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Top predators that forage in a purely exploitative manner on smaller stages of a size-structured prey
population have been shown to exhibit an Allee effect. This Allee effect emerges from the changes that
predators induce in the prey-population size distribution and represents a feedback of predator density
on its own performance, in which the feedback operates through and is modified by the life history of
the prey. We demonstrate that these emergent Allee effects will occur only if the prey, in the absence of
predators, is regulated by density dependence in development through one of its juvenile stages, as
opposed to regulation through adult fecundity. In particular, for an emergent Allee effect to occur, over-
compensation is required in the maturation rate out of the regulating juvenile stage, such that a decrease
in juvenile density will increase the total maturation rate to larger/older stages. If this condition is satisfied,
predators with negative size selection, which forage on small prey, exhibit an emergent Allee effect, as do
predators with positive size selection, which forage on large adult prey. By contrast, predators that forage
on juveniles in the regulating stage never exhibit emergent Allee effects. We conclude that the basic life-
history characteristics of many species make them prone to exhibiting emergent Allee effects, resulting in
an increased likelihood that communities possess alternative stable states or exhibit catastrophic shifts in
structure and dynamics.
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1. INTRODUCTION

Classical models of food chains (Oksanen et al. 1981) pre-
dict a stepwise lengthening of the chain with increasing pro-
ductivity of the environment, in which a new top trophic
level is added to the chain at certain threshold values of
productivity (Leibold et al. 1997). For values of pro-
ductivity above the threshold the particular trophic level
will always be present. Below the threshold productivity it
can never occur, as the abundance of its food resource is
simply too low. This type of transition at the threshold pro-
ductivity is technically referred to as a supercritical bifur-
cation (Kuznetsov 1998). The supercritical nature of the
transition or bifurcation point is also observed when we
consider the response of the system to changes in the mor-
tality rate of the highest trophic level: there exists a parti-
cular threshold value of mortality above which the highest
trophic level can never occur in the ecosystem, while below
this threshold value it can always persist (see figure 1, curve
(ii)). Because of this supercritical bifurcation pattern,
classical food-chain models also predict the absence of
alternative equilibrium states. Productivity-based models
including a higher degree of complexity in the form of
omnivory and stage structure have been shown to generate
bistability at intermediate levels of productivity (Holt &
Polis 1997; Chase 1999; Diehl & Feissel 2000; Mylius et
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al. 2001). However, in these cases, the bifurcation patterns
are also supercritical and the alternative states consist of
either the predator and the resource or the predator, the
consumer and the resource.

The above models of consumers that forage in a purely
exploitative manner thus generically predict that an equi-
librium with top predators, and one without them, cannot
both be stable for the same levels of system productivity
or predator mortality. Such a bistability is possible only if
the assumption of exploitative foraging is relaxed, and it
is explicitly assumed that an Allee effect occurs in the top
predator species. Mechanisms giving rise to an Allee effect
generally involve social or cooperative processes between
multiple individuals that lead to a positive density depen-
dence at low population densities, such that collectively
the individuals do better than when alone. Examples of
such mechanisms are mate searching, social facilitation of
reproduction, predator swamping and anti-predator
aggression (Stephens & Sutherland 1999). In a recent
paper, De Roos & Persson (2002) showed that in a food
chain of consumers that forage purely exploitatively and
do not exhibit cooperative behaviour, an Allee effect can
none the less occur for top predators, if they forage on
their prey population in a size-dependent manner. In this
case the transition at the bifurcation point, where top
predators can invade an equilibrium population of their
prey, is such that for a range of system productivities or
predator mortality rates the equilibrium states both with
and without predators are stable (see figure 1, curve (i)).
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Figure 1. (a) Schematic representation of the relationship
between the predator density at equilibrium and its mortality
rate with (i) and without (ii) an Allee effect. The point
marked T is the transition or branching point at the critical
value n = n c, where the equilibrium branch representing the
equilibrium with a non-zero predator density intersects the
prey-only equilibrium branch (the P = 0 axis). In the case of
an Allee effect, the bifurcation at this critical n-value is
referred to as a subcritical, as opposed to a supercritical,
bifurcation. With an Allee effect the predator population
may collapse and go extinct if the equilibrium is close to the
folding point marked C and the predator mortality rate
increases slightly. Dashed lines indicate unstable equilibria,
solid lines indicate stable equilibria. (b) Illustrates the same
relationships but with the axes interchanged. Hence, the
predator mortality rate n(P̃) is shown as a function of the
equilibrium predator density P̃ . This relationship is used for
the analysis in this paper.

This type of transition is technically referred to as a subcrit-
ical bifurcation (Kuznetsov 1998). The Allee effect that
emerges for the top predator makes it possible that a small
increase in predator mortality causes a catastrophic collapse
of the food chain, in which the predator species is lost and
the system reaches a stable equilibrium without it (figure
1, curve (i)). We describe this phenomenon as an ‘emergent
Allee effect’, because it emerges through the food-web
structure and the life history of another population in the
community rather than from the life history of the predator
itself. It does, however, refer to a process in which predators
can establish themselves in a prey equilibrium only if invad-
ing in sufficient numbers, but predators do not cooperate
directly. Instead, predators compete with each other
through their exploitative feeding on resources.

Mechanistically, the emergent Allee effect follows from
the changes that predators induce in the size distribution
of their prey population. De Roos & Persson (2002)
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showed that if predators are present and forage on the
younger prey stages, they reduce the recruitment rate of
these small prey to subsequent life stages. As a conse-
quence, predators also reduce the density of individuals in
these subsequent life stages and thus relax the intraspecific
competition, primarily among older juvenile prey individ-
uals. This relaxation of competition induced by the pred-
ators increases the resource levels for the prey and hence
increases their fecundity and their growth and maturation
rates. Owing to the larger number of adults and their
increased fecundity, the total reproduction rate of the prey
population is increased, which leads to a higher production
of small prey individuals that are vulnerable to predation.
Altogether, the predation imposed on the younger prey
stages leads to an increase in density of these small prey
and hence to an increase in the food available for predators.
The emergent Allee effect therefore results as a conse-
quence of the feedback of predator feeding on its own per-
formance, where this feedback operates through and is
modified by the life history of their prey individuals.

In De Roos & Persson (2002), the top predator was
assumed to exhibit a negative size selection, i.e. to feed only
on the smaller size classes of the consumer. Negative size
selection is prevalent among many predator taxa (Paine
1976; Paine et al. 1985; Tonn et al. 1992; Hambright 1994;
Wahlstrom et al. 2000). However, the opposite pattern, i.e.
that the top predator feeds on the largest size classes of the
consumer, is also quite common (Brooks & Dodson 1965;
Hall et al. 1976; Wahlstrom et al. 2000). We investigate,
more generally, under which conditions an emergent Allee
effect can occur in a food chain in which predators forage
on a structured prey population. In particular, we investi-
gate whether the assumption of a negative size selection in
the top predator is necessary, or whether emergent Allee
effects may also be present when the top predator exhibits a
positive size selection. We focus primarily on the qualitative
aspect, whether the Allee effect occurs or not, and do not
discuss the more quantitative aspects, such as the extent of
the parameter range for which equilibria with and without
predators are both stable.

2. MODEL FORMULATION AND ANALYSIS

Identifying the conditions under which an emergent
Allee effect occurs is equivalent to distinguishing between
the case in which the relationship between equilibrium
predator density and predator mortality has a folded shape
and exhibits a subcritical bifurcation (as illustrated by curve
(i) in figure 1) and the case in which the bifurcation is
supercritical (curve (ii) in figure 1). Consider a predator
population, P, foraging on a particular stage of the struc-
tured prey population. Let the density of the predator-
sensitive prey stage be denoted by Y. The dynamics of the
predator, if it forages on the prey following purely
exploitative feeding, can then be described by

dP
dt

= (f f(Y) 2 n)P . (2.1)

Here, f indicates the conversion efficiency of prey biomass
into newborn predators, f(Y) represents the predator func-
tional response and n is the background mortality of the
predator. We assume that the functional response f(Y) is
a monotonically increasing function of prey density Y, for
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example, a Holling type I, type II or type III functional
response. At equilibrium, the predator imposes a density
for the predator-sensitive prey stage given by

Ỹ = f 21Sn

fD. (2.2)

(Here and below we will use a tilde to denote the
equilibrium value of a particular variable.) Owing to the
monotonicity of the functional response f(Y), the equilib-
rium prey-stage density Ỹ is an increasing function of pred-
ator mortality rate n (¶ Ỹ /¶ n . 0). Biologically speaking, the
higher the predator mortality rate, the higher the prey den-
sity that the predator needs for persistence. Equation (2.2)
shows that the exact choice of the functional response may
have quantitative consequences, but will not affect the
monotonicity of the relation between predator mortality
and prey equilibrium density.

Let the density of predator-sensitive prey in the absence
of predators be denoted by Y¤ . Predator invasion into this
equilibrium will be possible when this predator-sensitive
prey density Y¤ is larger than required by the predator for
its persistence: Y ¤ . Ỹ . Owing to the monotonic relation
between the equilibrium prey density Ỹ and the predator
mortality n (equation (2.2)) this implies that there exists a
critical value nc, below which the prey equilibrium is
unstable against predator invasion. We are interested in the
direction of the equilibrium curve relating predator density
to its mortality rate at the value n = n c (see figure 1). In the
case of an emergent Allee effect the equilibrium predator
density, P̃ , increases with increasing n along this branch at
n = n c. If this occurs, the bifurcation is subcritical and an
equilibrium with predators is feasible, even for predator
mortality rates for which the predator at low density cannot
invade the prey-only equilibrium. Considering n as a func-
tion of P̃ (see figure 1b), the condition of an increasing P̃
with an increase in n can be expressed as

¶ n

¶ P̃ |
P̃ = 0

. 0, (2.3)

where the derivative is considered along the branch of equi-
libria with predators present. Since the predator mortality
rate n is monotonically related to the equilibrium prey den-
sity Ỹ this is equivalent to

¶ Ỹ
¶ P̃ |

P̃ = 0

. 0. (2.4)

In other words, an emergent Allee effect occurs owing to
a subcritical bifurcation at n = n c where the prey-only equi-
librium becomes unstable against predator invasion if, and
only if, the equilibrium density of vulnerable prey increases
with an increase in equilibrium predator density. In effect,
equation (2.4) is a mathematical representation of the
essence of the emergent Allee effect: at low predator den-
sities an increase in the number of predators leads to an
increase in their food availability and hence to an increase
in population growth.

Now, consider that predators impose a mortality rate
s(P) on the vulnerable prey individuals. In general, this
predation rate s(P) will increase with an increase in pred-
ator density P. As a consequence, equation (2.4) can also
be expressed as
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¶ Ỹ
¶ s |

s = 0

. 0, (2.5)

in which s denotes the predator-induced mortality rate.
Whether or not size-selective predators will exhibit an

emergent Allee effect can therefore be determined by con-
sidering only the population dynamics of the prey in the
absence of predators. If a small increase in mortality of the
predator-sensitive prey individuals leads to an increase in
density of these vulnerable prey, predators will have a posi-
tive effect on their own food availability through the pre-
dation mortality they impose. In the following sections we
show that such a counter-intuitive increase in prey density
due to increased mortality may indeed occur if the prey
population is regulated through density dependence in juv-
enile development. The resulting Allee effect will give rise
to bistability between equilibria with and without predators
and the possibility that catastrophic collapses of the pred-
ator population will occur (see figure 1, curve (i)). Under
these conditions, the predator-invasion bifurcation, where
predators can invade a prey-only equilibrium, is subcritical.

3. A PREY POPULATION WITH THREE STAGES

We focus on a prey population that is subdivided into
three stages: a small larval stage, a large larval stage and an
adult stage. For convenience, we refer to these stages as
juveniles, subadults and adults, respectively. We consider
two different modes by which these populations can be
regulated: either by density dependence in the adult fec-
undity or by density dependence in the maturation and/or
mortality rate from the subadult to the adult stage. We con-
sider only intrastage competition, assuming that the density
dependence operates purely within a stage, such that the
juvenile and subadult densities do not influence adult per-
formance or vice versa, nor do the juvenile and subadult
stages influence each other’s performance.

(a) Prey populations with fecundity regulation
Let the densities of juveniles, subadult and adult individ-

uals be denoted by J, S and A, respectively. The dynamics
of the three stages can now be described by the following
system of ordinary differential equations (ODEs):

d J
dt

= b(A)A 2 r J 2 (mj 1 «) J , (3.1)

dS
dt

= r J 2 pS 2 (ms 1 l)S, (3.2)

dA
dt

= pS 2 (ma 1 a)A. (3.3)

The model is an extension of a two-stage system, which is
analysed in detail by Thieme (2003, ch. 11). In these equa-
tions the function b(A) represents the density-dependent
adult fecundity. We assume that fecundity b(A) is a monot-
onously decreasing function of A, representing a negative
feedback of adult density on population growth. This
assumption is necessary for the prey population to be regu-
lated in the absence of predators and can be considered to
arise owing to competition for resources. The precise shape
of the function b(A) is not important for the purpose of
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the analysis presented here. The parameter r represents the
maturation rate from the juvenile into the subadult stage
(r21 equals the mean duration of the juvenile period) and
mj denotes the background mortality of juveniles. The para-
meter p is the maturation rate of subadults into adults,
while ms and ma represent the background mortalities of
subadult and adult prey, respectively. The parameters «, l
and a represent the predator-induced mortalities of juven-
ile, subadult and adult prey, respectively. We will consider
only predators that forage exclusively on a single stage, on
juveniles (« . 0, l = 0 and a = 0), subadults (« = 0, l . 0
and a = 0) or adults (« = 0, l = 0 and a . 0). We will not
consider predators that forage on a combination of prey
stages.

From equations (3.1)–(3.3) we can deduce that, at
equilibrium, juvenile and subadult densities are always
proportional to adult density:

J̃ =
ms 1 l 1 p

r
S̃ =

(ms 1 l 1 p)(ma 1 a)
rp

Ã, (3.4)

S̃ =
ma 1 a

p
Ã. (3.5)

Using the equilibrium relations (3.4) and (3.5) and setting
the right-hand side of ODE (3.1) equal to 0 we can derive
an expression for the adult fecundity b(A) at equilibrium
(ignoring the trivial equilibrium J̃ = S̃ = Ã = 0):

b(Ã) =
(mj 1 « 1 r)(ms 1 l 1 p)(ma 1 a)

rp
. (3.6)

From this expression it is clear that the value of b(Ã) at
equilibrium always increases with increases in any of the
parameters «, l or a. Given that the fecundity b(A) is a
decreasing function of A, this implies that the equilibrium
adult density Ã always decreases with increases in «, l or
a. Since, at equilibrium, both juvenile and subadult den-
sities are proportional to adult density (equations (3.4)
and (3.5)), it also implies that all derivatives ¶ J̃ / ¶ «,
¶ S̃/ ¶ l and ¶ Ã/ ¶ a are always negative. In other words,
introducing a predator-imposed mortality on juveniles
(i.e. increasing « from 0), subadults (i.e. increasing l from
0) or adults (i.e. increasing a from 0) will always decrease
juvenile, subadult and adult density at equilibrium,
respectively. Hence, with fecundity regulation of the prey
population in the absence of predators an increase in pred-
ator density will always lead to a decrease in their food
availability. Predators will therefore never exhibit an
emergent Allee effect, regardless of the prey stage they
feed on (i.e. the predator-invasion bifurcation is always
supercritical; see figure 1; curve (ii)).

(b) Prey populations with regulation through
maturation and/or mortality

We first consider the case where regulation takes place
within the subadult prey stage before addressing the case
where it takes place in the juvenile stage. Given a density-
dependent maturation and mortality rate, the dynamics of
the three-stage prey population can be described by

d J
dt

= bA 2 r J 2 (mj 1 «) J , (3.7)
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dS
dt

= r J 2 p(S)S 2 (ms(S) 1 l)S, (3.8)

dA
dt

= p(S)S 2 (ma 1 a)A, (3.9)

where the parameter b represents the (now constant) adult
fecundity, the function p(S) represents the (possibly) den-
sity-dependent maturation rate from the subadult to the
adult stage and the function ms(S) represents the
(possibly) density-dependent mortality rate of the subad-
ults. Regulation through maturation and/or mortality can
occur if either the maturation rate p(S) of the subadults
decreases or the mortality rate ms(S) increases with an
increase in subadult density, or through a combination of
both of these density-dependent effects. These assump-
tions represent the negative feedback that subadult density
might exert on subadult development and mortality,
respectively. More formally, we assume that the derivative
dp/dS is either 0 or strictly negative, while the derivative
dms/dS is either 0 or strictly positive for all S. We exclude
the possibility that both derivatives are 0 for all S, since
the prey population would then not be regulated at all.

Setting the right-hand sides of equations (3.7) and (3.9)
equal to 0 allows us to express the juvenile and adult den-
sities at equilibrium in terms of the equilibrium subadult
density:

J̃ =
b

mj 1 « 1 r
Ã =

b

(ma 1 a)(mj 1 « 1 r)
p(S̃)S̃, (3.10)

Ã =
1

ma 1 a
p(S̃)S̃. (3.11)

Substituting these expressions into the right-hand side of
ODE (3.8) and equating it to 0, results in the following
equilibrium equation, determining the value of S̃:

S br

(ma 1 a)(mj 1 « 1 r)
2 1Dp(S̃) = ms(S̃) 1 l. (3.12)

Here, we have ignored the trivial equilibrium S̃ = 0. Note
that a positive prey equilibrium is feasible only if the left-
hand side of this equation, evaluated at S̃ = 0, is larger
than the right-hand side at S̃ = 0. If this condition is ful-
filled, our assumptions about p(S) and ms(S) ensure that
there exists a unique equilibrium subadult density S̃.

To determine whether or not the equilibrium juvenile,
subadult and adult densities increase or decrease with an
increase in predator-induced juvenile, subadult and adult
mortality, respectively, we have to investigate the signs of
the derivatives ¶ J̃ / ¶ «, ¶ S̃/ ¶ l and ¶ Ã/ ¶ a. In Appendix A
we show how expressions for these derivatives can be
obtained; here we present only the final results.

First, consider a predator that forages exclusively on
subadult prey (« = 0, l . 0 and a = 0). The change in sub-
adult density with an increase in subadult predation mor-
tality is given by (see Appendix A)

¶ S̃
¶ l

=
p(S̃)

(ms(S̃) 1 l)p9(S̃) 2 m9
s(S̃)p(S̃)

. (3.13)

Note that p9(S̃) and m9
s(S̃) in these expressions refer to the

derivatives dp/dS and dms/dS, evaluated at the equilibrium
subadult density S̃. According to our assumptions, p9(S) is
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either 0 or negative and m9
s(S) either 0 or positive, while

both are not simultaneously equal to 0. Together these
assumptions imply that the partial derivative ¶ S̃/ ¶ l is always
negative. Increasing predator-imposed mortality on the reg-
ulating subadult stage can therefore never increase subadult
density. The predator-invasion bifurcation of a predator
foraging on subadult prey will always be supercritical and
predators of subadults will not show an emergent Allee
effect that is induced by the life history of the prey.

Next, consider predators that forage exclusively on
either juvenile (« . 0, l = 0 and a = 0) or adult (« = 0,
l = 0 and a . 0) prey. The changes in juvenile and adult
density with an increase in juvenile and adult predation
mortality are given by (see Appendix A)

¶ J̃
¶ «

=
b

ma(mj 1 « 1 r)2

(p(S̃))2

ms(S̃)p9(S̃) 2 m9
s(S̃)p(S̃)

(p(S̃)S̃

1 ms(S̃)S̃)9 (3.14)

and

¶ Ã
¶ a

=
1

(ma 1 a)2

(p(S̃))2

ms(S̃)p9(S̃) 2 m9
s(S̃)p(S̃)

(p(S̃)S̃

1 ms(S̃)S̃)9, (3.15)

respectively. In these equations (p(S̃)S̃ 1 ms(S̃)S̃)9
denotes the derivative of the total outflow (maturation
plus mortality) rate with respect to the subadult density S
evaluated at the equilibrium subadult density S̃ (see
Appendix A). Our assumptions about p(S) and ms(S)
ensure that the term ms(S̃)p9(S̃) 2 m9

s(S̃)p(S̃) is negative,
which leads us to our main result that both derivatives
¶ J̃ / ¶ « and ¶ Ã/ ¶ a are positive if, and only if,

d
dS

(p(S)S 1 ms(S)S)|
S = S̃

, 0. (3.16)

If inequality (3.16) holds, an increase in predator-
induced mortality of either juvenile or adult prey will
increase juvenile and adult density, respectively. Hence, a
predator that forages selectively on either small or large
prey individuals will have a beneficial effect on its own
food density through its feeding. Such predator popu-
lations will exhibit an emergent Allee effect.

A graphical interpretation of our main result is
presented in figure 2: inequality (3.16) holds if the subad-
ult prey equilibrium, in the absence of any predator, is
located in a declining part of the curve, which relates the
total outflow (maturation plus mortality) rate from the
subadult stage to its density. Because we have assumed
that ms(S) is a non-decreasing function, the total mortality
rate ms(S)S is an increasing, possibly accelerating, function
of S. Inequality (3.16) can therefore hold only if the total
outflow (maturation plus mortality) rate from the subadult
stage first increases from 0 to a maximum with increasing
subadult density, subsequently decreases to a minimum
and eventually increases to infinity for very high values of
subadult density (see figure 2). Such a form of the
relationship requires that overcompensation occurs in the
total maturation rate p(S)S, i.e. that for certain values of
S, an increase in subadult density actually decreases the
total maturation rate from the stage, and that this over-
compensation is sufficiently strong. Without overcom-
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Figure 2. Schematic representation of the conditions
required for an emergent Allee effect to occur, when
predators exclusively forage on either juvenile or adult prey.
The thin dotted line indicates the total mortality rate ms(S)S,
while the thick solid line indicates the total outflow
(maturation plus mortality) rate p(S)S 1 ms(S)S as a
function of subadult density S. The point (S̃,p(S̃)S̃
1 ms(S̃)S̃) indicates the prey equilibrium in the absence of
predators, which should be located in the declining part of
the curve for an emergent Allee effect to occur.

pensation in the maturation rate an emergent Allee effect
cannot occur. Also, with a constant density-independent
mortality rate ms inequality (3.16) is more easily satisfied
than with a mortality rate that is an increasing function of
S, especially when ms is small. Emergent Allee effects
might, therefore, be expected to occur particularly in pred-
ators feeding on long-lived prey species with low back-
ground mortality.

We have carried out a completely analogous analysis in
which regulation occurs in the juvenile prey stage through
a density-dependent maturation rate r(J) and a density-
dependent mortality rate mj(J). In this case, r(J) and mj(J)
are assumed to be decreasing and increasing functions of
juvenile prey density, respectively, while the subadult
maturation and mortality rates are assumed to be density-
independent constants p and ms, respectively. The results
of this analysis (details not presented) show that under
these conditions ¶ J̃ / ¶ « is always negative, while both
¶ S̃/ ¶ l and ¶ Ã/ ¶ a are positive if, and only if,

d
d J

(r( J ) J 1 mj( J ) J )|
J = J̃

, 0. (3.17)

As in the analysis presented earlier, a predator foraging
on the regulating stage will always have a decreasing effect
on its own food density, but predators foraging on any of
the other stages will positively affect their own food den-
sity and thus exhibit an emergent Allee effect if the above
inequality holds. Also in a two-stage model involving only
juveniles and adults (no subadult prey), we have found
that if the prey population is regulated through adult fec-
undity, predators foraging on either juvenile or adult prey
cannot exhibit an emergent Allee effect (results not
shown). However, if the prey population is regulated
through density dependence in the maturation rate from
juvenile to adult and the juvenile mortality rate, predators
that selectively forage on adult prey will exhibit an emerg-
ent Allee effect if inequality (3.17) holds, while predators
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foraging only on juvenile prey cannot exhibit such an
emergent Allee effect. In general, our main result thus
states that in a prey population that is regulated through
density dependence in the overall outflow rate (maturation
plus mortality) from a particular stage, predators that
selectively forage on any of the non-regulating prey stages
will exhibit an emergent Allee effect, if there is overcom-
pensation in the regulation, such that the curve relating
the outflow rate from the regulating stage to its density is
hump shaped, and the prey equilibrium in the absence of
any predators is located in the declining part of this curve.

4. DISCUSSION

The results presented extend the study by De Roos &
Persson (2002) and reveal more clearly the conditions under
which an emergent Allee effect can occur for predators that
forage on a structured prey population in an otherwise
purely exploitative food chain. First, we predict that pred-
ators foraging on prey populations that, in the absence of
predators, are regulated through density dependence in
adult fecundity will not show an emergent Allee effect. The
same holds for prey populations that, in the absence of pred-
ators, are regulated only through a (positive) density depen-
dence in the death rate of one of its stages. The transition
point at a particular productivity or predator-mortality
threshold will always be a supercritical bifurcation point,
such that bistability of equilibria with and without predators
is not possible. This finding corresponds with the predic-
tions of classical models of food chains, since in these mod-
els the top trophic level is always regulated through
(indirect) density dependence in adult fecundity.

Second, we show that an emergent Allee effect may com-
monly occur for predators foraging on prey populations
that, in the absence of predators, are regulated by density
dependence in development through one of its juvenile
stage(s). This hypothesis is outside the scope of the classical
unstructured food-chain models as they do not account for
the life histories of individual species. The condition for an
emergent Allee effect to occur is that there must be over-
compensation in the total outflow (i.e. maturation plus
mortality) rate from the regulating stage, such that a
decrease in the density dependence will increase the total
outflow rate. Thus, the curve relating the total maturation
and death rate from the regulating stage should be hump
shaped and the prey equilibrium in the absence of predators
should be located in the declining part of the curve, as illus-
trated in figure 2. If prey mortality rate is density inde-
pendent, and prey individuals in the regulating stage
experience very low background mortality, this implies that
overcompensation in the maturation rate from the reg-
ulating stage is sufficient to ensure the occurrence of an
emergent Allee effect. However, only predators that forage
on stages other than the regulating stage will show the
effect. Predators that prefer the regulating stage will always
exhibit a supercritical bifurcation without bistability
between equilibria with and without predators. Briefly, with
overcompensation in development and low background
mortality, predators of non-regulating prey stages are likely
to exhibit an emergent Allee effect.

Third, our results predict that if the emergent Allee
effect is shown to occur for predators foraging on small
juvenile stages, it will also occur for predators of large
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adult stages of the same prey population. In the model
analysed by De Roos & Persson (2002) the regulating prey
stage occurs late in the juvenile phase for individuals that
have sizes just below the maturation threshold. Growth
of these larger juveniles is especially slow and limits their
maturation to adulthood. De Roos & Persson (2002)
extensively discuss the scenario of predators foraging on
small juveniles. Such a negative size selection is present
among predators of many taxa where larger stages of the
consumer are in a size refuge (Paine 1976; Paine et al.
1985; Tonn et al. 1992; Hambright 1994; Juanes 1994;
Boulton & Polis 1999; Chase 1999). Our present analysis
also extends the domain of emergent Allee effects to the
case of predators that select adult individuals. Thus, we
predict that the classical prey-size selection scenario, in
which planktivorous fishes drive the zooplankton com-
munity towards smaller sizes through selective feeding on
larger individuals (Brooks & Dodson 1965; Hall et al.
1976; Zaret 1980; Leibold 1989; Elser et al. 1995), may
also exhibit an emergent Allee effect.

The model presented was based on a number of simpli-
fying assumptions, to allow a detailed mathematical analy-
sis. We considered regulation through only either adult
prey fecundity or juvenile prey development and mortality,
while competition was assumed to take place only within
stages. The emergent Allee effect, however, was first
reported in a study of a three-species food chain, in which
the prey life history (growth, metabolism, feeding, repro-
duction and mortality) was explicitly modelled as a func-
tion of resource availability for the prey, and competition
for resources occurred among all prey individuals (De
Roos & Persson 2002). In addition, in the work of De
Roos & Persson (2002) it is argued that the effect also
robustly occurs in more complex models, provided that
predation is size selective and prey growth is food or den-
sity dependent. Our simplifying assumptions with respect
to the mode of prey regulation therefore do not seem to
be overly restrictive. By contrast, the assumption that
predators select only specific size classes of prey is crucial:
the more predators that forage on prey from the regulating
life stage, the less likely is the occurrence of an emergent
Allee effect.

As discussed previously, an important prerequisite for
the presence of an emergent Allee effect is the develop-
ment or maturation regulation. Many populations of
amphibians, fishes and zooplankton show clear indications
of development or maturation regulation. For example, in
fishes, which have a high adult fecundity, producing milli-
ons of eggs when spawning, the occurrence of stunted
populations is well known. In such populations, individual
growth and development is severely reduced by intraspec-
ific competition. It is also known that this stuntedness can
be countered by relaxing the competition through
increased mortality (Amundsen et al. 1993; Klemetsen et
al. 2002). Similar observations are common in zooplank-
ton species, such as Daphnia. McCauley & Murdoch
(1987) have shown that maturation regulation plays an
important part in both laboratory and field populations
of D. pulex, as juvenile growth is significantly retarded by
density-dependent suppression of food availability. Such
food-density-dependent growth has also been shown in
many amphibian species (Wilbur 1988; Werner 1994).

In general, our study shows that Allee effects may occur
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for many more populations than currently expected, and
that the presence of Allee effects does not have to depend
on the presence of the mechanisms commonly advanced
in the ecological literature, such as cooperative behaviour
or mate searching. Emergent Allee effects, as analysed in
our study, are solely the result of the changes that pred-
ators can induce in their food environment: these changes
can be induced only to a limited extent by single foragers
and will be much more pronounced when more foragers
are present. If the changes in the food environment
induced by the species actually promote its own popu-
lation performance, an emergent Allee effect will be the
result. Even though one would expect that foraging on a
particular prey species would decrease its abundance, we
show that a feedback through the life history of the prey
may actually lead to the opposite result: by inducing mor-
tality and thus relaxing intraspecific competition the abun-
dance of vulnerable prey increases. In essence, this
phenomenon is comparable to the well-known concept of
maximum sustainable yield (MSY) in harvesting. The
concept of MSY relies on the assumption that the har-
vested species follows a logistic growth process, attaining
its carrying capacity in the absence of any harvesting. By
imposing harvest mortality the yield can be increased up
to a maximum level, where the (constant) yield equals the
maximum production rate of the species at half its carry-
ing-capacity abundance. The harvesting process itself thus
induces changes that only increase the yield. Imposing too
high a yield leads to a catastrophic collapse in the har-
vested species, much like the collapses that may occur with
the emergent Allee effects studied here.

Finally, stage-structured interactions, and particularly the
presence of size refuges in prey, have in both the theoretical
and the empirical literature been suggested to have the
potential to produce alternative equilibrium states (Paine
1976; Paine et al. 1985; Bazely & Jefferies 1986; Chase
1999). Correspondingly, our analysis predicts that basic life-
history characteristics of individuals in these populations
may make them prone to exhibit alternative states. More
importantly, these alternative states may involve the pres-
ence of catastrophic behaviour. Emergent Allee effects have
therefore been argued to play a part in the recent collapse
of many exploited fish populations, such as cod in the
Northwest Atlantic (De Roos & Persson 2002).
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APPENDIX A: DERIVATION OF PARTIAL
DERIVATIVES

The derivatives ¶ J̃ / ¶ « and ¶ Ã/ ¶ a can be found by differ-
entiating equations (3.10) and (3.11), respectively, which
results in

¶ J̃
¶ «

=
b

(ma 1 a)(mj 1 « 1 r)

´ S2 1
mj 1 « 1 r

p(S̃)S̃ 1 (p(S̃)S̃)9
¶ S̃
¶ «D, (A 1)
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¶ Ã
¶ a

=
1

ma 1 aS2
1

ma 1 a
p(S̃)S̃ 1 (p(S̃)S̃)9

¶ S̃
¶ aD. (A 2)

In these expressions, we use the shorthand notation
(p(S̃)S̃)9 to denote the derivative of the total maturation
rate p(S)S with respect to the subadult density S evaluated
at the equilibrium subadult density S̃.

Equations (A 1) and (A 2) show that the derivatives
¶ J̃ / ¶ « and ¶ Ã/ ¶ a depend on the derivatives of S̃ with
respect to « and a, respectively. We thus have to derive
expressions for all three derivatives ¶ S̃/ ¶ «, ¶ S̃/ ¶ l and
¶ S̃/ ¶ a from the implicit equation (3.12). We therefore
rewrite the implicit equation (3.12) in the following form:

S br

(ma 1 a)(mj 1 « 1 r)
2 1Dp(S̃) 2 ms(S̃) = l. (A 3)

Differentiating with respect to l yields:

SS br

(ma 1 a)(mj 1 « 1 r)
2 1Dp9(S̃)2 m9

s(S̃)D¶ S̃
¶ l

= 1, (A 4)

in which we use p9(S̃) and m9
s(S̃) to denote the derivatives

dp/dS and dms/dS, respectively, evaluated at the equilib-
rium subadult density S̃. Using the identity

br

(ma 1 a)(mj 1 « 1 r)
2 1 =

ms(S̃) 1 l

p(S̃)
(A 5)

derived from equation (A 3) we can rewrite equation
(A 4) as:

(ms(S̃) 1 l)p9(S̃) 2 m9
s(S̃)p(S̃)

p(S̃)
¶ S̃
¶ l

= 1. (A 6)

Our assumption about the functions p(S) and ms(S)
ensures that the first term on the left-hand side of equation
(A 6) will always be strictly negative. We can thus apply
the implicit function theorem, which leads to expression
(3.13) for ¶ S̃/ ¶ l presented in the main text. Differentiating
equation (A 3) with respect to « yields

br

(ma 1 a)(mj 1 « 1 r)
2 1

mj 1 « 1 r
p(S̃)

1 SS br

(ma 1 a)(mj 1 « 1 r)
2 1Dp9(S̃)

2 m9
s(S̃)D¶ S̃

¶ «
= 0. (A 7)

Using identity (A 5) this equation can be rewritten as

(ms(S̃) 1 l)p9(S̃) 2 m9
s(S̃)p(S̃)

p(S̃)
¶ S̃
¶ «

=
1

mj 1 « 1 r
(ms(S̃)

1 l 1 p(S̃)). (A 8)

Application of the implicit function theorem leads to the
following expression for the partial derivative ¶ S̃/ ¶ «:

¶ S̃
¶ «

=
1

mj 1 « 1 r

(ms(S̃) 1 l 1 p(S̃))p(S̃)
(ms(S̃) 1 l)p9(S̃) 2 m9

s(S̃)p(S̃)
. (A 9)

Substitution of this expression into equation (A 1) and
recognizing that for a predator of juvenile prey l = 0 and
a = 0, yields
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¶ J̃
¶ «

=
b

ma(mj 1 « 1 r)2 ´

S2p(S̃)S̃ 1 (p(S̃)S̃)9
(ms(S̃) 1 p(S̃))p(S̃)

ms(S̃)p9(S̃) 2 m9
s(S̃)p(S̃)D.

(A 10)

The parenthetical term of this expression can be rewrit-
ten as

(p(S̃))2

ms(S̃)p9(S̃) 2 m9
s(S̃)p(S̃)

(p(S̃)S̃ 1 ms(S̃)S̃)9, (A 11)

in which (p(S̃)S̃ 1 ms(S̃)S̃)9 is used as a shorthand
notation for the derivative of the total outflow (maturation
plus mortality) rate with respect to the subadult density S
evaluated at the equilibrium subadult density S̃, i.e.

d
dS

(p(S)S 1 m(S)S)|
S = S̃

.

Substitution of expression (A 11) into equation (A 10)
leads to the equation for ¶ J̃ / ¶ « (equation (3.14)).

Following an analogous derivation, differentiation of
equation (A 3) with respect to a leads to

¶ S̃
¶ a

=
1

ma 1 a

(ms(S̃) 1 l 1 p(S̃))p(S̃)
(ms(S̃) 1 l)p9(S̃) 2 m9

s(S̃)p(S̃)
. (A 12)

For predators foraging on adult prey « = 0 and l = 0. Sub-
stitution of expression (A 12) for ¶ S̃/ ¶ a in equation (A 2)
thus leads to

¶ Ã
¶ a

=
1

(ma 1 a)2

´ S2p(S̃)S̃ 1 (p(S̃)S̃)9
(ms(S̃) 1 p(S̃))p(S̃)

ms(S̃)p9(S̃) 2 m9
s(S̃)p(S̃)D.

(A 13)

Similar manipulations as discussed above for ¶ J̃ / ¶ « result
in equation (3.15).
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