effective uncoupling of the populations over the characteristic scale are
of a different nature. In the multi-patch model, the uncoupling is due to de-
terministic forces that cause symmetry breaking and to the chaotic nature of
the attractor. In the discrete-entity simulations, it is primarily a result of the
independence of the individual stochastic events. These two mechanisms
are not mutually exclusive but complement and reinforce each other. For
parameter values for which symmetry breaking does not occur, the effect
of demographic stochasticity may still be reinforced by the deterministic
trend. This makes statistical stabilization a robust phenomenon that can
explain many of the differences in dynamic behavior between spatial and
nonspatial predator–prey systems.
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Appendix 11.A Stability Analysis of a Multi-patch System
Consider a system of n patches in which k species live. The density of the j th
species in patch i is described by xi, j . The densities of all k species are given
by the vector xi = (xi,1, . . . , xi,k)

T . To keep track of the densities of all species
in all patches, we describe the state of the whole system with a k × n matrix
X = (x1, . . . , xn) that has the densities of a particular species as rows and the
densities of the k species in a particular patch as columns. We assume that, from
the perspectives of the interacting species, all patches are identical environments
and that the local dynamics are defined by Equation (11.10). The global dynamics
of the spatial system are given by a combination of local interactions and dispersal:

Ẋ = F(X)+ M XC , (11.8)

where F(X) = ( f (x1), . . . , f (xn)). The matrix M is a k × k diagonal matrix that
has the migration rates of the species on its diagonal. The matrix C is an n × n
matrix that describes how patches are connected in the system.

We perform a local stability analysis for solutions of Equation (11.8) that are
spatially homogeneous, that is, for which for all i ; xi (t) = s(t), where s(t) is
a solution of Equation (a) in Box 11.2. Such flat solutions, which are denoted
by S(t) = (s(t), . . . , s(t)), exist when C has a left eigenvector (1, . . . , 1) with
eigenvalue 0.

We transform X (t)− S(t) into �(t) using the linear transformation � = (X −
S)A, where A is an n × n matrix that is invertible, hence X − S = � A−1. The
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time derivative of � is given by

�̇ = (Ẋ − Ṡ)A

= (F(X)− F(S))A + M(X − S)C A

= (F(X)− F(S))A + M� A−1C A . (11.9)

Matrix A is chosen such that A−1C A = � is diagonal. This can be done if all
eigenvectors of C are different by choosing A = (w1, . . . , wn), where wi is a right
eigenvector of C – that is, Cwi = λiwi – and by choosing A−1 = (v1, . . . , vn)

T ,
where vi is a left eigenvector of C – that is, vi C = λivi . The matrix � has the
eigenvalues λi of C on its diagonal. We choose v1 = (1, . . . , 1), which is a left
eigenvector of C with λ1 = 0. Next we linearize the system around the homoge-
neous solution S:

�̇ = (F(X)− F(S))A + M��

= D f (s)(X − S)A + M��+ h.o.t.

≈ D f (s)� + M�� . (11.10)

Thus A transforms Equation (11.8) in the neighborhood of the spatially homoge-
neous solution in a system of n decoupled subsystems, given by Equation (b) in
Box 11.2. Hence, a spatially homogeneous solution of Equation (11.8) is asymp-
totically stable when ψi = 0 is an asymptotically stable solution of Equation (b)
in Box 11.2 for all i . Note that since the subsystem for i = 1 is the linearization
of Equation (a) in Box 11.2 around s(t), a homogeneous solution S can only be
asymptotically stable if s(t) is an asymptotically stable solution of Equation (a) in
Box 11.2.

In general there are no methods to determine the stability of Equation (b) in
Box 11.2 directly from Equation (a). However, the method described here can
greatly reduce the numerical effort, because it permits extrapolating results from
one spatial system (the simplest being a two-patch system) to more complicated
systems.
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