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Chapter 1

Introduction

This course is intended as an introduction to the formulation, analysis and application of math-
ematical models that describe the dynamics of biological populations. It starts at a very basic
level, probably repeating some material that is also part of an introductory ecology course.
Nonetheless, I think this rehearsal is necessary and useful, while it allows me to emphasize some
theoretical aspects that are certainly not part of an introductory ecology course.

The course material brought together here stems to a larger or lesser extent from earlier text-
books on theoretical ecology. Most notably, I have used the books by Edelstein-Keshet (1988),
Yodzis (1989) and Murray (1989) as sources for the text presented. However, all of these books
have slightly different approaches and put emphasis on slightly different aspects of theoretical
ecology. My intention is to emphasize more the biological and the conceptual aspects of the
theory in that I devote quite some attention to the formulation of models (the model building
stage) and the interpretation of the mathematical analysis in terms of biological conclusions.
This approach is probably most similar to the approach in Yodzis (1989), although I also add
some new material and I hope to put even more emphasis on biological case studies.

1.1 Some modeling philosophy

In my opinion it is fair to say that every scientist in one way or another uses models, although
they are by far not all mathematical. It is indeed hard to imagine to do science without a model:
even the most empirical scientist will have some idea or hypothetical/stylized representation in
his mind of the system that he is working on. This mental representation subsequently guides
him in making new observations that lead to a better understanding of the system studied. In
my opinion a model should hence not strife for a description, but rather a conceptualization of
a system. Moreover, this conceptualization should not just be a static reflection, but should
incorporate the workings or mechanics of the system. I hence as much as possible advocate a
mechanistic approach to model building. Given that a model is a conceptualization or abstrac-
tion, by definition it is also an incomplete and often even a false representation of the system.
The analysis of models that turn out to be at odds with observations often elucidates more
insight about the system than a model whose predictions are roughly in line with observations.
In this respect, I tend to compare models with the H0 and H1 hypotheses in statistics: Only a
rejection of the H0-hypothesis in favor of the H1-hypothesis makes a strong statement about a
particular phenomenon. Loosely speaking one could therefore say: “The best model is a wrong
one!”

To students that are new to modelling, models always seem very simplistic and hence a poor
reflection of the real world. This often leads to the misconception that experimental results

3



4 CHAPTER 1. INTRODUCTION

convey more information about a particular system than the analysis of a model. Moreover,
many people are likely to think that making a model and analysing it is a quick and easy job,
while experiments take much more time and effort. I would strongly argue against both these
misconceptions. First of all, any attempt, be it experimental or theoretical, to comprehend
how a particular system works is forced to use a simplified conceptualization of the system. In
my opinion the main difference is that, especially mathematical, models are extremely explicit
about the assumptions they make. Experimental studies often make similar assumption, but
very implicitly. Caswell (1988) has nicely discussed this issue using data that he obtained
from a purely empirical poster session during the IVth International Congress of Ecology in
Syracuse, N.Y., in 1986: The majority of experimental studies presented at the poster session
only considered one or two, at most three factors in their experimental setup. These studies
did not assume that other factors were unimportant, but they were simply not part of the
study. While building a mathematical model, a theoretician would quickly be forced to make
this particular situation explicit by making a statement like “I assume that all other factors
are constant”. Even though in essence the experimental and theoretical study are not different
in their basic assumptions, the explicitness with which a modeller states his assumptions often
meets with a lot of opposition.

Also the perception that modeling studies are quick and easy is rather misleading. It is indeed
true that it only takes an afternoon or two to write down some equations that with a lot of
handwaving might be argued to reflect a biological system. Given the availability of modern
software packages, the same afternoon would also provide sufficient time to analyse the char-
acteristics of this set of equations. Such an exercise would be comparable with a very simple
pilot experiment, which could in some cases also be carried out in a single afternoon. It is very
unlikely that either of the two, the quick and easy modeling exercise and the pilot experiment,
would yield results that are worth publishing. From my own experience of using models I can
only conclude that using mathematical models for developing theory which has a sound logical
basis and moreover deepens our insight about a particular system in my opinion takes just as
long as an experimental approach to gaining the same insight (if it were feasible). There is
essentially less difference between the two approaches as one might think of at first.

There are good reasons for mathematical models to be so widely used in ecology. Ecosystems
tend to be very complex and governed by many intricate and usually non-linear mechanistic
interactions. Thinking through these complex relationships might be attempted with just a ver-
bal reasoning approach. However, as Yodzis (1989) phrases it, this would be too mind-boggling
confusing. Mathematics is ideally suited to not only express these complex relationships in a
succinct way, but mathematics also forces one to be exact in his or her statements of a system.
As mentioned before, a mathematical model is very explicit about what exactly is assumed about
a system and what not. Moreover, once a model has been formulated mathematics offers the
appropriate tools to analyse its consequences, again exactly. Mathematics can hence be viewed
as a language that is most appropriate for logical reasoning and logical analysis of problems.
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Chapter 2

Modelling population dynamics

Population ecology is concerned with developing theory and insight about the persistence, struc-
ture and dynamics of biological communities. Often these communities are made up by a large
number of species. Necessarily, population ecology is therefore dominated by a focus on in-
terspecific interactions such as competition and predation. Studies that focus on developing
mathematical models to describe population dynamics hence also often consider more than a
single species. From this focus on multispecies communities one could easily get the impression
that modeling the dynamics of a single species is not important or uninteresting. Or one could
think that there is not much to discover in models of single populations. There are, however,
many cases in which relatively simple processes of population growth are of fundamental impor-
tance, both from a scientific and an applied point of view. In this respect one can, for example,
think about the following cases where the growth of a single population is the predominant
process:

• Exponential population growth of the human population

• Invasions of exotic or genetically modified organisms in natural environments

• Epidemics of infectious diseases and strategies for their prevention.

In the following sections I will subsequently discuss what it takes to model the dynamics of
populations and what can be learned from the analysis of the models derived. The aim is to
introduce some basic principles of population modeling and some techniques for model analysis.

2.1 Describing a population and its environment

In this section I will introduce some basic concepts of population dynamic models. The discussion
in this section is rather formal as it does not directly relate to a biological system or idea.

2.1.1 The population or p-state

Formulating a model for the dynamics of any population is equivalent to specifying a recipe
for population change. Basically, a population dynamic model answers the question how a
population is going to change in the (near) future, given (1) its current status and (2) the
environmental conditions that the population is exposed to. These changes in the population
may be changes in the total number of individuals present, i.e. in the number of population
members, but may also pertain to changes in the composition of the population. For example, the
population model may be a recipe for how the number of small and large individuals, or juvenile

7
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Figure 2.1: Growth of the world population over the last century. Data: WHO.

and adult individuals is going to change. Alternatively, the population may change in overall
abundance, while the relative frequency of old and young individuals stays constant. As an
example, consider the changes in the human population over the last 100 years (see Figure 2.1).
Not only has there been a lot of interest in the changes in the total number of people in the
world, as it grows virtually exponentially to what might be unsustainable abundances, but also
has there been a lot of interest in the population age structure or age distribution, leading to
expressions like “baby boomers” or “aging population” (see Figure 2.2). The two important
characteristics of a population for its future developments are (1) the total number of individuals
in the population and (2) the composition of the population in terms of old/young, small/large
or juvenile/adult individuals. More formally, the first of these two aspects is often referred to
as the population size or population abundance, while the second is referred to as the population
structure. Together the population abundance and structure define the population state or p-
state. The p-state is the characterization of the population in terms of how many individuals of
which type (e.g. age, size, sex) are present in the population.

2.1.2 The individual or i -state

The individual organism itself is the fundamental entity in the dynamics of the population, since
changes in the population can only come about because of events that happen with individual
organisms. For example, changes in the population abundance are the direct consequence of
birth, death, immigration and emigration of individual organisms, while changes in the pop-
ulation age- or size-distribution are the result of aging or growth in body size of individual
organisms.

If we want to keep track of the age- or size-distribution of a population it is necessary to
distinguish the individual members of the population on the basis of their age or body size,
respectively. On the other hand, in many cases the chance that a particular individual will give
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Figure 2.2: Population age distribution in the Netherlands in 1950, 1975 and 2000. Every
bar represents the number of individuals in the Netherlands in a 5 year age class, starting with
0-4 year and 5-9 year old individuals and ending with 90-94 year old individuals and individuals
of 95 year and older. Data: CBS, The Netherlands.

birth or will die strongly depends on its age or its body size. For example, in humans living
in a developed country giving birth mainly occurs between the age of 18 and 45 years (for the
mother), while death occurs mainly at older ages (see Figure 2.3).

For a variety of reasons we therefore often want to distinguish individual organisms from each
other on the basis of a number of physiological characteristics, such as age, body size or sex. The
individual state or i-state is the collection of physiological traits, that are used to characterize
individual organisms within a population and that influence its life history in terms of its chance
to reproduce, die, grow or migrate. The individual state may be any collection of variables that
characterize individuals, but its choice is usually kept limited to one or two physiological variables
(e.g. age and/or size).

2.1.3 The environmental or E -condition

The environmental conditions that a population is exposed to are important for its dynamics,
while it usually sets the limits for its development. Environmental conditions can pertain to
biotic and abiotic factors, for example, temperature, humidity, food abundance and the number
of predators or competitors around. Since the individual organism is the fundamental entity in
population dynamics, it is actually more appropriate to consider the environmental conditions
that an individual member of the population is exposed to. For a specific individual organism,
the environment is not only made up by the ambient temperature or food abundance that it is
exposed to, but also by the number and type of fellow members within the population. This
aspect of its environment is, for example, important if the individual reproduces via sexual
reproduction. As an another example, if a species is potentially cannibalistic, the number of
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Figure 2.3: Total number of births and death per 5 year age class in the Netherlands in 1999.
Every bar represents the number of individuals born (red) or died (blue) in the Netherlands in a
5 year age class, starting with 0-4 year and 5-9 year old individuals and ending with 90-94 year
old individuals and individuals of 95 year and older. Data: CBS, The Netherlands.

fellow population members may influence the risk of dying for a particular young and small
individual.

The environmental or E-condition of a particular individual hence comprises the collection
of abiotic and biotic factors, external to the individual itself, that influences its life history.
The i -state of a particular individual could hence be viewed as determining, for example, its
potential reproduction, while the E -condition will modulate this potential and thus set the
realized reproduction. Similar arguments hold for the chances of a particular individual to die
or grow.

2.2 Population balance equation

If we consider a population to be the collection of individuals of a particular species that lives
within a well-defined area, any changes in the number of individuals within this population
comes about by reproduction, death or migration of individual organisms. More formally, we
can express a population dynamic model with the following (semi-)equation:

Population change = Births − Deaths + Immigration − Emigration (2.1)
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This equation reflects the general structure of a population balance equation. The phrase “bal-
ance equation” refers to the fact that changes in population abundance are a balance between
processes that decrease this abundance (e.g. death and emigration) and processes that increase
the abundance (e.g. reproduction and immigration).

Both immigration and emigration of individuals can be neglected if the area in which the popu-
lation is considered to live is closed off to any movement of individual across its perimeter. Also
when the size of the area is very large relative to its circumference, immigration and emigra-
tion might be of negligible importance. In those cases, population dynamics is just the balance
between the number of birth and death cases of individual organisms. Population for which
immigration and emigration can be neglected are usually referred to as closed populations or
closed systems, as opposed to open populations or open systems, that are “open” to migration.
Good examples of closed systems are lakes and many of the population living in them, while
rivers or tidal zones on the shore are typical examples of open systems.

2.3 Characterizing the population

Before we can make the general population balance equation (2.1) more explicit we will have
to decide on how to characterize the population that we want to model. This process is the
first step in building or formulating a model. Model building is a crucial aspect of theoretical
population biology, as it forces a modeler to think carefully about the important aspects of the
system that he/she wants to describe. Important issues to consider while choosing a particular
representation of a population are, for example:

• Is it necessary to distinguish individual organisms from each other and if yes, what variables
are used for this purpose?

• What individual traits predominantly influence reproduction and death onf the individuals
within the population?

• Are there biotic or abiotic factors in the environment that strongly influence the life history
of individuals?

Answering these questions is not straightforward and is actually an art in itself (“the art of
modeling”). Many people that are new to modeling are tempted to say that a model should
include as many variables as possible to describe a particular system. However, ultimately
such an approach would just lead to a mathematical copy of reality, which would probably be
impossible to investigate and from which we could only learn just as much as we can learn from
studying the real-world system we want to model. What then is the aim to develop a model?

Therefore, building a population dynamic model forces a modeler to make judicious choices
about which aspects of the study system to include into the model and which to neglect. Such
choices should be decided upon on the basis a number of different considerations:

• What is the aim of the model to be developed? For example, if a model is developed to
study the age-distribution of the human population it is necessary to distinguish individuals
of the population on the basis of their age. However, for many other species (think about
algae or mosquitoes) characterizing individual organisms with their age is in most cases
not very relevant. Even more, it may be unnecessary to distinguish individual organisms
from each other at all!

• What are the important processes that influence the population dynamics? For example,
does the model have to account for immigration or emigration or is it appropriate to
consider a closed population?
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• Which factors influence the chance that individuals give birth or die? For example, are
there any predators present that individuals might fall prey to?

• What is technically feasible? This is often a very important modeling consideration. Ide-
ally, a model should be as simple as possible, while still capturing the essentials of the
system that is to be modeled (the “most parsimonious model”). It is, however, obvious
that there will always be a trade-off between model simplicity and the amount of detail
that a model can incorporate. If the model incorporates too much detail, it becomes
impossible to analyze while with too much simplicity the model looses its meaning.

Even though the individual organism is such a fundamental entity in both ecology and evolution,
most population dynamic models do not at all distinguish between different individuals. This
is very much the result of technical limitations: accounting for population structure makes the
more explicit specification of the population balance equation (2.1) just so much more difficult
and its analysis a daunting task. In general, ecological and evolutionary theory is therefore
based on so-called unstructured population models, that is, models that ignore the presence of
population structure. Developing theory that does account for differences among individuals
within the same population, i.e. on the basis of structured population models that do account
for population structure, is very much the cutting edge of contemporary ecological research.

Unstructured population models are hence based on an assumption that all individuals within a
population are identical1. The population state or p-state is in this case simply the same as the
total number of individuals within a population. This total number at a specific point in time t
will frequently be denoted by N(t). Often the explicit occurrence of the time t as an argument
is left out and we simply write N to indicate the total population abundance.

Restrictions:

To start with we will ignore any population structure and hence consider
the population abundance N as the quantity that specifies our popula-
tion state. Only in later discussions we will sometimes take into account
population structure. Moreover, we start by considering closed popu-
lations and hence neglect immigration and emigration of individuals to
and from our population under study.

2.4 Population-level and per capita rates

Consider now the population abundance at time t, indicated by N(t), and its abundance some
time later, indicated by N(t+∆t). ∆t refers here to the, possibly small, interval of time. Making
the balance equation (2.1) more explicit, we can now write

N(t+ ∆t) − N(t) =
Number of births
during ∆t

− Number of deaths
during ∆t

(2.2)

Obviously, the change in the population state (which is the same as the population abundance
due to our restrictions) is the difference between N(t+∆t) and N(t). Because we have assumed

1Strictly speaking, it is fair to say that unstructured models assume that all individuals within a population
can be represented by some “average” type.
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that there is no immigration and emigration, this change should equal the difference between
the number of individuals that have been born during the time interval ∆t and the number
that have died during that interval. Note that the quantities in the above equation all relate to
numbers of individuals.

In the previous section we imposed two restrictions on the class of models that we are going to
discuss: (1) we decided to focus on unstructured population models, which ignore population
structure, and (2) we decided to focus on closed populations. These restrictions can be viewed
as dichotomies between different classes of models: the first restriction sets the class of unstruc-
tured population models apart from the class of structured population models, while the second
restriction sets the class of models for closed populations apart from those for open populations.
Here we encounter another dichotomy, which sets apart the class of discrete-time models from
continuous-time models.

Many text books on population modeling start by considering population dynamics in discrete
time. This is a very useful assumption, for example, when the aim is to model a population
of annual plants. If reproduction only occurs once a year (or once a season) we could simply
choose to specify the changes in the population state from year to year without specifying how
the number of individuals in the population changes within a year. Take as an example a
population of annual plants that reproduce by producing seeds, which overwinter and germinate
in the next year. We could model this population by observing the number of plants present
at the beginning of a growing season, say May 1st of every year. N(t) would in this case be
the number of plants in one year and N(t+ ∆t) the number in the year after, while ∆t equals
exactly 1 year. Specifying the number of deaths during ∆t (= 1 year) is straightforward, as
all plants are annual and hence die before the next census time at t + ∆t. The modeling of
the dynamics in this case would boil down to specifying how the number of plants in a specific
year (at time t + ∆t) is related to the number of plants in the year before (at time t). This
involves specifying the relationship between the number of seeds produced by a population of
size N(t), the probability that a seed germinates into a seedling and the probability that this
seedling grows into a new plant. The essence is that the model only describes what the state of
the population is at May 1st of each year. Two different species might show the same population
dynamics (when censused at May 1st of each year), while the one species flowers only in May
with all plants dying before the end of June and the other flowers all summer and plants die only
during winter. In other words, discrete time models only determine the state of the (modeled)
population at specific points in time and do not tell what happens inbetween.

None of the above arguments is really problematic and discrete-time models have been widely and
successfully used to develop many pieces of important ecological theory. There are, however,
some subtle but fundamental differences between the mathematical theory on discrete-time
models and continuous-time models. In my opinion, these differences have often caused quite a
bit of confusion with students that were new to modeling population dynamics. Hence, I decided
not to treat both discrete-time and continuous-time models next to each other as separate model
classes, but instead to discuss one of them at length and in detail. Hence, I will discuss basic
theory about population models using continuous-time models, ignoring for the time being the
considerable amount of theory on discrete-time models.

A continuous-time version of the balance equation (2.2) can be derived by dividing both sides
of the equation by ∆t:

N(t+ ∆t) − N(t)

∆t
=

Number of births
during ∆t

∆t
−

Number of deaths
during ∆t

∆t

By taking the limit ∆t → 0, the left-hand side of this equation becomes the derivative of N(t)
with respect to time t, while the right-hand side becomes the difference between the rate with
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which individuals are born into the population and the rate with which individuals disappear
from the population due to death. Hence, the continuous-time, population balance equation can
be written as:

dN(t)

d t
= B(N) − D(N) (2.3)

In this balance equation, I have written the birth and death rate B(N) andD(N), respectively, as
explicit function of the total number of individuals N to indicate that the number of individuals
present in the population usually to a very large extent determine the number of births and
deaths that do occur during a certain time period. Equation (2.3) is an ordinary differential
equation or ODE for short. Here the model is specified by a single ODE, but they may also
occur as systems of ODEs in more complex situations, for example, when we want to model
more than a single population. The formulation and analysis of ODEs, both single equations
and system of two or more ODEs, is a major focus of the following chapters.

The function B(N) and D(N) are the population birth rate and population death rate, respec-
tively. These are therefore population-level quantities, because they, for example, refer to the
total number of offspring produced by the entire population. Because all individuals in the pop-
ulation are assumed identical any way, the balance equation (2.3) can be rewritten in terms of
individual-level birth and death rates, the so-called per capita birth rate and per capita death
rate, respectively. By defining the per capita birth rate b(N) as:

b(N) =
B(N)

N
(2.4)

and the per capita death rate d(N) as:

d(N) =
D(N)

N
(2.5)

the balance equation (2.3) can be rewritten as:

dN(t)

d t
= b(N)N − d(N)N (2.6)

The equation above is a general population balance equation for changes in the population
abundance occurring in continuous time. It will be the basis of many of the population models
in the forthcoming sections.

The rates that occur in the population balance equation are not as easy to interpret as the
number of individuals born or dying during a particular period of time which occur in the
discrete-time balance equation (2.2). Both the population-level birth and death rate B(N) and
(D(N), respectively, and the per capita birth and death rate b(N) and d(N), respectively, have
a formal interpretation as a probability per unit time. For the per capita death rate d(N) this
means, for example, that within an timespan ∆t that is infinitesimally short, an individual has a
probability to die equal to d(N)∆t. Also, on average the time elapsing between two death events
equals 1/d(N). Every individual of the population thus has an expected lifetime of 1/d(N) units
of time. Similar arguments hold for the other rate functions, such that the average time between
two consecutive times at which a particular individual gives birth equals 1/b(N).

The population balance equation (2.6) does not specify a complete population dynamic model
yet, as it only determines how the population abundance is going to change over time. We
therefore still have to specify from what value it is going to change to start with. In other
words, we have to specify an initial state of our population. Usually, this is done by specifying
the number of individuals present at some particular point in time, which then simultaneously
is chosen to equal the start of our time axis (t = 0):

N(0) = N0 (2.7)
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In this initial state equation, the quantity N0 is a known value from which the population
dynamics is going to develop.

2.5 Model building

Building a model to describe the dynamics of a particular population or in more complicated
cases a collection of populations can be separated into two distinct steps:

• First, we have to choose the mathematical representation of the population in our model.
This issue was addressed in section 2.3, where we also discussed some issues to consider
when choosing a particular representation. For example, it was discussed whether to in-
clude any more aspects of the population in our model than the total number of individuals
(i.e. the abundance).

• Second, once we have chosen a particular representation for the population it is necessary
to write down the population balance equation and to specify the exact form of the rates
(either per capita or population-level rates) that occur in it.

It should be noted that equation (2.6) is specific for a model in which the population is only
characterized by its abundance N . If we choose a slightly more complicated representation
of our population the corresponding balance equation will be analogous but slightly different.
For example, if we would choose to keep track of both juvenile and adult individuals in the
population a balance equation for both classes of individuals should be specified. This is still a
relatively simple extension of the basic equation (2.6), but things can be much more complicated
if we, for example, want to keep track of the entire age distribution of the population.

The second step in formulating a model involves specifying the rate functions that occur in the
population balance equation. Determining their actual form as dependent on the population
abundance N is again where modeling becomes an art instead of a scientific procedure. As was
the case for choosing the appropriate population representation there is no simple recipe how to
do it and the process of model building can hence only be discussed by example. I will introduce
here 3 examples which will be used in the next chapter to illustrate the steps in model analysis.

2.5.1 Exponential population growth

Malthus (1798) investigated the birth and death register of his parish and concluded that the
population of his parish doubled every 30 years. He considered the following population balance
equation:

dN(t)

d t
= β N − δ N (2.8)

in which β and δ are now the specific form chosen for the per capita birth and death rate
b(N) and d(N). Implicitly, Malthus (1798) hence made two very specific assumptions about
the per capita birth and death rate b(N) and d(N) in that that they were constant and hence
independent of N (It is perhaps fairer to say that he did not consider at all that b(N) and d(N)
could depend on N , but the end effect is the same). Because in this case b(N) = β and d(N) = δ
do not depend on the population density N , this model is density independent . In a density
independent model the per capita rates are not influenced by any aspect of the population at
all, neither direct nor indirect. An indirect population effect on the per capita rates might occur
if the population feeds on a food resource, depleting it to low levels, and the food density itself
subsequently affects the per capita birth and death rate. As an aside, note that when the per
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capita birth or death rate is density independent, the population-level birth and death rates are
linear in (i.e. proportional to) N .

The population balance equation (2.8) used by Malthus (1798) can be written more succinctly
as:

dN(t)

d t
= r N (2.9)

where

r = β − δ (2.10)

Equation (2.9) is the famous exponential growth equation or “Malthus’ growth law”. The
quantity r is known as the population growth rate or the Malthusian parameter .

Equation (2.9) can easily be solved once we have also specified the initial state of the population
(i.e. the population abundance N0 at time t = 0; see eq. (2.7)). As an explicit function of time
t the solution is:

N(t) = N0 e
rt (2.11)

On the basis of Malthus’ observation that the population of his parish doubled every 30 years
we can now estimate the parameter r to equal r = 0.0231 year−1 (try to derive this estimate!).
In other words, the population of Malthus’ parish was estimated to grow with 2.31% a year,
which is not too far off the current growth rate of the human population (Fig. 2.1)!

2.5.2 Logistic population growth

The story goes that the prediction by Malthus (1798) led to some concern, because it implied
that the human population would quickly exhaust its natural resources. Verhulst (1838) claimed
that the model proposed by Malthus (1798) was too simplistic as it only included linear terms.
Verhulst (1838) hence wrote as an alternative model:

dN(t)

d t
= aN − bN2 (2.12)

including an additional quadratic term with a negative coefficient.

There are a number of different ways in which this particular form of the population balance
equation might come about. Let me suggest here one scenario that leads to the form proposed
by Verhulst (1838) by considering a population in which the per capita birth rate decreases with
population abundance. The simplest way to achieve such a density dependence is by assuming
that the parameter β that was already introduced in Malthus’ equation (2.8) is actually the per
capita birth rate at very low (actually infinitessimaly small) population abundances. Moreover,
with increasing values of the population abundance N it is assumed to decrease linearly with N
to reach a value of 0 at some arbitrary population density N = Γ. If I in addition assume that
the per capita death rate is again density independent, these assumptions lead to the following
balance equation:

dN(t)

d t
= β N

(
1 − N

Γ

)
− δ N (2.13)

With a little bit of algebraic manipulation this equation can be rewritten in a far more familiar
form, the logistic growth equation:

dN(t)

d t
= r N

(
1 − N

K

)
(2.14)
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in which the parameters r and K, representing the population growth rate and its carrying
capacity, respectively, are related to the parameters β, δ and Γ from equation (2.13) by:

r = β − δ (2.15)

K =
β − δ
β

Γ (2.16)

The logistic growth equation (2.14) must be familiar to any student that has followed an in-
troductory ecology course. However, it can be conveniently used to discuss some techniques to
analyze population dynamic models in terms of ODEs.

The logistic growth equation (2.14) can not be taken seriously as a model that quantitatively
describes the dynamics of any real-life population. There are examples of isolated laboratory
populations (usually bacteria), whose growth in time, i.e. the function N(t), can be fitted quite
well by the solution of the logistic equation, but a number of alternative equations would fit
such data with similar goodness-of-fit. In other words, the measurement noise in population
data often is far too big to unambiguously decide that the growth of the population is obeying
a particular model.

The real utility of the logistic equation is, rather, as an embodiment of a qualitative behavior
which is not so uncommon (except for humans): a population that starts out with a small
number of individuals will ultimately grow to a maximum density, its carrying capacity, which
is set by environmental conditions.

2.5.3 Two-sexes population growth

Here I also formulate a model for a population that reproduces by means of sexual reproduction.
Unlike the exponential and logistic growth model, this one is not an established population
dynamic model that has been widely used in the population biological literature. Rather, it
is introduced here mainly to illustrate some techniques for model analysis in the next chapter.
The assumptions on which this model is based and its mathematical form are also much more
debatable than the the previous two models introduced.

To model a population with sexual reproduction it is necessary to derive a mathematical rep-
resentation for the process of two individuals encountering each other, mating and producing
one or more offspring. Especially how to describe the rate at which encounters between sexual
partners take place is not an easy or straightforward task. I follow an approach that has a long
history in the modeling of chemical reactions: when two compounds A and B in a dilute gas
or a solution react to yield a product C, the rate at which this chemical reaction takes place is
assumed to be proportional to the densities of both reactants A and B. Hence, for the chemical
reaction

A + B −→ C

the rate with which the product C is produced is proportional to

[A] · [B]

where [ ] refers to the concentration of a substance in the medium. The assumption that the rate
of product formation is proportional to the product of the reactant concentrations has become
known as the law of mass action or mass action law . Two requirements for it to hold is that
the reactants move about randomly and are uniformly distributed through space.

Analogously to this approach from chemical reaction kinetics, I assume that the rate at which
sexual partners encounter each other is proportional to the product of their abundance. If I



18 CHAPTER 2. MODELLING POPULATION DYNAMICS

furthermore assume that the sex ratio in the population is constant, the rate of encounter is
proportional to the squared abundance N2. On encounter I assume that the partners produce
offspring at a rate that decreases linearly with the population abundance N , as in the logistic
growth equation. Hence, population reproduction can be described by a term

β N2

(
1 − N

Γ

)
in which the term (1−N/Γ) represents the density dependent reduction in offspring production.
To describe the death of individuals I simply assume that the rate of mortality equals δ, as
has been similarly assumed in the exponential and logistic growth equation. The rate at which
individuals disappear from the population through death hence equals δN . Putting these model
pieces together, the dynamics of a population reproducing by means of sexual reproduction
could therefore be described by the following ODE:

dN(t)

d t
= β N2

(
1 − N

Γ

)
− δ N (2.17)

2.6 Parameters and state variables

Above I already used the phrases parameter and state variables, without really discussing their
distinction. It is very important to distinguish what is a parameter and what is a state variable
in a model. State variables are those quantities (1) that characterize the state of the system,
in our case the biological population, and (2) that change over time. It is the change in these
quantities that the model determines. Parameters, on the other hand, are also characteristic for
a specific system (i.e. population), but parameters do not change over time. They hence occur
in the population dynamic models above, but the models do not specify that they change over
time. They can be viewed as a kind of innate properties of the system.

In all the examples above, there was only a single state variable, i.e. the population abundance
indicated with N . On the other hand, the quantities r (in both the exponential and logistic
growth equation), K (in the logistic growth equation), Γ (in the logistic and two-sexes population
growth model) and β and δ (in all three models) are all parameters. The parameters r and K
can furthermore be identified as compound parameters, because they are in reality a combination
of the low-level parameters β, δ and Γ (see equation (2.10), (2.15) and (2.16)).

Important:

In the following chapters I will adopt the convention, which is common
to most if not all population dynamic models, that model parameters
are introduced in such a way that they can only meaningfully take on
positive values. Since I have earlier on imposed the restriction that the
populations considered are only represented by their abundance, the
same positivity condition will hold for the state variables in the models
as well.
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2.7 Deterministic and stochastic models

In the following chapters I will mainly formulate and analyze deterministic models, as opposed
to stochastic models. Given an initial state of the population, deterministic models specify a
unique dynamic path of the system. Such a dynamic path is called a trajectory . Hence, a
deterministic model attaches to every single initial condition, a single and unique trajectory.
On the other hand, in stochastic models the initial state of the population determines an entire
family of trajectories and every one of these may occur with a given probability.

A simple example may illustrate the distinction between these two model frameworks. Imagine
the fate of the last two individuals of an endangered species in a particular habitat. Each of
these two individuals might have a chance to die, say, 0.1% per day. For simplicity I will assume
that the two individuals are of the same sex and can hence not reproduce. How long these two
individuals will survive, when the first and last one will die, is the outcome of a chance process.
In other words, given the starting condition (the last two individuals) there are many different
possible outcomes and which one will actually happen is not a priori determined. The only thing
possible to do is to calculate the probability that one or the other scenario (or trajectory) will
occur.

Now imagine another population of individuals with a probability of 0.1% per day to die. How-
ever, this population consists of a very large number of individuals, say 1010. Given this large
number of individuals we can expect that approximately 107 of these individuals will die every
day. Because it is the outcome of a large number of independent chance processes (for every
individual one) this number will also be relatively constant (This is due to the fact that the
variance in the mean outcome of a large number of independent trials decreases with the num-
ber of trials). We can hence rather faithfully represent the death process in this population by
a deterministic rate of 0.1% of the total population per day.

Most, if not all, population dynamic processes are stochastic: individuals usually have a chance to
die or give birth and hardly ever have a predestined time of reproduction or death. Nonetheless,
the example above indicates that such stochastic dynamics can in principle be faithfully described
by a deterministic model as long as the number of individuals is large. Hence, a deterministic
model can be viewed as the limit of a particular stochastic model for when the number of
individuals in the population becomes large, a fact which is usually referred to as the law
of large numbers. I will focus on deterministic population models, because there exist tools
and techniques to analyze there behavior. The analysis of stochastic population models is
technically much more demanding and the only thing one can usually do is just simulate there
dynamics. In section 3.2 I will argue that such simulations (often also referred to as Mont Carlo
simulations) have sometimes very limited power to elucidate the dynamic possibilities that a
model allows. Deterministic models allow a much more rigorous and detailed investigation of
the model potential.
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Chapter 3

Single ordinary differential equations

In the previous chapter we have presented three different models for the growth of a single
population, that can generally be written in the form:

dN(t)

d t
= f(N) (3.1)

The function f(N) differed among the three different models introduced

Exponential growth equation: f(N) = r N (3.2)

Logistic growth equation: f(N) = r N

(
1 − N

K

)
(3.3)

Two-sexes growth equation: f(N) = β N2

(
1 − N

Γ

)
− δ N (3.4)

In this chapter we will discuss basic techniques that can be used to analyze the predictions
of these models. Although the models itself are overly simply and in any case much simpler
than the population dynamic models that are used in scientific studies, the basic techniques can
conveniently be introduced using these simple growth equations.

It should be realized that the process of model analysis as such is a purely mathematical pro-
cedure. Hence, it is possible to give a more or less complete recipe for analyzing the equations
that determine a population dynamic model. However, the analysis of the equations can never
be the final result of a population dynamical study (unless you are a mathematician and just
interested in the equations). Once the analysis of the equations is complete, the results of that
analysis have to be translated into biological conclusions about the system, that the model was
developed for. Even though many beginning students may think the mathematics itself a stum-
bling block, the step preceding and following the mathematical analysis, i.e building the model
and interpreting the mathematical results into biological conclusions, turn out to be usually far
more difficult and time consuming and in general requires far deeper thinking than the mathe-
matical analysis does! As for model building, there is also no clear-cut recipe how to interpret
the mathematical results in biological terms. Again, this can only be discussed by example.

3.1 Explicit solutions

Ideally, the analysis of a mathematical model should simply consist of specifying its explicit
solution. This means that given the ODE for N(t) and the density of individuals at time t = 0

21
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(N(0)), we should write down the explicit expression for N(t). An explicit solution would allow
a very complete analysis of the properties of the model, including numerical studies showing the
development of the population over time. However, an explicit solution is seldom possible unless
the right-hand side of the ODE (i.e. the function f(N) in the ODE (3.1)) is linear in N . In the
previous chapter we have discussed that a linear form of f(N) implies that the per capita birth
and death rates are density independent, i.e. independent of N itself.

For the exponential growth equation (3.2) it is hence possible to write down the explicit solution:

N(t) = N0 e
rt (3.5)

where N0 is the population abundance at t = 0 and the parameter r is the population growth
rate. This explicit solution can be obtained by re-writing the ODE to separate the two variables
occurring in the ODE, i.e. time t and population abundance N , respectively. I leave a complete
treatment of this integration to the reader as an exercise.

It must be said that also the logistic growth equation (3.3) allows for an explicit solution in
terms of the population abundance N as a function of time t. This solution can be obtained by
first re-writing the ODE as:

K

N (K −N)
dN = r dt .

Subsequently, the left-hand side of this equation can be separated in a term with denominator
N and a term with denominator K −N :(

1

N
+

1

K −N

)
dN = r dt .

The left- and right-hand side of this last equation can be integrated to yield:

ln(N)

∣∣∣∣t
0

− ln(K −N)

∣∣∣∣t
0

= rt

From this the following explicit solution to the logistic growth equation (3.3) can be obtained:

N(t) =
N0K

N0 + (K −N0) e−rt
(3.6)

In the explicit solution the initial condition has already been used to substitute N(0) by the
value N0.

The logistic growth equation:
dN(t)

d t
= r N

(
1 − N

K

)
(3.7)

is an example of a non-linear differential equation, while the exponential growth equation:

dN(t)

d t
= r N (3.8)

is a linear differential equation with constant coefficients (The phrase “constant coefficient”
refers to the fact that the only parameter in the equation r does not depend on time t). The
distinction between linear and non-linear ODEs is a very important one, as we have seen that
linear ODEs with constant coefficients can be solved explicitly. This even holds for systems
of coupled, linear ODEs, which may occur in models with multiple species that interact with
each other (see later chapters). Non-linear ODEs, on the other hand, can only be solved in
exceptional cases, such as in case of the logistic growth equation. Coupled systems of non-linear
ODEs are virtually never possible to solve explicitly.



3.2. NUMERICAL INTEGRATION 23

What then is exactly a linear differential equation? The definition of a linear ODEs requires the
right-hand side f(N) to have the following properties:

f(N1 +N2) = f(N1) + f(N2) (3.9)

f(aN1) = a f(N1) (3.10)

In words, if the right-hand side function is applied to the sum of two quantities, the results
should be the same as the sum of the function applied to the two quantities separately. Moreover,
applying the right-hand side function to a value of N that is twice as large, should be identical
to twice the result of applying the function to N itself. It should be noted that these two
requirements decide upon the linearity of both single and systems of ODEs. In the latter case,
the quantity N represents a vector and f(N) is a vector-valued function.

3.2 Numerical integration

In the previous section it was explained that only a limited number of, mostly linear, ODEs allow
an explicit solution as a function of time t. Moreover, even if an explicit solution can be given,
how do we proceed to gain insight into the properties of the differential equations? First of all,
what are the properties of an ODE? Of course, modern computer facilities make it very easy to
just draw an explicit solution N(t) as a function of time t in a simple graph. A requirement to
do this is that all parameters in the model, i.e. the growth rate r and the carrying capacity K in
the logistic growth equation, and the initial state N(0) are given specific numerical values. Even
more complex models, consisting of multiple species that interact or a single species with an age
structure taken into account, can be studied in this way: once all parameters and the initial
condition of a model are given explicit values, the solution as a function of time t can usually be
obtained in a rather straightforward manner. If the explicit solution of the ODE is not available,
as is the case for most systems of ODEs, numerical integration methods are readily available to
generate the numerical solution of a system of ODEs (see, for example, Press et al. 1988, for
a selection of numerical methods for ODEs). This procedure of obtaining a numerical solution
for a system of ODEs for which both the parameters and the initial state are given explicit
numerical values, is referred to as numerical integration or sometimes numerical simulation (the
first term is actually more appropriate, while “numerical simulation” often implies that the
model is stochastic). Methods for numerical integration come in a large variety, which I will not
further discuss here.

Numerical integration of a model is a very good way to quickly gain some superficial insight into
the behavior of the model. By just repetitively choosing parameter values and initial conditions,
it can show whether the populations will persist for the chosen values or not, whether they will
approach constant values or whether they fluctuate indefinitely over time. However, a numerical
integration only gives insight about one particular set of parameters and one particular set of
initial conditions. In later chapters we will encounter models that show drastically different
behavior for two slightly different values of a single parameter. Let’s for the moment assume
that you are investigating a model that can indeed show these drastically different types of
behavior for parameter values that are only slightly different. What should you do?

One of the first reactions that students new to modeling show is to ask what the appropriate
parameter value is that holds for the natural situation. This is like asking: Does the population
growth rate in the logistic equation a value of r = 0.3 or r = 0.29? There are at least two good
reasons why it is not very useful to ask what the “real” value of r for the ecological system you
are studying:
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• First of all, parameter values are always hard to extract from experimental data. Given
the noise that is usually present in measurements on a system, it is, for example, undoable
to decide whether r = 0.3 is more appropriate than r = 0.29 in an exponential growth
equation.

• Second of all, I have argued in chapter 1 that a model is a conceptualization of a system.
As such it is an abstraction and hence parameters are not necessarily objects that can be
unambiguously identified in the system, as they might only exist in our conceptualization
of it. This is a rather difficult issue to explain when encountered for the first time, but in
my opinion it is fair to say that the existence of such a thing as a carrying capacity K of
a natural population is debatable.

Basically, these two reasons state that there is a lot of uncertainty, not just in the value of
model parameters, but even in the conceptualization of the system: the same ecological system
might be equally well represented by a conceptualization that incorporates slightly different
mathematical functions.

Because of these uncertainties it is often much more useful to try and gain an understanding of
the qualitative behavior of the model. This means that one tries to answer the questions:

• What different types or classes of dynamics can the model exhibit? In other words, does
the model predict fluctuating population abundances for certain parameter values?

• What are approximately the ranges of parameter values and initial conditions for which
the different types of dynamics occur in the model?

• At which parameter values do transitions between the different types of dynamics occur?

I will loosely refer to these investigations into the qualitative behavior of the population model
as a bifurcation analysis of the model, even though the exact meaning of bifurcation analysis is
arguably slightly different. Also, why it is called bifurcation analysis will only become clear in
later chapters.

3.3 Analyzing flow patterns

A rather straightforward and intuitive way of analyzing the qualitative properties of a population
dynamic model is by means of graphical methods. Graphical analysis is especially useful for
simple models formulated in a single or at most two differential equations. The aim is to
evaluate the right-hand side f(N) of the ODE (3.1) and draw in figures for which values of N
the population abundance will increase and for which it will decrease. Because it is aimed at
resolving in which direction N will change given its current value, the approach is also referred
to as the analysis of flow patterns.

Imagine now the exponential growth equation (3.2). Depending on the values of the birth and
death rates β and δ, respectively, the right-hand side f(N) is either a linearly increasing, strictly
positive or a linearly decreasing, strictly negative function of N (or zero for all values of N when
r = 0, but this case is too exceptional to discuss). For positive values of f(N) the population
abundance will increase, while for negative values the abundance will decrease, as is shown in
the following sketch:
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f(N)

N

f(N)

N

Now consider the logistic equation (3.3). A graph of the the right-hand side f(N) as a function
of N is given below:

K

f(N)

N

Obviously, the right-hand side f(N) equals 0 for both N = 0 and N = K. Hence, for these
two values of the population abundance the model predicts no change. If the initial population
abundance would be either N(0) = 0 or N(0) = K the abundance would remain 0 and K for all
times. Such a value for the population abundance is referred to as a steady state or equilibrium.
More generally, a steady state is such a state that, if started from it initially, the population
would keep for all times.

However, even if the population would remain in a steady state once started in that state, it
does not imply that the population would also approach that state if the initial population
state is only close to the steady state. Or if the population would be displaced from the steady
state only a little bit, it will not necessarily return to a steady state. The graph of the logistic
growth equation shown above, indicates that if the population abundance would be displaced
away from N = 0 to a small positive value, the population abundance would actually increase
even further, because the value of f(N) is positive for 0 < N < K. On the other hand, if the
population abundance would be displaced from the steady state N = K to a slightly smaller



26 CHAPTER 3. SINGLE ORDINARY DIFFERENTIAL EQUATIONS

population abundance, the population growth rate would change from f(N) = 0 to a positive
value. If the population abundance would be displaced from the steady state N = K to a
slightly larger population abundance, the population growth rate would change from f(N) = 0
to a negative value. Hence, if the population abundance is perturbed away from the steady
state N = K in whatever direction (positive or negative) it would approach the steady state
anew. The steady state N = K is hence referred to as a stable equilibrium. The steady state
N = 0, on the other hand, is unstable, as the population abundance would grow away from it
when perturbed. Clearly, the analysis of the flow of the population abundance (i.e. the arrows
in the graphs above) in the neighborhood of a steady state has shown us the general behavior of
the logistic growth equation: when starting from a non-zero positive population abundance, the
model predicts that the population will grow asymptotically to the stable equilibrium N = K
(Note that mathematically the population abundance will never become equal to K, but will
only come infinitesimally close to it). Even if the population abundance is perturbed away from
this equilibrium, it will ultimately return to it.

Finally, lets consider the two-sexes population growth model. First we have to try to sketch a
graph of the function f(N) (see equation (3.4)) as a function of its argument N . How to do this
is the subject of basic function analysis and will not be discussed here in detail. The points to
note about the function f(N) are:

• the growth rate f(N) equals 0 for N = 0 (as should be the case for any dynamic model of
a closed population),

• for non-zero, but very small, positive values of N f(N) decreases to negative values,

• for very large values of N the value of f(N) becomes very large, but negative, and

• as long as
β Γ > 4 δ

the function f(N) has two additional roots for which f(N) = 0. These roots will be
indicated with the symbols N and N , respectively.

Altogether, this leads to the following qualitative graph of f(N) as a function of N :

N N

f(N)

N

From this graph we can infer that the two-sexes population model has 3 steady states: N = 0,
N = N and N = N , respectively. As before, if the population would initially have an abundance
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equal to one of these three values, it would keep the particular abundance for all times. However,
the graph above also shows that not all of these 3 steady states are stable. In contrast to the
logistic growth equation, if the population abundance is perturbed away from N = 0 to a small
positive abundance, its growth rate will be negative. Hence, it will decrease and approach N = 0
again. The steady state N = 0 is therefore stable. Similarly, if the population abundance is
perturbed away from N = N to a slightly larger value, it will also have a negative growth rate,
hence decrease and approach N = N anew. If perturbed away from N = N to a slightly smaller
value, the population growth rate will be positive and N = N is approached as well. The steady
state N = N is therefore also stable.

The steady state N = N is an entirely different matter: if perturbed away from this abundance
to a slightly smaller value of N , the population growth rate will be negative and the abundance
will decrease and eventually approach the steady state N = 0. On the other hand, if perturbed
away from this abundance to a slightly larger value, the population growth rate will be positive
and the abundance will increase to eventually approach the steady state N = N . The steady
state N = N hence is an unstable steady state, because whenever the population abundance is
perturbed away from this steady state, it will only move farther and farther away. In addition,
it has the character of a breakpoint: it separates values of N that would eventually lead to
approaching the stable steady state N = 0 from those values of N that would eventually lead
to approaching the stable steady state N = N . An unstable steady state like the one N = N
encountered here is called a saddle point .

From the graphs of the logistic and the two-sexes growth equations shown above, we can also
deduce that at stable steady states the curve of f(N) as a function of N has a negative slope,
while at unstable steady states (i.e. saddle points) the slope of f(N) is positive.

Two more points can be deduced from the graphs presented here:

• Every stable steady state has a basin of attraction. This is the technical term for those
initial states of a population dynamic model that would eventually lead to the particular
steady state considered. Hence, the basin of attraction of the steady state N = 0 are all
those population abundances for which

0 < N < N .

while the basin of attraction of the steady state N = N are all those population abundances
for which

N > N .

The boundary between the basins of attraction of two different, stable steady states is
referred to as a separatrix . When, as in the cases considered here, the model is only one-
dimensional (meaning it consists of only a single ODE) a separatrix is only a single point,
in the two-sexes population model considered here, the saddle point N = N . If the model
is, however, of higher dimensions (i.e.described by more ODEs) separatrices can be lines,
(curved) planes or even more complicated geometrical objects.

• The stability of a stable steady state may only be a relative concept: if the population
abundance would initially be in the stable steady state N = N , but would be drastically
perturbed to a value below N = N , the population abundance would approach the other
stable steady state N = 0. Hence, that a steady state is stable against perturbations
only holds for small perturbations that do not bring the abundance outside the basin
of attraction of the steady state. Mathematically, we therefore consider only the local
stability of a steady state. It would hence be more appropriate to refer to a steady state
as locally stable. Nonetheless, the adjective “locally” is often dropped in the ecological
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literature. This has led to quite some confusion and different interpretations of the phrase
stability. When discussing steady states, I will always use the adjective “stable” in the
sense of “locally stable”, unless explicitly indicated otherwise. For example, for the logistic
growth equation the population would always approach the steady state N = K, whatever
the initial population abundance is. This steady state is not only locally stable but also
globally stable.

A remarkable feature of the two-sexes population growth model is that it can not grow away
from N = 0, which means that for small, but positive abundances N the population will actually
decline, even though for larger abundances (N > N) the population will eventually grow to a
positive steady state. This feature is referred to as an Allee effect (Allee 1931). In this partic-
ular model, the biological explanation for its occurrence is that at low population abundances,
individuals do not stand a chance to find a partner. Hence, reproduction is very much reduced.
More generally, the phrase “Allee effect” is used to indicate a situation in which individuals at
very low density are actually performing worse than at slightly higher densities.

Summarizing, in this section we have learned the following qualitative theory about population
models of the type (3.1):

1. At those values of N for which f(N) is positive, the dynamics of the ODE (3.1) will cause
the population abundance N to increase.

2. At those values of N for which f(N) is negative, the dynamics of the ODE (3.1) will cause
the population abundance N to decrease.

3. If for some value of Ne the value of f(Ne) equals 0, then this population abundance Ne is
called a steady state of the ODE (3.1). If initially the population abundance equals this
value Ne, it will remain at this value (because dN/dt = f(Ne) = 0, meaning there is no
change), until the population abundance is displaced away from Ne.

4. If the slope of the curve f(N) at the value of Ne is negative:

d f

dN

∣∣∣∣
Ne

< 0

the equilibrium Ne is stable. After a small displacement away from Ne the population
abundance will return to it. The value Ne is hence called a (locally) stable equilibrium of
the ODE (3.1).

5. If the slope of the curve f(N) at the value of Ne is positive:

d f

dN

∣∣∣∣
Ne

> 0

the equilibrium Ne is unstable. After a small displacement away from Ne the population
abundance will grow or decline further away from it. The value Ne is hence called an
unstable equilibrium of the ODE (3.1).

3.4 Computation of steady states and analysis of their stability

In this section we discuss what is usually the core part of the analysis of a population dynamic
model. At the same time it is also mathematically the most demanding part of the analysis.



3.4. STEADY STATES AND THEIR STABILITY 29

The key problem is that the graphical analysis discussed in section 3.3 is very useful for models
consisting of one or two ODES, but is hardly usable for models of higher dimensions. In general,
in more complicated situations the graphical method of analysis is very difficult, if not impossible,
to apply. The techniques discussed in this section constitute a more rigorous and robust method
of analysis with the same aim as the graphical method of analysis: determining the qualitative
behavior of the population dynamic model.

Basically, the graphical analysis discussed in section 3.3 resulted in:

• the identification of steady states, i.e. states that a population would keep for all times, if
initially started in it, and

• the determination of the local stability of these steady states, i.e. analyzing whether the
population abundance would return to the steady state, if displaced away from it by a
(infinitesimally) small, but otherwise arbitrary amount.

These same results can be obtained by means of a mathematical analysis, that furthermore
generalizes to more complicated situations (unlike the graphical analysis).

The identification of steady states is relatively straightforward. It boils down to determining all
values of N , for which:

f(N) = 0 (3.11)

Implicitly, we already used this property of steady states to draw the graphs in section 3.3 for
the logistic and the two-sexes population growth equations. Step 1 in a mathematical analysis
of a population dynamic model is to determine its steady states by figuring out for which values
of the population abundance(s) N the right-hand side of the ODE, f(N), vanishes. Doing some
basic analysis on the function f(N) in equation (3.4) for the two-sexes population model, leads
to the following 3 steady state values for the population abundance N :

N = 0 (3.12a)

N = N =
1

2
Γ

(
1 −

√
1 − 4

δ

βΓ

)
(3.12b)

N = N =
1

2
Γ

(
1 +

√
1 − 4

δ

βΓ

)
(3.12c)

Modern computer software for symbolic calculations, like Mathematica or Maple, allows for a
rather rapid and easy derivation of such steady state values from the model equations.

More challenging is the question, how to determine the stability of a steady state in a mathe-
matically rigorous way that can also be applied in more complicated cases, for example, when
the dynamics is described by 3 or even more ODEs. To analyze the stability of the steady states
presented in equations (3.12), we make use of two crucial mathematical properties:

1. Linear ODEs and even systems of linear ODEs can be solved explicitly, as was discussed
in section 3.1.

2. Every mathematical function f(N) can be approximated in a small neighborhood around
a particular value N = N∗ by its Taylor expansion:

f(N) = f(N∗) + f ′(N∗)∆N +
1

2
f ′′(N∗)∆2

N + O
(
∆3
N

)
(3.13)
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in which I have used ∆N as a shorthand notation for:

∆N := N −N∗

An easy approximation of the function f(N) is obtained by dropping all terms that incor-
porate the quantity ∆N with a power of 2 or higher:

f(N) ≈ f(N∗) + f ′(N∗)∆N (3.14)

or written without the shorthand notation ∆N :

f(N) ≈ f(N∗) + f ′(N∗) (N −N∗) (3.15)

The right-hand side of this equation is referred to as the first-order Taylor approximation
of the function f(N) in the neighborhood of N = N∗. Note that the first-order Taylor
approximation to the function f(N) in the neighborhood of N = N∗ is a linear function
of the population abundance N , since both f(N∗) and f ′(N∗) have constant values.

In the section 3.3 the stability of a steady state was essentially determined by investigating
whether the population state would return to the steady state after being displaced away from
this steady state by an infinitesimally small amount. The displacement had to be very small
to avoid ending up outside the basin of attraction of the steady state. Let’s define the small
displacement away from the steady state by ∆N (t):

∆N (t) := N(t) − Neq (3.16)

Here I have used the notation Neq to indicate some arbitrary steady state of the population
dynamic model, the stability of which I want to investigate. The ODE (3.1) that represents our
population dynamic model not only specifies the dynamics of the population abundance N(t),
but because ∆N (t) is defined in terms of N(t) and a constant value Neq, it also specifies the
dynamics of this small displacement ∆N (t). Mathematically, this is expressed by the following:

d∆N (t)

dt
=

d (N(t)−Neq)

dt
=

dN(t)

dt
− dNeq

dt
=

dN(t)

dt
(3.17)

Hence, the right-hand side of the ODE describing the dynamics of ∆N (t) is the same as the
right-hand side of the ODE for N(t):

d∆N (t)

dt
= f(N) (3.18)

Using the relation between ∆N (t) and N(t) (3.16), this ODE can be rewritten as:

d∆N (t)

dt
= f(Neq + ∆N ) (3.19)

This last ODE still exactly describes the dynamics of the small displacement ∆N (t) away from
the equilibrium Neq. Moreover, as the function f(N) will generally be a non-linear function that
is impossible to solve explicitly, also this exact ODE for the dynamics of ∆N (t) can not be solved
explicitly. By rewriting the original ODE of the population model in terms of the dynamics of
the small displacement ∆N (t) I have ended up with an ODE that is just as complicated and
essentially I have not gained anything. However, using the fact that ∆N (t) is small I can gain
a lot of analytic power, because it allows me to approximate the ODE (3.19) with an ODE in
which I substitute the right-hand side f(Neq + ∆N ) by its first-order Taylor expansion around
Neq:

d∆N (t)

dt
≈ f(Neq) + f ′(Neq)∆N (3.20)
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Because Neq is an equilibrium, f(Neq) equals 0. Hence, the ODE above simplifies to:

d∆N (t)

dt
= f ′(Neq)∆N (3.21)

This final ODE is a linear one, which we have learned to solve explicitly in section 3.1. Hence,
the dynamics of ∆N (t) is given by:

∆N (t) = ∆N (0) exp
(
f ′(Neq) t

)
(3.22)

in which ∆N (0) is the initial displacement away from the steady state Neq (compare the deriva-
tion of equation (3.5)). From this solution we can infer that the steady state is stable if the
derivative of the function f(N) at the steady state value N = Neq is negative, while the steady
state is unstable if this derivative is positive (When the derivative exactly equals 0 the steady
state is at the edge of stability and instability and hence its stability is undetermined. This
exceptional situation will not be discussed further here).

It should be noted that the relationship between the sign of the derivative of the function f(N)
at the steady state value N = Neq and the stability of the steady state, was already discovered
in section 3.3. There it was found that a steady state was stable if the slope of the curve
f(N) as a function of N was negative, while the steady state was unstable if this slope was
positive. Essentially, by deriving the linear ODE (3.21) for the small displacement ∆N (t) we
have approximated the curve of f(N) as a function of N by a straight line through the point
N = Neq, i.e. the tangent line in this point. The derivative of the function f(N) at N = Neq

is exactly the slope of this tangent line and hence the slope of the curve f(N) as a function of
N . The approximation of the term f(Neq + ∆N ) by its first-order Taylor expansion equal to
f ′(Neq)∆N is therefore based on the assumption that in a very small neighborhood of the steady
state N = Neq we can approximate the curve f(N) by its tangent line in N = Neq, ignoring any
higher order curvature.

The above process of deriving a linear ODE for the dynamics of a small displacement ∆N (t) in
the neighborhood of a steady state N = Neq is referred to as local linearization of the dynamics,
as the full model dynamics is locally represented by a linear type of dynamics. In mathematical
literature the analysis is also referred to as linear stability analysis to indicate that the stability
of a steady state is determined by a linear analysis. The proof that the linear analysis explained
here indeed determines the stability of a steady state and the conditions that have to hold for it
to apply or to fail (which indeed occurs!) will not be discussed here, as they are mathematically
too complex (for details see, for example, Kuznetsov 1995).

In later chapters, when analyzing models that are formulated in terms of more than a single ODE,
a similar procedure will be followed to investigate the stability of steady states: the system of
ODEs describing the model dynamics will be linearized in the neighborhood of a particular steady
state to determine the fate of a small but arbitrary displacement (perturbation) away from the
steady state. However, in contrast to the procedure described above leading to equation (3.22),
the full solution of the linearized system of ODEs will not be derived or written down. Instead,
based on the insight that linear ODEs yield solutions of exponential form, a trial solution of the
form

Ceλ t (3.23)

will be substituted into the linearized system of ODEs (C is here some arbitrary constant). This
will allow us to derive an expression of the exponential growth rate(s) λ that are characteristic
for the linearized dynamics in the neighborhood of the steady state. Again, it will turn out that
these growth rates should all be negative for a steady state to be stable.

I will illustrate this procedure for the linearized ODE (3.21) even though its explicit solution
has already been given. Substituting the trial solution (3.23) for ∆N (t) into the linearized ODE
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yields:
dCeλ t

dt
= f ′(Neq)Ce

λ t . (3.24)

The time derivative in the left-hand side of this ODE can be simplified to yield:

λCeλ t = f ′(Neq)Ce
λ t . (3.25)

After dividing both sides of the resulting equation by C exp(λt), the following equation is ob-
tained:

λ = f ′(Neq) (3.26)

This equation is referred to as the characteristic equation, as it specifies the characteristic growth
rate λ of the linearized dynamics. As was already concluded, if λ is positive the steady state
is unstable, while it is stable if λ is negative. The quantity λ, which you can interpret as a
characteristic growth rate, is called the eigenvalue of the linearized dynamics.

The entire discussion of characteristic equation and eigenvalue in the context of the single ODE
models that are the topic of this chapter is a little bit overdone. However, it illustrates nicely
the approach taken with more complicated models, formulated in terms of systems of ODEs. In
those cases, the characteristic equation is often a more complicated, matrix equation which will
only implicitly determine the eigenvalues. Surely, it will in general not be possible to specify
the eigenvalues as explicitly as it is done in equation (3.26). Nonetheless, the idea is the same:
a characteristic equation is derived for the linearized dynamics in the neighborhood of a steady
state. This characteristic equation determines, usually in a rather difficult way, the eigenvalues
(or characteristic growth rates) λ, which all have to be negative for the particular steady state
to be stable.

Important:

It should be noted that the eigenvalues pertain to a particular steady state
of a particular model. Hence, if a model has multiple steady states, as we
encountered before, to each of these steady states belongs a unique set of
eigenvalues.

3.5 Units of measurement and non-dimensionalization

The analysis of the physical dimensions in which the model equations are expressed is a powerful
tool for checking their validity. There are some simple rules that the equations should conform
to:

• If an ODE is written down both the right-hand side and the left-hand side of the ODE
should carry the same physical dimension. Since the left-hand side (dN/dt) usually carries
the dimension of number per unit of time or density per unit of time, the right-hand side
of the ODE (i.e.the function f(N)) should carry this dimension as well.

• In general the right-hand side f(N) is a collection of various terms that are added or
subtracted. When adding or subtracting terms, these should have the same dimension.
This rule allows us to deduce, for example, the dimension of the parameter K in the
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logistic growth equation (3.3). Since the ration N/K in this equation is subtracted from
the dimensionless constant 1, both N and K have to have the same dimension. The
term (1−N/K) as a whole is therefore dimensionless. Because the entire right-hand side
should have the dimension of number per unit of time, the dimension of the parameter
r is hence per unit time. Notice that such an analysis shows that the birth parameter
β in the logistic equation (2.13) has a different dimension than the same parameter in
the two-sexes population growth equation (2.17) (I leave it to the reader to figure out the
correct dimensions of these two parameters).

• If two quantities are multiplied, the result carries the product of their dimensions.

• Dividing two quantities is more subtle: if two quantities with different dimensions are
divided the result carries the ratio of their dimensions. For example, the number of
individuals in a population divided by the surface of the habitat they live in yields the
population density in terms of the number of individuals per unit area.

• On the other hand, if two quantities with identical dimensions are divided the result is
dimensionless. Whether dimensions are different or identical is sometimes a bit subtle,
as the following example illustrates: a frequently encountered parameter in population
models is the assimilation efficiency. This is the efficiency with which ingested food is
transformed into assimilated energy. If both food and assimilated energy are measured
in the same units, for example both are measured in terms of their caloric value, i.e. in
Joules, the ratio of assimilated energy over ingested food is truly dimensionless. On the
other hand, the per capita rate with which a predator consumes prey individuals has the
dimension of number of individuals per individual per unit of time, ind/(ind·time), and
not simply per unit of time. The reason is that the one type of individuals are prey (in
the numerator) while the other type of individuals (in the denominator) are predators.
Hence, these dimensions do not cancel. As a rule if two quantities could be added to each
other on the basis of their dimensions, their dimensions would cancel out when their ratio
is computed.

Using the above rules it is good practice to check whether a set of model equations bear the
correct dimensions and whether the parameters in the model indeed are expressed in terms of
the correct dimensions. A lack of consistency in dimensions often points at some inconsistency
in the model formulation.

The choice of physical dimensions for model variables are to some extent arbitrary. For example,
to express a density of 105 bacteria in a volume of 1 liter growth medium, any of the following
dimensions can be used:

N = 105 cells/liter

= 0.1 million cells/liter

= 0.1 cells/mm3

= 100 cells/milliliter

Similarly, the variable time t in the model could be measured in minutes, days, weeks or years
and this choice is absolutely arbitrary. This freedom in choosing model dimensions allows us to
write all measured quantities in the model as a product of a scalar multiple and a unit carrying
dimensions. For example, the density N can be written as

N = N∗ · N̂ (3.27)

in which N̂ determines the scale of measurement, for example, cells/liter, cells/mm3 or cells/milli-
liter and carries the physical dimensions. The quantity N∗ takes on different values, i.e. 105, 0.1
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or 100, depending on the scale set by N̂ . Similarly, the time t can be expressed as the product
of a scalar multiple t∗ and a quantity setting the scale of measurement and carrying the physical
dimension t̂:

t = t∗ · t̂ (3.28)

Over time the model specifies that the values of both N and N∗ will change, but the quantity
N̂ remains constant. Similarly, the value of the time variable t and t∗ will change, but not the
scaling variable t̂.

The choice of units in which to express the state variables in the model will determine the
particular value of parameters: if a population growth rate r is to be specified, it should be in
terms of the unit of time adopted in the model, i.e. either, say, r = 0.1 per day or equivalently
r = 0.7 per week. On the other hand, it is obvious that the qualitative dynamics of the population
model should be independent of this choice of units. The invariance in model dynamics under a
change of measurement units can be exploited to reduce the number of parameters in the model
and hence to reduce the number of quantities that determine the ultimate population dynamics.
Consider for example the logistic growth equation:

dN

d t
= r N

(
1 − N

K

)
(3.29)

and substitute the expressions (3.27) and (3.28) for N and t, respectively:

d (N∗N̂)

d (t∗t̂)
= r (N∗N̂)

(
1 − (N∗N̂)

K

)
(3.30)

Because both N̂ and t̂ are time-independent constants, this ODE can be rewritten as:

N̂

t̂

dN∗

d t∗
= r (N∗N̂)

(
1 − (N∗N̂)

K

)

Multiplying both sides of this latter ODE by t̂/N̂ yields the ODE:

dN∗

d t∗
= rt̂N∗

(
1 − (N∗N̂)

K

)
(3.31)

Notice that we are still free in our choice of measurement units N̂ and t̂, as we did not yet
make any assumption about them and their choice is arbitrary. There are some smart (or rather
judicious) choices we could make for these two scales of measurement. For example, choosing:

t̂ = 1/r (3.32)

N̂ = K (3.33)

leads to an ODE in terms of dimensionless quantities N∗ and t∗:

dN∗

d t∗
= N∗ (1 − N∗)

which does not contain any parameters anymore. By dropping the starred superscripts on the
quantities N∗ and t∗ the ODE can be written in the following form:

dN

d t
= N (1 − N) (3.34)
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The key point of the procedure just described is that by making judicious choices for our units in
which the state variables in the model are expressed, we have been able to reduce the number of
parameters by 2: For whatever values of r and K, the dynamics of the model (3.29) is identical
to the dynamics of the ODE (3.34) except for some scaling of both the axis of time t and density
N .

By appropriately choosing our scales of measurement in the model, it has been possible to arrive
at a dimensionless form of the logistic growth model from which we eliminated two parameters
and which no longer depends on parameters at all. The resulting equation is much simpler and
does not contain any degrees of freedom, which severely reduces the amount of work needed
to analyze the model properties. As a rule, by rewriting a population dynamic model in a
dimensionless form we can reduce the parameters set in the model by a number that equals the
number of state variables in the model (i.e. all population densities plus the time variable). For
example, a dimensionless form of the two-sexes population growth model (2.17) will ultimately
contain only a single parameter.

As shown in this section, rewriting population dynamic models in a dimensionless form is a
powerful approach to reduce some of the complexity of the model and to do away with some of
its degrees of freedom.

3.6 Existence and uniqueness of solutions

The existence and uniqueness of solutions for particular ODEs is usually a topic that math-
ematicians are concerned about and hence investigate. Ecological modelers are much less or
perhaps even not at all concerned about this. Nonetheless, it is appropriate to at least warn for
the possibility that after formulating a population dynamic model we could potentially end up
with a (system of) ODE(s) for which no unique solution exists or for which no solution exists at
all! The existence and uniqueness of solutions in general not only depends on the ODE itself,
but on the combination of the ODE and the initial condition. I will not discuss this issue in
detail, but I will give just two examples that may give some idea of the problems that you can
run into:

• A solution of an ODE is not necessarily always a nice function of the time t. For example,
had we formulated the two-sexes population growth equation (3.4) with a density inde-
pendent reproduction rate and had we ignored the mortality rate, we would have ended
up with the ODE:

dN(t)

d t
= β N2 (3.35)

The solution of this ODE for an initial population abundance N(0) = N0 equals:

N(t) =
N0

1 − N0 t
. (3.36)

This solution only exists for t < 1/N0. At t = 1/N0 the ODE (3.35) does not hold any
longer, while the solution (3.36) in the meanwhile became infinitely large. The reason is
that the right-hand side of the ODE (3.35) increases too quickly with increasing values of
N . Explosions of this kind (and also implosions that are qualitatively similar) are in any
case impossible if the right-hand side of the ODE fulfills the condition:

−m − kN < f(N) < m + kN

for some arbitrary, but positive constants k and m and N > 0 (a similar condition can be
formulated for N < 0, but is considered uninteresting in the current context).
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• An example of an ODE without a unique solution is:

dN(t)

d t
=

√
N , N(0) = 0 (3.37)

Even though it is hard to imagine that this ODE represents a population dynamic model,
it suits our purpose to illustrate the non-uniqueness of solutions. The equation

N(t) =


0 for t ≤ c(
t− c

2

)2

for t ≥ c
(3.38)

with c an arbitrary, positive constant specifies an entire family of solutions to the ODE:
for whatever value of c, equation (3.38) is a solution for the ODE. Hence, these solutions
are never unique. The problem is that the right-hand side of the ODE (3.37) increases too
quickly for N = 0, since the tangent to

√
N in this point is a vertical line. This type of

non-uniqueness is guaranteed not to occur if the derivative of the right-hand side function
f(N) exists and is continuous for all permissible values of its argument N .

3.7 Epilogue

In principle this chapter has discussed most of the theory about how to analyze population
dynamic models that are formulated in terms of (systems of) ODEs. Also, most of the material
discussed allows generalization to models that are formulated in terms of other frameworks, such
as difference equations or integral equations. When models become of higher dimension, new
concepts will be needed to deal with technical complications, making the analysis also technically
more difficult. For example, when analyzing systems of ODEs matrix calculus is needed to derive
the characteristic equation and the eigenvalues. Nonetheless, the basic ideas are the same as
discussed here for one-dimensional models (i.e. in terms of a single ODE):

• Models can be reformulated as non-dimensional analogues. These analogues are phrased
in terms of scaled state variables and scaled time with the minimum number of (scaled)
parameters, but describe exactly the same dynamics.

• Steady states are determined by finding those states for which the right-hand side of the
ODEs vanish.

• The stability of the steady states can be determined by studying the linearized version of
the model in the neighborhood of the steady states. For this linearized system a charac-
teristic equation can be derived, which the eigenvalues (or characteristic growth rates) of
the model in the neighborhood of the steady state.

One aspect of model analysis has not been discussed in this chapter: studying the behavior of
the model for different parameter values. This addresses the question how the model dynamics
is going to change when particular parameters are increased or decreased, what type of different
dynamics can occur over the full range of relevant parameter values, how one type of dynamics
transforms into the other, etc. These questions are within the domain of bifurcation theory
which will be discussed in part III.



Chapter 4

Competing for resources

Even though the concept “competition” is central to population dynamics and ecology, its precise
meaning is less clear cut. In a general textbook on ecology (Begon et al. 1996), competition is
defined as

an interaction in which one organism consumes a resource that would have been
available to, and might have been consumed by, another. One organism deprives
another, and as a consequence, the other organism grows more slowly, leaves fewer
progeny or is at greater risk of death.

The above definition suggest that competition is about food, as the definition refers to organisms
“consuming” resources. However, competition may be about many different things that have
nothing to do with feeding, such as nesting sites, territoria and mating partners. Basically, com-
petition is always an act that one individual takes, eats or uses something, which is subsequently
unavailable to other individuals of the same or other species. That something is referred to as
a resource.

Competition may be between individuals of the same species, in which case we call it intraspecific
competition, or of different species, in which case it is called interspecific competition. Moreover,
competition may be direct or indirect. An example of direct or interference competition is
when two individuals fight for the same piece of food that one of them has just caught. Also
competition for sexual partners is usually a form of interference competition. On the other hand,
indirect competition, which is also referred to as exploitation competition does not involve direct
contact among the competitors. The most obvious example is when individuals feed on a shared
food source: the food eaten by one individual is unavailable to the others and hence there is a
competitive interaction. In this chapter we will mainly deal with exploitation competition.

After this introduction of the most common terminology regarding competition we return to the
question what exactly is a resource? Answering this question is actually very hard. Instead of
elaborately discussing the meaning of the term resource I will just give some examples of what
can rightfully be called resources. Food is definitely a resource for all heterotrophic organisms.
Appropriate types of shelter or space have also been termed resources if they have an effect on
an individual’s probabilities of birth and death. Common resources for plants are light, mineral
nutrients, water, pollinators and seed dispersal agents. Within a species, members of one of
the sexes have been called a resource for the opposite sex. Basically, two requirements can be
distinguished for something to be considered a resource:

1. it should affect the survival or reproduction of an individual, and

2. it should be consumed or used and hence depleted, making it unavailable to other individ-
uals.

37
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Figure 4.1: Growth of the yeast Schizosaccharomyces kephir over a period of 160 h. The circles
are experimental observations. The solid curve is the fitted curve N(t) = 5.8/(1 + exp(2.47 −
0.0607t)). From Gause (1934).

This chapter is devoted to formulating various models that incorporate intra- and/or interspecific
competition. The overall aim of the chapter is on the one hand to introduce a number of concepts
and ideas that have been developed as part of a competition theory . On the other hand, while
discussing the ins and outs of competition within and among species, a number of new techniques
or extensions of already discussed techniques will be introduced. The first part of the chapter will
deal with intraspecific competition, while the second part will focus on interspecific competition.

4.1 Intraspecific competition in a single population

4.1.1 Growth of yeast in a closed container

Some classic examples about population growth and intraspecific competition are the experi-
ments carried out by Gause (1934) with the yeast Schizosaccharomyces kephir (see Fig. 4.1).

These experiments have been carried out in closed containers such as test tubes and Erlenmeyer
flasks. The experiments were started with a “virgin” container with growth medium and a
small inoculation of yeast. Figure 4.1 shows that at first the yeast population starts to grow
exponentially, but that growth decelerates and population abundance reaches a constant level.

The fitted curve in Fig. 4.1 is actually the logistic growth equation (2.14). Both the logistic
an two-sexes population growth model (Eq. (2.14) and (2.17), respectively) are examples of
models that implicitly incorporate intraspecific competition, because in both cases the per capita
reproduction rate decreases with population abundance. These model hence do specify that the
presence of other individuals around decreases the reproductive output of single individuals, i.e.
individuals in the population do compete, but the models leave unspecified what the precise
mechanism of this decrease is. It could hence be because food availability declines or because
individuals at higher densities spend more time fighting each other.

For the experimental design used by Gause (1934) it is possible to formulate an explicit and



4.1. INTRASPECIFIC COMPETITION 39

mechanistic model for the growth of the yeast in the closed container. In the end this model
will be the same as the logistic growth model (2.14), but it will be derived on the basis of an
explicit conceptualization of the competition process going on among the yeast cells.

To this end assume that

• the growth of the yeast is limited by a single nutrient (resource), whose concentration at
time t is indicated by R(t),

• every yeast cell contains α units of the limiting nutrient,

• the initial concentration of the limiting nutrient equals R(0), while the initial abundance
of yeast cells equals N(0),

• a single yeast cell takes up the limiting nutrient at a rate κR(t) that is proportional to the
current nutrient concentration, and

• a single yeast cell divides into 2 identical daughter cells after having taken up α units of
the limiting nutrient.

At the start of the experiment, the total amount of limiting nutrient in the experimental vessel
equals:

R0 := R(0) + αN(0) (4.1)

which is the sum of the nutrient amount in solution and the nutrient amount contained in the
initial yeast population. Since nutrient only disappears from the solution through uptake by the
yeast, at any time t the total amount of nutrient in the vessel (both in solution and incorporated
into the yeast population) should equal R0:

R(t) + αN(t) = R0 (4.2)

The uptake rate of the limiting nutrient by a single yeast cell equals κR(t). As a consequence
the time it takes to take up sufficient nutrients for a new daughter cell equals

α

κR(t)
,

such that the rate at which a single yeast cell produces new daughter cells equals

κR(t)

α
.

This leads to the following ODE, describing the dynamics of yeast cells:

dN

dt
=

κR(t)

α
N(t) (4.3)

If now the relation (4.2) is substituted in this ODE we obtain:

dN

dt
= κ

(
R0

α
−N(t)

)
N(t) (4.4)

which can be rewritten as:
dN

dt
=

κR0

α

(
1− N(t)

R0/α

)
N(t) (4.5)
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This latter ODE is identical to the logistic growth equation (2.14) with the parameters r and
K defined as:

r =
κR0

α
(4.6a)

K =
R0

α
(4.6b)

The dynamics of both the limiting nutrient concentration R(t) and the yeast cell abundance
N(t) could have been expressed as a system of two, coupled ODEs:

dR

dt
= −κR(t)N(t) (4.7a)

dN

dt
=

κR(t)

α
N(t) (4.7b)

The derivation of the logistic growth equation (4.5) for the yeast cell abundance N(t) actually
represents a way of solving the coupled system of ODEs (4.7). In a more formal way of solving
the system of ODEs, the first equation (4.7a) is rewritten by using the second ODE (4.7b):

dR

dt
= −αdN

dt
(4.8)

By integrating both the left-hand and right-hand side of this latter ODE we actually end up
with: ∫ t

0

dR

dt
dt = −α

∫ t

0

dN

dt
dt

R(t) − R(0) = −α (N(t) − N(0))

R(t) = −αN(t) + R(0) + αN(0)

which is equivalent to equation (4.2) relating the current concentration of nutrient in solution
and the current yeast cell abundance to the total amount of nutrient initially present in the
experimental vessel.

The above derivation shows that the logistic growth model can actually have a solid mechanistic
basis in terms of competition for a limiting nutrient supply.

4.1.2 Bacterial growth in a chemostat

Chemostats are experimental systems that are used to sustain a continuous culture of bacteria.
In contrast to the closed container experiments discussed in the previous section, a chemostat is
an open system with a continuous supply of nutrients. Figure 4.2 shows a schematic layout of
a chemostat. A stock nutrient solution, in which the concentration of limiting nutrient equals
R0, is pumped into the culture vessel at rate F . An equal efflux keeps the total volume V in
the culture vessel constant over time. Note that through the outflow both nutrient and bacteria
leave the culture vessel.

Apart from the importance of the chemostat for sustaining a continuous culture of micro-
organisms (primarily bacteria), it also constitutes a highly idealized system for modeling and
studying competition within and among species, which has given rise to even textbooks on the
theory of the chemostat (Smith & Waltman 1994). To model a single bacterial population in
continuous culture we make the following assumptions:
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Figure 4.2: Schematic layout of a chemostat for continuous culture of micro-organisms. A
stock nutrient solution, in which the concentration of limiting nutrient equals R0, is pumped
into the culture vessel at rate F . An equal efflux keeps the total volume V in the culture vessel
constant over time.

• It is assumed that the culture vessel is kept well stirred, such that there are no spatial
inhomogeneities in the concentration of either nutrient or bacteria. This assumption allows
us to describe the growth process entirely in terms of ordinary differential equations.

• Although the nutrient medium may contain a number of components, we will focus atten-
tion on a single growth-limiting nutrient whose concentration will determine entirely the
growth of the bacteria. The current concentration of this limiting nutrient in the culture
vessel at time t will be denoted by R(t).

• Bacteria take up the limiting nutrient at a rate κR(t) that is proportional to the current
nutrient concentration.

• Every bacterial cell is assumed to contain α units of the limiting nutrient. A bacteria
divides into 2 identical daughter cells after having taken up α units of the limiting nutrient.

These assumptions are very much analogous to the assumptions made while formulating the
yeast growth model in a closed container (see section 4.1.1). The essential difference between
the model for the chemostat and the yeast growth model, is that now fresh nutrient medium
is pumped into the culture vessel at rate F , while both nutrient and bacterial cells leave the
culture chamber at the same rate F . Table 4.1 lists the state variables and parameters of the
model along with their interpretation and dimension. As a first start, we can use the model
equations (4.7) as a basis to describe the dynamics of both the nutrient concentration and the
bacterial population abundance in the chemostat. The only terms that have to be added are
the ones accounting for inflow of fresh nutrient from the reservoir and outflow of nutrient and
bacteria from the culture chamber. A first attempt for the model equations hence is:

dR

dt
= FR0 − FR − κRN (4.9a)

dN

dt
=

κR

α
N − FN (4.9b)

In these equations I have dropped the explicit dependence of R and N on time t in the right-
hand side of the ODE. This is an established practice as the ODE itself indicates that these
quantities are functions of time. The first ODE of this system contains the terms FR0 and
FR, respectively, modeling the inflow and outflow of nutrients. Similarly, the second ODE of
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Table 4.1: State variables and parameters of a bacterial growth model in a chemostat

Symbol Description Dimension

State variables
R(t) Nutrient concentration in culture chamber mass/volume
N(t) Bacterial population abundance number/volume

Parameters
R0 Nutrient concentration in reservoir mass/volume
F Input and output flow rate volume/time
V Volume of the culture chamber volume
κ Proportionality constant for bacterial nutrient uptake volume/time
α Nutrient content of single bacteria mass

the system incorporates the term FN , which models the outflow of bacteria from the culture
chamber.

Even though these ODEs contain all the necessary terms, they are not correct. This becomes
clear when we carefully check the dimensions of all terms in the above system of ODEs (cf.
section 3.5). First of all we should figure out what the dimension of the parameter κ is, while that
is not immediately clear from the assumptions. Because the left-hand side of equation (4.9b)
bears the dimension number/(volume·time), the right-hand side should bear this dimensions
as well. Given the dimensions of N , R and α, occurring in the first term of the right-hand
side (4.9b), we can infer that κ needs to bear the dimensions volume/time, as is already listed
in table 4.1. However, the second term in the right-hand side of equation (4.9b) has dimension
number/time which lacks a volumetric dimension in the denominator. Similarly, the left-hand
side of equation (4.9a) bears dimension mass/(volume·time), while the first and second term
of its right-hand side have a dimension mass/time. Again a volumetric dimension is missing
in the denominator. (Superficially, the last term in the right-hand side of equation (4.9a) also
has the wrong dimension, since straightforward application of the dimensions listed in table 4.1
would suggest that this term carries the dimension (number·mass)/(volume·time). It should be
realized, however, that a number is essentially dimensionless such that the dimension is indeed
correct: mass/(volume·time)).

The mistake made in the derivation of the system of ODEs (4.9) is that the rate F with which
fresh nutrient supply of concentration R0 enters the culture chamber distributes itself over the
entire volume V of the culture vessel. The total input of fresh nutrients, equal to FR0, hence
distributes itself over a volume V and cause a change in the nutrient concentration equal to
FR0/V . Similar arguments hold for the outflow rates of nutrients and bacteria from the culture
vessel, FR and FN respectively, which also have to be divided by the vessel volume V to
correctly express the effect of outflow on the nutrient concentration R(t) and cell abundance
N(t). Therefore, the correct set of equations describing the dynamics of nutrients and bacteria
in the chemostat is:

dR

dt
=

FR0

V
− FR

V
− κRN (4.10a)

dN

dt
=

κR

α
N − FN

V
(4.10b)
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This set of ODEs is the first system of coupled ODEs that we encounter. Such coupled sets
of equations occur in all models that describe the dynamics of more than a single component.
These components can be multiple species or nutrients and populations as in the chemostat
example discussed here. In the following sections we will discuss a number of different methods
to analyze the behavior prescribed by the model.

4.1.3 Asymptotic dynamics

One approach to analyzing a system of ODEs like (4.10) is to attempt an analogous simplification
as was discussed in section 4.1.1 (see equation (4.8)) for the growth of a yeast population in a
closed container. In other words, can we solve the ODE (4.10a) for the nutrient concentration
R(t) in terms of the cell abundance N(t)? The background of equation (4.8) was that the
total nutrient concentration, that is the sum of nutrients in solution plus nutrients contained in
yeast, remained constant over time, as the dynamics were taking place in a closed container. By
defining the total nutrient concentration in the chemostat (both free in solution and bound in
bacterial cells) as:

TR(t) := R(t) + αN(t) , (4.11)

an ODE can be derived for TR(t) as follows:

dTR
dt

=
d(R + αN)

dt

=
dR

dt
+ α

dN

dt

=
FR0

V
− FR

V
− κRN + α

(
κR

α
N − FN

V

)

=
FR0

V
− FR

V
− α

FN

V

=
FR0

V
− FTR

V

Hence, eventually the total nutrient concentration in the culture chamber will follow the ODE:

dTR
dt

=
F

V

(
R0 − TR

)
(4.12)

From this ODE we can easily see that

lim
t→∞

TR(t) = R0 (4.13)

The value T̃R = R0 is actually the steady state value for the total nutrient concentration TR,
i.e. the concentration for which dTR/dt = 0. We could now simply assume that

dTR
dt
≈ 0

holds for all times t. Especially if the the flow rate F is large and the volume is not too large,
the quotient F/V can be large in comparison with the growth rate of the bacteria, which equals
κR/α:

F

V
>>

κR

α
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In this case, the total nutrient concentration TR(t) will have approximated its steady state value
R0 long before the cell abundance N(t) has even changed a little from its initial value. In this
case we can simply pretend that

TR = R(t) + αN(t) ≈ R0

This latter equality can subsequently be used to eliminate the nutrient concentration R(t) from
the ODE (4.10b) for the dynamics of the bacterial cell abundance. This leads to:

dN

dt
=

κ(R0 − αN)

α
N − FN

V

=

(
κR0

α
− F

V
− κN

)
N

After some algebraic manipulation we see that the resulting ODE can be written as a logistic
growth equation (2.14) with parameters:

r =
κR0

α
− F

V
(4.14a)

K =
R0

α
− F

κV
(4.14b)

The logistic growth equation can hence show up even though the underlying mechanisms are
entirely different. The expressions for the parameters (4.14) also make clear that the parameters
r and K in this case have no interpretation that is intrinsic to the bacteria, since also the flow
rate F , the nutrient supply concentration R0 and the vessel volume V show up in both r and
K.

4.1.4 Phase-plane methods and graphical analysis

The aim of this chapter is to study the behavior of systems of coupled ODEs mostly through
graphical and geometric approaches. Hence, instead of more rigorous algebraic manipulations
we will exploit geometric insights and some intuition to chart out the qualitative behavior of a
model in a pictorial form. Such pictures are generally far more informative than mathematical
expressions and lead to a better understanding of the model dynamics and how it is influenced
by its parameters.

For systems of two ODEs it is possible to carry out a graphical analysis much along the lines
that was discussed in section 3.3 (Some people even claim to analyze systems of three ODEs in
this manner, but such experience is simply beyond me). However, since there are now 2 state
variables it is not much use any longer to plot the right-hand side of the ODE as a function of a
single state variable (cf. section 3.3). Instead, our basic analysis will use graphs spanned by an
x- and a y-axis on which the two state variables R(t) and N(t) are indicated. The choice which
state variable to represent with which axis is arbitrary, but I will consistently use R(t) on the
x-axis and N(t) on the y-axis of the graphs:
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R

N

Such a graph spanned by axes that represent state variables is called a phase plane graph. Its
name is derived from the fact that all the combinations (R,N) depicted in the graph represent
all possible states that the system we are modeling can adopt. If the model we are studying
becomes higher dimensional, for example, in terms of three or more variables, we are usually
referring to a phase space or state space instead of a phase plane, because the set of all possible
states that the system can adopt also becomes higher dimensional. In the following I will refer
to the phase plane as the (R,N)-plane.

First, let us rewrite the chemostat model equations (4.10) as:

dR

dt
= f(R,N) (4.15a)

dN

dt
= g(R,N) (4.15b)

in which the right-hand side functions f(R,N) and g(R,N) are defined as:

f(R,N) =
FR0

V
− FR

V
− κRN (4.16a)

g(R,N) =
κR

α
N − FN

V
(4.16b)

Technically, we have to assume that f(R,N) and g(R,N) are continuous functions and that their
derivatives with respect to both R and N exist to ensure that the set of ODEs actually specifies
a unique solution for an particular initial conditions R(0) and N(0) (see also section 3.6).

Two, time-dependent functions, R(t) and N(t), would be a solution to the system of ODEs (4.15)
if they satisfy the set of ODEs (4.15) together with the initial conditions R(0) and N(0) imposed
(if there are any). In the phase plane any combination of R(t) and N(t) represents a point, which
we can equivalently represent by a vector x(t) defined as:

x(t) :=

(
R(t)

N(t)

)
(4.17)

The system of ODEs (4.15) is a recipe that specifies how the values R(t) and N(t) change over
time. At the same time, it therefore specifies how the point (R(t), N(t)) or vector x(t) moves
over time through the (R,N)-plane. By defining a vector-valued function H(x) as follows:

H(x) :=

(
f

g

)
=

(
dR/dt

dN/dt

)
(4.18)
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R

N

(R(t), N(t))

x(t)

(R(0), N(0))

dx/dt = (dR/dt, dNdt)

Figure 4.3: Geometric representation of a system of ODEs in the phase plane. The curve
starting in the point R(0), N(0)) represents some imaginary solution curve to a system of ODEs,
which also passes through the point (R(t), N(t)) at time t. The vector x(t) is the vector rep-
resentation of this latter point. Also indicated is the velocity vector dx/dt determined by the
system of ODEs.

the systems of ODEs (4.15) could therefore also be written in vector form as:

dx

dt
= H(x) (4.19)

(Notice that I have left out the explicit dependence of the functions f and g in equation (4.18)
on the state variable R and N).

Loosely speaking, the left-hand side of ODE (4.15a) and (4.15b), dR/dt and dN/dt, respectively,
can be interpreted as the change in the nutrient concentration R(t) and bacterial cell abundance
N(t) during an infinitesimally small time interval dt. In the phase plane these two quantities
determine the direction of a curve through the point (R(t), N(t)), which is the solution curve
to the system of ODEs (see also Figure 4.3). This direction specified by dR/dt and dN/dt can
again be represented by a vector, which in equation (4.18) is defined as H(x). This vector is
tangent to the solution curve in the point x(t) = (R(t), N(t)).

These geometric representations of the system of ODEs (4.15) and (4.19) are illustrated in the
phase plane graph in Fig. 4.3. Verbally they can be summarized as follows:

1. The pair of values (R(t), N(t)) that forms a solution to the system of ODEs (4.15) repre-
sents a curve in the (R,N)-phase-plane. Each position on this curve is uniquely determined
by the time value t (i.e. the curve is parameterized by t).

2. The point (R(t), N(t)) can also be represented by a vector x(t), starting in the origin
and pointing to a position along the solution curve (R(t), N(t)), which is the state of the
system at time t.

3. The vector dx/dt, which is just a short-hand notation for (dR/dt, dNdt) is the tangent
vector to the solution curve in the point x(t) and thus represents the curve direction.
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Its magnitude, which is indicated by |dx/dt|, represents the speed of motion of the point
(R(t), N(t)) along the solution curve. The vector dx/dt is hence also referred to as the
velocity vector or direction vector , while the vector x(t) is referred to as the position vector .

4. Using x(t) the system of ODEs (4.15) for the change in nutrient concentration R(t) and
cell abundance N(t) can als be written in the shorter, vector form

dx

dt
= H(x)

Here the vector function H(x), defined in equation (4.18), assigns a velocity vector to
every location x in the phase plane.

Having determined that the right-hand side of a system of ODEs like the one in equation (4.15)
determines a tangent velocity vector to the unique solution curve through any point x = (R,N),
one way to proceed with a graphical analysis is by drawing a large number of these velocity
vectors in the (R,N)-phase-plane. Together such a collection of velocity vectors is referred to as
a direction field or a phase plane portrait . Drawing phase planes with direction fields gives, after
some training, good insight into the dynamics of systems of 2 ODEs (see, for example, Edelstein-
Keshet 1988, section 5.4 on page 175-178). Another way to gain insight into the dynamics is by
delineating in the phase plane graph the regions with (R,N) combinations for which:

• both the nutrient concentration R and the bacterial cell abundance N increase,

• both the nutrient concentration R and the bacterial cell abundance N decrease,

• the nutrient concentration R increases, but the bacterial cell abundance N decreases, and

• the nutrient concentration R decreases, but the bacterial cell abundance N increases.

Delineating these 4 different regions will be carried out in two steps: first we will find those
combinations of (R,N) for which the nutrient concentration R increases or decreases. In the
second step, the same procedure will be repeated for the bacterial cell abundance N .

For which values of R and N the nutrient concentration R increases or decreases can be derived
by considering for (R,N) combinations it does not change. In other words, we first derive for
which values of R and N

dR

dt
= 0

Substituting the right-hand side of the ODE (4.10a) in the equality above leads to the equation:

FR0

V
− FR

V
− κRN = 0

With some simple algebraic manipulation this equality can be rewritten as:

N =
F

κV

(
R0

R
− 1

)
(4.20)

This last equation determines a curve in the (R,N)-phase plane, indicating all those values of
R and N for which the nutrient concentration R does NOT change. Such a curve, for which
dR/dt = 0 holds, is called the isocline for the nutrient concentration R. Isoclines or nullclines
are curves in the phase plane for which one of the state variables (R and N in the case considered
here) does not change.

Equation (4.20) determines a curve that intersects the x-axis of the phase plane (i.e. the axis
N = 0) for the value R = R0. On the other hand, if R decreases to 0, R ↓ 0 the bacterial cell
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abundance N increases unboundedly, N −→ ∞. If we substitute the values R = 0 and N = 0
in the right-hand side of the ODE (4.10a), the rate of change of the nutrient concentration R is
found to equal:

dR

dt
=

FR0

V

which is clearly positive. Therefore, for values of R and N close to 0 the rate of change dR/dt
is clearly positive. On the other hand, if R and N are both very large, it is easily inferred
from the right-hand side of the ODE (4.10a) that the rate of change dR/dt is negative. These
characteristics of the ODE (4.10a) can now be summarized in the following phase plane graph:

R0

R

N

The thick solid curve drawn in the graph above is the isocline for the nutrient concentration R.
Hence, for those combination of R and N the rate of change dR/dt equals 0 (i.e. not change in
nutrient concentration). The arrows below and above the curve indicate that in these regions
with (R,N)-combinations the rate of change dR/dt is positive (i.e. R will increase with time)
or negative (i.e. R will decrease with time), respectively.

Next we repeat the same type of analysis for the ODE (4.10b) determining the rate of change
dN/dt of the bacterial cell abundance N . Equating dN/dt to 0 leads to the relation:

κR

α
N − FN

V
= 0

which shows that it is possible to infer two relations for which dN/dt = 0:

N = 0 (4.21)

or

R =
αF

κV
(4.22)

The curves of these relations in the (R,N) phase plane are again referred to as the isoclines,
now for the bacterial cell abundance N . Obviously, one isocline for the bacterial cell abundance
N is given by N = 0: if there are no bacteria at all present there will be neither growth or
decline and hence dN/dt obviously equals 0 (this zero isocline is encountered in almost every
population dynamical model, in which population growth or decline only depends the population
abundance and there hence is no immigration). In addition, equation (4.22) determines a second
isocline for the bacterial cell abundance N which constitutes a vertical line in the (R,N) phase
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plane. For high values of nutrient concentration R and non-zero bacterial densities N > 0, the
right-hand side of the ODE (4.10b) clearly shows that dN/dt is positive and hence the bacterial
cell abundance will increase. For values of nutrient concentration R close to zero and non-zero
bacterial densities N > 0, dN/dt is negative and N will decrease. These properties of the
ODE (4.10b) are summarized in the following graph:

R

N

αF/(κV )

The isoclines in this graph are indicated with thick dashed line, one isocline being N = 0, the
other R = αF/(κV ). To the left of the latter isocline the bacterial abundance will decline, to
the right of it the bacterial cell abundance N will increase.

The next step is that we combine the two graphs shown above with the isoclines and flow
patterns of the nutrient concentration R and the bacterial cell abundance N into a single phase
plane graph. Figure 4.4 shows the resulting graph. The two intersections of the R-isocline with
the N -isoclines are the steady states of the model (4.10), as for these two combinations of R
and N neither the nutrient concentration, nor the bacterial cell abundance will change (i.e. both
dR/dt and dN/dt equal 0). The two steady states are indicated by solid circles in the graph
above. The phase plane with positive value of R and N (usually referred to as the positive
quadrant or more generally the “positive cone”) is hence divided into 4 different regions by the
R- and N -isoclines. In each of these regions a single pair of a vertical and a horizontal arrow in
the graph above indicate whether the nutrient concentration R and the bacterial cell abundance
N increase or decrease, respectively. Mathematically, the two steady states are given by:

Extinct steady state: {R,N} = {R0, 0} (4.23)

Internal steady state: {R,N} = {αF/(κV ), R0/α− F/(κV )} (4.24)

The bacterial cell abundance N for the internal steady state is obtained by substituting R =
αF/(κV ) into equation (4.20) and simplifying the resulting expression.

From the isoclines and flow patterns it is sometimes possible to work out whether the steady
states are stable and what the dynamics will eventually be in the neighborhood of the steady
states. This can be done for the extinct steady state {R,N} = {R0, 0}. The phase plane graph
(Fig. 4.4) shows that if the bacterial cell abundance N would be slightly perturbed (displaced) to
a very small positive value, the abundance would actually increase (the flow arrows are pointing
upwards and to the left). Hence, the cell abundance N would increase even further, while the
nutrient concentration R will decrease. On the other hand, if the nutrient concentration would
be slightly perturbed to a lower or higher value than R0, the nutrient concentration would return
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R

N

R0

αF/(κV )

Figure 4.4: The phase plane of the bacterial growth model in a chemostat. Thick dashed lines
indicate the zero isoclines for the change in bacterial cell abundance, the thick solid line indicates
the zero isocline for the change in nutrient concentration. See text for further explanation.

to R0, as long as the bacterial cell abundance is kept at 0. This assessment can be derived from
the ODEs (4.10) and by studying the phase plane graph in Fig. 4.4. Therefore, the extinct
steady state is in general unstable, but it is stable against perturbations along the x-axis of the
nutrient concentrations R. A steady state with the property that it can withstand perturbations
in particular directions, but not in all and that is hence unstable, is called a saddle point .

A similar analysis for the internal steady state is, however, in general not possible. The following
graph zooms in at the phase plane in the neighborhood of this steady state:

In this graph I have also drawn direction vectors for 4 points on the two isoclines. The vectors
for the points at the R-isocline necessarily point in a vertical direction, since for all the points
on the R-isocline dR/dt = 0. Similarly, the vectors for the points at the N -isocline necessarily
point in a horizontal direction, since for all the points on this isocline dN/dt = 0. The graph
above seems to indicate that the solution curves tend to spiral around the steady state point,
but nothing in the graph indicates whether they will spiral inward towards the steady state
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point (in which case the latter is stable) or outward away from the steady state point (in which
case it is unstable). Graphical methods do not suffice to resolve this issue and we will have to
build up some more analytical understanding of dynamics in the neighborhood of a steady state
before we can determine whether the state of the system will eventually approach the steady
state or not (see also chapter 5).

Actually the bacterial population in a chemostat is an exception to the above rule that we
cannot work out the stability of a steady state from a phase plane analysis. In section 4.1.3
we already learned that the total nutrient concentration in the chemostat, both free in solution
and bound in bacteria, obeys the very simple ODE (4.12). This total nutrient concentration TR
equals R + αN and the ODE (4.12) specifies that it will never cross the value TR = R0: if the
total nutrient concentration TR at time 0 is larger than R0 it will always remain larger and if it
is smaller it will always remain smaller than R0. In the phase plane graph this means than no
solution curve will cross the line which is determined by the relation:

R + αN = R0 (4.25)

Using this fact we can actually work out the dynamics in the neighborhood of the internal steady
state in this particular case, as is shown in the following diagram:

R + αN = R0

Here I have added the line determined by (4.25) to the phase plane and have sketched two
representative solution curves that approach the internal steady state (note that these curves
only qualitatively represent the actual trajectories of the model). One of these solution curves
start with a total nutrient concentration TR larger than R0, the other with TR smaller than R0.

In the entire discussion of the chemostat model up to this point, I have pretended that the
vertical N -isocline was located at a nutrient concentration R that is smaller than R0. The N -
isocline was located at R = αF/(κV ). As long as R0 > αF/(κV ) there exists an internal steady
state, because the N -isocline and the R-isocline intersect in the positive quadrant (see Fig. 4.4).
However, if

R0 < αF/(κV )

an internal steady state is impossible to maintain. Under these conditions the input nutrient
concentration is too low to sustain a bacterial population in the chemostat. The relation

F =
κV R0

α
(4.26)

therefore determines a critical boundary, separating those parameter values R0, F , and V for
which a bacterial population can be maintained in the chemostat from those parameter values
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Bacterial

Nutrient input concentration R0

Flow rate F

Optim
al flow

rate

wash-out

Figure 4.5: Operating diagram of a chemostat. The graph gives a schematic representation of
those parameter combinations F and R0 for which wash-out of bacteria will occur and which
flow rate F will give a maximal yield of bacteria (dashed curve). See text for further explanation.

for which the bacteria will go extinct. Because the critical boundary is also determined by the
flow rate F of the chemostat, the extinction of the bacteria is also referred to as wash-out , since
too high a flow rate will cause the bacteria to go extinct.

If an internal steady state is possible (i.e. F < κV R0/α), the steady state outflow of bacteria
equals:

F Nss =
R0F

α
− F 2

κV

where Nss is used to indicate the steady state bacterial abundance (see also equation (4.24)).
This outflow of bacteria is referred to as the yield of the chemostat, while the idea of the
chemostat is to harvest the bacteria growing in the culture vessel. The yield of bacteria is
maximal for a flow rate F equal to:

F =
κV R0

2α
(4.27)

which is exactly half the flow rate above which wash-out of the bacteria will occur. Schematically
these relations are summarized in Figure 4.5 which represents a parameter plane spanned by
a x-axis representing the nutrient concentration in the inflow R0 and a y-axis representing the
flow rate F . The figure gives an overview of all parameter combinations for which bacterial
wash-out will occur and graphs the relation (4.27) for the optimal flow rate of the chemostat.

4.2 Interspecific competition

4.2.1 Lotka-Volterra competition model

The most well-known model for interspecific competition has been proposed by Lotka and
Volterra and has been studied extensively by Gause (1934). In the Lotka-Volterra model the
competition between two species is represented without any reference to resources. For a par-
ticular species the presence of a competitor is simply assumed to reduce its growth.
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Let us denote the two species by their population abundance N1 and N2, respectively. In the
absence of the competitor, both species 1 and 2 are assumed to grow following the logistic growth
model (2.14). When both species are present their dynamics are assumed to be described by
the following system of ODEs:

dN1

dt
= r1N1

(
1 − N1 + β12N2

K1

)
(4.28a)

dN2

dt
= r2N2

(
1 − N2 + β21N1

K2

)
(4.28b)

In these equations r1 and r2 are the logistic, population growth rate of species 1 and 2, respec-
tively. K1 and K2 are the carrying capacity of both species. The term β12N2 in equation (4.28a)
can be thought of as the decrease in growth rate of species 1 due to the presence of species 2.
The parameter β12 represents the per capita decline (per individual of species 2 ). Similarly, the
term β21N1 represents the decrease in growth rate of species 2 due to the presence of species 1
with the parameter β21 is the per capita decline (per individual of species 1 ). Under specific
assumptions the Lotka-Volterra model can be shown to mechanistically represent competition
for resources by two competing species, but it has mostly been studied without any reference to
mechanisms. Its analysis can be carried out graphically and the results constitute an important
part of competition theory.

To analyze the properties of the Lotka-Volterra model we will carry out a phase-plane analysis
of the model equations (4.28) by the following steps:

• determine the isoclines for both N1 and N2 and represent them in a (N1, N2)-phase-plane,

• determine the steady states as the intersection points of the isoclines,and

• determine the stability properties of these steady states as far this is possible using graph-
ical methods.

From equation (4.28a) we observe that dN1/dt equals 0 yields the following expressions for the
N1-isoclines:

N1 = 0 (4.29a)

and

K1 − N1 − β12N2 = 0 (4.29b)

Similarly, equation (4.28b) yields the following expressions for the N2-isoclines:

N2 = 0 (4.30a)

and

K2 − N2 − β21N1 = 0 (4.30b)

The first isocline for both species 1 (4.29a) and species 2 (4.30a) simply are the N1- and N2-
axis, respectively. The second isocline for species 1 (4.29b) intersects the axis where N2 = 0
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Figure 4.6: Four isocline cases for the Lotka-Volterra competition model. Thick dashed lines
indicate N1-isoclines; thick solid lines represent N2-isoclines. Cases are numbered according to
the conditions (4.31) in the text.

at the carrying capacity of species 1 N1 = K1, while it intersects the axis where N1 = 0 at
N2 = K1/β12. Similarly, the second isocline for species 2 (4.30b) intersects the axis where
N1 = 0 at the carrying capacity of species 2 N2 = K2, while it intersects the axis where N2 = 0
at N1 = K2/β21. One pair of these four intersection points lies on the N1-axis, while the other
pair lies on the N2 axis. This gives rise to four distinct possible constellations, depending on
which of the two members of each pair is larger. The four cases are characterized by:

case I:
K2

β21
> K1 and K2 >

K1

β12
(4.31a)

case II: K1 >
K2

β21
and

K1

β12
> K2 (4.31b)

case III: K1 >
K2

β21
and K2 >

K1

β12
(4.31c)

case IV:
K2

β21
> K1 and

K1

β12
> K2 (4.31d)

Figure 4.6 illustrates these four possible cases of the isoclines in the Lotka-Volterra model. All
isoclines are straight lines as could already be inferred from their mathematical expressions (4.29)
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Figure 4.7: Four isocline cases with steady states and flow patterns for the Lotka-Volterra
competition model. Thick dashed lines indicate N1-isoclines; thick solid lines represent N2-
isoclines. Cases are numbered according to the conditions (4.31) in the text.

and (4.30). From Figure 4.6 we can deduce the possible steady states of the Lotka-Volterra model
as the intersection points of a N1-isocline and a N2-isocline. All four cases allow the following
three steady states:

Extinct state: (N1, N2) = (0, 0) (4.32a)

N1-only state: (N1, N2) = (K1, 0) (4.32b)

N2-only state: (N1, N2) = (0,K2) (4.32c)

In the extinct state both species are absent. In the N1-only state, species 1 reaches its carrying
capacity, while species 2 goes extinct, while in the N2-only state species 1 goes extinct and
species 2 tends to its carrying capacity.

The cases III and IV allow in addition to these three steady states in which at least one of the
species is always absent, an internal steady state in which both species have non-zero abundance:

Coexistence state: (N1, N2) =

(
K1 − β12K2

1− β12β21
,
K2 − β21K1

1− β12β21

)
(4.33)
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Figure 4.7 is almost identical to Figure 4.6, but indicates in addition the steady states for the
Lotka-Volterra competition model and the direction fields in the phase plane. To draw these
direction fields, observe that:

• in the absence of species 2, species 1 grows logistically to its carrying capacity K1,

• in the absence of species 1, species 2 grows logistically to its carrying capacity K2,

• across the N1-isoclines the flow in the direction of the N1-axis is always 0, i.e. the flow is
always parallel to the N2-axis (vertical direction in Figure 4.7), and

• across the N2-isoclines the flow in the direction of the N2-axis is always 0, i.e. the flow is
always parallel to the N1-axis (horizontal direction in Figure 4.7).

In Figure 4.7 these flows across the N1- and N2-isoclines have been drawn for all four cases of
the isocline configuration. From these flows across the isoclines the direction fields within each
separate region in the phase plane can be worked out. For example, in case I it is obvious that
all solution curves will eventually end up inbetween the two slanted lines that form the isocline
for species 1 and 2, respectively. Within the area bounded by these two lines the flow is towards
the top-left corner (see Fig. 4.7), which implies that all solutions will tend to the N2-only state
(N1, N2) = (0,K2). Similarly, in case II all solution curves will also end up inbetween the two
slanted lines, but the flow within the enclosed region is towards the bottom-right corner (see
Fig. 4.7). In case II therefore all solutions will tend to the N1-only state (N1, N2) = (K1, 0).
The cases III and IV are more difficult to analyze, but from the flow patterns in Figure 4.7 the
following observations can be made:

• in case III, both the N1-only state (N1, N2) = (K1, 0) and N2-only state (N1, N2) = (0,K2)
are stable. This can be seen from the fact in the neighborhood of these two steady states
the flow is towards the steady state from all directions. Hence, after a small perturbation
away from any of these two steady states the steady state will be approached anew.

• in case III, the internal steady state is a saddle point. This can be deduced from the
fact that the direction field points away from the steady state within the triangular re-
gions bounded by the two slanted lines that represent the N1- and N2-isoclines. A small
perturbation that would displace the state of the systems into one of these two triangular
regions would hence increase with time and the system would move away from the internal
steady state. Notice that such a perturbation into the lower triangular region (towards the
N1-only state (N1, N2) = (K1, 0)) will cause species 2 to go extinct, while a perturbation
into the higher triangular region (towards the N2-only state (N1, N2) = (0,K2)) will cause
species 1 to go extinct. Also notice that after a perturbation which displaces the system
away from the internal steady state, but not into one of the two triangular regions bounded
by the N1- and N2-isoclines, the state of the system will approach the internal steady state
anew, as the flow from those directions is towards the steady state. The internal steady
state is hence a saddle point.

• in case IV, the flow around the internal steady state is always in the direction of the steady
state (see Fig. 4.7). The internal steady state is hence stable. On the other hand, a small
displacement of the system away from either the N1-only state (N1, N2) = (K1, 0) or the
N2-only state (N1, N2) = (0,K2) steady state will always grow, because the direction field
around these steady states points away from them. Both the N1-only and the N2-only
steady state are hence unstable.

Together, these deductions lead to the following outcomes of the competition between species 1
and 2:
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case I: Species 2 outcompetes species 1.

case II: Species 1 outcompetes species 2.

case III: Species 1 can outcompete species 2, but species 2 can also outcompete species 1.
The outcome depends on the initial condition.

case IV: Species 1 and 2 coexist.

Hence, only in case IV both species can coexist, but they will do so at abundances below their
carrying capacity (see equation (4.33)). In all other cases, one species will outcompete the other.
From the conditions (4.31) delineating the four different cases it can be seen that for case IV to
occur the interspecific competition parameters β12 and β21 can not be large. If the two carrying
capacities are equal K1 = K2 the condition (4.31d) simplifies to

β21 < 1 and β12 < 1 (4.34)

which states that the interspecific competition is less intense than the intraspecific competition
(note the coefficients of 1 in equation (4.28a) and (4.28b)). If in any way, interspecific compe-
tition is stronger than intraspecific competition, that is one of the species is more aggressively
competing with the other than with its conspecifics, one of the two species will be excluded.

Since the model predicts that competitive exclusion (i.e. one species outcompeting the other and
driving it to extinction) will be observed in many situations, an important topic in population
biology is to search for explanations why so many, apparently competing species can coexist
in the same habitat. In other words, an important field of investigations in population biology
addresses the question which mechanism(s) prevents competitive exclusion of competing species.
Of course, the Lotka-Volterra model is very simplistic and its neglects many complicating factors,
but its strong predictions, which hold true in some experimental situations (see the next section),
have reshaped some preconceptions about coexistence and species interactions. The model has
hence played an important role in rephrasing the type of research questions being investigated
in communities of interacting species that apparently seem to persist without excluding each
other.

4.2.2 Competition for resources

An extensive and important body of population biological theory concerns the competition
for shared resources between different consumer species. This body of theory has been mainly
developed by Tilman (1980, see also Tilman 1981, 1982) on the basis of competition experiments
with different algal species in chemostats. The theory has been primarily developed using a
graphical approach (Tilman 1980). Hence, a discussion of this body of theory is appropriate in
the current chapter, which to a large extent depends on graphical methods as well. The focus
of the following presentation of Tilman’s competition theory will be on the ecological aspects
of the theory, as opposed to its theoretical and mathematical issues. These theoretical and
mathematical ins and outs will hence not be discussed in too much a depth.

One consumer and one resource

The basis of the theory is the interaction between consumer species and abiotic resources. Algae
that use nutrients like phosphate and silicate for their growth are species to which the theory
applies best and which hence have been used extensively to test and show the validity of the
theory. The basic set of equations that is used to model this consumer-resource interaction is
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Table 4.2: State variables and parameters of Tilman’s resource competition model

Symbol Description

State variables
R(t) Available concentration of the resource
N(t) Abundance of consumers

Parameters
S Maximum concentration of resource supplied to the habitat

For a chemostat: the influent concentration of resource
F Flow or supply rate of the resource

µ Maximum population growth rate of consumers
D Per capita death or mortality rate of consumers
K Half-saturation constant for consumers feeding on resource
Q Amount of resource required to produce one consumer individual

similar to the system of equations (4.10), describing the growth of bacteria in a chemostat. The
coupled system of ODEs central to the theory is the following:

dN

dt
=

(
µ

R

K + R
− D

)
N (4.35a)

dR

dt
= F (S − R) − Qµ

R

K + R
N (4.35b)

In the above equations the state variableN represents the abundance of consumers. It is assumed
that the growth of the consumers is limited by a single resource, of which the actual concentration
is denoted by R. The parameter S represents the maximum nutrient concentration that is
possible in the habitat, which in a chemostat is identical to the inflow nutrient concentration
of resource. The parameter F is the flow or supply rate of resource, which is expressed per
unit volume habitat volume (see the discussion in section 4.1.2). The parameter Q indicates
the amount of resource that is needed to produce a single consumer individual. Its inverse 1/Q
is often referred to as the yield, since it represents the number of consumer individuals that a
single unit of resource can yield. In the ODE (4.35a), the parameter µ represents the maximum
population growth rate and D the per capita mortality or death rate of consumers. The realized
population growth rate is assumed to depend on the resource concentration following a Michaelis-
Menten equation, R/(K +R). For very large values of the resource concentration this equation
approximates the value 1. For a resource concentration equal toK it has the value of 1/2, which is
the reason that K is referred to as the half-saturation constant. The Michaelis-Menten equation
is a well-known relationship from enzyme kinetics. It represents a saturating production rate as
a function of substrate concentration. Figure 4.8 illustrate the form of this Michaelis-Menten
relation as a function of the resource concentration R. In chapter 6 we will see that the same
function is widely used to model the predator functional response, which is the relationship
between the amount of prey eaten by a single predator and the current prey abundance. In
that chapter we will also discuss a mechanistic basis for this functional relationship. Table 4.2
summarizes and lists all parameters used in Tilman’s competition model (4.35).
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K R

1/2

R

K +R

Figure 4.8: Michaelis-Menten relationship as a function of resource concentration. The pa-
rameter K indicates the resource concentration at which the function reaches half its maximal
value (which is 1).

The properties of the single species version of Tilman’s model (4.35) are relatively simple: For
all initial conditions the state of the system will approach a stable equilibrium (in this chapter
we will not proof the stability of this equilibrium). The resource concentration in this stable
equilibrium can be inferred from ODE (4.35a) by equating its right-hand side to 0, yielding:

N∗ = 0 (4.36)

R∗ =
DK

µ−D
(4.37)

The latter equilibrium value for the resource concentration R is the solution of the equation:

µ
R

K + R
= D

If the value of R∗ is too large, i.e. if

R∗ > S

the consumer population can not persist and the extinct steady state N = 0 is stable. If, on the
other hand, the maximum resource concentration in the habitat S is sufficiently large, i.e. if the
habitat is sufficiently productive, the consumers can establish a stable population and control
the resource concentration in the habitat at the concentration equal to R∗. The consumer
abundance in this internal equilibrium can be derived from ODE (4.35b) by substitution of the
value R = R∗. This leads to

N∗ =
F (S −R∗)

DQ
=

F (S −DK/(µ−D))

DQ
(4.38)

This equilibrium consumer abundance, however, does not play a prominent role in Tilman’s
theory on resource competition and is hence hardly ever discussed. The crucial quantity is the
equilibrium resource concentration R∗ (eq. (4.37)). Hence, the theory is also referred to as the
R∗-theory .



60 CHAPTER 4. COMPETING FOR RESOURCES

Two consumers and one resource

Adding a second species of consumer to the consumer-resource model (4.35) relatively straight-
forwardly leads to the following system of ODEs:

dN1

dt
=

(
µ1

R

K1 + R
− D1

)
N1 (4.39a)

dN2

dt
=

(
µ2

R

K2 + R
− D2

)
N2 (4.39b)

dR

dt
= F (S − R) − Q1 µ1

R

K1 + R
N1 − Q2 µ2

R

K2 + R
N2 (4.39c)

This model simply includes an additional consumer ODE for the second consumer species. The
ODE itself is of identical form for both consumers, only the parameters are assumed to differ
between the two consumer species. The abundance of the two consumers is now referred to as
N1 and N2, while all parameters bear an index 1 or 2 to indicate which consumer species they
apply to.

In the absence of the competing consumer species, each of the two species would establish a
steady state population, as long as we assume that the habitat is sufficiently productive. Each
of the two consumer species would impose an equilibrium resource concentration equal to its
R∗–value. These R∗–values will be referred to as

R∗1

and
R∗2 ,

for species 1 and 2, respectively. Only in very exceptional cases, the two R∗–values will be equal
to each other. In general, either R∗1 or R∗2 will be the smaller of the two:

R∗1 < R∗2 or R∗2 < R∗1 (4.40)

In the first case, species 1 can sustain a stable population at a resource level that is too low
for species 2 to persist. Hence, species 2 will go extinct. In the second case, the opposite
occurs that species 2 drives species 1 to extinction due to its ability to persist at lower resource
concentrations. In other words, it is the species with the lowest value of R∗ that outcompetes
the other consumers and drives to extinction.

The latter result can be generalized to multiple species. If there are p consumer species competing
for the same resource, they can be ordered and indexed on the basis of their R∗-values:

R∗1 < R∗2 < R∗3 < R∗4 . . . < R∗p

Consumer species 1 will be able to establish and sustain a stable population at a resource level
below the resource concentration that the other species need for persistence. Hence, species 1
will competitively displace all other consumer species. This result exemplifies the competitive
exclusion principle, which states that:

Competitive exclusion principle:

p consumer species cannot coexist in a stable equilibrium state on fewer
than p resources
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One consumer and two resources

An extension of Tilman’s model for resource competition to a single consumer feeding on two
different resources is represented by the following system of ODEs:

dN1

dt
=

(
µ1 min

(
R1

K11 + R1
,

R2

K12 + R2

)
− D1

)
N1 (4.41a)

dR1

dt
= F (S1 − R1) − Q11 µ1 min

(
R1

K11 + R1
,

R2

K12 + R2

)
N1 (4.41b)

dR2

dt
= F (S2 − R2) − Q12 µ1 min

(
R1

K11 + R1
,

R2

K12 + R2

)
N1 (4.41c)

In these equations the abundance of consumers is represented by N1 (the subscript 1 is retained
in these equations because of the models formulated in the previous and the following section,
which both deal with two consumer species). R1 and R2 represent the current concentration
of resource 1 and 2, respectively. The parameter F again represents the flow or supply rate of
resources per unit volume habitat volume. It is assumed that F is the same for both resources,
as would be the case if the model was to mimic the dynamics of competitors in a chemostat.
The parameters S1 and S2 represent the maximum nutrient concentration of resource 1 and 2,
respectively, that is possible in the habitat. In a chemostat it is identical to the inflow nutrient
concentration of resources. The parameters Q11 and Q12 indicate the amount of resource 1
and 2, respectively, that is needed to produce a single consumer individual, their inverse again
represent the yield (see section 4.2.2). Note that in case a parameter carries two subscripts, the
first one refers to the consumer species, while the second one refers to the resource. Hence, Q12

represents the amount of resource 2 that a consumer individual of species 1 needs to produce
an offspring. In the ODE (4.41a), the parameter µ1 again represents the maximum population
growth rate and D1 the per capita mortality or death rate of consumers.

It is assumed that both resources are essential , which means that they are both needed for pop-
ulation growth and one resource can not be used to substitute the other. Essential resources for
algae are, for example, light and carbon dioxide: both substances are required for photosynthesis
and for algal growth. Neither of them can make up for the absence of the other. The opposite of
essential resources are substitutable resources. Of two substitutable resources an organism will
only need one to grow and reproduce. For many heterotrophic organisms fat and sugars are to
a large extent substitutable resource as they both provide energy that is used for growing and
reproducing. If two resources are truly essential and non-substitutable, the one of them that is
shortest in supply, will be limiting population growth. In the above ODEs this expressed by the
term

µ1 min

(
R1

K11 + R1
,

R2

K12 + R2

)
which represents the realized population growth rate. The fractionsR1/(K11+R1) andR2/(K12+
R2) are the Michaelis-Menten relationships relating the consumer population growth rate to the
current concentration of resource 1 and 2, respectively. The population growth rate that is real-
ized is the minimum of the two possible values (“Liebig’s law of the minimum”). The parameters
K11 and K12 represent the half-saturation concentration of resource 1 and 2, respectively for
consumer species 1, i.e. those concentrations at which the fractions reach the value 1/2.
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R1

R2

R∗12

R∗11

Figure 4.9: Zero net growth isoclines for a one consumer-two resource model. Resource com-
binations in the hatched area allow consumer growth, combinations in the unhatched cause
consumer decline. The thick solid lines between these regions are the zero-growth isoclines.

The analysis of the model (4.41) is an important first step for the case considered in the next
section, where we will analyze the outcome of competition of two consumers for two essential
resources. Hence, we also retained the subscript 1 to denote the consumer species. To infer the
dynamics predicted by the system of ODEs (4.41), notice that for both resources it is possible
to derive an R∗-value for consumer species 1:

R∗11 =
D1K11

µ1 −D1
(4.42a)

R∗12 =
D1K12

µ1 −D1
(4.42b)

These R∗-value only differ in the parameters K11 and K12. In other words, the differences in
R∗-value are solely determined by the affinity of the consumer species for both resources. In
steady state the per capita birth rate of the consumers should equal their death rate, which
implies that the right–hand side of the ODE (4.41a) should equal 0. Ignoring the trivial steady
state in which no consumers are present and equating the right–hand side of (4.41a) with 0 leads
to the following steady state condition:

µ1 min

(
R1

K11 + R1
,

R2

K12 + R2

)
= D1 (4.43)

This steady state equation does not specify a single combination of R1 and R2, but a large
number of such combinations. More specifically, this steady state condition determines two line
segments that are perpendicular to each other and are located at R1 = R∗11 and R2 = R∗12,
respectively, as shown in Figure 4.9. The two thick solid lines in this figure are all combinations
of R1 and R2 that fulfill the steady state condition (4.43). The two perpendicular line segments
are together referred to as the zero net growth isocline, which is hereafter abbreviated to ZNGI.
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(
S1 −R1

S2 −R2

)

(
−Q11

−Q12

)

R1

R2

R∗11

(S1, S2)

R∗12

(R1, R2)

Figure 4.10: Steady state location in a one consumer-two resource model. The thick solid line
indicates the zero net growth isocline (ZNGI) at which consumer growth equals 0. The point
indicated by (S1, S2) represents the supply point, i.e. the maximum nutrient concentrations of
resource 1 and 2, respectively, that are possible in the habitat. In a chemostat these would equal
the concentrations of the two resources in the inflowing nutrient solution. The vector

(−Q11

−Q12

)
represents the consumption vector of the consumer species. This vector indicates the direction in
which the resource state (R1, R2) declines due to consumer feeding. Both resources increase due
to resource inflow or regeneration which is always in the direction of the supply point (S1, S2)
when considered from the current combination of resource concentrations (R1, R2). Hence, the
direction in which the resource state (R1, R2) changes due to inflow or regeneration is given
by the supply vector

(
S1−R1

S2−R2

)
. The steady state is the unique point on the ZNGI where the

consumption and supply vector are pointing in exactly opposite direction.

For combinations of R1 and R2 in the hatched area above and to the right the ZNGI, the
consumer population will grow, while for combinations of R1 and R2 below and to the left of the
ZNGI (the unhatched area) the consumer abundance will decline. The steady state of the model
is located somewhere at the border of the hatched and unhatched area where the consumer
growth rate is 0.

To determine the steady state of the model, we could of course equate the right–hand sides of the
ODEs (4.41b) and (4.41c) to 0 and combine this with the steady state condition (4.43). After
some considerable algebraic labor we will then find the steady state expressions for the consumer
abundance and the two resource concentrations. However, there also exists a graphical approach
to determine the location of the steady state, which will be discussed here as it fits in with the
graphical and intuitive methods of analysis presented in this chapter. In this graphical analysis
the consumer abundance does not play an important role and is not discussed any further. The
main aim of the graphical analysis is to determine the location of the resource concentrations
R1 and R2 in steady state. In other words, where on the ZNGI shown in figure 4.9 the steady
state is actually located.

Figure 4.10 shows the same ZNGI as presented in figure 4.9. In addition, Figure 4.10 indicates
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the supply point , which is the set of concentrations of resource 1 and 2 that can maximally occur
in the habitat. This combination of resource concentrations equals (S1, S2). It can only occur
in model (4.41) in the absence of consumer, i.e. when N1 = 0. In case the model represents the
growth of a consumer species in a chemostat, the supply point represents the concentrations of
resource 1 and 2 in the nutrient stock solution with which the culture chamber is fed.

The graphical approach to locating the steady state of model (4.41) now proceeds by considering
the direction in which the current resource state (R1, R2) would move through the (R1, R2)-phase
space due to consumer feeding and due to resource inflow or regeneration. Taking the ratio of the
last term in equation (4.41b) and the last term in equation (4.41c) shows that the ratio between
the feeding pressure by consumers on resource 1 and 2, respectively, always equals Q11/Q12. In
other words, consumer feeding on both resources will force the current resource state (R1, R2)
into the direction of the vector

Q1 :=

(
−Q11

−Q12

)
(4.44)

This vector is referred to as the consumption vector of the consumer species. Higher or lower
concentrations of resource 1 or 2 and higher or lower densities of consumers would only imply
a scaling of the absolute resource consumption rate by consumers, but would not change the
relative rate with which resource 1 is consumed in comparison with resource 2. Hence, consumer
feeding will always force the current resource state (R1, R2) into the direction of the consumption
vector.

The direction in which the current resource state (R1, R2) will change due to inflow or regen-
eration can be determined by taking the ratio between the first term in equation (4.41b) and
the first term in equation (4.41c). This shows that inflow or regeneration will always force the
current resource state (R1, R2) into the direction of the supply point (S1, S2). This direction is
represented by the supply vector: (

S1 −R1

S2 −R2

)
(4.45)

(Note that the assumption that the flow rate F is equal for both resources is crucial to obtain
this result). In steady state resource consumption should nullify resource regeneration. Hence,
the steady state of model (4.41) can only occur at the unique resource state (R1, R2) on the
ZNGI, where the supply vector is pointing in exactly the opposite direction as the consumption
vector (see Figure 4.10). For all other resource combinations (R1, R2) on the ZNGI the two
vectors would have slightly different directions and would hence never cancel. The consumer
abundance in steady state will be such that the absolute consumption rate equals the absolute
supply rate. Hence, if the concentration of resource 1 in steady state is denoted by R̂1 the steady
state consumer abundance N̂1 is given by:

N̂1 = F
S1 − R̂1

Q11D1
(4.46)

The above analysis shows that an intuitive and graphical consideration of the equations can yield
substantial insight into model dynamics, to the extent that it has been possible to graphically
locate the steady state in a three dimensional ODE model. Of course, the above analysis does
not yield any insight into the stability of the steady state determined. For that aspect of
model analysis we will have to use the analytical approach that is the subject of chapter 5.
Such a stability analysis would show that the steady state determined in this section is stable
whenever it exists, i.e. whenever the supply point (S1, S2) is located within the growth region
(the hatched area in Figure 4.9). On the other hand, the one consumer-two resource model is
just the preliminary step towards the analysis of a two consumer-two resource model, which has
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been the central piece of research on which Tilman’s competition theory is founded. This two
consumer-two resource model is discussed next.

Two consumers and two resources

The model of the previous section can be straightforwardly extended to include a second con-
sumer species by adding an ODE analogous to equation (4.41a) for the abundance of species 2,
N2. In addition, the equations describing the dynamics of each resource concentration should
be extended with a term that represents the feeding of the second consumer species on both
resources. The modeling of these consumption terms will be analogous to the consumption of
both resources by species 1. The resulting set of ODEs hence becomes:

dN1

dt
=

(
µ1 min

(
R1

K11 + R1
,

R2

K12 + R2

)
− D1

)
N1 (4.47a)

dN2

dt
=

(
µ2 min

(
R1

K21 + R1
,

R2

K22 + R2

)
− D2

)
N2 (4.47b)

dR1

dt
= F (S1 − R1) − Q11 µ1 min

(
R1

K11 + R1
,

R2

K12 + R2

)
N1

− Q21 µ2 min

(
R1

K21 + R1
,

R2

K22 + R2

)
N2 (4.47c)

dR2

dt
= F (S2 − R2) − Q12 µ1 min

(
R1

K11 + R1
,

R2

K12 + R2

)
N1

− Q22 µ2 min

(
R1

K21 + R1
,

R2

K22 + R2

)
N2 (4.47d)

In these equations the abundance of consumers of species 1 is again represented by N1, while
the abundance of species 2 consumers is represented by N2. As before, R1 and R2 represent the
current concentration of resource 1 and 2, respectively. The parameters Q21 and Q22 indicate the
amount of resource 1 and 2, respectively, that is needed to produce a single consumer individual
of species 2, while the parameter µ2 represents the maximum per capita growth rate of species 2.
The parameters K21 and K22 represent the half-saturation concentration of resource 1 and 2,
respectively for consumer species 2, i.e. those concentrations at which the Michaelis-Menten
equations R1/(K21 +R1) and R2/(K22 +R2), respectively, equal 1/2. All other parameters have
identical interpretations as in model (4.41) for a single consumer feeding on two resources.

The ODE (4.47b) describing the dynamics of species 2 consumers is fully analogous to the
ODE (4.47a) for species 1. Moreover, the consumption terms representing the feeding of species 2
on both resource, given by

Q21 µ2 min

(
R1

K21 + R1
,

R2

K22 + R2

)
N2

and

Q22 µ2 min

(
R1

K21 + R1
,

R2

K22 + R2

)
N2 ,

respectively, are completely analogous to the corresponding terms modeling the feeding of
species 1 on both resources.
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Figure 4.11: Steady state location in a two consumer-two resource model. Left: Stable equilib-
rium case. The thick solid line indicates the zero net growth isocline (ZNGI) for species 1. The
thick, dashed line is the corresponding ZNGI for species 2. The internal steady state is located
at the intersection point of these two ZNGIs. R∗11 and R∗12 are the zero growth resource concen-
tration of species 1 for resource 1 and 2, respectively, while R∗21 and R∗22 are the corresponding
values for species 2. In the steady state point the two consumption vectors, Q1 for species 1 and
Q2 for species 2, are drawn, as well as two separation lines through the steady state point with
the same direction as these consumption vectors. For supply points (S1, S2) in region I both
species will go extinct. For (S1, S2) in region II species 1 will outcompete species 2, while for
(S1, S2) in region VI the opposite occurs. In region III, IV and V the resource supply (S1, S2)
is sufficiently high for both consumer species to persist in the absence of the other. However,
in region III species 1 will outcompete species 2, while in region V the opposite occurs. On
for supply points (S1, S2) in region IV stable coexistence of both consumer species is possible.
Right: Unstable equilibrium case. Completely analogous to the stable equilibrium case, except
for supply points (S1, S2) in region IV′. Here, species 1 outcompetes species 2 or vice versa,
dependent on initial conditions. Notice the ordering of the consumption vectors Q1 and Q2 in
this case.

Determining the steady state in the 4-dimensional model (4.47) and analyzing its stability is a
daunting, analytical task, which goes beyond the purpose of the current discussion. Full details
of these computations can be found in Tilman (1980). However, as in the previous section a
graphical analysis of the current model in the (R1, R2)-phase plane again allows us to locate the
steady state and to gain substantial insight into the dynamics of the model.

When considering the zero net growth isoclines (ZNGIs) for both species in the (R1, R2)-phase
plane, it is clear that stable coexistence of both species is only possible if these ZNGIs intersect
(see Figure 4.11). If the ZNGI for species 2 would be located completely to the right and above
the ZNGI for species 1, the latter would outcompete the former for all possible values of the
supply point (S1, S2). On the other hand, if the ZNGI for species 1 would be located completely
to right and above the ZNGI for species 2, the opposite would occur. This immediately deter-
mines the only possible steady state in the two-consumer-two resources model in which both
species may coexist (see Fig. 4.11). In addition, this coexistence equilibrium is only feasible if
the supply point (S1, S2) is to the right and above the ZNGI of both species, i.e. if (S1, S2) in
region III, IV or V in Fig. 4.11. For supply points (S1, S2) in region I, the maximum concentra-
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tions of both resources are insufficient for both consumers to persist. For supply points (S1, S2)
in region II the maximum concentrations of both resources are sufficient for consumer species 1,
but insufficient for species 2 to persist. For supply points (S1, S2) in region VI, the opposite is
true (species 2 can persist, species 1 not).

If the two consumer species would coexist in a stable equilibrium, their combined consumption
simply equals the sum of their individual consumptions. Hence, in a coexistence equilibrium the
consumption vector for both consumer species together is a linear combination of their individual
consumption vectors, where each individual consumption vector may be multiplied by a strictly
positive constant. This implies that the combined consumption vector has a direction that is
bounded by both individual consumption vectors Q1 and Q2 (see Fig. 4.11). Since consumption
must cancel resource regeneration in steady state, it follows that only resource supply points
(S1, S2) in region IV may lead to coexistence of both consumers. Only for points in this region

the supply vector
(S1−R̂1

S2−R̂2

)
in the steady state (R̂1, R̂2) can be compensated by a combined

consumption vector that is within the region bounded by the individual consumption vectors
Q1 and Q2 and that hence constitutes a linear combination of these two vectors. For supply

points (S1, S2) in region III or V the supply vector
(S1−R̂1

S2−R̂2

)
can never be compensated by a

consumption vector that is a linear, strictly positive combination (i.e. with positive coefficients)
of Q1 and Q2 (see Fig. 4.11). For supply points (S1, S2) in region III, species 1 will outcompete
species 2. Note that for supply points in this region a steady state with only consumer species 2
present would always be located at the vertical part of the ZNGI for this species (remember how
the one-consumer-two-resources steady state was located in section 4.2.2). This vertical part
is, however, located in the growth region of species 1. Species 1 would hence be able to invade
such an equilibrium and subsequently outcompete species 2. An analogous argumentation holds
for a species 1-only steady state and supply points (S1, S2) in region V. A species 1-only steady
state would be located at the horizontal part of its ZNGI which is within the growth region of
species 2. For (S1, S2) in this region species 2 therefore always outcompetes species 1.

Even if an equilibrium with two coexisting consumer species is feasible, it is not necessarily a
stable equilibrium. Determining the stability of the two-consumer equilibrium shown in Fig-
ure 4.11 can only be achieved by means of a far from trivial analysis. Tilman (1980) has carried
out this local stability analysis for the coexistence equilibrium and has derived a set of necessary
conditions for it to be stable. For a two-consumer-two resource equilibrium to be locally stable,
it is necessary that the following conditions hold:

• For two consumers to stably coexist on two resources, each consumer species must, relative
to the other, consume proportionally more of the one resource which more limits its own
growth rate.

• The amounts of each resource consumed by individuals of each species may change only
slightly in response to small changes in the availability of each resource.

The first of these conditions is graphically represented in the two panels in Figure 4.11. The left
panel of this figure represents a stable two-species equilibrium, while the right panel represents
an unstable equilibrium. For supply points (S1, S2) in region IV′ (right panel, Fig. 4.11) the
coexistence equilibrium is unstable and species 1 will either outcompete species 2 or species 2
will outcompete species 1. The precise outcome is dependent on the initial abundances of both
consumers and both resources. Hence, both single-species steady states are stable, while the
coexistence equilibrium is a saddle point. From Figure 4.11 it is possible to understand that
the arrangement of the two consumption vectors Q1 and Q2 which is shown in the left panel
of the figure implies that coexistence of both species will occur. For supply points in region IV,
a species 2-only equilibrium is unstable, because it would be located at the (vertical) part of
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the ZNGI which is inside the growth region of species 1 (remember how the one-consumer-two-
resources steady state was located in section 4.2.2). Similarly, a species 1-only equilibrium is
unstable, because it would be located at the (horizontal) part of the ZNGI which is inside the
growth region of species 2. Because both single-species steady states are unstable, it follows
that coexistence is at least ensured. Moreover, consider the system to be in steady state. If the
abundance of species 2, N2, would be slightly increased, it would lead to a stronger decline in
resource 1 if the consumption vectors Q1 and Q2 are ordered as in the left panel of Figure 4.11.
Resource 1 is in this case the resource for which species 2 is the worst competitor, meaning
that the increase of species 2 lead to conditions that favor species 1. Hence, the latter species
can regain the balance which was perturbed with the increase in species 2. On the other hand,
with the arrangement of consumption vectors Q1 and Q2 as in the right panel of Figure 4.11 a
similar increase in species 2 would lead to conditions that favor itself, causing an even further
deviation from the steady state. Even though this argumentation is by no means a full proof
of the stability of the steady state, the first condition for stability listed above is intuitively
understandable. In contrast, the second condition for stability of the coexistence equilibrium
follows from the mathematical analysis, but can not be motivated otherwise. It is hence less
intuitive.

The theory discussed above has been largely developed by Tilman (1980, see also Tilman 1981,
1982). Most importantly, he has tested the predictions of the theory with an extensive set of
experiments with different diatom species competing for phosphate (PO4) and silicate (SiO2).
For diatoms both nutrients are essential as they need silicate to build their hard outer wall and
phosphate for photosynthesis. Figure 4.12 summarizes the results for competition experiments
between Asterionella formosa and Cyclotella meneghiniana. For these two species coexistence is
possible, but only for particular values of the resource supply (S1, S2). The observed outcomes
of the experiments match the theoretical predictions remarkably well (see Figure 4.12 and its
legend for further details).

In addition, Figure 4.13 to 4.20 show further experimental results for the competition between
four different diatom species (Fragilaria crotonensis, Asterionella formosa, Synedra filiformis
and Tabellaria flocculosa), competing for phosphate and silicate. Figure 4.13 and 4.14 show the
results of single species growth experiments that are used to estimate the model parameters for
all 4 species. The estimates for these parameters are presented in Table 4.3. The Figures 4.15 to
4.20 show the results of all 6 pairwise competition experiments that are possible between these
4 diatom species.

On the basis of the estimated parameters, it was predicted that Tabellaria flocculosa would never
be able to coexist with any of the other species. Moreover, this species can never outcompete
any of the other species. The results in Figure 4.16, 4.19 and 4.20 rigorously confirm these
predictions. In many of the presented cases even the observed dynamics of the two competing
species is accurately predicted by the model (see the figures).

The two species Asterionella formosa and Fragilaria crotonensis turned out to have virtually
identical R∗-values for silicate (see Table 4.3) and in addition have R∗-values for phosphate that
differ only insignificantly from each other. Hence, the prediction is that either both species
should be able to coexist for all possible values of the resource supply or Asterionella should
win the competition on the basis of its slightly lower R∗-value for phosphate. Figure 4.17 that
both species coexist for all supply conditions that have been examined.

Since the characteristics of Asterionella formosa and Fragilaria crotonensis are so similar, the
predictions regarding the competition of each of these two species with Synedra filiformis are
virtually identical(see Figure 4.15 and 4.18): Synedra has the lowest R∗-value for phosphate
of all 4 diatom species and hence is predicted to outcompete all other species if the supply
rate of phosphate is low. On the other hand, in comparison with Asterionella and Fragilaria
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Synedra has a high R∗-value for silicate, which leads to the prediction that Asterionella and
Fragilaria will outcompete Synedra under low silicate supplies. In addition, there is a large region
of resource supply values for silicate and phosphate that are predicted to lead to coexistence
between Asterionella and Synedra and between Fragilaria and Synedra. Figure 4.15 and 4.18
confirm the theoretical predictions remarkably well and once more show that even the observed
dynamics in the experiments is reasonable well matched by the predictions of the model. The
combination of the convincing experimental test results and the logic behind the theory on
resource competition provide a strong basis to the insights that have been revealed by studying
the models in the last sections.

In addition to the experimental results discussed above Tilman (1980) has extended the theory
even further to include also substitutable and partly substitutable resources. For partly substi-
tutable resources the ZNGIs will not consist of two perpendicular line segments any longer but
will have a more continuous shape. As shown in Figure 4.21, this generically leads to 4 pos-
sible arrangements of the ZNGIs that strongly resemble the 4 cases of competitive outcome
predicted by the Lotka-Volterra competition equations (compare Figure 4.21 with Figure 4.7).
More generally, even with the perpendicular shape of the ZNGIs for essential resources, exactly
4 different arrangements of the ZNGIs are feasible and these are completely analogous to the
4 different cases of competitive outcome predicted by the Lotka-Volterra model for interspecific
competition, which does not explicitly account for resources.
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Figure 4.12: Predicted and observed outcomes of competition for phosphate and silicate by
Asterionella formosa and Cyclotella meneghiniana. The mortality (flow) equals 0.25 day−1.
The two-species equilibrium point occurs at 1.9 µM SiO2 and 0.2 µM PO4. The consumption
vectors (from Tilman 1977) have a slope (Si/P) of 87 for Asterionella and 6.2 for Cyclotella. For
resource supply points in the region labeled 3, Asterionella should be dominant. For resource
supply points in region 4, both species should coexist. Cyclotella should be dominant in region 5.
Experiments (Tilman 1977) for which Asterionella was dominant are shown with an asterisk;
those for which Cyclotella was dominant are shown with a diamond, and those for which both
species coexisted are shown with a dot. A supply point off the graph (9.8 µM PO4, 15 µM SiO2)
was dominated by Cyclotella, as predicted. For this analysis, the observed maximal growth
rates, reported in Tilman & Kilham (1976), were used even though the maximal rates under
PO4 and SiO2 limitation for each species differed. The boundaries shown differ slightly from
those of Tilman (1977) because of this difference in maximal rates. (Figure 10 with legend from
Tilman (1980))

.
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Figure 4.13: Single-species Monod growth experiments for four diatoms under conditions of
limited silicate. Curves were fitted using a nonlinear regression. (Figure 2 with legend from
Tilman (1981))

.

Figure 4.14: Single-species Monod growth experiments for four diatoms under conditions of
limited phosphate. Curves were fitted using a nonlinear regression. (Figure 3 with legend from
Tilman (1981))

.
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Table 4.3: Silicate and phosphate parameters for four Lake Michigan diatoms. K is the half
saturation constant; r the maximal growth rate; Q the quotient; and R∗ the calculated amount
of nutrients required to grow at D = 0.25 d−1. The 95% confidence intervals are in parentheses.
(Table 1 with legend from Tilman (1981))

Species r (d−1) K (µmol/L) Q (µmol/cell) R∗ (µmol/L)

Silicate limited experiments

Fragilaria 0.62 1.5 9.7 × 10−7 1.0
(.54-.70) (.7–2.5) (.7-1.5)

Asterionella 0.78 2.2 1.5 × 10−6 1.0
(.72-.84) (1.6-2.9) (.8-1.3)

Synedra 1.11 19.7 5.8 × 10−6 5.7
(.87-1.36) (12.7-30.3) (4.0-8.3)

Tabellaria 0.74 19.0 6.3 × 10−6 9.7
(.44-1.04) (9.0-41.7) (5.3-23.0)

Phosphate limited experiments

Fragilaria 0.80 0.011 4.7 × 10−8 0.005
(.72-.88) (0-.024) (.002-.008)

Asterionella 0.59 0.006 2.6 × 10−8 0.004
(.53-.64) (.002-.011) (.003-.007)

Synedra 0.65 0.003 1.1 × 10−7 0.002
(.61-.69) (0-.015) (.001-.006)

Tabellaria 0.36 0.008 1.9 × 10−7 0.02
(.30-.43) (0-.04) (.006-.07)
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Figure 4.15: Predicted and observed outcomes of competition between Asterionella formosa
and Synedra filiformis. (A): predicted outcomes of resource competition between Asterionella
(Af) and Synedra (Sf). (B) Observed results of competition experiments for Case 1 (low silicate)
are shown with stars for Af and dots for Sf. The continuous thick line, labeled Af, and the
continuous thin line, labeled Sf, show the predicted population dynamics. (C) As (B), but for
Case 2 (intermediate concentrations of silicate and phosphate). (D) As (B), but for Case 3 (low
phosphate concentrations). (Figure 4 with legend from Tilman (1981))

.

Figure 4.16: Predicted and observed outcomes of competition between Asterionella formosa
and Tabellaria flocculosa. Af, stars, thick lines: Asterionella; Tf, squares, thin lines: Tabellaria,
using the notation of Fig. 4.15. (Figure 5 with legend from Tilman (1981))

.
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Figure 4.17: Predicted and observed outcomes of competition between Asterionella formosa
and Fragilaria crotonensis. Af, stars, thick lines: Asterionella; Fc, triangles, thin lines: Fragi-
laria, using the notation of Fig. 4.15. (Figure 6 with legend from Tilman (1981))

.

Figure 4.18: Predicted and observed outcomes of competition between Synedra and Fragilaria.
Sf, dots, thick lines: Synedra; Fc, triangles, thin lines: Fragilaria, using the notation of Fig. 4.15.
(Figure 7 with legend from Tilman (1981))

.
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Figure 4.19: Predicted and observed outcomes of competition between Synedra and Tabellaria.
Sf, dots, thick lines: Synedra; Tf, squares, thin lines: Tabellaria, using the notation of Fig. 4.15.
(Figure 8 with legend from Tilman (1981))

.

Figure 4.20: Predicted and observed outcomes of competition between Fragilaria and Tabel-
laria. Fc, triangles, thick lines: Fragilaria; Tf, squares, thin lines: Tabellaria, using the notation
of Fig. 4.15. (Figure 9 with legend from Tilman (1981))

.
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Figure 4.21: The four cases of resource competition in a two consumer-two resource model.
These four cases are directly analogous to the four cases of the Lotka-Volterra competition
equations. The outcomes of competition are labeled consistently in all four parts of this figure:
1 = neither species able to survive for resource supply points in this region; 2 = only species A
able to survive; 3 = species A competitively displaces species B; 4 = stable coexistence of both
species; 5 = species B competitively displaces species A; 6 = only species B able to survive.
Case 1: Because the ZNGI (zero net growth isocline) of species A is inside that of species B,
species A will always competitively displace species B. Case 2: Because the ZNGI of species B
is always inside that of species A, species B will always win in competition with species A.
Case 3: This equilibrium point is locally stable. Any resource supply point in region 4 will lead
to both species stably coexisting at the resource equilibrium point. Case 4: This two-species
resource equilibrium point is locally unstable. Any resource supply point in the region labeled
“3 or 5” will eventually result in the competitive exclusion of either species A or B. The outcome
of competition in this region depends on the starting conditions. (Figure 6 with legend from
Tilman (1980))

.



Chapter 5

Systems of ordinary differential
equations

In section 4.1.4 (see the discussion following equation (4.24)) it was already stated that graphical
methods of analysis in general are not sufficient to determine the stability of steady states in
models that are phrased in terms of 2 or more systems of ODEs. Chapter 4 discussed several
models of 2 ODEs that are exceptions, such as the bacterial chemostat model and the Lotka-
Volterra competition model, but in general graphical methods do not suffice. In this chapter I will
first focus on the linearization of the dynamics in the neighborhood of steady states, much along
the lines as followed in section 3.4. Subsequently, I will discuss how the linearized approximation
to the model dynamics in the neighborhood of a steady state can be solved explicitly and what
this implies for the stability of the steady state. These results allow a complete classification of
the types of dynamics that may be observed in models that are formulated in terms of a system
of 2 ODEs. Such systems are also referred to as planar ODE systems, as their state space
constitutes a plane spanned by two axes. The approach in this chapter will be more formal and
rigorous than in the previous chapter. Indeed, it will be a purely analytical approach. Finally,
in section 5.6 I will discuss how the theory generalizes to models in terms of 3 or more ODEs.

Because this entire chapter deals with theory that is based on the linearized approximation to
the dynamics in the neighborhood of steady states, the theory derived from it is referred to
as linear stability theory . Before proceeding, it should be stressed once more that the analysis
in this chapter are mostly valid only in the very close vicinity of steady states and hence only
provide information about the local stability of the steady state. This means that the analysis
can only reveal what will happen after an infinitesimally small displacement of the system away
from its steady state. Only in specific cases this local analysis will also give insight in the global
behavior of the model, i.e. the model dynamics far away from the steady state.

5.1 Computation of steady states

In section 4.1.4 it was explained that a system of 2 ODEs could also be represented in vector
notation (see equation (4.19)). I will use here two arbitrary symbols, y(t) and z(t), respectively,
to indicate the state variables in the model. Moreover, I will assume that the dynamics are
described by the following system of ODEs:

77
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dy

dt
= F (y, z) (5.1a)

dz

dt
= G(y, z) (5.1b)

the precise form of the functions F (y, z) and G(y, z) I will not specify any further. I will only
assume that these functions are continuous and that their derivatives with respect to both y
and z exist to ensure that the set of ODEs actually specifies a unique solution for an particular
initial conditions y(0) and z(0) (see also section 3.6).

The system of ODEs (5.1) can be written in vector form by defining a vector x:

x :=

(
y

z

)
(5.2)

and a vector valued function H(x):

H(x) :=

(
F (y, z)

G(y, z)

)
(5.3)

as:
dx

dt
= H(x) (5.4)

This latter equation is simply a shorter and more abstract way of writing the system of ODEs
which describes the model dynamics. Rewriting the ODEs (5.1) into the form (5.4) is hence
only a matter of definitions and notation. The advantage of the rewriting is that it allows an
immediate extension to systems of more than 2 ODEs, as equation (5.4) could as well describe
the dynamics of a model with 3 or more variables (see section 5.6).

Steady states of the model, specified by equation (5.4), are always characterized by the fact that
the value of the state variables do not change over time. Hence, all steady states are determined
by the equality:

H(x) = 0 (5.5)

Notice that in our case of a model in terms of 2 ODEs this equation represents actually two
equations (H was a vector function!). Because population dynamic models usually incorporate
non-linear relations between state variables, this system of equations is in general non-linear as
well and hence hard to solve explicitly. Numerically, it is often possible, though, to calculate the
value of a steady state for a particular set of parameters. Let’s assume that a particular steady
state of the model (5.4) is indicated by x̃, such that

H(x̃) = 0 (5.6)

5.2 Linearization of dynamics

How do we describe the dynamics in the neighborhood of the steady state? In section 3.4 this
was achieved by studying the fate of a small perturbation or displacement away from the steady
state with the help of the linearized dynamics around the steady state. The linearized dynamics
was obtained by replacing the right-hand side function with its Taylor expansion around the
steady state. For systems of 2 ODEs we follow exactly the same procedure. Let’s define a small
perturbation away from the steady state:

∆x(t) := x(t) − x̃ (5.7)
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Notice that ∆x(t) again is a 2-dimensional vector which could also be defined as:

∆x(t) :=

(
∆y(t)

∆z(t)

)
=

(
y(t)− ỹ
z(t)− z̃

)
=

(
y(t)

z(t)

)
−

(
ỹ

z̃

)
In this equation I have used ỹ and z̃ to denote the steady state values of the state variables in the
model. Following the same procedure as with single ODEs, the dynamics of the displacement
vector ∆x(t) can be described by:

d∆x(t)

dt
=

d (x(t)− x̃)

dt
=

dx(t)

dt
− dx̃

dt
=

dx(t)

dt
(5.8)

(cf. equation (3.17)). Using the model equation (5.4) this equality can be rewritten as:

d∆x(t)

dt
= H(x) = H(x̃ + ∆x) (5.9)

This latter ODE describes the dynamics in the neighborhood of the steady state exactly. There-
fore, the ODE is just as (un)solvable as the ODE (5.4) we started out with.

Analogous to the procedure for single ODEs, in which the dynamics in the neighborhood of a
steady state was approximated by the Taylor expansion of the function f(N) around N∗ (see
equation(3.13)), we replace the function H(x) by its Taylor expansion around x̃, as follows:

H(x) = H(x̃) + H′(x̃) ∆x + H′′(x̃) ∆2
x + O

(
∆3

x

)
(5.10)

Approximation to first order is achieved by dropping all terms in ∆x with a power of 2 or higher
(cf. equation (3.15)):

H(x) ≈ H(x̃) + H′(x̃) ∆x (5.11)

Substitution of this equality into the ODE (5.9) and noting that the equilibrium condition (5.6)
implies that the first term on the right-hand side vanishes, leads to the following ODE describing
the approximate dynamics of ∆x:

d∆x(t)

dt
= H′(x̃) ∆x(t) (5.12)

In this derivation we have followed the exact same steps as were taken for the analysis of single
ODEs. Although this is formally correct, H(x) is a vector-valued function and its derivative
H′(x̃) is not a mere number like the derivative f ′(N∗) in equation (3.15). For a function of two
variables, such as F (y, z), one of the elements of H(x), the Taylor expansion in the neighborhood
of a particular steady state (ỹ, z̃) is defined as (cf. equation (3.13)):

F (y, z) = F (ỹ, z̃) +
∂F

∂y

∣∣∣∣y=ỹ
z=z̃

∆y +
∂F

∂z

∣∣∣∣y=ỹ
z=z̃

∆z +

1

2

∂2F

∂y2

∣∣∣∣y=ỹ
z=z̃

∆2
y +

∂2F

∂y∂z

∣∣∣∣y=ỹ
z=z̃

∆y∆z +
1

2

∂2F

∂z2

∣∣∣∣y=ỹ
z=z̃

∆2
z + O(∆3)

The last term O(∆3) represents all higher order terms in the expansion, i.e. all those which
at least include a term ∆3

y, ∆2
y∆z, ∆y∆

2
z or ∆3

z. The above expression is the generalization of



80 CHAPTER 5. SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

the Taylor expansion given in equation (3.13) to functions with two arguments. Dropping all
terms of order 2 and higher yields the following expression for the first order Taylor expansion
of F (y, z) in the neighborhood of a steady state (ỹ, z̃):

F (y, z) ≈ F (ỹ, z̃) +
∂F

∂y

∣∣∣∣y=ỹ
z=z̃

∆y +
∂F

∂z

∣∣∣∣y=ỹ
z=z̃

∆z (5.13)

Similarly, the function G(y, z) can in the neighborhood of the steady state (ỹ, z̃), be approxi-
mated by:

G(y, z) ≈ G(ỹ, z̃) +
∂G

∂y

∣∣∣∣y=ỹ
z=z̃

∆y +
∂G

∂z

∣∣∣∣y=ỹ
z=z̃

∆z (5.14)

In vector notation the last two equations can be written as:

(
F (y, z)

G(y, z)

)
≈

(
F (ỹ, z̃)

G(ỹ, z̃)

)
+


∂F

∂y

∣∣∣∣y=ỹ
z=z̃

∂F

∂z

∣∣∣∣y=ỹ
z=z̃

∂G

∂y

∣∣∣∣y=ỹ
z=z̃

∂G

∂z

∣∣∣∣y=ỹ
z=z̃


(

∆y

∆z

)
(5.15)

Comparing the last equation with equation (5.11) it is easy too see that the derivative H′(x̃)
has to be interpreted as the matrix of partial derivatives, evaluated at the steady state:

H′(x̃) =


∂F

∂y

∣∣∣∣y=ỹ
z=z̃

∂F

∂z

∣∣∣∣y=ỹ
z=z̃

∂G

∂y

∣∣∣∣y=ỹ
z=z̃

∂G

∂z

∣∣∣∣y=ỹ
z=z̃

 (5.16)

We will denote this matrix of partial derivatives with the symbol A and its elements with a11,
a12, a21 and a22, respectively:

A =

 a11 a12

a21 a22

 (5.17)

The elements a11, a12, a21 and a22 are hence defined as:

a11 =
∂F

∂y

∣∣∣∣y=ỹ
z=z̃

(5.18a)

a12 =
∂F

∂z

∣∣∣∣y=ỹ
z=z̃

(5.18b)

a21 =
∂G

∂y

∣∣∣∣y=ỹ
z=z̃

(5.18c)

a22 =
∂G

∂z

∣∣∣∣y=ỹ
z=z̃

(5.18d)
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The matrix of partial derivatives A is referred to as the Jacobian matrix (or in short Jacobian)
of the function H(x), evaluated at the steady state x̃. The Jacobian plays an important role in
the stability analysis of the steady state.

In general, the dynamics of a tiny deviation ∆x from a steady state x̃ is thus described by the
ODE:

d∆x

dt
= A ∆x (5.19)

Since the Jacobian matrix A is evaluated at the steady state x̃ and thus constant, this ODE is
linear in the perturbation ∆x. It approximates the dynamics of the model in the neighborhood
of the steady state by its linearized dynamics.

5.3 Characteristic equation, eigenvalues and eigenvectors

Having obtained a system of 2 linear ODEs describing the dynamics of small displacements
∆y(t) and ∆z(t), respectively, from the steady state (ỹ, z̃), we analyse in this section whether
these displacements will ultimately grow or shrink in magnitude. If they shrink, the state of the
system will ultimately return to the steady state value after a small perturbation. The steady
state is in this case locally stable. On the other hand, if small perturbations to the state of
the system in the close neighborhood of the steady state grow over time, the steady state is
unstable.

In section 3.4 we have already discovered that linear ODEs yield solutions of exponential form.
For this reason, we analyze what results from substitution of an exponential trial solution

v eλt (5.20)

into the linearized ODE (5.19) (cf. the derivation in equations (3.23)-(3.26)). In the above
equation v refers to the initial perturbation (∆y(0),∆z(0) to the state of the system at t = 0.
Since this initial perturbation does not depend on the time variable, the substitution of the trial
solution into the ODE (5.19) yields:

dv eλt

dt
= A v eλt ⇒ (5.21)

λv eλt = A v eλt (5.22)

Dividing by the common factor exp(λt) yields the equation

A v = λv (5.23)

It should be noted that the quantity v cannot be canceled, like the common factor exp(λt),
since it represents a vector and accordingly Av represents a matrix multiplication. However,
equation (5.23) can be rewritten as

(A − λ I) v = 0 (5.24)

in which the I represents the identity or unit matrix
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I =



1 0 · · · · · · 0

0 1
. . .

...
...

. . .
. . .

. . .
...

...
. . .

. . . 0
0 · · · · · · 0 1


Equation (5.24) is trivially satisfied when v = 0 (here, 0 refers to the null-vector (0, 0)). How-
ever, we are concerned with studying the fate of a perturbation away from the steady state
of the system and hence we exclude this trivial case of a zero displacement. For non-trivial
perturbations v, readers that are familiar with linear algebra will recognize that equation (5.24)
can only be satisfied if

det (A − λ I) = 0 (5.25)

By substituting the expressions for the matrices A and I into the above equation, this equation
can be rewritten as:

det

 a11 − λ a12

a21 a22 − λ

 = 0 (5.26)

and after computation of the determinant as

(a11 − λ) (a22 − λ) − a12 a21 = 0 (5.27)

The latter equation can be rearranged to a quadratic polynomial in terms of the unknown
quantity λ:

λ2 − (a11 + a22) λ + (a11 a22 − a12 a21) = 0 (5.28)

Readers that are not familiar with linear algebra may check that equation (5.24) corresponds to
the following system of equations:

(a11 − λ) ∆y(0) + a12 ∆z(0) = 0 (5.29a)

a21 ∆y(0) + (a22 − λ) ∆z(0) = 0 (5.29b)

From these two equations the quantity ∆z(0) can be eliminated by multiplying the first and
second equation with (a22 − λ) and −a12, respectively, and adding the results of these two
operations. This leads to the following equation for ∆y(0):

((a11 − λ) (a22 − λ) − a12 a21) ∆y(0) = 0 (5.30)

Since we have excluded the case of a zero initial perturbation, it is easily seen that this last
equation is identical to equation (5.27), which was derived above.

Equation (5.25) represents the characteristic equation of the model (cf. equation (3.26)).
The characteristic equation determines the eigenvalues λ. Given that the characteristic equa-
tion (5.25) can be rewritten as a quadratic polynomial (cf. equation (5.28)), it is clear that there
are two eigenvalues λ. These two eigenvalues we will denote by λ1 and λ2, respectively, or by
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λi if the discussion applies to both of them. Generically, λ1 and λ2 have different values. If for
particular choices of the model parameters they are identical, we will still consider them as two
distinct entities, which only happen to coincide.

As was discussed at the end of section 3.4 eigenvalues can be interpreted as characteristic growth
rates. Their interpretation in the context of the 2-dimensional model is more difficult than in the
case of a single ODE. In the latter, the perturbation away from the steady state is just a scalar
quantity, for which the eigenvalue λ determined the rate of growth. In case of a 2-dimensional
model, the eigenvalues λ1 and λ2 are not just the growth rate in the scalar quantities ∆y(t)
and ∆z(t), respectively, but are both associated with a particular vector v, which is called the
corresponding eigenvector . The eigenvector v determines a direction in the phase space spanned
by the two variables y and z. The eigenvalues λ1 and λ2 represent the characteristic growth rate
in the direction of their corresponding eigenvector, which we shall denote by

v1 =

 v11

v12

 and v2 =

 v21

v22

 ,

respectively (see also section 5.4). The eigenvector vi associated with a particular eigenvalue
λi can be computed from the vector equation (5.24) (or equivalently the corresponding system
of equations (5.29)). Inspection of this equation shows that we can multiply both sides of the
equation with a constant without invalidating it. In other words, the equation does determine
the direction of the eigenvector, but it does not determine its length or absolute magnitude. We
are hence free to choose one of the elements of the vector vi equal to 1. For example, if the value
of a12 6= 0 and the value of vi1 is set to 1, we can solve equation (5.29a) for the other element
vi2 of the eigenvector vi. Therefore, in the case of a 2-dimensional model the eigenvector vi
corresponding to a particular eigenvalue λi equals

vi =


1

λi − a11
a12

 (5.31)

if a12 6= 0. In case a12 = 0 and a21 6= 0 the eigenvector vi is given by

vi =

 λi − a22
a21

1

 (5.32)

which can be derived from equation (5.29b) by substitution of vi2 = 1.

Once the eigenvalues λ1 and λ2 and the corresponding eigenvectors v1 and v2 are found, we can
write down a general solution for the linearized dynamics of the perturbation (∆y(t),∆z(t)) in
the neighborhood of the steady state (ỹ, z̃). Provided that λ1 6= λ2, any initial perturbation
(∆y(0),∆z(0)) can be expressed as a linear combination of the two eigenvectors v1 and v2, say
by

∆x(0) =

(
∆y(0)

∆z(0)

)
= C1 v1 + C2 v2 (5.33)

In this equation C1 and C2 are constants that are unique for a specific initial perturbation
(∆y(0),∆z(0)). From this decomposition it follows that the perturbation (∆y(t),∆z(t)) at time
t is given by

∆x(t) =

(
∆y(t)

∆z(t)

)
= C1 v1 e

λ1t + C2 v2 e
λ2t (5.34)
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which is a shorthand version of the following:

∆y(t) = C1 v11 e
λ1t + C2 v21 e

λ2t (5.35a)

∆z(t) = C1 v12 e
λ1t + C2 v22 e

λ2t (5.35b)

Equation (5.34) and (5.35) follow from the so-called superposition principle, which holds for
linear ODEs. This principle states that if two arbitrary functions k(t) and l(t) are both solutions
of a particular, linear ODE, any linear combination p k(t) + q l(t) with p and q arbitrary constants
constitutes a solution of the ODE as well. Assume that the ODE can be written as

dN

dt
= αN

Since both k(t) and l(t) represent solutions, it follows that

dk(t)

dt
= αk(t) and

dl(t)

dt
= α l(t).

For an arbitrary linear combination h(t) = p k(t) + q l(t), we can derive

dh(t)

dt
=

d (p k(t) + q l(t))

dt
= p

dk(t)

dt
+ q

dl(t)

dt

Given that both k(t) and l(t) represent solutions, the right-hand side of this equation can be
written as

pα k(t) + q α l(t) = α (p k(t) + q l(t)) = αh(t)

which shows that also the linear combination h(t) = p k(t) + q l(t) is a solution of the ODE.

What follows from the superposition principle is that if a particular initial condition ∆x(0) can
be written as a linear combination C1v1 +C2v2 of two quantities v1 and v2 and we know the so-
lutions of the ODEs that have v1 and v2 as initial condition, the solution ∆x(t) can be expressed
as the linear of combination of these particular solutions for v1 and v2. Equation (5.34) expresses
this result mathematically. The eigenvectors λ1 and λ2 and the corresponding eigenvectors v1

and v2 therefore completely determine the fate of any arbitrary perturbation.

5.4 Phase portraits of dynamics in planar systems

In the previous section we have derived the characteristic equation, which determines the eigen-
values pertaining to a particular steady state in a 2-dimensional model. It was argued that these
eigenvalues and the corresponding eigenvectors completely determine the fate of any arbitrary
perturbation in the neighborhood of a particular steady state x̃. In this section we will analyse
the relation between the eigenvalues and the qualitative properties of the dynamics close to a
steady state and how its stability properties depend on these eigenvalues.

Based on equation (5.28) the characteristic equation can be expressed as

λ2 − β λ + γ = 0 (5.36)

in which the quantities β and γ are defined as

β = a11 + a22 (5.37)

γ = a11 a22 − a12 a21 (5.38)
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β equals the trace of the Jacobian matrix A, while γ is identical to the determinant of A. Given
a particular eigenvalue λi its corresponding eigenvector is determined by

vi =

 a12

λi − a11

 (5.39)

if a12 6= 0, and by

vi =

 λi − a22

a21

 (5.40)

in case a12 = 0 and a21 6= 0.

The roots λi of the characteristic equation (5.36) are given by

λ1 =
β +

√
δ

2
(5.41)

λ2 =
β −

√
δ

2
(5.42)

where the quantity δ equals the discrimant of the Jacobian matrix A:

δ = β2 − 4 γ (5.43)

Clearly, if δ > 0 equation (5.41) and (5.42) specify two distinct, real-valued eigenvalues. In
contrast, if δ < 0 both eigenvalues λ1 and λ2 are complex. In the next sections we will study
these two situations separately. The case, in which δ = 0 and hence λ1 equals λ2, will not be
discussed any further here. With two identical eigenvalues λ1 and λ2 also the eigenvectors are
identical. This non-generic case requires special treatment, which can be found in any text book
on ODEs. Table 5.1 summarizes the most important properties of systems with two linear(ized)
differential equations.

5.4.1 Two real eigenvalues

Equation (5.41) and (5.42) show that both eigenvalues are real-valued, provided the discriminant
of the matrix A is positive:

Disc A = δ = β2 − 4γ > 0

which always holds if the determinant γ of the matrix A is negative, γ < 0. If the eigenvalues are
real, also both elements of the two corresponding eigenvectors are real-valued (see equation (5.39)
and (5.40)). Figure 5.1 schematically depicts the arrangement of the eigenvectors in the phase-
plane in the neighborhood of the steady state x̃. In the figure it is assumed that the steady state
is located at the origin (0, 0), which can always be achieved through a translation of the axes.
The phase-plane shown in figure 5.1 is therefore spanned by the perturbations in the variables
y and z, ∆y and ∆z, respectively.

Figure 5.1 shows that each of the eigenvectors determines a line in the phase-plane. Recall from
equation (5.34) that the solution of the linearized system of equations in the neighborhood of
the steady state can be written as

∆x(t) = C1 v1 e
λ1t + C2 v2 e

λ2t
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Table 5.1: Important characteristics of systems consisting of two linear(ized) differential equa-
tions

Vector notation Algebraic notation

Linear(ized)
equations

dx

dt
= Ax, A =

(
a11 a12
a21 a22

)
dx1
dt

= a11x1 + a12x2

dx2
dt

= a21x1 + a22x2

Significant
quantities

Tr A

Det A

Disc A

β = a11 + a22

γ = a11a22 − a12a21

δ = β2 − 4γ

Characteristic
equation

det(A − λI) = 0 λ2 − βλ + γ = 0

Eigenvalues λ1,2 =
Tr A ±

√
Disc A

2
λ1,2 =

β ±
√
δ

2

Eigenvectors v1 and v2,

such that Avi = λivi

if a12 6= 0:(
a12

λ1 − a11

)
,

(
a12

λ2 − a11

)
if a12 = 0 and a21 6= 0:(
λ1 − a22
a21

)
,

(
λ2 − a22
a21

)

Solutions x(t) = C1v1e
λ1t + C2v2e

λ2t if a12 6= 0:

x1(t) = C1a12e
λ1t + C2a12e

λ2t

x2(t) = C1(λ1−a11)eλ1t+C2(λ2−a11)eλ2t

if a12 = 0 and a21 6= 0:

x1(t) = C1(λ1−a22)eλ1t+C2(λ2−a22)eλ2t

x2(t) = C1a21e
λ1t + C2a21e

λ2t

in which C1 and C2 are constants determined by the initial perturbation. If the initial pertur-
bation ∆x(0) = (∆y(0),∆z(0)) is on the line spanned by v1, the constant C2 equals 0. The
dynamics of the perturbation over time are in this case described by

∆x(t) = C1 v1 e
λ1t

For any value of t ∆x(t) is then a scalar multiple of v1, which means that ∆x(t) remains on
the line spanned by this eigenvector. The scalar multiple is determined by the product of C1

and the last, exponential term in the equation above. If λ1 is negative this scalar quantity will
decay for large values of t, if λ1 is positive it will grow. In the limit for t→∞, the state of the
system will hence approach the steady state x̃ following the line spanned by v1, if and only if
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v1

v2

∆y

∆z

x̃

Figure 5.1: Geometric representation of two real-valued eigenvectors in a planar system. The
steady state x̃ is located at the origin (0, 0), possibly after translation of the axes. The phase-
plane is therefore spanned by the perturbations in the variables y and z, ∆y and ∆z, respectively.
v1 and v2 represent the two eigenvectors corresponding to the two eigenvalues λ1 and λ2,
respectively.

λ1 < 0.

Analogously, if the initial perturbation ∆x(0) = (∆y(0),∆z(0)) is on the line spanned by v2,
the constant C1 equals 0 and the dynamics are described by

∆x(t) = C2 v2 e
λ2t

Also in this case, in the limit for t→∞, the state of the system will approach the steady state
x̃ following the line spanned by v2, if and only if λ2 < 0.

It follows that the dynamics of any perturbation that is initially on one of the lines through
the steady state spanned by either v1 or v2 will stay on that line for all t and will approach
or move away from the steady state, depending on whether λ1 or λ2 are negative or positive,
respectively. Note that because terms like exp(λt) only approach 0 and never become identical
to it, the steady state can be approached for t→∞, but will never be reached exactly.

Perturbations that are not initially part of one of the lines spanned by the eigenvectors tend
to be curved, since their dynamics are described by a weighted sum of terms involving both
eigenvectors and eigenvalues (see equation (5.34)). These dynamics will be dominated by the
exponential term with the largest eigenvalue, because this term will grow most rapidly or decay
most slowly. Hence, the trajectories in the phase-plane determined by such initial perturbations
will curve toward the line spanned by the eigenvector, which is associated with the largest
eigenvalue.

Depending on the signs of λ1 and λ2 3 different cases can now be distinguished, which are
illustrated with their flow patterns in figure 5.2.

• Case 1: Two negative eigenvalues: λ1 < 0, λ2 < 0

For both eigenvalues to be negative, we can infer from equation (5.41) and (5.42) that at
least β has to be negative as well, β < 0 (Note that in this section we restrict ourselves to
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λ1 < 0, λ2 < 0 λ1 < 0, λ2 > 0 λ1 > 0, λ2 > 0
Stable node Saddle node Unstable node

Figure 5.2: Characteristic flow patterns in the neighborhood of the steady state with real-
valued eigenvalues and eigenvectors.

the case that δ > 0 and that hence
√
δ represents a positive, real value). In addition,

√
δ

should be smaller in absolute value than β, otherwise the numerator in equation (5.41),
and thus λ1, will be positive. The inequality

√
δ =

√
β2 − 4γ < |β| can clearly only be

satisfied if γ > 0. Hence, the necessary and sufficient conditions for λ1 < 0 and λ2 < 0
are:

β < 0, γ > 0 and δ = β2 − 4γ > 0 (5.44)

The resulting flow pattern in this case is illustrated in the left panel of figure 5.2. Along
the lines that are spanned by both eigenvectors v1 and v2 the flow is toward the steady
state x̃, since both exp(λ1t) and exp(λ2t) with negative λ1 and λ2 are decreasing functions
of times. As a consequence, the flow from anywhere in the neighborhood of the steady
state x̃ is directed toward the steady state. Any arbitrary displacement of the state away
from the steady state will ultimately decay over time and the steady state is locally stable.
In this particular case, the steady state is referred to as a stable node or a sink , a term
which more or less captures the characteristic flow pattern in its neighborhood.

• Case 2: One positive, one negative eigenvalue: λ1 > 0, λ2 < 0 or λ1 < 0, λ2 > 0

For one of the eigenvalues to be positive, the equations (5.41) and (5.42) show that it does
not matter what the value of β is, as long as the term

√
δ is in absolute value larger than

β. If
√
δ > |β| and β < 0, equation (5.41) for λ1 yields a positive value, while for

√
δ > |β|

and β > 0 equation (5.42) for λ2 results in a negative value. Therefore, the only condition
apart from the condition δ > 0 to hold for this case is that

√
δ > |β|. From the analysis

of the previous case we can immediately conclude that this inequality holds if and only
if γ < 0. The necessary and sufficient conditions to have one positive and one negative
eigenvalue, either λ1 < 0 and λ2 > 0 or λ1 > 0 and λ2 < 0, hence are:

γ < 0 and δ = β2 − 4γ > 0 (5.45)

The flow pattern for the case λ1 > 0 and λ2 < 0 is shown in the middle panel of figure 5.2.
Along the line spanned by the eigenvector v2 the flow is directed toward the steady state x̃
because the factor exp(λ2t) with λ2 < 0 is decaying over time. In contrast, the flow along
the line spanned by the eigenvector v1 is directed away from the steady state since the
term exp(λ1t) with λ1 > 0 only increases with time. These different responses along the
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two eigenvectors result in a characteristic flow pattern in the neighborhood of the steady
state: Trajectories are curving toward the steady state when starting close to the line
spanned by v2, but bend away from it when coming close to the steady state, leaving its
vicinity following the line spanned by the eigenvector v1 that is associated with the positive
eigenvalue λ1. As a result, the steady state is initially approached, but subsequently left
behind. This bi-phasic response is only apparent for initial states close to the line spanned
by the eigenvector that is associated with the negative eigenvalue. Initial states further
away from it show this bi-phasic response less and less, such that initial states close to
the line spanned by the the eigenvector that is associated with the positive eigenvalue,
only show the phase in which the state moves away from the steady state. Because of this
bi-phasic flow pattern in its neighborhood, a steady state x̃ characterized by one positive
and one negative eigenvalue is called a saddle node or saddle point . Since eventually
perturbations to the state of the system will cause the state to leave its neighborhood, the
steady state is unstable.

• Case 3: Two positive eigenvalues: λ1 > 0, λ2 > 0

This case is by and large the mirror image of case 1. For both eigenvalues to be positive,
equation (5.41) and (5.42) show that β has to be positive, β > 0 (Note again that δ > 0
and that hence

√
δ > 0). Like in case 1,

√
δ should be smaller in absolute value than β,

otherwise the numerator in equation (5.42), and thus λ2, will be negative. For the case 1
it was already deduced that

√
δ < |β| can only be satisfied if γ > 0. Hence, the necessary

and sufficient conditions for λ1 > 0 and λ2 > 0 are:

β > 0, γ > 0 and δ = β2 − 4γ > 0 (5.46)

The right panel in figure 5.2 shows the characteristic flow pattern for this case in the
neighborhood of the steady state x̃. It is analogous to the flow pattern around the sink
discussed as case 1 (see left panel of figure 5.2) with only the direction of movement on all
trajectories reversed. Along both lines spanned by v1 and v2 the flow is away from the
steady state x̃, since both exp(λ1t) and exp(λ2t) with positive λ1 and λ2 are increasing
functions of times. As a consequence, the flow from anywhere in the neighborhood of the
steady state x̃ is directed away from the steady state. Any arbitrary displacement of the
state away from the steady state will ultimately grow over time and the steady state is
unstable. Because all trajectories seem to originate from it, the steady state in this case
is referred to as an unstable node or a source.

Summary:

In the neighborhood of a steady state, which is characterized by two real
eigenvalues λ1 and λ2, these eigenvalues determine the rate with which
the steady state is approached (in case of a negative eigenvalue) or left
behind (in case of a positive eigenvalue) along the two characteristic
directions, spanned by the eigenvectors v1 and v2 that are associated
with λ1 and λ2, respectively.
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5.4.2 Two complex eigenvalues

If the discriminant of the matrix A is negative,

Disc A = δ = β2 − 4γ < 0 (5.47)

the factor
√
δ in equation (5.41) and (5.42) and therefore both eigenvalues λ1 and λ2 have a

complex value. Moreover, the two eigenvalues λ1 and λ2 are each other complex conjugate,
because the same factor

√
δ occurs in the expressions for the eigenvalues, but with a different

sign. We can therefore express λ1 and λ2 as

λ1 = p + i q (5.48)

and
λ2 = p − i q (5.49)

in which i =
√
−1 and both factors p and q are real-valued, scalar quantities, defined as

p =
β

2
(5.50)

q =

√
|δ|
2

=

√
−δ
2

(5.51)

Even for more general models in terms of more than 2 ODEs it holds that if a particular eigen-
value is complex, its complex conjugate is an eigenvalue as well. Thus, complex eigenvalues
always occur in conjugate pairs. For the discriminant δ of the matrix A to be negative, equa-
tion (5.47) shows that γ has to be larger than β2/4, which implies that γ at least has to be
positive.

Substitution of equation (5.48) and (5.49) into equation (5.39) shows that the eigenvectors
corresponding to λ1 and λ2 can be written as

v1 =

 a12

p+ iq − a11

 =

 a12

p− a11

 + i

0

q

 (5.52)

and

v2 =

 a12

p− iq − a11

 =

 a12

p− a11

 − i

0

q

 (5.53)

Note that the requirement for equation (5.39) to hold, i.e. a12 6= 0, is always satisfied. Otherwise,
for a12 = 0 the determinant γ of the Jacobian matrix A equals a11a22, which implies that λ1 and
λ2 would both be real-valued and equal to a11 and a22, respectively (see equation (5.36)-(5.38)).
Defining two real, constant vectors r and c as

r =

 a12

p− a11

 (5.54)

and

c =

0

q

 , (5.55)

respectively, the eigenvectors v1 and v2 can now be expressed as

v1 = r + i c (5.56)

v2 = r − i c (5.57)
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∆y

∆z

x̃

r

c

Figure 5.3: Geometric representation of the two basis vectors in a planar system with complex
eigenvectors. The steady state x̃ is located at the origin (0, 0), possibly after translation of the
axes. The phase-plane is therefore spanned by the perturbations in the variables y and z, ∆y

and ∆z, respectively. r and c represent the real and complex part of the two eigenvectors v1 and
v2 (see equation (5.56) and (5.57)) corresponding to the two eigenvalues λ1 and λ2, respectively.
The closed loop represents the trajectory determined by the two functions u(t) and w(t) (see
equation (5.58) and(5.59)).

The complex nature of the eigenvalues λ1,2 = p± iq and the eigenvectors v1,2 = r± ic raise the
question how equation (5.34) can still represent the general solution from any arbitrary point
in the neighborhood of the steady state. Complex eigenvectors have no geometrical meaning,
like in the case for real eigenvectors (see figure 5.1) and we can hence not draw initial points
as linear combinations of them. How do we then represent such a particular perturbation in
terms of the eigenvectors and what is there dynamics over time? To answer these questions we
substitute the expressions for the eigenvalues and eigenvectors, λ1,2 = p± iq and v1,2 = r± ic,
respectively, into equation (5.34) and substitute for the exponential functions the identity

e(p± iq)t = ept (cos qt ± i sin qt)

With these substitutions equation (5.34) can be rewritten as follows

∆x(t) = C1 v1 e
λ1t + C2 v2 e

λ2t

= C1 (r + i c) e(p+ iq)t + C2 (r− i c) e(p− iq)t

= ept {C1 (r + i c) (cos qt + i sin qt) + C2 (r− i c) (cos qt − i sin qt)}

= ept {(C1 + C2) (r cos qt − c sin qt) + i (C1 − C2) (r sin qt + c cos qt)}

If we define two real, vector-valued functions u(t) and w(t) as

u(t) = r cos qt − c sin qt (5.58)

w(t) = r sin qt + c cos qt (5.59)
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Re λ1 = Re λ2 < 0 Re λ1 = Re λ2 = 0 Re λ1 = Re λ2 > 0
Stable spiral Neutral center Unstable spiral

Figure 5.4: Characteristic flow patterns in the neighborhood of the steady state with complex
eigenvalues and eigenvectors.

∆x(t) can hence be written as

∆x(t) = ept {(C1 + C2) u(t) + i (C1 − C2) w(t)} (5.60)

This equation leads to the conclusion that as long as we choose the constants C1 and C2 as
each other’s complex conjugate, all complex terms in the expression for ∆x(t) cancel. More
specifically, if we assume that C1 and C2 are defined as

C1 =
a − i b

2
, and C2 =

a + i b

2
,

respectively, equation (5.60) simplifies to

∆x(t) = ept {au(t) + bw(t)} (5.61)

in which both constants a and b as well as both vector-valued functions u(t) and w(t) are real.

From equation (5.58) and (5.59) we can infer that for t = 0 u(t) evaluates to the vector r, while
w(t) evaluates to c. These two vectors r and c constitute a set of independent basis vectors. By
choosing the (real) constants a and b appropriately, any initial state in the neighborhood of the
steady state x̃ can be represented as a linear combination of them (see figure 5.3). Therefore, we
can conclude that equation (5.61) represents the general form of the solution to the linearized
dynamics (5.19) from any arbitrary initial point in the neighborhood of the steady state x̃.

To investigate the characteristics of the general solution we note that the term exp(pt) represents
a growing or decaying function of time, depending on the value of the (real) constant p (remember
that p equals the real part of the eigenvalues λ1 and λ2). Equation (5.58) shows that the function
u(t) evaluates to the vector r at t = 0, to the vector −c for qt = π/2, to the vector −r for qt = π,
to the vector c for qt = 3π/2 and once again to the vector r at qt = 2π. In other words, the
function u(t) describes a cyclic pattern in the phase-plane, cycling between the points specified
by r, −c, −r and c with a periodicity equal to 2π/q (see figure 5.3). Analogously, we can infer
from equation (5.59) that the function w(t) evaluates to c at t = 0, to the vector r for qt = π/2,
to the vector −c for qt = π, to the vector −r for qt = 3π/2 and once again to the vector c at
qt = 2π. The function w(t) hence describes the same cyclic pattern in the phase-plane, cycling
between the points specified by c, r, −c and −r with a periodicity equal to 2π/q, but lagging
behind a quarter period (i.e. with a phase shift equal to π/2) in comparison to the function
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u(t). In terms of the phase-plane shown in figure 5.3, the two functions u(t) and w(t) describe
the same closed trajectory over time, which is followed with a periodicity equal to 2π/q. The
difference between the two functions is the lag between them of a quarter period.

In addition to the 3 cases with real eigenvalues discussed in section 5.4.1, the conclusions of the
analysis above allow us to distinguish 3 additional cases for the dynamics in the neighborhood
of a steady state that is characterized by a complex set of eigenvalues and eigenvectors. The
flow patterns in the neighborhood of the steady state are illustrated in figure 5.4.

• Case 4: Negative real parts: Re λ1 = Re λ2 < 0

If the real part of λ1 and λ2, i.e. the constants p, is negative, the solution for ∆x(t) is the
product of the oscillatory function of time, given by

au(t) + bw(t)

and the decaying exponential function of time

ep t

Therefore, the trajectories in the neighborhood of the steady state x̃ circle around the
steady state with a period that is determined by the factor 2π/q, while the amplitude, i.e.
roughly speaking the distance to the steady state, decreases at a rate p. These trajectories
hence represent spiraling dynamics, approaching the steady state for t → ∞ (see the
left panel in figure 5.4). The steady state is clearly stable, as small perturbations will
ultimately decay with time. This type of steady state is appropriately referred to as a
stable spiral point .

From equation (5.50) it is clear that this case occurs, if in addition to the condition (5.47),
β is negative. The necessary and sufficient conditions hence are

β < 0 and δ = β2 − 4γ < 0 (5.62)

• Case 5: Positive real parts: Re λ1 = Re λ2 > 0

This case is the mirror image of the previous case. Therefore, the solution for ∆x(t) is the
product of the oscillatory function of time, given by

au(t) + bw(t)

and

ep t

which represents an increasing function of time. The trajectories in the neighborhood
of the steady state x̃ circle around the steady state with a period that is determined by
the factor 2π/q, while the amplitude (distance to the steady state) increases at a rate p.
Altogether, the trajectories represent spiraling dynamics, moving away from the steady
state for t→∞ (see the right panel in figure 5.4). The steady state is unstable, as small
perturbations will increase with time. This type of steady state is referred to as an unstable
spiral point .

The necessary and sufficient conditions, for which this case occurs, are

β > 0 and δ = β2 − 4γ < 0 (5.63)



94 CHAPTER 5. SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS

• Case 6: Zero real parts: Re λ1 = Re λ2 = 0

If the real part p of λ1 and λ2 equals 0, the amplitude of the oscillatory dynamics in the
neighborhood of the steady state neither grows nor declines. The solution for ∆x(t) hence
equals

au(t) + bw(t)

This function describes purely cyclic dynamics with a period equal to 2π/q. The trajec-
tories form closed loops around the steady state (see the middle panel in figure 5.4). The
initial perturbation determines the constants a and b and hence which closed loop is fol-
lowed. Since initial perturbations neither grow nor decline in magnitude, the steady state
is neutrally stable. This type of steady state is referred to as a neutral center .

The necessary and sufficient conditions, for which this case occurs, are

β = 0 and δ = β2 − 4γ < 0 (5.64)

This case is rather special and generically only occurs for limited sets of parameters. In
essence, it is as special as the case, in which two real eigenvalues are equal, λ1 = λ2. This
latter case was not discussed in section 5.4.1, precisely because it only occurs for restricted
parameter combinations and hence is not generic. The reason that we nonetheless distin-
guish and discuss the case of complex eigenvalues with zero real part follows from the fact
that the classical Lotka-Volterra model for the interactions between predators and their
prey yields precisely this class of dynamics (see section 6.1).

Summary:

For a steady state which is characterized by two complex eigenvalues
λ1 and λ2, the imaginary part q determines the period 2π/q of the
oscillatory dynamics that occur in the neighborhood of the steady state.
The real part p of the eigenvalues determines the rate of growth or
decline of the amplitude of the oscillatory dynamics, which roughly
speaking corresponds to the distance to the steady state.

5.5 Stability of steady states in planar ODE systems

In section 5.4.1 it was shown that in case the eigenvalues are real-valued, a steady state of
a planar ODE system is stable if and only if both eigenvalues λ1 and λ2 are negative. In
section 5.4.2 it was shown that in case the eigenvalues are complex, the steady state is a stable
spiral if and only if the real parts of the two eigenvalues λ1 and λ2, which constitute a complex,
conjugate pair, is negative. To summarize we can conclude
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β

γ
δ = β2 − 4γ = 0

(c)
(d) (e)

(f) (f)

(b)(a)

Figure 5.5: Summary of stability properties for planar ODE systems. The stability properties
of the steady state are indicated with the characteristic flow patterns in the neighborhood of
the steady state, as a function of the trace β, the determinant γ and the discriminant δ of the
Jacobian matrix A. Types of steady states: (a): Stable spiral; (b): Unstable spiral; (c): Neutral
center; (d): Stable node; (e): Unstable node; (f): Saddle node. Note that a neutral center only
occurs for β = 0.

Important:

In a continuous-time model in terms of ordinary differential equations,
a steady state will be stable provided that the eigenvalues of the char-
acteristic equation, which is associated with the linearized dynamics in
the close neighborhood of the steady state, are all negative (if real) or
have negative real part (if complex). That is,

Re λi < 0 for all i.
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On purpose the conclusion above is phrased without a reference to a 2-dimensional, planar
system of ODEs. The conclusion generalizes without any change to models of higher, even
infinite, dimension. For a model in terms of 2 ODEs we derived in section 5.4.1 and 5.4.2 a
complete set of necessary and sufficient conditions determining whether the steady state was
a stable or unstable node, a saddle node, a neutral center, a stable or unstable spiral point.
As shown in figure 5.2 and 5.4 the type of steady state determined completely the flow of the
trajectories in the close neighborhood of the steady state. The conditions were phrased in terms
of 3 quantities: β, the trace of the Jacobian matrix A, γ the determinant of A and δ = β2− 4γ,
its discriminant. Figure 5.5 summarizes these conditions by plotting in the plane spanned by the
quantities β and γ examples of the characteristic flow patterns in the neighborhood of a steady
state. All types of steady states occur for measurable sets of (β, γ)-combinations, except for
neutral centers, which only occur on the γ-axis in figure 5.5, i.e. for β = 0. The quantities β and
γ determine the values of the eigenvalues and the corresponding eigenvectors (see equation (5.41)
and (5.42)). As we concluded before, these eigenvalues and eigenvectors determine completely
the dynamics of the model in the neighborhood of the steady state.

5.6 Models with 3 or more variables

In general, any model specifying the dynamics of 3 or more variables can be abstractly repre-
sented in vector notation by the same equations as presented in section 5.1. Assuming that we
are studying a model in terms of n variables, denoted by x1, . . . xn, the dynamics can hence be
described by the following, n-dimensional system of ODEs

dx

dt
= H(x)

(compare equation (5.4)) in which x represents an n-dimensional column vector and H(x) an
n-dimensional vector-valued function:

x =

 x1
...
xn

 , H(x) =

 H1(x)
...

Hn(x)


The steady state equation of such a model can again be represented by

H(x̃) = 0

(compare equation (5.5)), which is now a short-hand notation for a system of n algebraic equa-
tions.

The linearization of the dynamics in the neighborhood of a steady state, which is described in
section 5.2 for a 2-dimensional model, also generalizes to models of any dimension. Therefore,
in the neighborhood of a particular steady state x̃, the dynamics can be approximated by the
linearized dynamics, described by the ODE:

d∆x

dt
= A ∆x (5.65)

Here, ∆x represents the (n-dimensional) perturbation to the steady state x̃. The Jacobian
matrix A equals the matrix of partial derivatives of the function H(x), evaluated at the steady
state x̃. A is therefore defined as
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Table 5.2: The Routh-Hurwitz stability criteria (following May 1974)

n Stability criteria

1 c1 > 0

2 c1 > 0, c2 > 0

3 c1 > 0, c3 > 0, c1c2 > c3

4 c1 > 0, c3 > 0, c4 > 0
c1c2c3 > c23 + c21c4

5 ci > 0 for all i, c1c2c3 > c23 + c21c4,
(c1c4 − c5)(c1c2c3 − c23 − c21c4) > c5(c1c2 − c3)

2 + c21c5

A =

 a11 · · · a1n
...

. . .
...

an1 · · · ann

 =


∂H1

∂x1

∣∣∣∣
x=x̃

· · · ∂H1

∂xn

∣∣∣∣
x=x̃

...
. . .

...
∂Hn

∂x1

∣∣∣∣
x=x̃

· · · ∂Hn

∂xn

∣∣∣∣
x=x̃

 (5.66)

Each element aij of the matrix A equals the partial derivative of the function Hi(x) with respect
to the variable xj , evaluated at the steady state x̃.

Substitution of exponential trial solutions of the form

v eλt

into the ODE (5.65) yields, in vector notation, the same characteristic equation as derived for a
2-dimensional model:

det (A − λ I) = 0 (5.67)

As before, this characteristic equation determines the eigenvalues of the model pertaining to
a particular steady state. The matrices A and I are now n × n-matrices, as opposed to the
2 × 2-matrices encountered in section 5.3. Therefore, computation of the determinant in the
characteristic equation will eventually lead to a polynomial expression in λ of degree n, which
can be written as

λn + c1 λ
n−1 + c2 λ

n−2 + · · · + cn−2λ
2 + cn−1λ + cn = 0 (5.68)

The n roots of this polynomial equation correspond to the eigenvalues. Note that the number
of eigenvalues always equals the dimension of the model. For a 2-dimensional model we have
found in section 5.4 that

c1 = −β = − (a11 + a22)

c2 = γ = a11 a22 − a12 a21

Given a particular eigenvalue λi its corresponding eigenvector vi can be computed from

A vi = λi v
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which is analogous to equation (5.23), as derived in section 5.3 for a 2-dimensional model.

Apart from writing down the equations that determine the eigenvalues and eigenvectors of a
model with more than 2 variables, further analysis of the stability properties of steady states is
very difficult and often not possible analytically. However, as in the 2-dimensional model studied
in the previous sections, the general solution of the ODE (5.65), describing the dynamics of the
perturbation ∆x over time, can be written as a sum of eigenvectors and exponentials of the
eigenvalues (compare equation (5.34)):

∆x(t) =

n∑
i=1

Ci vi e
λit (5.69)

in which the constants Ci depend on the value of the initial perturbation ∆x(0) (see equa-
tion (5.33)). Strictly speaking, the equation above only holds for the case that all eigenvalues,
and hence all eigenvectors, are distinct, similar to the results derived for 2-dimensional models.
The case where eigenvalues are not distinct is seldom of substantial practical interest in mod-
eling since an infinitesimal change in one of the matrix elements (for example, due to a very
small change in one of the model parameters) will normally remove the problem. Generically,
we may thus conclude from equation (5.69) that perturbations to a steady state x̃ will decay and
the steady state will thus be stable, provided that all eigenvalues of the matrix A have negative
real parts. If any of the eigenvalues has a positive real part, the steady state is unstable and
perturbations will grow with time.

The roots of the polynomial (5.68) cannot be evaluated conveniently, unless n = 1 or n =
2. However, there are some very useful mathematical theorems which provide necessary and
sufficient conditions for all the eigenvalues of a matrix to have negative real parts, without
involving explicit calculation of the eigenvalues (May 1974). These stability conditions are
known as the Routh-Hurwitz criteria and are expressed in terms of the coefficients ci. Table 5.2
lists these criteria for n = 1, . . . , 5. These conditions themselves are not very enlightening,
but for small values of n the inequalities constitute one of the most powerful and widely used
theoretical tools to analytically evaluate the stability of steady states.



Chapter 6

Predator-prey interactions

In 1926 the Italian mathematician Vito Volterra wrote a paper, entitled “Fluctuations in the
abundance of a species considered mathematically”, which was inspired by a question from his
son-in-law, Dr. U. d’Ancona. The question posed by Dr. d’Ancona was why the predatory fish
species the Adriatic Sea had increased in abundance after fisheries had ceased during World
War I, while the opposite was true for the prey species these predators fed upon. Volterra
(1926) developed a model to describe the interaction between a predator and a prey, based on
the following assumptions:

• prey would multiply indefinitely (i.e. grow exponentially) in the absence of predators,

• predators would go extinct if prey were absent, due to a lack of food,

• the proportional rate of increase of the prey decreases as the number of predators increases,
and

• the growth rate of predators increases when the number of prey increases.

Without stating any equations, his model analysis led Volterra (1926) to the following 3 conclu-
sions:

1. The two species fluctuate periodically in abundance, the period only depending
on the coefficients of increase and of destruction of the two species, and on the
initial numbers of the individuals of the two species.

2. The average numbers of the two species tend to constant values, whatever the
initial may have been, so long as the coefficients of increase or of destruction
of the two species and also the coefficients of protection and attack remain
constant.

3. If we try to destroy individuals of both species uniformly and proportionally to
their number, the average number of individuals of the eaten species grows and
the average number of the eating species diminishes. But increased protection
of the eaten species increases the average numbers of both.

Volterra (1926) closed his short paper with the modest statement:

Seeing that a great number of biological phenomena are characteristic of associations
of species, it is to be hoped that this theory may receive further verification and may
be of some use to biologists.

99
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Despite the brevity of the paper and the modest closing sentence, Volterra established with
his study a corner-stone for the theory about predator-prey interactions. The Lotka-Volterra
predator-prey model, as it has been referred to since Volterra’s contribution, forms a basis
on which most if not all models of such interactions have been founded. In addition, it has
become clear that predator-prey interactions are one of the most important causes of oscillations
in species abundance. Hence, not only the model that Volterra (1926) studied, but also the
fluctuations he reported are to the present day important focal points for studying the dynamics
of interacting species.

In this chapter the basic Lotka-Volterra predator-prey model will be discussed first, together
with some of the models derived from it. Subsequently, I will discuss the relevance of the
model conclusions for natural systems and more specifically the occurrence in natural systems
of population cycles that might be the result of the interactions between predators and their
prey.

6.1 The Lotka-Volterra predator-prey model

Taking the simplest set of ODEs consistent with his assumptions, Volterra (1926) studied the
dynamics of the following model:

dF

dt
= rF − aFC (6.1a)

dC

dt
= εaFC − µC (6.1b)

In these equations F and C represent the abundance of prey (food) and predators (consumers),
respectively. The parameter r represents the exponential growth rate of prey in the absence
of the predator, while µ represents the death or mortality rate of the predators in the absence
of prey. Encounters between prey and predators are assumed to follow the mass action law
(see section 2.5.3) and are hence proportional to the product of the abundances F and C.
The parameter a represents the attack rate of predators, which equals the area or volume
that a predator searches through during a single unit of time. The parameter ε represents
the conversion efficiency, i.e. the efficiency with which predators convert consumed prey into
offspring. The notation used in the above equations is not identical to the notation used by
Volterra (1926), but chosen for agreement with variants of the model discussed below. Notice
that only positive parameter values are meaningful.

The nullclines of the Lotka-Volterra predator-prey model (6.1) where dF/dt = 0 are given by:

F = 0 and C =
r

a
(6.2)

while the nullclines where dC/dt = 0 are given by:

C = 0 and F =
µ

εa
(6.3)

These nullclines imply that the model possesses two steady states, the trivial steady state:

(F 1, C1) = (0, 0) (6.4)

and the internal steady state

(F 2, C2) =
( µ
εa
,
r

a

)
(6.5)
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The Lotka-Volterra predator-prey model makes two counterintuitive predictions regarding the
internal steady state:

• The steady state value of the prey is independent of its own growth or mortality rate, but
is completely determined by the characteristics of the predator, while

• increased prey growth rates or increased protection of prey against predation (i.e. lower
values of a) only result in higher predator densities at the steady state.

The strong, regulating coupling between prey and predator induces that at steady state the
available prey has to be just sufficient to yield a predator reproduction rate that balances
its mortality. Hence, if predators experience a higher mortality a higher steady-state prey
abundance is needed to balance it. On the other hand, in steady state there should be sufficiently
many predators to keep the total prey production under control. If prey are less sensitive to
predator attacks, this implies that there simply have to be more predators around to exert this
control.

Next, consider the stability of these two steady states. The Jacobian matrix with partial deriva-
tives is given by:

J =

 r − aC −aF

εaC εaF − µ

 (6.6)

Evaluated at the trivial steady state, this yields:

J1 =

 r 0

0 −µ

 (6.7)

and the following characteristic equation:

(r − λ)(−µ− λ) = 0 (6.8)

The eigenvalues pertaining to the trivial steady state hence equal:

λ1 = r (6.9a)

λ2 = −µ (6.9b)

The corresponding eigenvectors are

v1 =

 1

0

 (6.10)

for λ1 = r and

v2 =

 0

1

 (6.11)

λ2 = µ. These values for the eigenvalues and eigenvectors imply that the trivial steady state
will be stable against perturbations in the predator density, but unstable against perturbations
in the prey density. It is therefore a saddle point for all values of the parameters.

Substitution of the equilibrium densities (6.5) in the expression for the Jacobian matrix (6.6)
yields for the internal steady state:

J2 =

 0 −µ
ε

εr 0

 (6.12)
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1

Predator density C

Prey density F

µ/(εa)0

r/a

dC/dt = 0

dF/dt = 0

1

Figure 6.1: Solution curves in the phase plane of the Lotka-Volterra predator-prey model. Two
isoclines where dF/dt = 0 and dC/dt = 0 are drawn (the isoclines coinciding with the x- and
y-axis have been omitted). The isoclines intersect in the neutrally stable state. All solutions are
closed elliptic curves around this state, each curve completely determined by the initial state
(F0, C0). Parameter values: r = 0.5, a = 1.0, ε = 0.5 and µ = 0.1.

and the following characteristic equation:

λ2 + rµ = 0 (6.13)

The following pair of complex eigenvalues therefore governs the dynamics in the neighborhood
of the the internal steady:

λ1,2 = ±√rµ i (6.14)

Because the two eigenvalues are pure imaginary for all values of the parameters the internal
steady state is always neutrally stable. Due to the product terms aFC and εaFC in the ODE
for the prey and predator abundance, respectively, the model is non-linear. For a linear systems
a steady state with purely imaginary eigenvalues is always a neutral center (see chapter 5). The
non-linearities in the Lotka-Volterra model could theoretically imply that the steady state is a
spiral point, from which trajectories would spiral away. It is possible, however, to show that the
internal steady state is in fact a neutral center through the analysis of a differential equation
dF/dC that can be derived by dividing the left-hand sides and right-hand sides of the system
of ODEs (6.1)

dF

dC
=

rF − aFC

εaFC − µC
(6.15)
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Figure 6.2: Prey dynamics predicted by the Lotka-Volterra predator-prey model. The initial
predator density has been taken equal to its internal steady state value for the used parameter
values, C = 0.5. Different initial prey densities lead to solutions that differ in both period and
amplitude. The vertical line indicates the oscillation period predicted by the pair of complex
eigenvalues, τ = 2π/

√
rµ Parameter values: r = 0.5, a = 1.0, ε = 0.5 and µ = 0.1.

The variables in this latter ODE can be separated to yield:

εaF − µ
F

dF =
r − aC

C
dC

Integrating both sides from the abundances at time 0 to the abundances at time t yields:∫ F (t)

F0

−µ
F

dF +

∫ F (t)

F0

εa dF =

∫ C(t)

C0

r

C
dC −

∫ C(t)

C0

a dC

Where F0 and C0 are the initial abundances of prey and predators, respectively, and F (t) and
C(t) are the same abundances at time t. From this last equation it can be inferred that any
solution curve (F (t), C(t)) obeys the equation:

− µ lnF (t) + εaF (t) − r lnC(t) + aC(t) = −µ lnF0 + εaF0 − r lnC0 + aC0 (6.16)

In the (F,C)-phase plane this equation describes an elliptic curve through the initial state
(F0, C0). Hence, the internal steady state is not a spiral point, but a neutral center. All solution
curves are closed orbits around this center. Figure 6.1 shows some possible solution curves. The
initial state (F0, C0) uniquely determines which elliptic curve is followed.

The analysis thus shows that not only the steady state is neutrally stable, but that also all
solution orbits are neutrally stable: any small perturbation to the system will force it out of
the orbit around the steady state it is currently following into a new orbit. The imaginary
eigenvalues (6.14) predict that the period of oscillations are proportional to (

√
rµ)−1. However,

the real period of the oscillations also depends on the distance of the orbit to the steady state, as
is shown in Figure 6.2. Only infinitesimally close to the steady state is the period of oscillation
exactly equal to (

√
rµ)−1, it increases with the distance from the orbit to the steady state.
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Nonetheless, a higher prey growth rate r or a higher predator mortality rate µ lead to more
rapid oscillations in prey and predator abundance.

The basic Lotka-Volterra predator-prey model thus makes two important predictions:

• Steady-state prey abundances are completely controlled by life-history characteristics of
the predator, and

• Oscillations in both prey and predator abundance are the dominant type of dynamics
expected.

In the following two section we will see to what extent these conclusions are influenced by the
neutral stability of the internal steady state.

6.1.1 Incorporating prey logistic growth

A slightly more complicated and realistic version of the Lotka-Volterra predator-prey model (6.1)
assumes that prey do not grow indefinitely in the absence of predators, but will ultimately reach
a maximum prey abundance. Hence, prey do nog grow exponentially, but follow, for example,
a logistic growth equation, as in the following set of ODEs:

dF

dt
= rF

(
1− F

K

)
− aFC (6.17a)

dC

dt
= εaFC − µC (6.17b)

The only difference of this set of equations with the standard model (6.1) is the term (1−F/K),
characterizing the logistic growth process of prey up to a carrying capacity K in ODE (6.17a).

The nullclines where dF/dt = 0 for this modified Lotka-Volterra predator-prey model are given
by:

F = 0 and C =
r

a

(
1− F

K

)
(6.18)

while the nullclines where dC/dt = 0 are the same as before (cf. equation (6.3)):

C = 0 and F =
µ

εa
(6.19)

These nullclines imply that the modified model possesses three steady states, the trivial steady
state:

(F 1, C1) = (0, 0) (6.20)

a prey-only steady state:

(F 2, C2) = (K, 0) (6.21)

and the internal steady state

(F 3, C3) =
( µ
εa
,
r

a

(
1− µ

εaK

))
. (6.22)

The prey abundance in the internal steady state is again completely determined by the parame-
ters, i.e. the life-history characteristics, which pertain to the predator. The predator abundance
in the internal steady is now also determined by the steady-state prey abundance and therefore
indirectly dependent on the predator parameters as well. Nonetheless, the steady-state predator
abundance again is just sufficient to keep the total prey growth in steady state under control.
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The Jacobian matrix with partial derivatives of the modified model (6.17) is given by:

J =

 r − 2
rF

K
− aC −aF

εaC εaF − µ

 (6.23)

Evaluated at the trivial steady state, this yields the same Jacobian as for the basic Lotka-Volterra
model (6.1) (cf. equation (6.7)):

J1 =

 r 0

0 −µ

 (6.24)

The dynamic properties of the trivial steady state are therefore not affected by adopting a
logistic growth process for the prey: the trivial steady state is again a saddle point for all values
of the parameters, which is stable against perturbations in the predator density, but unstable
against perturbations in the prey density (see the discussion following equation (6.7)).

For the prey-only steady state the Jacobian evaluates to:

J2 =

 −r −aK

0 εaK − µ

 (6.25)

and the corresponding characteristic equation:

(−r − λ)(εaK − µ− λ) = 0 (6.26)

The dynamics in the neighborhood of the prey-only steady state is hence determined by two
real-valued eigenvalues:

λ1 = −r (6.27a)

λ2 = εaK − µ (6.27b)

As long as,

K < Kc :=
µ

εa
(6.28)

both eigenvalues are negative, which implies that the prey-only steady state is a stable node. If
K is larger than the critical value of the prey carrying capacity Kc, one of the eigenvalues (λ2)
becomes real, but positive, turning the prey-only steady state into a saddle point.

From equation (6.22) it can be seen that the critical carrying capacity Kc equals the prey
abundance in the internal steady state. For K < Kc the internal steady state is biologically
uninteresting, since the steady state predator abundance adopts a negative value for a prey
carrying capacity that low (see eq. (6.22)). Only if K > Kc the predator abundance in the
internal steady state is positive and is the steady state biologically relevant.

In other words, if the maximum prey abundance is lower than the abundance needed by the
predator to survive (i.e. the steady-state abundance of prey), the internal steady state assumes
negative and thus biologically uninteresting values. For these carrying capacity values the prey-
only steady state is the only stable steady state, which is ultimately approached whatever the
initial condition of the model. As soon as the internal steady state adopts positive and thus
biologically relevant values, the prey-only steady state becomes a saddle point, which allows the
predator population to establish itself.
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For K > Kc the Jacobian pertaining to the internal steady state evaluates to:

J3 =

 −rF 3

K
−aF 3

εaC3 0

 =

 − rµ

ε aK
−µ
ε

εr
(

1− µ

εaK

)
0

 (6.29)

yielding the following characteristic equation:

−λ
(
− rµ

ε aK
− λ

)
+ rµ

(
1− µ

εaK

)
=

λ2 +
rµ

ε aK
λ + rµ

(
1− µ

εaK

)
= 0

(6.30)

From the characteristic equation the eigenvalues pertaining to the internal steady state can be
derived:

λ1 = −1

2

rµ

ε aK
− 1

2

√( rµ

ε aK

)2
− 4rµ

(
1− µ

εaK

)
(6.31a)

λ2 = −1

2

rµ

ε aK
+

1

2

√( rµ

ε aK

)2
− 4rµ

(
1− µ

εaK

)
(6.31b)

Let δ refer to the expression below the square root sign:

δ :=
( rµ

ε aK

)2
− 4rµ

(
1− µ

εaK

)
δ is positive as long as

r

µ

( µ

ε aK

)2
+ 4

( µ

ε aK

)
− 4 > 0

which can be simplified to:

µ

ε aK
> 2

µ

r

(√
1 +

r

µ
− 1

)
(6.32)

or equivalently

K < Ks :=
( µ
ε a

) (1

2
+

1

2

√
1 +

r

µ

)
(6.33)

Ks is the critical value of the prey carrying capacity, below which the quantity δ is positive.
A positive value of δ implies that the eigenvalues λ1 and λ2 are both real-valued. Moreover,
because K > Kc = µ/(εa) the term (

1− µ

εaK

)
is always positive as well, which implies that both eigenvalues λ1 and λ2 are real-valued, but
negative. For K < Ks the internal steady state is thus a stable node. On the other hand, if
K > Ks the quantity δ is negative, which implies that the two eigenvalues λ1 and λ2 constitute a
complex pair. Their real part, however, is negative (see eq. (6.31)) which leads to the conclusion
that for K > Ks the internal steady state is a stable spiral.

The first term in parentheses in the expression for Ks (eq. (6.33)) equals the prey abundance
in the internal steady state, F 3, which is also equal to the critical carrying capacity Kc. The
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Figure 6.3: Solution curves in the phase plane of the Lotka-Volterra predator-prey model with
logistic prey growth. Two isoclines where dF/dt = 0 and dC/dt = 0 are drawn (the isoclines
coinciding with the x- and y-axis have been omitted). The isoclines intersect in the internal
steady state. Top-left panel : K = 0.15; the internal steady state is biologically irrelevant, the
prey-only equilibrium is a stable node. Top-right panel : K = 0.3; the internal steady state is a
stable node. Bottom-left panel : K = 1.0; the internal steady state is a stable spiral. Bottom-
right panel : K = 10.0; the internal steady state is a stable spiral. Compare this last figure with
Figure 6.1. Other parameter values: r = 0.5, a = 1.0, ε = 0.5 and µ = 0.1.

second term in parentheses at least larger than 1 and increases with an increasing ratio r/µ.
This leads to the following conclusions regarding the dynamics of the modified Lotka-Volterra
model (6.17):

• For K < Kc the maximum prey abundance is insufficient to allow predators to persist.
The internal steady state adopts negative and hence biologically irrelevant values. The
prey-only equilibrium is a stable node.

• For Kc < K < Ks the internal steady state is biologically feasible and is a stable node.
The prey-only equilibrium is a saddle point.

• For K > Ks the internal steady state is still the only biologically feasible and stable steady
state, but is has become a stable spiral. Hence, the approach to the steady state is always
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oscillatory.

Figure 6.3 shows solution curves in the (F,C)-phase-plane for a number of different values of
K, illustrating the conclusions above. If K is large the approach to the internal steady state
is oscillatory. Moreover, the larger the value of K, the smaller the real part of the (complex)
eigenvalues. For larger K-values the oscillations around the internal steady state therefore damp
out more slowly.

With respect to the two important predictions that were derived from the basic Lotka-Volterra
predator-prey model, the model with logistic prey growth does not change the prediction that
steady-state prey abundances are completely controlled by life-history characteristics of the
predator. However, incorporating a logistic prey growth stabilizes the internal steady state,
such that oscillation are not to be expected any longer. Even for very larger values of the
prey carrying capacity the internal steady state is ultimately approached, albeit slowly. The
slightest amount of density dependence in the prey growth hence stabilizes the oscillations of
the basic Lotka-Volterra model. Because a very small perturbation to the model structure (i.e.
adding even a tiny amount of density dependence in prey growth) changes the neutral stability
of the steady state and the neutrally stable oscillations, the basic Lotka-Volterra model is not
considered structurally stable. Structural stability refers to the property of a model that a small
change to its structure does not cause significant changes in its predictions.

6.1.2 Incorporating a predator type II functional response

Both the basic Lotka-Volterra predator-prey model and its variant with logistic prey growth
assume that the total predation of prey equals

aFC

This assumption implies that the feeding rate of a single predator equals aF , the product of the
per-capita attack rate and the current prey abundance. Hence, according to this formulation
predators never get satiated as they will eat more and more the more prey there are around: for
infinitely large prey abundances the predator feeding rate will also become infinite. The amount
of prey eaten by a single predator per unit of time is referred to as the predator’s functional
response. The basic Lotka-Volterra assumes that the predator functional is a linear function of
the prey abundance. This form is also known as a type I functional response:

φ1(F ) = aF (6.34)

For larger values of the prey abundance this functional response is not very realistic, as predators
get quickly satiated when prey availability is very high. Figure 6.4 shows examples for the
waterflea Daphnia pulex feeding on 3 different algal species. Even though there is substantial
scatter between the measurements at each food concentration, these relations between feeding
rates and food concentration show a uniform shape: at low food concentration the feeding rate
increases rapidly, but levels off at higher food concentrations. Whether at high food densities
the feeding rate remains at a constant, high level, continues to increase slowly or even decreases
a bit is debatable, but the feeding rate certainly does not increase indefinitely.

A formulation of the predator’s functional response which accounts for the satiation of predators
at high food densities is due to Holling (1959). This particular form of the functional response
is referred to as Holling’s type II functional response or simply a type II functional response.
The most mechanistic mathematical formulation of the type II functional response is:

φ2(F ) =
aF

1 + ahF
(6.35)
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Figure 6.4: Functional response of Daphnia pulex on three algal species. In spite of the different
algal species and the scattering of the points the shape of the functional response as a function
of food concentration is in principle uniform. (Vertical bars: 95% confidence limits of estimates).
Source: Figure 2 in Lampert (1977)

in which the parameter a again denotes the rate at which a single predator searches for (i.e.
attacks) prey whenever it is not currently consuming a prey item and the parameter h is the
average time span a predator uses to consume a prey it has caught.

The type II functional response as presented by equation (6.35) can be derived as follows:
Consider the number of prey items X that a single predator can catch and consume within a
total period of time T . Whenever the predator is searching for prey it is assumed to encounter
new prey items at a rate aF just like the assumption in the basic Lotka-Volterra model. However,
if the predator needs on average h time units to consume a prey item caught, it will only have
T − hX time available to effectively search for new prey items. Therefore, the total number
of prey items X caught by a single predator during a total time period T obeys the following
equality:

X = aF (T − hX) (6.36)

The total number of prey items caught X can be solved from this equality as:

X =
aF

1 + ahF
T

The type II functional response (eq. (6.35)) represents the rate at which the predator consumes
prey items (i.e. the quotient X/T ), given that the predator needs on average h time units to
handle each single item. The type II functional response is hence based on the assumption
that at very high prey densities predators become limited by their handling time h. Indeed, for
F →∞ the limit of the functional response equals the inverse of the handling time, φ2(F )→ 1/h.
Although the derivation presented here is based on an argument that the predator needs some
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non-negligible amount of time to physically consume a caught prey item, the same mathematical
relationship for the functional response can be derived by considering the digestion of consumed
prey items the limiting step in the feeding process. For examples of such a derivation we refer
to Metz & Diekmann (1986) and Claessen et al. (2000).

The Holling type II functional response is mathematically identical to the Michaelis-Menten
equation that was used to model the nutrient uptake by bacteria, which was used in Tilman’s
competition model (4.35). The form of the Michaelis-Menten equation was already presented in
Figure 4.8. Indeed, Holling’s type II functional response is also often presented in the following
form:

φ2(F ) = Im
F

Fh + F
(6.37)

in which the parameter Im represents the maximum predator ingestion rate and the parameter
Fh represents the prey density at which the predator realizes 50% of its maximum food intake.
This representation of the type II functional response is completely analogous with the Michaelis-
Menten function

µ
R

K + R

which was used to model nutrient uptake in Tilman’s competition model (4.35). The two
representations of the type II functional response are identical given the parameter equivalences:

Im =
1

h

and

Fh =
1

ah
.

The derivation of the type II functional response given above uses the time budget of the predator
to determine its net rate of prey consumption. Such a derivation is not easily extendable to more
complicated cases, where the predator is also involved in some other activities. For example,
if one wants to derive the formulation of a predator’s type II functional response in case the
predators next to catching and consuming prey also interfere with each other during the searching
process, a time budget analysis is not feasible any longer. In these cases the functional response
can be derived by formulating and analyzing a behavioral model that describes the changes
in the predators state (i.e. whether it is feeding or consuming) on a short time scale. Here I
illustrate this alternative procedure for the type II functional response derived above.

Consider that a predator can be in two behavioral state: it is either actively searching for prey
(state S) or it is consuming a prey item it has just caught (state H). Let the probability that
the predator is in state S be given by Ps and the corresponding probability that the predator
is in state H by Ph. On a short time scale we can assume that the prey abundance F does
not change significantly. If predators encounter prey at a rate aF whenever they are busy
searching for it, the probability that a predator individual is actively searching decreases at a
rate aFPs. Similarly, when predators are busy consuming a caught prey item and they need
on average h time units to consume a prey item, the probability that a predator individual is
actively searching increases at a rate Ph/h (note that h is a time and hence 1/h represents a
rate). Altogether the changes on a short time scale in the probability that a predator is actively
searching, Ps, can be described by the following ODE:

dPs
dt

= −aFPs +
Ph
h

Because we assume predators are either searching or handling

Ps + Ph = 1
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the ODE can be rewritten as
dPs
dt

= −aFPs +
1 − Ps
h

This behavioral model for the probability Ps that a predator is in the searching state S leads to
a steady state value for Ps given by:

P s =
1

1 + ahF

Next we assume that the changes in the predator’s state (searching or consuming) are so rapid
that on the population dynamical time scale which is relevant for births and deaths of predators,
Ps is approximately equal to its steady state value P s. This assumption is called the pseudo-
steady-state assumption. As a consequence, in the population dynamic model we must take into
account that the probability that a single predator is actively searching for prey equals P s and
hence that its net rate of food intake equals

aFP s =
aF

1 + ahF

Again, we end up with the same formulation of the type II functional response as was derived
before. The alternative derivation using a model for the changes in behavioral state of the
predator seems more complicated than the time budget analysis used at first. Its advantage is
that it can also be applied if the predator can be in other behavioral states than just searching
or consuming. Ruxton et al. (1992) have successfully used the behavioral model approach, for
example, to derive various forms of the functional response in case predators waste time fighting
with each other over food items. Such derivations are not possible using a time budget analysis.

The predator-prey model that accounts for both logistic prey growth and a predator type II (or
satiating) functional response can now be represented by the following system of ODEs:

dF

dt
= rF

(
1− F

K

)
− aF

1 + ahF
C (6.38a)

dC

dt
= ε

aF

1 + ahF
C − µC (6.38b)

This model is also referred to as the Rosenzweig-MacArthur model after two authors that have
investigated the dynamics of this model in great detail (see, for example, Rosenzweig (1971)).

The nullclines where dF/dt = 0 for the Rosenzweig-MacArthur, predator-prey model are given
by:

F = 0 and C =
r

a

(
1− F

K

)
(1 + ahF ) (6.39)

while the nullclines where dC/dt = 0 are given by:

C = 0 and F =
µ

a(ε− µh)
(6.40)

Disregarding the two trivial nullclines F = 0 and C = 0, respectively, these expressions for the
nullclines of the model indicate that the nullcline where dC/dt = 0 constitutes a vertical line in
the (F,C)-phase-plane, as was the case for the two predator-prey models discussed before. On
the other hand, the non-trivial nullcline where dF/dt = 0, described by the relationship:

C := H(F ) =
r

a

(
1− F

K

)
(1 + ahF ) (6.41)
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Figure 6.5: Nullclines of the Rosenzweig-MacArthur, predator-prey model. Two isoclines where
dF/dt = 0 (solid curves) and dC/dt = 0 (dashed curve) are drawn (the isoclines coinciding with
the x- and y-axis have been omitted) for 4 different values of the prey carrying capacity K. The
isoclines where dF/dt = 0 have increasing values of K from the left- to the right-most curve.
Closed circles: Stable nodes; Open circles: Saddle points; Closed triangles: Stable spirals; Open
triangles: Unstable spirals.

is a quadratic function H(F ) of the prey abundance F . The function H(F ) adopts the value
r/a for F = 0. Therefore, at negligible prey densities, the isocline has the same value of C as
for the basic Lotka-Volterra model and the model with logistic prey growth (see eq. (6.2) and
eq. (6.19)). The top of the parabola H(F ) occurs at

F = Fm :=
1

2

(
K − 1

ah

)
(6.42)

As long as

K <
1

ah

the function H(F ) is therefore strictly decreasing for positive prey abundances F . It is obvious
that H(F ) becomes zero when the prey abundance equals its carrying capacity, i.e. when F = K.
Figure 6.5 illustrates the shape of these isoclines in the (F,C)-phase-plane for 4 different values
of the prey carrying capacity K. Notice that the intersections of the nullclines represent the
steady states of the model, whose stability will be considered next.

The nullclines imply that the Rosenzweig-MacArthur model possesses three steady states as was
the case for the Lotka-Volterra model with logistic growth. First of all, the trivial steady state:

(F 1, C1) = (0, 0) (6.43)
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a prey-only steady state:
(F 2, C2) = (K, 0) (6.44)

and the internal steady state

(F 3, C3) =

(
µ

a(ε− µh)
,
ε r (aK(ε− µh)− µ)

a2 (ε− µh)2K

)
. (6.45)

The prey abundance in the internal steady state is again completely determined by the pa-
rameters, i.e. the life-history characteristics, which pertain to the predator, while the predator
abundance is determined by parameters, i.e. life-history characteristics, of both predator and
prey.

The Jacobian matrix with partial derivatives of the Rosenzweig-MacArthur model is given by:

J =


r − 2

rF

K
− a

(1 + ahF )2
C − aF

1 + ahF

ε
a

(1 + ahF )2
C ε

aF

1 + ahF
− µ

 (6.46)

Evaluated at the trivial steady state, this yields the same Jacobian as for the basic Lotka-Volterra
model (6.1) (cf. equation (6.7)):

J1 =

 r 0

0 −µ

 (6.47)

The dynamic properties of the trivial steady state are therefore not affected by adopting a type II
predator functional response: the trivial steady state is again a saddle point for all values of the
parameters, which is stable against perturbations in the predator density, but unstable against
perturbations in the prey density (see the discussion following equation (6.7)).

For the prey-only steady state this Jacobian evaluates to:

J2 =

 −r − aK

1 + ahK

0 ε
aK

1 + ahK
− µ

 (6.48)

and the corresponding characteristic equation:

(−r − λ)

(
ε

aK

1 + ahK
− µ− λ

)
= 0 (6.49)

The dynamics in the neighborhood of the prey-only steady state is hence determined by two
real-valued eigenvalues, as was the case for the Lotka-Volterra model with logistic prey growth
(cf. eq. (6.27)):

λ1 = −r (6.50a)

λ2 = ε
aK

1 + ahK
− µ (6.50b)

From these expressions it is easy to see that there is again a critical value of prey carrying
capacity Kc, which equals the prey abundance in the internal steady state (cf. eq. (6.28)):

Kc = F 3 =
µ

a(ε− µh)
(6.51)
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For K < Kc both eigenvalues are negative, which implies that the prey-only steady state is a
stable node. If K is larger than the critical value of the prey carrying capacity Kc, one of the
eigenvalues (λ2) becomes real, but positive, turning the prey-only steady state into a saddle
point. As before, for K < Kc the internal steady state is biologically uninteresting, since the
steady state predator abundance adopts a negative value for a prey carrying capacity that low
(see eq. (6.45)). Only if K > Kc the predator abundance in the internal steady state is positive
and is the steady state biologically relevant. In other words, if the maximum prey abundance
is lower than the abundance needed by the predator to survive (i.e. the steady-state abundance
of prey), the internal steady state assumes negative and thus biologically uninteresting values.
For these carrying capacity values the prey-only steady state is the only stable steady state,
which is ultimately approached whatever the initial condition of the model. As soon as the
internal steady state adopts positive and thus biologically relevant values, the prey-only steady
state becomes a saddle point, which allows the predator population to establish itself. These
conclusions are completely analogous to the conclusions held for the Lotka-Volterra model with
logistic prey growth (see the discussion following eq. (6.28) on page 105).

By substituting F = F 3 and C = C3 in the Jacobian matrix (6.46), the Jacobian of the internal
steady state evaluates for K > Kc to:

J3 =


r

(
µh

ε
+

µ

εaK
− 2

µ

aK(ε− µh)

)
−µ
ε

r
(
ε − µh − µ

aK

)
0

 (6.52)

This leads to the following characteristic equation:

−λ
(
r

(
µh

ε
+

µ

εaK
− 2

µ

aK(ε− µh)

)
− λ

)
+

rµ

ε

(
ε − µh − µ

aK

)
=

λ2 − r

(
µh

ε
+

µ

εaK
− 2

µ

aK(ε− µh)

)
λ +

rµ

ε

(
ε − µh − µ

aK

)
= 0

(6.53)

The two eigenvalues pertaining to the internal steady state can hence be represented as:

λ1 =
1

2
r

(
µh

ε
+

µ

εaK
− 2

µ

aK(ε− µh)

)
+

1

2

√
δ (6.54a)

λ2 =
1

2
r

(
µh

ε
+

µ

εaK
− 2

µ

aK(ε− µh)

)
− 1

2

√
δ (6.54b)

where the quantity δ is defined as:

δ := r2
(
µh

ε
+

µ

εaK
− 2

µ

aK(ε− µh)

)2

− 4
rµ

ε

(
ε − µh − µ

aK

)
(6.55)

Since we only consider cases where K > Kc (see eq. (6.51)), it follows that(
ε − µh − µ

aK

)
is positive and consequently that

δ < r2
(
µh

ε
+

µ

εaK
− 2

µ

aK(ε− µh)

)2

(6.56)
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From the expressions (6.54) for the eigenvalues λ1 and λ2 it can now be inferred that the stability
of the internal steady state is entirely determined by the sign of the expression

r

(
µh

ε
+

µ

εaK
− 2

µ

aK(ε− µh)

)
(6.57)

If this expression is negative and the quantity δ is positive, both eigenvalues λ1 and λ2 are
real-valued but negative, since

√
δ < r

(
µh

ε
+

µ

εaK
− 2

µ

aK(ε− µh)

)
(refer to inequality (6.56)). In this case the internal steady state is a stable node.

If, on the other hand, the quantity in expression (6.57) is negative and the quantity δ is negative
as well, both eigenvalues λ1 and λ2 form a complex, conjugate pair with negative real part. The
internal steady state is then a stable spiral.

However, if the quantity in equation (6.57) changes from negative to positive, it is certain that
δ is negative (at least initially; see the definition of δ in equation (6.55)). In this case, both
eigenvalues λ1 and λ2 form again a complex, conjugate pair with a real part that now turns from
negative to positive. The internal steady state therefore changes from a stable spiral point into
an unstable spiral point. This change in stability occurs when the carrying capacity K becomes
larger than the critical value Ks, defined as:

Ks :=
ε+ µh

ah (ε− µh)
=

1

ah
+ 2

µ

a (ε− µh)
=

1

ah
+ 2F 3 (6.58)

In other words, the change in stability occurs when F 3 becomes smaller than

1

2

(
K − 1

ah

)
which is exactly equal to the prey abundance F at which the prey isocline H(F ) reaches its
maximum (refer to eq. (6.42)). In the context of the location and the shape of the isoclines of
the model, this implies that the internal steady state changes from a stable to an unstable spiral
point, when the (vertical) predator isocline moves from a location to the right of the top in the
(quadratic) prey isocline to a location to the left of this maximum (see Figure 6.5).

Figure 6.6 illustrates the series of changes in dynamics that occur for increasing values of the
carrying capacity K:

• For K < Kc (Fig. 6.6; top-left panel) the internal steady state is biologically irrelevant,
as the predator abundance in steady state would be negative (see eq. (6.45)). The prey
carrying capacity is below the abundance needed by the predator to sustain itself.

• ForKc < K < Ks (Fig. 6.6; top-right panel) andK only slightly larger thanKc the internal
steady state is a stable node. From every initial condition it is approached smoothly, i.e.
in a non-oscillatory fashion.

• For larger K, but still K < Ks (Fig. 6.6; bottom-left panel) the internal steady state turns
into a stable spiral and is approached from any initial condition in an oscillatory manner.

• ForK > Ks (Fig. 6.6; bottom-right panel) the internal steady state has become an unstable
spiral. Starting from an initial condition close to the steady state, the trajectory spirals
away from the steady state and approaches a stable limit cycle surrounding the steady
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Figure 6.6: Solution curves in the phase plane of the Rosenzweig-MacArthur predator-prey
model. Two isoclines where dF/dt = 0 (dashed line) and dC/dt = 0 (dotted line)are drawn
(the isoclines coinciding with the x- and y-axis have been omitted). The isoclines intersect in
the internal steady state. Top-left panel : K = 0.08; the internal steady state is biologically
irrelevant, the prey-only equilibrium is a stable node. Top-right panel : K = 0.15; the internal
steady state is a stable node. Bottom-left panel : K = 0.25; the internal steady state is a stable
spiral. Bottom-right panel : K = 0.3; the internal steady state is an unstable spiral. In this
latter figure two trajectories are drawn: one starting close to the unstable steady state, the
other starting far away from it. Both approach the unique limit cycle (thick solid line). Other
parameter values: r = 0.5, a = 5.0, h = 3.0, ε = 0.5 and µ = 0.1.

state. This stable limit cycle arises when the steady state changes from a stable into
an unstable spiral. From all initial conditions the trajectories eventually approach this
stable limit cycle. Hence, when an initial condition outside the limit cycle is chosen, the
trajectory spirals inwardly towards the limit cycle (as shown in Fig. 6.6). The limit cycle
itself is invariant, which means that if an initial state is chosen exactly on the limit cycle,
the state of the system would return to exactly this initial state again after going through
exactly one period of oscillation. With K becoming larger and larger, the amplitude of
the limit cycle grows very rapidly, such that eventually it passes very close to both the x-
and the y-axis of the phase plane (not shown).
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Figure 6.7: Solution curve in the phase plane of the Rosenzweig-MacArthur predator-prey
model for high carrying capacity. As Figure 6.6 but for K = 0.6. Other parameter values:
r = 0.5, a = 5.0, h = 3.0, ε = 0.5 and µ = 0.1. Note that the scales have been doubles as
compared to Fig. 6.6.

It is possible to determine exactly for which value of K with Kc < K < Ks the internal steady
state changes from a stable node into a stable spiral from the equality

δ = 0

(see eq. (6.55)). However, the resulting expression for K is rather complicated and does not
give any particular insight. Its derivation has therefore been omitted here. The analysis would
show that eventually for very large values of K > Ks the two eigenvalues λ1 and λ2 would both
become real-valued once again. From equation (6.54) it is clear that λ1 and λ2 are then both
positive. For very large values of K > Ks the internal steady state thus becomes an unstable
node or source. This change in character of the steady state is not very relevant, though, since
it was already an unstable spiral point, surrounded by a stable limit cycle. The change only
implies that with a initial state close to the steady state the trajectory will not spiral away from
the steady state, but move away smoothly from the steady state to finally approach the stable
limit cycle.

6.2 Confronting models and experiments

All three predator-prey models discussed above predict that in a steady state where both prey
and predators coexist, the prey abundance is completely determined by the parameters, i.e.
life-history characteristics, of the predator. In other words, even if the environment is richer in
nutrients, leading to a higher growth potential (i.e. productivity) of the prey, the prey does not
benefit from this enrichment. On the contrary, it is the predator that benefits as its abundance
should increase sufficiently to counter the increased productivity of the prey. In conclusion, the
predator-prey models of the Lotka-Volterra type predict that predators completely control the
steady state abundance of their prey at a constant level and that increases in prey productivity
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Figure 6.8: Oscillatory dynamics of the Rosenzweig-MacArthur predator-prey model for high
carrying capacity. Fluctuations in prey (black solid line) and predator abundance (red dashed
line) as predicted by the Rosenzweig-MacArthur model. Notice the characteristic phase shift
between the oscillations in the two populations. Parameter values: r = 0.5, K = 0.3, a = 5.0,
h = 3.0, ε = 0.5 and µ = 0.1.

lead to a higher predator abundance. This prediction is the first one that will be confronted
with empirical and experimental observations below.

A second prediction of the predator-prey models discussed pertains to the occurrence of limit
cycles in predator and prey abundance. The basic Lotka-Volterra model predicts that abun-
dances should always cycle, while the Rosenzweig-MacArthur model predicts that stable cycles
in abundance should occur at higher levels of prey productivity (i.e. higher carrying capacities
of the prey). A higher value of the prey carrying capacity can be thought of as representing
a natural environment that is richer in basic nutrients. The phenomenon that with increasing
values of the prey carrying capacity a predator-prey system would change from approaching a
stable steady state to displaying limit cycles in abundance with rapidly increasing amplitude
the larger the value of the carrying capacity K, has been called the Paradox-of-Enrichment
by Rosenzweig (1971). Rosenzweig (1971) argued that intuitively a natural environment that
is richer in nutrients is expected to be less prone to extinction of one of its species. However,
with very large values of the prey carrying capacity K the Rosenzweig-MacArthur model ex-
hibits large-amplitude limit cycles in which the predator and especially the prey abundance
passes through values close to 0 (see Fig. 6.7). The slightest perturbation in these phases of
very low densities may cause the prey to go extinct, subsequently leading to the extinction of
the predator as well. In this way the Rosenzweig-MacArthur model predicts that environments
richer in nutrients may actually be more prone to species extinction, in contrast to the intuitive
expectation.

Figure 6.8 shows that the resulting oscillations in prey and predator density also have a charac-
teristic pattern: the maxima and minima in predator abundance are always delayed as compared
to the maxima and minima in prey abundance. This phenomenon is referred to as a phase shift
between the oscillations in abundance of the two populations. Characteristically, the phase shift
between prey and predator abundance is roughly 1/4 of the cycle period in the Rosenzweig-
MacArthur model (see Fig. 6.8)
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Figure 6.9: Daphnia pulex carrying asexual eggs in the brood pouch.

The ubiquity of cyclic dynamics in predator-prey models has drawn a lot of attention and has
led to a large body of scientific research focusing on the question whether these cycles also occur
in natural systems and if not, which mechanisms are responsible for this lack of occurrence.
Here, I will discuss some empirical evidence, showing that the model prediction is in principle
correct, but that the cyclic dynamics are often countered by many different mechanisms. The
empirical evidence that will be used in the following discussion mainly relates to observations on
species of the genus Daphnia (Cladocera; see Fig. 6.9). Daphnids or waterfleas, as they are more
commonly known, have been used extensively in population dynamical studies for a variety of
reasons. First of all, waterfleas often occupy an important position in freshwater foodwebs, as
they are the main consumers of the algal primary producers. In addition, daphnids can be easily
kept in the laboratory and through their short generation time lend themselves quite well for
population dynamical experiments. Last but not least, daphnids have been the subject of many
modeling studies, both to formulate models of individual physiology and life-history and for the
derivation of population dynamic models. Therefore, daphnids are probably the best studied
organism when it comes to population dynamics.

6.2.1 Predator-controlled, steady state abundance of prey

An elegant test of the prediction that steady state prey abundances are completely controlled by
the predator life-history has been carried out by Arditi et al. (1991). Arditi et al. (1991) cultured
several species of Daphnia and related organisms in semi-chemostat type culture vessels that
were arranged in a serial order (see Figure 6.10). The first culture vessel was fed with a stock
solution with a high algal concentration. All following vessels were fed with the outflow of the
preceding culture vessel. At the start of the experiments, initial populations were established
whereby culture vessels towards the end of the chain started out with lower abundances. The
development of the populations in the various vessels in the chain were subsequently monitored.
Several species of cladocerans, among which were two waterflea species Daphnia magna and
Ceriodaphnia reticulata, were tested in this experimental setup.

Without explicitly writing down a model for the dynamics of the populations in the chain of
culture vessels, the results obtained in the previous section are sufficient to formulate a prediction
about the outcome of the experiments. In section 6.1.1 and 6.1.2 it was shown that a steady
state in which both prey and predator coexist is only possible if the maximum prey abundance in
the absence of any predators (i.e. the prey carrying capacity) is larger than the prey abundance
in the internal steady state. For the Lotka-Volterra model with logistic prey growth and for
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Figure 6.10: Schematic setup of the experiments by Arditi et al. (1991). Populations of
Daphnia and some related species are cultured in semi-chemostat type culture vessels that are
arranged in a serial order. The outflow of the culture vessels is only open to algae. Only the
first vessel in the chain is fed by a stock solution with high algal density. All following vessels
are fed by the outflow of the previous vessel.

the Rosenzweig-MacArthur model it was derived that the internal steady state only adopted
biologically meaningful (i.e. positive) values, iff

K > Kc := F 3

(see eq. (6.28) and (6.51)). In the experiments of Arditi et al. (1991) the prey growth is not
logistic but follows a semi-chemostat growth equation (see eq. (4.9)). Nonetheless, the same
model prediction holds: only if the maximum prey abundance is larger than the prey abundance
in the internal steady state, a population of predators can persist. The maximum prey abundance
in a semi-chemostat culture vessel is obviously equal to the abundance in the inflow. If the prey
abundance in steady state F 3 is indeed completely controlled by the life-history parameters of
the predators only the first culture vessel in the series will be subject to a prey inflow that is
larger than the steady state prey abundance. The inflow of the second vessel in the chain is
coupled to the outflow of the first, in which the prey abundance equals the predator-controlled
steady state value F 3. Therefore, if the model prediction holds that the prey abundance in
steady state is controlled by the predator at its subsistence level, only the predator population
in the first culture vessel in the chain can survive, as the other vessels are subject to a prey inflow
that equals the predator subsistence level F 3 and is hence not sufficient for the establishment
of a predator population.

A more formal analysis involves writing down a coupled system of ODEs for the algal and
daphnid populations in each culture vessel. Since daphnids tend to feed on algae following
a type II functional response (see Fig. 6.4) this set of equations is very similar to Tilman’s
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competition model (4.35). More specifically, the dynamics of algae and daphnids in compartment
n can be described by:

dFn
dt

= D (In − Fn) − aFn
1 + ahFn

Cn (6.59a)

dCn
dt

= ε
aFn

1 + ahFn
Cn − µCn (6.59b)

in which D is the flow-through rate, In refers to the algal abundance in the inflow of compartment
n, Fn and Cn represent he algal and daphnid abundance in this compartment and the parameters
a, h, ε and µ have the same interpretation as in the Rosenzweig-MacArthur model. Obviously,
the internal steady state predicted by the model obeys:

Fn = F :=
µ

a(ε− µh)
(6.60a)

Cn =
ε

µ
D
(
In − F

)
(6.60b)

Since for n > 1 the inflow In is the outflow of the previous compartment, which equals F , it is
clear that in all culture vessels except the first, persistence of the daphnid populations is not
possible.

Figure 6.11 and 6.12 show the experimental results that Arditi et al. (1991) obtained: Clearly all
populations of Daphnia magna in culture vessel 2 and higher go extinct. The same result holds
for Ceriodaphnia reticulata, although here the extinction of these populations takes much longer.
Daphnia magna is a much larger and more voracious filter-feeder on algae than Ceriodaphnia
reticulata, which may explain the difference in transient time. Nonetheless, the experimental
results fit the predictions of the predator-prey models quite well. Arditi et al. (1991) also
obtained results for Scapholeberis kingi, a cladoceran species closely related to Daphnia, that
did not fit the model predictions at all: predator populations persisted in all compartments
in the chain. This species differed, however, in one important aspect from Daphnia in that
the organisms tend to be surface-dwelling. Hence, the predator-prey models discussed in this
chapter might not apply to these species, as they are based on an assumption that both the
predator and the prey live in a homogeneous, well-mixed environment.

Murdoch et al. (1998) provide another test of the prediction that the prey abundance at steady
state is completely controlled by the life-history parameters of the predator and not affected by
the prey growth capacity. Murdoch et al. (1998) analyzed a number of datasets documenting the
dynamics of Daphnia species in experimental tanks, ponds and lakes. Only those data sets were
included for which it was ascertained that fish predation was either absent or could be corrected
for. Moreover, only data sets for which there was complete information on the assemblage of
algal species found in the studied system were included. Daphnia does not eat and is actually
hampered in its feeding behavior by the presence of larger, inedible species of algae. The precise
information on the algal assemblage made it possible that an accurate estimate was derived for
the abundance of Daphnia’s prey, i.e. the edible algal species.

Figure 6.13 shows that over a large range of nutrient levels the mean abundance of edible algae
in the presence of Daphnia remains relatively constant. The nutrient level of the system was
estimated from the maximum algal abundance observed in the lake or pond during the spring
algal bloom, a short period of time in the beginning of the year when the algae are not controlled
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Figure 6.11: Population dynamics of Daphnia, Ceriodaphnia and Scapholeberis in a chain of
semi-chemostats. Population dynamics (log scale) of the three species in each chamber. Dotted
lines denote extinctions. From the chosen initial conditions, equilibria were reached rapidly and
without oscillations. In (a) and (b), extinct chambers were re-inoculated every week but became
extinct again (data not shown). Source: Figure 2 in Arditi et al. (1991).

by zooplankton yet. This estimate can hence be interpreted as an estimate of the carrying
capacity of the algae. A Rosenzweig-MacArthur model for the interaction between Daphnia
and algae had been derived previously (Nisbet et al. 1991). The parameters of this model
were estimated on the basis of independent, mostly laboratory experiments. Hence, the model
provided a completely independent estimate of the expected algal abundance in equilibrium,
amounting to 0.05 mg C/L (prey abundance was consistently expressed as biomass in terms of
amount of carbon). This estimate fits the observed algal densities reasonably well. A careful
analysis of the data on Daphnia and its algal prey thus shows that the observations agree with
the hypothesis that prey abundances in steady state are completely controlled and depend on
the life-history parameters of the predator. Notice that this assessment only holds true after
some complicating mechanisms, such as different levels of fish predation and the presence of
inedible algae, have been corrected for. In other words, even though the model conclusion of
a predator-controlled prey abundance in steady state in principle holds true, it may often be
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Figure 6.12: Population equilibria of Daphnia and Ceriodaphnia in a chain of semi-chemostats.
Populations declined to extinction in all compartments beyond the first one, in agreement with
model predictions of the Lotka-Volterra type. Each point is the average of four values (last two
weeks of two replicates). Source: Figure 3 in Arditi et al. (1991).

obscured by mechanisms that are not accounted for in the basic model.

6.2.2 Oscillatory dynamics at high prey carrying capacities

The Rosenzweig-MacArthur model predicts that with increasing prey carrying capacity oscilla-
tory dynamics are more likely to occur. The question whether cycles in population abundance
also occur in natural populations has been a topic of many ecological studies. The dynamics of
the snowshoe hare and the lynx population in northern Canada (see Figure 6.14) has been often
cited as a classical example of cycles in population abundance in a predator-prey system. The
data on these two species constitute one of the longest time series in ecology. The basis of this
dataset are the fur trading records of the Hudson Bay Company in northern Canada. However,
despite the fluctuations in the number of hare and lynx furs that the Hudson Bay Company
bought up from trappers each year, the cycles do not have the characteristics of a predator-prey
cycle. Figure 6.14 shows clearly that a phase shift between the predator and prey abundances,
as is typical for the Rosenzweig-MacArthur model (see Fig. 6.8) is hard to detect in the data
on hare and lynx. Indeed, Gilpin (1973) has shown that when the dynamics are represented in
the phaseplane, the trajectory does not spiral in the direction that is typical for a predator-prey
model (see, for example, Fig. 6.7).

Another system that has often been the focus of studies on population cycles, are the microtine
rodent (vole and lemming) populations in northern Europe (see Fig. 6.15). Microtine rodent
populations in Scandinavia have exhibited frequent population cycles with huge differences in
abundance from year to year, which have not only captured the imagination of ecologists, but
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Figure 6.13: Predicted and observed equilibrium values of algae in the presence of Daphnia.
Only edible algae have been included in these estimates. Over a ten-fold range of nutrient
levels, as expressed by the edible algal carrying capacity K, the observed algal abundance in
steady state is relatively constant. The solid line indicates the prediction of an independently
parameterized, Rosenzweig-MacArthur model. Source: Figure 7 in Murdoch et al. (1998).

also of the general public. Turchin et al. (2000) have argued convincingly that the cycles in
abundance in voles are predator-prey cycles, in which the vole are the prey of their specialized
predator, the weasel. However, data on fluctuations in abundance of the weasel are generally
not available, hence it is not possible to compare the cycle characteristics with those of the limit
cycles predicted by the Rosenzweig-MacArthur model.

The fluctuations in abundance of Daphnia and algae is a third system that has been used
to study the occurrence of cyclic dynamics predicted by the Rosenzweig-MacArthur model.
McCauley & Murdoch (1990) noted that over a wide range of nutrient levels, the amplitude in
the fluctuations in Daphnia and algae does not increase with nutrient level (see Fig. 6.16). The
Rosenzweig-MacArthur model predicts that with increasing prey carrying capacity K both the
amplitude in the predator-prey cycles and the period of the cycles increase. Neither of these
two increases were distinguishable in the dataset collated by McCauley & Murdoch (1990). In
addition, McCauley & Murdoch (1990) set up experiments in stock tanks in which they studied
the dynamics of Daphnia and algae under nutrient-rich and nutrient-poor conditions. The
nutrient-rich conditions had an estimated algal carrying capacity that was 10 times higher as in
the nutrient-poor conditions. Under nutrient-rich conditions, the average biomass of Daphnia
was significantly higher than under nutrient-poor conditions. However, when corrected for this
increase in average biomass, no increase in cycle amplitude could be observed between the
two sets of systems (see Fig. 6.17). Hence, even though cycles are observed in Daphnia and
algae there seems no evidence that the cycles are of the predator-prey type predicted by the
Rosenzweig-MacArthur model, since neither cycle amplitude nor cycle period tend to increase
with increasing algal carrying capacity. McCauley & Murdoch (1990) argued that the cycles that
are observed in Daphnia are caused by the delay between the birth of an individual waterflea
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Figure 6.14: Population dynamics of the snowshoe hare and the lynx in northern Canada.
Squares with solid line: snowshoe hare abundance; Triangles with dotted line: lynx abundance.
Data are partially derived from the fur trading records kept by the Hudson Bay Company.
Source: NERC Centre for Population Biology, Imperial College (1999), The Global Population
Dynamics Database, http://www.sw.ic.ac.uk/cpb/cpb/gpdd.html.
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Figure 6.15: Population dynamics of two species of voles in northern Finland. Squares with
solid line: Grey-sided vole (Clethrionomys rufocanus); Triangles with dotted line: Common vole
(Microtus). Both species constitute important prey species for weasels. Source: NERC Centre
for Population Biology, Imperial College (1999), The Global Population Dynamics Database,
http://www.sw.ic.ac.uk/cpb/cpb/gpdd.html.
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Figure 6.16: Cycle amplitudes (log) observed for Daphnia and algal populations from lakes
and ponds. Data collated by McCauley & Murdoch (1987). Comparable studies are plotted
(that is, Daphnia and algae estimated as density and biomass, respectively). Cycle periods are
not correlated with changes in algal biomass among systems. The average total algal biomass is
used as an index of the level of enrichment. Source: Figure 1 in McCauley & Murdoch (1990).

and the onset of its reproduction, since the cycle period was consistently close to the duration
of the juvenile period.

The experiments by McCauley & Murdoch (1990) suffered from a complicated factor, though,
in that in the experimental tanks also significant densities of inedible algae were present. As
mentioned before, these algae are not only inedible for Daphnia, but they also interfere with the
foraging of Daphnia on edible algae. Because this interference may lead to a reduced attack rate
of Daphnia on edible algae and hence to stable dynamics, McCauley & Murdoch (1990) sug-
gested that the presence of inedible algae was a potential mechanism explaining the absence of
predator-prey cycles in Daphnia. This explanation has been tested more recently by McCauley
et al. (1999) using similar studies with laboratory populations of Daphnia in experimental tanks.
McCauley et al. (1999) avoided the interference of inedible algae by preventing any algae to grow
on the walls of the tanks. These walls are thought to be the main spot in the tanks were large-
bodied, inedible algae can establish themselves. Indeed, the experimental control of inedible
algae led to the occurrence of large-amplitude, predator-prey cycles that resemble the dynam-
ics exhibited by the Rosenzweig-MacArthur model (see panel A and B in Fig. 6.18). However,
among the replicate experiments only about half of the time series of Daphnia and inedible algae
displayed such predator-prey cycles. The other half displayed cycles with approximately the du-
ration of the juvenile period of Daphnia that are attributed to the delay between birth and the
onset of reproduction (McCauley & Murdoch 1990). Hence, the same experimental and initial
conditions led to two different patterns of fluctuations. The occurrence of the small-amplitude
cycles in Daphnia and inedible algae were observed to coincide with the occurrence of larger
densities of female Daphnia carrying resting eggs. Normally, Daphnia is parthenogenetic with
females producing large clutches of asexual eggs (see Fig. 6.9). Under adverse temperature and
food conditions, though, females switch to producing sexual eggs that form a resting stage and
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Figure 6.17: Examples of the dynamics of Daphnia and algae in nutrient-rich and nutrient-
poor, experimental tanks. Daphnia is measured as biomass (mg dry weight per liter), while algae
are measured as chlorophyll a density (µg per liter). Only edible algae are included. Nutrient-
rich tanks had approximately 10 times higher nutrient levels than nutrient-poor tanks, leading
to an estimated increase in algal carrying capacity of one order of magnitude. Abundances are
represented as residual deviations from a long-term, simple ’seasonal’ trend. Source: Figure 2
in McCauley & Murdoch (1990).

can overwinter on the bottom of a lake or pond. It is these resting eggs that give rise to a new
population of Daphnia each year. The production of such resting eggs implies a channelling
of energy away from immediate reproduction of Daphnia, which might be another mechanism
preventing large-amplitude predator-prey cycles. Indeed, when experimental tanks were ma-
nipulated such that females with sexual resting eggs were continuously replaced with similarly
sized females carrying parthenogenetic eggs, all replicates exhibit large amplitude predator-prey
cycles (see Fig. 6.19). Hence, when both inedible algae and the occurrence of sexually reproduc-
ing females in Daphnia were controlled for, the populations of Daphnia and edible algae indeed
exhibited the type of dynamics predicted by the Rosenzweig-MacArthur, predator-prey model.

6.2.3 Concluding remarks

The above discussion and presentation of experimental evidence suggests that the two most
fundamental predictions of the predator-prey models discussed in this chapter, i.e. the predator-
controlled prey abundance in steady state and the occurrence of large-amplitude predator-prey
cycles at high algal carrying capacity in homogeneous environments, can indeed be confirmed
to hold in natural systems under specific conditions. However, as the discussion has also made
clear there are many different, sometimes even very subtle, mechanisms that may obscure the
observation of these cycles or may prevent them to occur. It is exactly the discrepancy between
the basic predictions of the model and the experimental observations that leads to further study
of the dynamics of a population, ultimately revealing new insight about factors that shape the
pattern of dynamics observed. This has been most clearly demonstrated by the phenomenon
that the production of sexual eggs in Daphnia can prevent the occurrence of large-amplitude
predator-prey cycles, as discussed in the last section.
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Figure 6.18: Large- and small-amplitude cycles of Daphnia and edible algae in the same global
environment. All four data sets stem from comparable, nutrient-rich systems. Red triangles:
Daphnia; Green squares: algae. The solid lines are spline fits to the time series. A,B : Examples
of large-amplitude predator-prey cycles. C,D : Examples of small-amplitude, stage-structured
cycles. The initial biomass of all replicates is similar. Source: Figure 1 in McCauley et al.
(1999).

Figure 6.19: Energy channelling towards sexual reproduction prevents the occurrence of large-
amplitude predator-prey cycles in Daphnia. A: Dynamics of replicate Daphnia populations
illustrating that the replicates are asynchronous in time and can either be of large or small am-
plitude. B : Dynamics of the Daphnia populations in which energy channelling towards asexual
reproduction is maintained by swapping adult females producing ephippial resting eggs with
similarly sized females carrying asexual eggs. Source: Figure 5 in McCauley et al. (1999).
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Chapter 7

One parameter bifurcations in
continuous time models

Imagine yourself sitting on a swing, happily swinging back and forth. The strain exerted on the
ropes with which the swing is fastened to the overhead beam can in principal be computed using
well known relations from Newtonian mechanics. This strain is the resultant of the gravitational
force and the force induced by the swinging motion. It will increase with increasing swinging
speed. Even though the mechanical laws can be used to compute the strain on the ropes with
good accuracy, you will probably be much more interested in the question whether the rope
will break or not and what the critical swinging speed is at which the rope will break. In other
words, your main interest will be whether an abrupt change in the resulting motion can occur
and, if yes, at which values of the conditions this change will occur.

In modeling biological populations a similar argument applies: Often the main focus of a pop-
ulation dynamical study is whether abrupt changes in the dynamics of the populations occur
and, if yes, at which values of parameters such changes do occur. An abrupt change in model
dynamics with a (slight) change in parameters is called a bifurcation. The change of a steady
state from a stable node into a saddle is an example of such a bifurcation. Bifurcation theory is
the part of theory about population dynamic models, or more generally dynamical systems, that
deals with classifying, ordering and studying the regularity in these changes. Bifurcations that
occur in dynamical systems are generally robust against (small) changes in model structure.
The dynamics of a particular model will of course depend on its precise formulation and on
the chosen set of parameters. Moreover, changes in model formulation are likely to change the
dynamics observed for a given set of parameters. But if a particular model exhibits a change
in dynamics from a stable equilibrium to limit cycle behavior with a change in a particular
parameter, this qualitative change in dynamics will in general also be observed in models that
are analogous, but slightly different in formulation.

The scientific questions that are sought to be answered with a population dynamical model often
translate into questions regarding bifurcations. For example, when investigating whether the
fragmentation of natural habitat will lead to species extinction, one is actually asking whether
an internal steady state with positive abundances will be predicted by the model as opposed to a
steady state with zero population abundance. Similarly, when considering the question whether
an epidemic of a particular disease is likely to occur, one is also asking about the likelihood of
two different types of steady states: an internal steady state and an extinct steady state. The
transition at a particular parameter value between a parameter domain where an extinct steady
state is stable to a domain where an internal steady state is stable is an example of a transcritical
bifurcation or branching point (see section 7.2). In many cases, population dynamical studies
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thus aim at identifying qualitative changes in the long-term dynamics predicted by the model, i.e.
changes in the likelihood and stability properties of the model steady states. From a biological
point of view the robustness of bifurcations, as discussed above, implies that the occurrence of a
particular change in the observed population dynamics will not sensitively depend on the precise
biological mechanisms assumed in the model. Biological conclusions based on bifurcations are
hence more robust than conclusions that are based on the dynamics of the model for a particular
set of parameters.

In this chapter I will discuss the types of changes in dynamics that can occur in continuous-time
models of biological populations when a single model parameter is varied. Only three types
of such bifurcations can occur and these three types posses particular characteristics that hold
independent of the model they occur in. For presentational purposes I will, however, focus on
models that are formulated in terms of 2 ODEs. This chapter will essentially not introduce
any new techniques or methods, as the discussion below depends entirely on the computation of
steady states, their eigenvalues and stability properties, such as introduced in chapter 5. A new
perspective will be added, because we will focus on the question how these model properties
change when a parameter in the model is changed. For the discussion below it is important to
note the following:

Important:

If one of the parameters in the model changes, the value of the steady
state(s), the corresponding eigenvalues and hence the stability charac-
teristics may change as well. However, these changes are in general
continuous, which means that plotted as a function of the parameter
value the value of the steady state(s) form a smooth and continuous
curve. The same holds for the value of the corresponding eigenvalues
(both the imaginary and real parts!).

7.1 General setting

In chapter 5 it was discussed that a steady state X of a population dynamic model, formulated
as,

dx

dt
= H(x) (7.1)

(see eq. (5.4)) is stable if all the eigenvalues λ pertaining to the steady state have a negative real
part. It was also explained that the number of eigenvalues pertaining to a steady state equaled
the dimension of the model, for example, in a model in terms of 2 ODEs every steady state
is characterized two, unique eigenvalues λ1 and λ2. In such a 2-dimensional model there are 5
possible configurations of the eigenvalues, dependent on whether the steady state is a stable or
unstable node, a stable or unstable focus or a saddle point. These configurations are presented
in Table 7.1 together with the phaseportrait of the trajectories in the neighborhood of the steady
state.

A change in stability properties of the steady state occurs when a change in a particular model
parameter causes the real part of an eigenvalue to change from negative to positive. Represented
in the complex plane, this implies that a change in stability of a steady state, and hence a
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Table 7.1: Characteristics of all possible types of steady states in a 2-dimensional, continuous-
time model. For each type of steady state the number of eigenvalues with a positive (N+) and
negative (N−) real part are indicated, their position in the complex plane, the phaseportrait in
the neighborhood of the steady state and its stability.

Name (N−, N+) Eigenvalues Phaseportrait Stability

Node (2, 0)

C

Stable

Focus (2, 0)

C

Stable

Saddle (1, 1)

C

Unstable

Node (0, 2)

C

Unstable

Focus (0, 2)

C

Unstable



134 CHAPTER 7. CONTINUOUS TIME MODELS

C C

Figure 7.1: Eigenvalue positions in the complex plane corresponding to a stability change
in a 2 ODE model. Left : Re(λ) = Im(λ) = 0. A real eigenvalue passes the (real) value 0.
This change in stability occurs at a saddle-node bifurcation and at a transcritical bifurcation
(or branching point). Right : Re(λ1) = Re(λ2) = 0 and Im(λ1) = Im(λ2) > 0. A complex,
conjugate pair of eigenvalues crosses the imaginary axis from left to right. This occurs at a Hopf
bifurcation. A Hopf bifurcation can only occur in models that are of dimension 2 or higher.

change in long-term dynamics of the model, occurs when an eigenvalues crosses the imaginary
axis from the left-half plane to the right-half plane. Because the value of the steady state and
its eigenvalues change continuously with a change in model parameters and complex eigenvalues
always occur as a pair of complex conjugates, there are only two generic ways in which such a
shift of eigenvalues from the left- to the right-half complex plane can come about (see Fig. 7.1):

• a real-valued eigenvalue λ changes from negative to positive, crossing the (real) value 0,

• a pair of complex, conjugate eigenvalues λ1 and λ2 crosses the imaginary axis at a non-zero
imaginary value iω and −iω, respectively.

Referring to Table 7.1 this implies that

• a stable node can only destabilize by changing into a saddle point, and

• a stable focus can only destabilize by changing into an unstable focus.

The first of these situations is characteristic for two different types of bifurcations: the trans-
critical bifurcation (or branching point; see section 7.2) and the saddle-node bifurcation (or limit
point; see section 7.3). The last of these situations is characteristic for a Hopf bifurcation (see
section 7.4). The Hopf bifurcation can only occur in models of at least 2 ODEs, as it involves
always two eigenvalues. The type of stability change is thus intimately tied to the changes in
the eigenvalues that characterize the steady state. Sections 7.2-7.4 discuss these three types of
bifurcations using two example models.

The transcritical bifurcation and the saddle-node bifurcation will be illustrated using a model
for the dynamics of a cannibalistic population, in which adult individuals forage on juvenile
conspecifics, next to feeding on an alternative resource. Here, I will first introduce and discuss
this particular model. Let J denote the abundance of juvenile individuals and A the abundance
of adults. The dynamics of the population can then be described by the following system of
2 ODEs:
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dJ

dt
= αA − δ J − β J A (7.2a)

dA

dt
= δ J − µ

ρ + β J
A (7.2b)

In these equations α denotes the per capita reproduction rate of the adult individuals, which
implies that αA models the total number of offspring produced by all the adults per unit of
time. δ represents the developmental rate of the juvenile individuals, which implies that δJ
models the number of juvenile individuals that mature per unit of time. βJA represents the
cannibalism of adult individuals on the juveniles. Adult individuals are assumed to forage also
for an external, non-cannibalistic food source, the density of which is represented by ρ. The
death rate of adult individuals is assumed to be inversely proportional to their total food intake
rate, which equals ρ+ βJ . The proportionality constant is denoted by µ. Hence, µA/(ρ+ βJ)
is the total number of adult individuals that are dying per unit of time. Notice that juvenile
individuals are assumed to die from no other causes, but cannibalism.

From equation (7.2b) we can infer that in steady state the abundance of adult individuals A is
always positively correlated with the abundance of juveniles J :

A =
δ J

(
ρ + β J

)
µ

(7.3)

This implies that given a steady state value J , the steady state abundance A is uniquely deter-
mined. Substituting the relation (7.3) into the right-hand side of the ODE (7.2a) and equating
it to 0, yields the following equation for the steady state abundance J :

δ J
(
αρ − µ + β (α − ρ) J − β2J

2
)

µ
= 0 (7.4)

The model hence possesses a trivial steady state:

(J,A) = (0, 0) (7.5)

and non-trivial steady states that have to fulfill the conditions:

β2J
2

+ β (ρ − α) J + (µ − αρ) = 0 (7.6a)

A =
δ J

(
ρ + β J

)
µ

(7.6b)

In the following the non-trivial steady state(s) and their stability will be investigated as a
function of the parameter µ, which scales the food-dependent mortality of the adult individuals.
Hence, if µ increases adult mortality is higher and increases more rapidly with decreasing food
conditions.

To construct graphs of the steady state abundance J as a function of the parameter µ it will
turn out to be most convenient to first construct the graph of µ as a function of J . The latter
relation between µ, as the dependent variable, and J , as the independent variable, is given by
the following quadratic equation:
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µ = αρ + β (α − ρ) J − β2J
2

(7.7)

This parabola is easy to construct and can subsequently be flipped around the line µ = J to
yield the required relation between J , as the dependent variable, and µ, as the independent
variable.

The Jacobian matrix of the cannibalism model is given by the equation:

J =


−δ − β A α − β J

δ +
µβ(

ρ+ β J
)2 A − µ

ρ+ β J

 (7.8)

Substitution of the trivial steady state values, (J,A) = (0, 0), into this Jacobian matrix yields
the following equation for the eigenvalues:

ρ λ2 + (δ ρ + µ)λ + δ (µ − αρ) = 0 (7.9)

(Check this by carrying out the substitution and determining the determinant of the resulting
matrix!) From equation (7.9) it can be deduced that the trivial steady state is characterized by
two real, but negative eigenvalues if:

α

µ/ρ
< 1 (7.10)

The left-hand side of this inequality can be interpreted as the expected number of offspring
produced by a single individual during its entire life under conditions of very low population
abundance. When abundance is low, density-dependent effects are absent and neither is juvenile
mortality increased, nor is adult mortality decreased through cannibalism. The left-hand side of
the inequality hence equals the expected lifetime reproduction when individuals are living more
or less on their own. This quantity is usually denoted by the symbol R0. For the cannibalism
model R0 is given by:

R0 =
α

µ/ρ
(7.11)

The expression for R0 can be derived as follows. Under conditions of low population abundance,
death of juveniles is negligible since there are no adults to cannabilise a juvenile individual. For
an adult individual, the probability to survive for a period of time t equals:

S(t) = e−(µ/ρ)t (7.12)

S(t) represents here the probability that an individual is still alive after t units of time and
is obtained by solving ODE (7.2b) when J is taken equal to 0 in that equation (Remember
the assumption of low population abundance!). Per unit of time an adult individual produces
on average α newborn offspring. Hence, the expected number of offspring produced during its
entire life equals the integral of the αS(t) for t = 0 to t = ∞ (i.e. the integral over the entire
adult lifespan):

R0 =

∫ ∞
0

α e−(µ/ρ)t dt =
α

µ/ρ
(7.13)
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Condition (7.10) now states that the trivial steady state is stable if the expected lifetime re-
production on the basis of alternative, non-cannibalistic food, αρ/µ, is smaller than 1, i.e. if
an individual cannot on average replace itself on the basis of non-cannibalistic food. If αρ/µ is
larger than 1 the trivial steady state is unstable and the population is capable of growing away
from low population abundances. Given the biological interpretation of the quantity R0 = αρ/µ
this is easily understood. Note that with increasing µ the adult mortality increases and hence
their expected lifespan decreases. This implies that only for lower values of µ a population will
be able to persist at non-zero population abundances.

The characteristic equation (7.9) for the trivial steady state thus indicates that at µ = αρ the
stability properties of the trivial steady state change. Substitution of this value µ = αρ into
the condition for the juvenile abundance in the non-trivial steady state (eq. (7.7)) shows that
condition (7.7) yields a solution J = 0, as well as a second solution:

J =
α − ρ

β
(7.14)

For µ = αρ both the trivial steady state condition (7.5) and the internal steady state condi-
tion (7.7) hence yield the same solution J = 0. If the value of the trivial steady state and the
internal steady state is plotted as a function of the parameter µ this implies that the curve
representing the internal steady state intersects the curve for the trivial steady state at the pa-
rameter value µ = αρ. In addition, equation (7.14) indicates that a second, positive, non-trivial
steady state exists for µ = αρ if

α > ρ . (7.15)

Figure 7.2 and 7.3 illustrate the relationship between the steady state abundance J and the
adult mortality µ in case α < ρ and α > ρ, respectively. Each of these two figures represents
two curves: one curve indicating the trivial steady state and one curve representing the internal
steady state, as a function of the parameter µ. For each of these curves the figures also indicate
for which parameter values the particular steady state is stable and for which values it is unstable.
The two figures are representative for the two distinct situations that can occur dependent on
α and ρ:

• If α < ρ the curve representing the internal steady state bends to the left at the point

(µ, J) = (αρ, 0)

where it intersects the curve that represents the trivial steady state. For these parameter
values condition (7.7) determining the internal steady state has a second, non-trivial solu-
tion at a negative juvenile abundance J = (α− ρ)/β for µ = αρ. In accordance with this
assessment we can infer that the quadratic relation (7.7), which specifies µ as a function
of J , is a parabola with a maximum at a negative value of J . Hence, for increasing J this
condition determines that µ decreases monotonously. Flipping the parabola around the
line µ = J yields the relationship illustrated in Figure 7.2.

• If α > ρ the curve representing the internal steady state bends to the right at the point

(µ, J) = (αρ, 0)

where it intersects the curve that represents the trivial steady state. In other words, the
curve initially extends towards higher values of the mortality parameter µ and curves back
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C

C

µ = αρ
µ

J

Figure 7.2: Bifurcation structure of the cannibalism model for α < ρ. Both the positive,
internal steady state and the trivial steady state are indicated with thick solid lines, when they
are stable and thick dashed lines when they are unstable. The insets show the position of the
eigenvalues in the complex plane for the different parts of the steady state curves.

to lower values of µ at a positive value of J (see Figure 7.3). In this case there is a
second, positive internal steady state abundance J = (α− ρ)/β for µ = αρ. When α > ρ
the quadratic relation (7.7), which specifies µ as a function of J , is a parabola with a
maximum at a positive value of J , which yields the relationship as illustrated in Figure 7.3
when around the line µ = J .

For positive value of both J and A it is immediately clear that the trace of the Jacobian
matrix (7.8) is negative. Hence, the internal steady state can only destabilize when a real-valued
eigenvalue becomes positive (see the left panel in Figure 7.1). The internal steady state is hence
either a stable node or focus or it is a saddle point. The determinant of the Jacobian (7.8)
evaluates to

detJ =
δ
(

3β2 J
2

+ 2β (ρ − α) J + (µ − αρ)
)

ρ + β J
(7.16)

which expression has been obtained after substituting expression (7.3) for A. The expression for
the determinant detJ can be simplified further by using the steady state relation (7.7) between
µ and J to:
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C

C

µ

J

µ = αρ

Figure 7.3: Bifurcation structure of the cannibalism model for α > ρ. Both the positive,
internal steady state and the trivial steady state are indicated with thick solid lines, when they
are stable and thick dashed lines when they are unstable. The insets show the position of the
eigenvalues in the complex plane for the different parts of the steady state curves.

detJ =
δ β J

(
2β J + (ρ − α)

)
ρ + β J

(7.17)

For small, positive values of J the determinant is positive as long as α < ρ and negative if the
opposite inequality holds. Hence, for α < ρ the internal steady state is always stable, as the
determinant of the Jacobian matrix is positive while its trace is negative (see Table 5.1 and
Figure 5.5 in chapter 5).

If, on the other hand, α > ρ the internal steady state is a saddle point, since the determinant
detJ is negative for small, but positive values of J . With increasing values of J the value of
the determinant increases as well to become equal to 0 when

J =
α − ρ

2β
(7.18)

(see equation (7.17)). This value of J is exactly the value where the curve representing the
internal steady state in Figure 7.3 reaches its maximum value of µ and bends back towards
lower µ-values. The equilibrium relation between µ and J indicates that this extremum is given
by:

(µ, J) =

(
(α + ρ)2

4
,
α − ρ

2β

)
(7.19)
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At this maximum value of µ (see Fig. 7.3) the internal steady state hence changes from a saddle
point into a stable node. With further increases in J the determinant will only increase further,
while the trace of the Jacobian matrix will remain negative. Hence, for

J >
α − ρ

2β

the internal steady state will always be stable.

Figure 7.2 and 7.3 summarize the results derived above for the cannibalism model. The figures
clearly indicate that there are two characteristic changes in stability of the internal steady
state: one at the intersection point between the curve representing the internal and the trivial
steady state and one where the curve of the internal steady state exhibits an extremum (see
Fig. 7.3). These characteristic changes in stability, corresponding to a transcritical bifurcation
and a saddle-node bifurcation, respectively, will be discussed next.

7.2 Transcritical bifurcation and branching point

From the analysis of the cannibalism model discussed above, we can infer that at the value
µ = αρ the curves representing the trivial steady state and the internal steady state, respectively,
intersect. For decreasing values of µ the stability of the trivial steady state changes at this
intersection from being a stable node into a saddle point, while the internal steady state changes
from a saddle point into a stable node. In other words, the trivial and internal steady state
exchange their stability characteristics at the intersection point. In addition, the internal steady
state enters the positive cone, i.e. the part of the (J,A)-phaseplane with positive abundances for
both juveniles and adults. Each of the steady states is characterized by a pair of eigenvalues that
are both real. At the intersection point (µ, J) = (αρ, 0) from these two pairs of eigenvalues (i.e.
one pair pertaining to the trivial steady state and the other pertaining to the internal steady
state) always one member of the pair is negative, while the second member has a zero value. In
other words, at the intersection point two eigenvalues equal to 0 coincide, but they pertain to
two different steady states. When decreasing the value of µ from above to below its critical value
αρ the zero eigenvalue pertaining to the trivial steady state moves to the right (see Fig. 7.1) into
the half of the complex plane where real parts are positive. Simultaneously, the zero eigenvalue
pertaining to the internal steady state moves to the left, towards the half of the complex plane
where real parts are negative.

The changes in steady state characteristics occurring at the value µ = αρ are representative for
a transcritical bifurcation. The intersection point itself, (µ, J) = (αρ, 0), is referred to as a
branching point . Transcritical bifurcations are very common in population dynamic models in
general. The characteristic properties of a transcritical bifurcation are:

• it is an intersection point, referred to as branching point, of two curves representing dif-
ferent steady states of the model,

• at the intersection point both steady states have a zero eigenvalue,

• when moving through the intersection point one of the two zero eigenvalues moves into
the left half of the complex plane, the other one into the right half of the complex plane.
Since they belong to two different steady states, the steady states exchange their stability
characteristics.

These properties are independent of the detailed specification of the model, but depend solely
on the changes in the value of the eigenvalues around the branching point. Hence, when an
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intersection point of two steady state curves is found in a particular model, we can immediately
infer that an exchange in stability characteristics has to occur there.

7.3 Saddle-node bifurcation and limit point

For α > ρ the curve representing the internal steady state has an extremum at the point

(µ, J) =

(
(α + ρ)2

4
,
α − ρ

2β

)
(see Figure 7.3). For µ-values slightly larger than (α+ ρ)2/4 there are no internal steady states
at all, while for slightly smaller µ-values there are two steady states, a saddle point and a stable
node. At this point the internal steady state exhibits a change in stability from a stable node into
a saddle point, when we follow its curve through the (µ, J)-plane (see Fig. 7.3). The extremum
point of the curve is called a limit point . The changes in steady state characteristics that occur
around the limit point are referred to as a saddle-node bifurcation, because a saddle point and a
stable node merge and disappear when µ increases past the limit point at µ = (α+ ρ)2/4. The
changes in stability again relate to the fact that a real-valued eigenvalue changes sign when the
steady state curve is followed around the limit point.

In general, we can state that

• a limit point is a point in the steady state curve, at which an extreme parameter value is
reached, and

• at the limit point a saddle point and a stable node merge and disappear, or in other words,
when following the steady state curve around the limit point, the steady state changes its
stability, because a real-valued eigenvalue changes sign.

Limit points are frequently occurring constructs in dynamic systems of any kind. The charac-
teristics of the dynamics in the neighborhood of the limit point are independent of the model
specifics and are completely determined by the changes in the eigenvalues characterizing the
steady states.

Therefore, when during the analysis of a model, a steady state curve exhibits a limit point, it
immediately gives information about the stability properties of the steady state in the neighbor-
hood of this point. Alternatively, if during numerical simulations of a dynamic model a steady
state is reached for a particular range of parameter values, but a small increase or decrease in
the parameter outside the range will cause the steady state to suddenly disappear, one has to
strongly suspect the presence of a limit point and hence the presence of a saddle point close
to the steady state that was initially approached. The presence of a limit point is hence a
likely explanation for rather “catastrophic” changes in model dynamics with small changes in
parameters.

From a biological point of view Figure 7.3 illustrates the most interesting effect of cannibalism on
the population dynamics. For a range of µ-values larger than µ = αρ the cannibalistic population
can sustain itself in an internal steady state, while adult individuals are incapable to produce
more than a single offspring during their life on the basis of the alternative, non-cannibalistic
food source. Through cannibalism the adult individuals can make up for this deficiency such
that on average they do replace themselves during their lifetime. This effect has been dubbed
the “life-boat effect” of cannibalism (Van den Bosch et al. 1988).
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K

F

C

Kc Ks

Figure 7.4: Schematic, 3-dimensional representation of the Hopf-bifurcation in the Rosenzweig-
MacArthur model. The axes represent the carrying capacity K, the prey abundance F and the
predator abundance C. The thick, solid line in the bottom plane indicates the prey-only steady
state (F ,C) = (K, 0) for those values of K where this steady state is stable. The positive,
internal steady state is indicated with a thick solid line when stable and with a thick dashed line
when it is unstable. With the destabilization of the internal steady state a limit cycle occurs.
In the (F,C)-phaseplane this limit cycle constitutes a closed curve. Every initial condition will
ultimately approach this limit cycle, when it exists. With increasing value of K the amplitude
of the limit cycle increases. The set of limit cycles for all K values forms a parabolic structure
in the 3-dimensional space as sketched. Kc and Ks indicate the critical values of K where a
transcritical and a Hopf-bifurcation occur, respectively.

7.4 Hopf bifurcation

The last bifurcation that can occur in a continuous-time model when varying a single parameter,
is the change from a stable to an unstable focus (see Table 7.1). This change in stability occurs
when a pair of complex, conjugated eigenvalues crosses the imaginary axis from the left-half
plane into the right-half plane (see Figure 7.1). This bifurcation has been encountered in the
Rosenzweig-MacArthur model, discussed in section 6.1.2. The model analysis that has been
presented in that particular section can be summarized as:

• The model possesses a trivial steady state

(F 1, C1) = (0, 0)

which is always a saddle point (see equation (6.47) and the discussion following it).
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• The model possesses a prey-only steady state

(F 2, C2) = (K, 0)

which is stable as long as

K < Kc =
µ

a(ε− µh)

(see equation (6.48) and the discussion following it). For larger values of K the prey-only
steady state is a saddle point.

• The model possesses a internal steady state (i.e. with positive abundances of both prey
and predator)

(F 3, C3) =

(
µ

a(ε− µh)
,
ε r (aK(ε− µh)− µ)

a2 (ε− µh)2K

)
.

when K > Kc (see equation (6.51) and the discussion following it). This steady state
becomes unstable and limit cycles occur when the carrying capacity K exceeds the value

Ks =
ε+ µh

ah (ε− µh)

(see equation (6.58) and the discussion preceding and following it).

From the above conclusions it is easy to infer that a transcritical bifurcation occurs at K =
Kc, where the curves representing the prey-only steady state and the internal steady state,
respectively, intersect and moreover the internal steady state turns positive. At K = Kc hence
a branching point occurs (see section 7.2), where the prey-only steady state changes from a
stable node into a saddle point and the internal steady state exhibits the opposite change (see
Figure 7.4).

At K = Ks the internal steady state changes stability through a Hopf-bifurcation. This type of
bifurcation is characterized by the fact that:

• a pair of complex, conjugated eigenvalues cross the imaginary axis from the left half into
the right half of the complex plane (see Fig. 7.1), such that their real part becomes positive,
and

• at the bifurcation a limit cycle originates. A limit cycle is a closed, invariant loop in the
state space. This means that if an initial point is chosen right on the limit cycle, the state
of the system will move along the limit cycle for all time. At least for parameter values
close to the bifurcation point the limit cycle will be an attractor of the model, meaning
that starting from initial conditions close to the limit cycle, the state of the system will
in the long run approach the limit cycle and follow it at smaller and smaller distance.
In terms of dynamics over time, the limit cycle implies that population abundances will
fluctuate (see the predator-prey cycles in Fig. 6.8). At the bifurcation point the amplitude
of the limit cycle will initially be infinitely small, but will increase when moving away from
the bifurcation point into the unstable parameter region.

Figure 7.4 illustrates the Hopf-bifurcation occurring in the Rosenzweig-MacArthur model (6.38)
in a 3-dimensional space spanned by the prey carrying capacity parameter K and the prey and
predator abundances, F and C, respectively. For a number of parameter values K the limit
cycle is also indicated in this figure. With increasing values of K the amplitude of the limit
cycle increases. The (infinite) collection of limit cycles for all parameter values K constitutes a
parabolic object in the 3-dimensional space, as shown in Figure 7.4.
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7.5 Concluding remarks

Even though they are discussed here in the context of 2-dimensional models, these bifurcations
are the only types of changes in equilibrium characteristics which can occur in a model when
changing a single parameter, irrespective of its dimension. Hence, bifurcation theory learns us
that there is order and regularity in the changes that can occur in equilibrium characteristics
when changing parameters. It is this order and regularity that helps in understanding the
properties of more complex models.
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Chapter 8

Exercises

8.1 ODEs (differential equations) in 1 dimension

1. Keywords:
• N(t) en f(N) • population en population growth rate • equilibria • stability • solutions,
orbits, and trajectories • asymptotic dynamics • initial conditions • dynamical systems

2. Questions:
• What is a differential equation? • How do I analyze a differential equation?

8.1.1 Population size and population growth rate

In this assignment we consider the population size N(t) and the population growth rate dN/dt.
Suppose that the population size N(t) as a function of time is given by

N(t) = 0.16 · e0.5t

1. Draw N(t).

2. What is the population growth rate at time t?

3. Express the population growth rate as a function of N(t) and write this expression in the
form of a differential equation

4. What is the per capita growth rate in this model?

8.1.2 Graphical analysis of differential equations

Consider the following differential equation:

dN

dt
= f(N)

For each of the expressions of f(N) specified in assignments 8.1.2.1 until 8.1.2.6, perform the
following general assignments:

1. Draw f(N).

2. In the same figure, draw arrows on the N -axis that indicate the direction of change of N

147
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3. How many equilbria are present?

4. In the N/t-plane, draw arrows (vectors) that indicate the direction of change of N . Do
this for different values of N and t.

5. Draw solutions (“orbits”, “trajectories”) of N(t) in the N/t-plane.

6. Does the asymptotic behavior of N(t) depend on the initial conditions? (“asymptotic
behavior” is the behavior of the system for infinite values of t)

7. In case of any equilibria; which are/is stable?

8. Draw the per capita growth rate as a function of the population density

8.1.2.1 Immigration and emigration

f(N) = I − E

where I and E are constants. Perform the analysis with the assumption that:

a. I > E

b. I < E

8.1.2.2 Semi-chemostat

f(N) = r (K −N)

with r > 0, K > 0.

8.1.2.3 Logistic growth

f(N) = rN

(
1− N

K

)
with r > 0, K > 0.

8.1.2.4 Allee-effect

f(N) = bN2

(
1− N

κ

)
−mN

with b > 0, κ > 0, m > 0, and assume that bκ > 4m.

8.1.2.5 De bumpfly, Bizarrus periodicus alleei

f(N) = − sin(πN) N
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8.1.2.6 Structural instability (a pathological case)

f(N) = bN2

(
1− N

κ

)
−mN

use b = 0.1, κ = 10, m = 0.25. In addition, perform the following assignments

9. Compare the following two orbits: the first orbit starts at N(0) = 1
2κ+ ε, the second orbit

starts at N(0) = 1
2κ − ε, with ε a very small positive number. Where do the two orbits

end for t→∞?

10. What happens with the number of equilibria when one of the parameters is changed to a
slight degree?

8.1.3 Formulation and graphical analysis of a model

8.1.3.1 Herring Gulls

Consider a population of herring gulls (Larus argentatus) on the island of Schiermonnikoog.
These ground breeding colonial birds compete for nesting sites, which leads to fierce fights for
the best nesting spot. They gather their food around the whole island. During several decades
students of zoology course at the University of Groningen studied the gull colony and recorded
birth rates (per capita reproduction rate) and death rates (per capita mortality rate) by tracking
the demography of the population. These data show that the primaire cause of death is injury
caused by territorial fights. The death rate is therefore density dependent and increases linearly
as a function of population size with a fixed slope α (which can be interpreted as a fixed chance
of dying per fight) and a background death rate δ0. The birth rate is density independent
(probably because the food supply on the island is not a limiting factor for the gull population)
and given by the constant rate β. (Assume that β > δ0).

1. Formulate the differential equation.

2. Analyze the differential equation. (i.e., perform the assignments as described in 8.1.2).

8.1.3.2 Intraspecific competition and interspecific predation

The common toad (Bufo bufo) is an important food source for the grass snake (Natrix natrix).
Toads compete with each other for food and space and the negative effects of competition depend
on how often toads meet each other (“interference competition”).

1. Formulate the differential equation for the dynamics of the population size of toads P
(per hectare). Assume that the snakes have a constant population size S (per hectare).
Furthermore assume that:

The per captita reproduction rate of toads is b (per day) and the per capita mortality rate
is m. How often toads meet each other depends on the population density, P , and their
mobility w (hectare per day). Assume that every encounter has a negative effect of size
c on the per capita reproduction rate. Snakes search for toads with rate α (“attack rate”
in hectare per day). Obviously, the mortality by predation depends on how often toads
encouter snakes.

2. Draw f(P ) and the phase plane
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3. Rewrite your model in the form of the logistic growth equation.

dP

dt
= rP

(
1− P

K

)
In order words: express the “intrinsic rate of increase” (r) and the “carrying capacity”
(K) in terms of the parameters from your model.



8.2. EQUILIBRIA IN 1D ODES 151

8.2 Equilibria in 1D ODEs

1. Keywords:
• equilibrium curve • parameter dependence • linearization • eigenvalues • equilibria •
stability • structural stability/instability

2. Questions:
• How do I analyze a differential equation? • How do I analytically determine the stability
of an equilibrium?

8.2.1 Mathematical analysis of a differential equation

Consider the following differential equation:

dN

dt
= f(N)

For each of the expressions of f(N) specified in assignments 8.1.2.2 until 8.1.2.6, perform the
following general assignments:

1. Express the equilibria in terms of parameters.

2. Determine the stability of the equilibria. That is to say: for each equilibrium calculate the
corresponding eigenvalue(s).

8.2.1.1 Aquatic plants and wave erosion
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“The relative growth rate of submerged vegetation declines linearly with vegetation biomass
(V ) due to competition in a logistically growing vegetation. Relative erosion mortality of plants
caused by uprooting by waves or animals from unstable sediment approaches zero with increasing
vegetation biomass due to consolidation of the sediment, dampening of wave action and exclusion
of benthivorous fish.” From: “Ecology of Shallow Lakes” by Marten Scheffer.

1. Does the above figure display population or per capita growth rates? (hint: read the text
carefully).

2. Draw f(V ) and the phase plane.

3. On a good day the local government of Friesland decided to create a windbreak around
a recreational lake in order to improve swimming quality. To everyone’s surprise, and
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dismay of the local dike-warden, the lake was rapidly overgrown with aquatic plants. These
plants proved to be resistant, since their removal only resulted in reinvasion. Explain this
phenomenon on the basis of the model given above.

8.2.1.2 Pitchfork bifurcation

dx

dt
= αx− x3

with α a constant parameter.

1. How many equilibria (including those for negatieve x) are present when:

a. α > 0

b. α < 0

c. α = 0

2. Draw f(x) and the phase plane for α = 1 in the region x ∈ (−2, 2). Also indicate the
stability of the equilibria. Draw orbits in the x/t plane.

3. Repeat the previous assignment for α = −1.

4. Parameter dependence, equilibrium curves: Draw a diagram that shows the dependence
of the equilibria on α. That is to say: draw in the x/α plane a curve that indicates the
location of the equilibrium

5. Calculate the eigenvalues of the equilibria as a function of α. At which value of α does the
stability of the zero equilibrium changes? If any, what is the stability of other equilibria?
Indicate the stability of the equilibria in the figure from question d.
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8.3 Studying ODEs in two dimensions

1. Keywords:
• systems of differential equations • phase plane • zero(iso)clines • equilibria • linearization
• jacobian • eigenvalues • stability

2. Questions:
• How do I analyze a system of differential equations? •What is the phase plane method?

8.3.1 Graphical analysis of a system of differential equations

Consider the following system of differential equations:
dx

dt
= f(x, y)

dy

dt
= g(x, y)

For each of the functions of f(x, y) and g(x, y) specified in assignments 8.3.1.1 until 8.3.1.3,
perform the following general assignments:

1. Draw the zero-isocline(s) for f(x, y) en g(x, y) in the x/y plane (the “phaseplane”). In-
dicate which zero-isocline belongs to which differential equation (you can for example use
different colors or use solid or dashed lines).

2. How many equilibria are present?

3. Draw vectors in the phaseplane that indicate the direction of change in both x and y
direction. The zero-isoclines divide the phaseplane in different sub-areas. Draw at least 1
vector per sub-area. Drawing vectors on the zero-isocline is also helpfull.

4. Draw solutions (“orbits”,“trajectories”) of [x(t), y(t)] in the phaseplane.

5. Is the asymptotic behavior of the orbits dependent on the starting values of x and y (the
“initial conditions”)?

6. If possible, determine the stability of the equilibria on the basis of the phase plane. How
many saddle points are present?

8.3.1.1 Lotka-Volterra competitionf(x, y) = x(1− x− αy)

g(x, y) = y(1− y − βx)

where x, y, α and β are positive. Distinguish the following four cases:

a. α < 1, β < 1

b. α < 1, β > 1

c. α > 1, β < 1

d. α > 1, β > 1
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Compare the above four cases on the basis of the following questions:

1. Which biological conclusions can be made from these results with respect to the competi-
tion between two species?

2. What kind of ecological interaction does the model represent when α and β are negative?

3. Assume that α < 0 and β < 0. For which condition (in terms of α and β) does an internal,
positive equilbrium exist?

8.3.1.2 Roots and squares f(x, y) = x2 − y

g(x, y) = −x+ y2

where x and y are real number

8.3.1.3 Lotka-Volterra predator-preyf(x, y) = αx− βxy

g(x, y) = γxy − δy

where x and y are positive variables and α, β, γ and δ positive parameters.

8.3.2 Mathemetical analysis of a system of differential equations

Consider the following system of differential equations:
dx

dt
= f(x, y)

dy

dt
= g(x, y)

For each of the functions of f(x, y) and g(x, y) specified in the assignments 8.3.1.1 until 8.3.1.3,
perform the following general assignments. When calculating the stability of the internal equi-
librium (x 6= 0, y 6= 0) you can assume the following two cases:

a. α = 2/3, β = 3/4,

b. α = 3/2, β = 2.

1. How many equilibria are present? Express the equilibria in terms of parameters

2. Determine the stability of the equilibria. That is to say: for each equilibrium calculate the
corresponding eigenvalue(s).
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8.4 Sample Exam

Question 1

We study a mathematical model that consists of two ordinary differential equations (ODEs).
The following diagram shows the equilibria as a function of one model parameter:
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The value of the model parameter is plotted on the x-axis and the y-axis represents the value
of one of the two variables of the model. The solid lines represent equilibrium curves, i.e.
every point on a solid line corresponds to an equilibrium at that particular value of the model
parameter. A, B, C and D represent all the bifurcation points (circles). The crosses, numbered
1 to 6, are random points on the equilibria curves (these are not bifurcation points). Assume
that the equilibrium indicated by the cross with number 1 is a saddle point.

1. Name the bifurcation points A, B, C and D (that is to say, give the type of bifurcation
point that they represent)

2. Describe what happens with the eigenvalues of the equilibrium (or equilibria) at points A
and D if each bifurcation point is crossed from left (low parameter value) to right (high
parameter value).

3. Describe what happens with the eigenvalues of the equilibrium (or equilibria) at point B
and C if each bifurcation point is crossed from below (low equilibrium value) to above
(high equilibrium value)

4. Draw the phase planes of the equilibria marked with crosses numbered 1 to 6. That is, for
each of the cross-marked equilibria, draw solutions (orbits or trajectories) of the system
in the neighborhood of that equilibrium.
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Question 2

In a model for a single population with sexual reproduction, the per capita reproduction rate is
given by:

4.5
1 + αN

1 + α + αN

In this formula N denotes the density of the population and α denotes strength of the Allee
effect that arises because of sexual reproduction. In case α = 0 there is no Allee effect and
the reproduction of the population is indistinguishable from asexual reproduction. For α > 0
reproduction is inhibited for low values of N because individuals are having trouble finding a
mate.

We furthermore assume that the per capita chance of dying per unit time is equal to:

(1 + N)

1. Formulate the differential equation (ODE) for this model.

2. Take α = 0 and draw in one diagram the per capita reproduction rate and the per capita
mortality rate as a function of the density N .

3. Specify in this diagram all equilibria and denote their stability properties

4. Assume that α→∞. In this case the per capita reproduction rate is given by:

4.5
N

1 + N

Draw for this case in one diagram the per capita reproduction rate and the per capita
mortality rate as a function of the density N .

5. Specify in this diagram all equilibria and denote their stabilty properties

6. Compare the two diagrams found in questions c. and e. For which value of α (larger than
0, but less than ∞) does a drastic change in the equilbria occur?

7. Draw the bifurcation diagram as a function of α.

Question 3

We are going to formulate a model for the dynamics of a prey and a predator population. The
density of prey is denoted by F and the density of predators by C. Assume that in absence of
predators the prey population growth logistically with growth rate r and carrying capacity K.
Furthermore assume that the chance of dying per unit time of a predator individual is constant
and denoted with the parameter d. Prey that are captured by predators are converted into new
predators with a conversion efficiency denoted by parameter ε.

For the functional response of the predator we use the functional response formula of Ivlev.
This scientist assumed that predators have a maximum rate of eating prey, which is denoted by
parameter M . Ivlev furthermore assumed that with increasing prey density the number of prey
eaten by one predator increases from 0 until this maximum level M according to an exponential
relationship with the product of a parameter a and prey density F .

1. Write down the full model specifications, i.e. formulate the differential equations (ODE)
for both prey and predator densities.
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By scaling the variables this model can be simplified to the following dimensionless model:

df

dt
= ρf

(
1− f

κ

)
−
(

1− e−f
)
c (8.1)

dc

dt
=

(
1− e−f

)
c − µ c (8.2)

We continue by analyzing this dimensionless model

2. Give the equations for all zeroclines of the prey.

3. Give the equations for all zeroclines of the predator.

4. Give expressions for all equilibria that occur in the model.

5. Derive the Jacobian for this system of differential equations.

6. Calculate the eigenvalues for the trivial equilibrium and the equilibrium in which only
prey is present.

7. Also calculate the corresponding eigenvectors for these two equilibria.

8. For which conditions does an internal equilibrium with both prey and predators exist?

9. Indicate whether there are conditions for which the non trivial (internal) equilibrium is
stable and, if any, give these conditions.

10. Draw the bifurcation diagram in which the equilibrium densities of the predators c are
plotted as function of parameter κ.
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8.5 Answers to exercises
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Chapter 9

Computer Labs

Prerequisites

In the computer labs we will use an R package called deBif that is specifically designed for
the numerical analysis of (systems of) ordinary differential equations (ODEs). The package
includes two basic functions, called deBif::phaseplane() and deBif::bifurcation(). The
function phaseplane() allows for the numerical integration of (systems of) ODEs and for
analysis of these ODEs in their phaseplane. In addition to numerical integration of ODEs the
function bifurcation() allows for numerical bifurcation analysis of ODEs as a function of a
single bifurcation parameter and for computing bifurcation curves as a function of two free
parameters.

To use the deBif package you will need a recent version of R as well as Rstudio. For the R
distribution you will need at least version 3.6 or higher, whereas you will need at least version
1.2.5019 of Rstudio. The deBif package has been developed and tested on a Macbook with
MacOS Mojave using R version 3.6.0 (called “Planting of a Tree”) and Rstudio version 1.2.5019.
It was furthermore tested on a laptop with Windows 10 Home installed, using R version 3.6.1
and Rstudio 1.2.2019. Before continuing make sure that your installation of R and Rstudio
conforms to these specifications. You can subsequently install the deBif package by executing
the following commands in Rstudio:

install.packages("devtools")

devtools::install_git("https://bitbucket.org/amderoos/debif")

These commands will probably download and install a range of R packages that are required
by the deBif package, but should finish successfully. On a Windows computer, Rtools needs
to be installed from https://cran.rstudio.com/bin/windows/Rtools/ for devtools to work.
The recommended version of Rtools at the moment is Rtools35. The installation of Rtools
takes some time.

After installation, the package always has to be loaded before you can use it, which can be done
with the command:

library("deBif")

Before you begin with one of the following computer labs, first read how a system of ODEs
has to be implemented in R to allow its analysis with either phaseplane() or bifurcation().
These two functions work with the same implementation of a system of ODEs. The manual
for the deBif package describes how to implement the ODEs and how to use the functions
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phaseplane() and bifurcation(), although the graphical interface of these two function is
rather intuitive and self-explanatory. You access the manual by executing in Rstudio the
command:

deBifHelp()
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9.1 Harvesting Cod

In 1497 the ocean around Newfoundland (Canada) was once so full of cod that explorer John
Cabot marveled that they virtually blocked his ship. In 1992 the Canadian cod industry col-
lapsed. Years of over-fishing had reduced the stock to dangerous levels, and the Canadian
government was finally forced to put a stop to the drastic over-fishing. 40,000 people lost their
jobs. In 2001 Cod stocks in the North Sea are down to one-tenth of the level 30 years ago.
Scientists fear that North Sea cod may go the way of those in the Grand Banks of Canada,
where over-fished stocks disappeared in 1992 and have not revived.

Consider the following differential equation:

dN

dt
= r N

(
1 − N

K

)
Here N stands for the Cod population (in 100.000 tons of cod), r is the intrinsic growth rate
(per day), and K is the carrying capacity (in 100.000 tons of cod). This is the familiar logistic
growth equation that describes the growth of most self-limiting populations. We are interested
in describing the qualitative behavior of the cod population of the North Sea and wish to make
a few statements about fishing and more importantly about the risks of over-fishing. For the
sake of simplicity, we will start with this simplest of models.

1. Implement the model as explained in the deBif manual. Take r = 0.1 and K = 100 and
N = 1 to start with. Use phaseplane() to investigate the properties of the right-hand
side of the ODE for different values of r and K. In the phaseplane() application the
right-hand side of the ODE can be investigated using the tab sheet Nullclines. Which
equilibria can you find? How do they change as a function of K and r?

2. Now switch to bifurcation() and compute some orbits for different parameter combina-
tions of K and r. Use this as an exercise to familiarize yourself with bifurcation().

3. Subsequently, use bifurcation() to construct a graph of the equilibrium as a function of
K.

Fishing - Constant effort

Let’s play around with the logistic growth equation for a bit to study the effects of fishing
mortality. Assume that the fishing mortality is such that fisherman make a constant effort per
day and so harvest a fraction (f) of the actual cod population in the water.

4. Think about what this means. How would you change the logistic growth model so as to
include this?

5. Implement this model also in R for analysis with phaseplane() and bifurcation().
Parameters are: K = 10, r = 0.1, f = .01.

6. Use bifurcation() and start off by making several numerical integrations (orbits) of this
model. Make sure to start at several different initial conditions. How many equilibria does
the model have? How stable are they? What is the effect of increasing f?

7. Now move on to continuing equilibria in bifurcation(). Select a final point of a computed
orbit to start continuing the equilibrium curve. Compute the equilibria of this model as
a function of f by selecting the latter parameter as axis variable on the x -axis in the tab
sheet 1 parameter bifurcation in bifurcation(). Can you link what you see here to
what you have observed previously?
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Fishing - Constant quota

The situation in the North Sea is not quite as rose-colored as shown above, at least not from a
fish’s point of view. The fact of the matter is that governments set fixed, yearly, quotas (Q) for
the capture of fish and so fishing pressure is more or less a constant.

8. Think about what this means. How would you change the existing model for fish growth
in the North Sea so as to include this constant fishing pressure?

9. Implement the model in R for analysis with bifurcation(). Parameters are: K = 10,
r = 0.1, Q = 0.05. Do you still have a logistic or modified logistic growth model?

10. Use bifurcation() to make several orbits with different initial conditions. How has the
behavior of the system changed from that of the logistic model? Next, set Q to 0.1, 0.2,
0.25, and 0.26. What happens to the fish population for each of these quotas?

11. Select the final point of an orbit for parameters that support a viable fish population.
Switch to the tab sheet 1 parameter bifurcation in bifurcation() and select Q as
axis variable on the x -axis. Compute the equilibrium. What is stable? Unstable? Relate
what you see now to what you have observed previously.

12. What is the effect of a) faster fish stock re-growth and b) an increased fish carrying capacity
on the equilibrium curve? Do you detect any bifurcation points?

13. Is a constant quota a good thing for fish? For the fishing industry? Compare with the
constant effort model.
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9.2 The spruce-budworm(Choristoneura fumiferana)

The spruce budworm (Choristoneura fumiferana) is a moth that inhabits northern American
pine forests. Normally, the density of these moths is not very high, and their impact upon the
forest is small. However, approximately once every 40 years, their density increases explosively,
and entire forests are picked clean of needles in a very short time span. Obviously, this has
severe negative effects on local timber production. The major predators of these budworms are
birds, and at high densities budworms make up a major part of the birds diet. The budworms
themselves eat the newly emerging needles of pine and spruce trees.

The following model has been proposed to explain the outbreaks of budworm population dy-
namics.

dN

dt
= rN(1− N

K
)− EPN2

N2
0 +N2

with K = qA and N0 = fA.

Both K and N0 depend on A, which is the leaf (or needle) density of the forest. Of course, in
reality A is not a constant. But the dynamics of the forest are on such a slow timescale compared
to the dynamics of the budworms, that we treat it as such. P , the density of the predatory birds,
is also assumed constant. this is because if budworm density is low, the birds either switch to
other prey, or migrate out of the area. Either way, there is no numerical response of birds to
changes in budworm density.

A valid parameter setting for this model is: A = 0.5, q = 20, E = 0.314, f = 0.474, P = 0.7 and
r = 0.1.

This parameter setting reflects the conditions in North American pine forests.

1. Implement the model in R for analysis with phaseplane() and bifurcation().

2. Use phaseplane() to compute several orbits for the default parameter set, while varying
the initial value of N . Make sure to study not only high population densities, but also to
consider the range N = 0.0 . . . 0.1.

3. Repeat this procedure for various values of A between 0.1 and 5.0. What is the most
remarkable feature that you encounter?

4. Compute now also several orbits for the default parameter set and various initial values of
N , but going backward in time (Use “<<Compute”). What do you reach by carrying out
this backward computation?

5. Now investigate the right-hand side of the ODE as a function of N using phaseplane().
Do this for a number of different values of A between 0.1 and 5.0. Explain the results you
obtained by integration using the changes you observe in the graphs of the right-hand side
of the ODE.

6. Turn to bifurcation(). Compute an orbit and select its final point to start a continuation
of the equilibrium as a function of A. Relate your findings of the integrations to the picture
you have constructed.

7. Explain in words the mechanism behind the regular outbreaks of the spruce budworm in
North American forests.

8. One way to prevent outbreaks is to spray the forest with insecticides. Assume that this
would make a smaller fraction of the foliage available for consumption by the budworms,
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i.e. change the value of q. We can obtain insight about the dynamics of the model for
various combinations of A and q by continuing the limit points (LP) as a function of these
two parameters. In bifurcation() use the tab sheet 2 parameter bifurcation with the
two parameters on the axes. As initial point now choose one of the limit points that have
been computed and continue it.

9. Interpret the graph you have just constructed. To that end, sketch the bifurcation graphs
of the density N as a function of A for different values of q. What does the point denoted
“CP” represent? What type of structural change occurs at this particular point?

10. Repeat the limit point continuation for the parameters combination A and P . P could be
increased by providing more nesting sites for birds. Is this an effective strategy to prevent
budworm outbreaks?
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9.3 Interspecific competition

Competition is one of the most studied subjects in ecology. It is generally thought to be one of
the key factors that shape community structure and dynamics. The foundations of competition
between species are illustrated by the following model:

dN1

dt
= r1N1

(
1− N1 + β12N2

K1

)
dN2

dt
= r2N2

(
1− N2 + β21N1

K2

)

1. Here N1 and N2 are competing species. r1 and r2 are the growth rates, and K1 and K2

are the carrying capacities of species N1 and N2 respectively. What is the function of the
parameters β12 and β21?

2. Examine in phaseplane() the behavior of the model (compute orbits for different initial
conditions). Set the parameters r1 = r2 = 0.1, K1 = K2 = 100 and β12 = β21 = 1.0.
What is going on with these species? Under what condition does one or the other “win”
the competition, and why?

3. Compute an orbit starting from N1(0) = 1 and N2(0) = 3. Then change the value of K1

to 101 and compute the orbit anew. What is the difference between these two orbits?

4. Repeat the previous exercise, but now computing the orbits from t = 0 to 7000. The
orbit you just computed for K1 = 101 can be divided into two distinct types of dynamics.
Which types? Which processes are important in each?

5. How does the equilibrium you just found depend on K1?

6. Use phaseplane() to examine the zero-isoclines and the vector field of the system. Which
qualitatively different isocline configurations are possible when K1 changes, and which
types of dynamics do you expect for each configuration?

7. What is the isocline configuration for the symmetrical case (r1 = r2 = 0.1, K1 = K2 = 100
and β12 = β21 = 1.0) that you studied above? Does this corroborate your previous results?

8. Calculate the isoclines for r1 = 0.1, r2 = 0.08, K1 = K2 = 100 and β12 = β21 = 1.2. What
are the dynamics you expect from the phaseplane analysis? Confirm your expectations in
phaseplane().

9. Use bifurcation() to construct a graph of all equilibria as a function of the parameter
K1. As starting points you can exploit the fact that both N1 = 0, N2 = K2 and N1 =
K1, N2 = 0 are obvious equilibria that might be stable for some ranges of parameters.
Use the branching points that you encounter to locate all equilibrium curves. Explain for
which ranges of K1 the equilibria you find represent a stable or an unstable equilibrium.

10. What are the conditions (in words, not math) for coexistence between the species in this
model?
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9.4 Vegetation catastrophes

In semi-arid regions of the world like the Sahel vegetated areas are slowly giving way to desert
regions. One of the hypotheses concerning the disappearance of vegetation cover in these areas
is that this is under the influence of grazing pressure from cattle. A mystery has been why
vegetated areas do not return when grazing stops.

Semi-arid regions are characterized by sparse rainfall. Plant growth is water limited and so
their growth rate is primarily a function of water availability in the soil. Water infiltration into
the soil in semi-arid areas has a positive relationship with plant density: the higher vegetation
biomass is, the more water infiltrates into the soil.

Rietkerk et al (1997) described vegetation dynamics as a function of water infiltration into the
soil, plant growth and herbivory.

dW

dt
= Win(P ) − cmax g(W )P − rwW

dP

dt
= gmax g(W )P − dP − b P

Win(P ) is a function describing infiltration of water into the soil as a function of rainfall (R) a
half saturation constant k2, and Wo, the minimum water infiltration in the absence of plants.
g(W ) describes the growth of plants as a saturating function of water availability in the soil,
with a half saturation constant k1.

Win(P ) = R
P + k2Wo

P + k2

g(W ) =
W

W + k1

Default parameters are: gmax = 0.5, k1 = 3, d = 0.1, cmax = 0.05, R = 2, rw = 0.1, k2 = 5. The
parameter b indicates the grazing pressure of cattle on the vegetation (i.e. the herbivory) and
is human-controlled.

The main question of this computer lab is how the interplay of grazing and water availability
affects vegetation biomass. Steps you may take to investigate this are:

1. Start with a high minimum water infiltration into the soil: Wo = 0.9 and no grazing.
Describe the relationship between plant biomass and soil water availability with increasing
herbivory. What do the isoclines look like: how do they change with increasing herbivory?

2. How does lowering the minimum water infiltration into the soil (Wo = 0.2) affect the
patterns you see? What happens as grazing pressure increases?

3. Illustrate the different qualitative behaviors of the system with pictures of isoclines. Sum-
marize these different states as a function of Wo and b.
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9.5 Lotka-Volterra Predation

The classical equations concerning predator-prey interactions (also: consumer-resource interac-
tions) are:

dR

dt
= r R − aRH

dH

dt
= s aRH − µH

And are attributed to Lotka (1932) and Volterra (1926).

Here H stands for consumers, and R for resources. r is the rate of resource replenishment. H
attacks R with a type I functional response (non-saturating: i.e. constant): a. The conversion
rate of sequestered R biomass to new H individuals is s, and µ is the consumer death rate.

1. What are the possible equilibria? Examine isoclines.

2. Implement the model in R for analysis with phaseplane() and bifurcation() with
parameters r = 0.5, a = 0.2, s = 0.5 and µ = 0.1. Examine the stability of the equilibrium
to disturbances: is this equilibrium stable? Unstable? Hint: (look at eigenvalues).

3. Examine prey growth in the absence of predators. What do you notice? Is this realistic?
Why?

We now assume that resources grow according to the logistic growth model, equilibrating at a
carrying capacity K in the absence of consumption by consumers.

4. What are the equilibria now? What can you say about the feasibility of equilibria? Draw
isoclines. How has the stability of the equilibria changed?

5. Implement the model with parameters as above and K = 10. How does the model behave
differently from the previous one?

6. Examine equilibria as a function of K. Pay special attention to the point “BP” in bi-
furcation(): it marks the intersection of two equilibria, and a subsequent change in
stability.

7. Examine the approach to the internal (two-species) equilibrium. What do you notice at
small K (=1.1) and at very large K?

8. What do you notice about the isoclines at extremely large values of K? Why does this
happen? Link the behavior of the two models.
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9.6 The Paradox of Enrichment

One of man’s greatest effects on ecosystems is caused by non-point pollution of surface waters.
Runoff from farms and cities enrich lakes (and other bodies of water) with phosphorous and
nitrogen. This has far reaching effects for species composition and the persistence of ecosystems.

We will examine the effects of an increase of nutrient input into a lake populated by phytoplank-
ton ”prey” (P ) and Daphnia ”predators” (D) feeding on phytoplankton.

dP

dt
= r P

(
1 − P

K

)
− f(P )D

dD

dt
= ε f(P )D − δ D

Phytoplankton grows logistically with growth rate r and carrying capacity K. We assume that
phytoplankton are nutrient limited, i.e. that a linear increase in phosphorous and nitrogen
levels translates into a linear increase in the equilibrium levels that phytoplankton can attain if
growing on their own (K). f(P ) is a function determining how many phytoplankton are eaten by
Daphnia given an encounter, ε is the conversion efficiency of phytoplankton to Daphnia biomass,
and δ is the Daphnia death rate.

1. Assume that Daphnia attack phytoplankton according to a satiating, type II functional
response. At low prey densities Daphnia are limited by the amount of prey they can find
while at high prey densities, Daphnia are limited by the time it takes to handle and digest
a prey individual. A function describing this is:

f(P ) =
aP

1 + a Th P

with a, the attack rate and Th the time it takes a predator to attack and digest a prey
individual.

2. Implement the model in R for analysis with phaseplane() and bifurcation(), with
parameters r = 0.2, ε = 1, a = 0.02, δ = 0.25, and Th = 1. First examine using
phaseplane() the effect of increasing K. What equilibria are possible? Are they sta-
ble/unstable? When is coexistence possible? When not? Now examine your findings in
bifurcation(). Make several orbits with different initial conditions. What is the effect
of increasing carrying capacity?

3. Examine your equilibria as a function of K in bifurcation().

4. Examine eigenvalues of the model as a function of K. What can you say about the
relationship between their values and the observed dynamics of your system with increasing
K? Make a diagram of the types of observed dynamics in relationship to K.

5. What is a Hopf bifurcation?

6. Point out when a Hopf bifurcation occurs in terms of the configuration of your preda-
tor/prey isoclines.

7. What is the ”paradox of enrichment”?

8. Why does the paradox of enrichment occur? (In words or in math).
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9. Construct the Hopf bifurcation boundary as a function of K and δ. This boundary sep-
arates the parameter combinations for which limit cycles occur from those for which the
equilibrium is stable.

10. Sketch with pen and paper a bifurcation diagram as a function of δ, based on your (δ,K)-
graph and the bifurcation diagram as a function of K.

11. Use bifurcation() to locate the existence boundary of Daphnia as a function of K and
δ.

12. A challenge: Use a 3D-plot to visualize the limit cycle as a function of K.
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9.7 The Return of the Paradox of Enrichment

Recall the ”paradox of enrichment”, where the interactions between Daphnia and phytoplankton
lead to destabilization with increasing carrying capacity. The objective of this lab will be to
examine the robustness of those conclusions to predation pressure by fish (F ) on Daphnia. Fish
imposed mortality saturates according to a type III functional response. We assume that fish
stocks are constant at F .

dP

dt
= r P

(
1 − P

K

)
− f(P )D

dD

dt
= ε f(P )D − d(D)

in which

f(P ) =
aP

1 + a Th P

and

d(D) = δ D + F
D2

1 + AdD2

Use parameters r = 2, ε = 0.5, Ad = 44.444, F = 6.667, a = 9.1463, Th = 0.667, δ = 0.1.

NB: There is no particular order in the suggestions a-c given under the study questions.

1. Occurrence and stability of equilibria: Start with the qualitative behavior of the model for
different levels of productivity (i.e. different values of K, between 0 and 1.0) by studying:

a). Isocline configurations in the phase-plane (use phaseplane()).

b). Time series starting from different initial conditions (use phaseplane()and/or bi-
furcation()).

c). Bifurcation of equilibria as a function of K.

d). Limit cycles (or the minima and maxima of these) as a function of K.

e). The global behavior of the model.

Make sure you have a picture (mentally or on paper) of the isocline configurations in every
different region of K

2. How does the bifurcation graph over K compare to the system without fish predation on
Daphnia? (See the computer practical 10.6 The Paradox of Enrichment). Make an explicit
comparison of the bifurcation graphs in the two systems and describe the qualitatively
different regions.

3. Effects of predator-induced mortality: Continue with the qualitative behavior of the model
for different values of F , by studying:

a). Isocline configurations in the phase-plane (use phaseplane()).

b). Time series starting from different initial conditions (use phaseplane()and/or bi-
furcation()).

c). Two-parameter bifurcation of all (3 types of) special points found in the bifurcation
over K.
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Deduce from the two-parameter plot a bifurcation graph of the equilibria in the system
as a function of F, for different values of K; verify your interpretation with the help of
bifurcation().

4. Biological interpretation: What is the effect of a top-predator on the paradox of enrich-
ment?
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9.8 Cannibalism

The following model describes the dynamics of a cannibalistic population, composed of juveniles
X and adults Y . The adult individuals eat juveniles in addition to alternative food. After
scaling the density and time variables the model can be expressed by the following equations:

dX

dt
= αY − X − X Y

dY

dt
= X − µ

ρ + X
Y

in which α is the (scaled) fecundity of adult individuals; ρ the (scaled) availability of alternative,
non–cannibalistic food for the adults and µ represents the constant mortality rate of the adults.

Analyze the model described above, such that you understand as much as possible which type
of dynamics the model can exhibit for different parameter values. Use both phaseplane() and
bifurcation() to develop this understanding.

Here are some useful guidelines:

1. Use as default parameters: α = 0.4, µ = 0.05 and ρ = 0.05.

2. Use phaseplane()to construct isocline graphs.

3. To get an initial understanding compute orbits for different starting values of X and Y .
Use ρ = 0.05 as parameter value.

4. Construct bifurcation graphs as a function of ρ for different values of µ. Sketch these
graphs, while indicating which equilibria are stable and which are not.

5. If you encounter any bifurcation points (limit points) construct a graph that shows the
location of this bifurcation point as a function of two parameters, for example, as function
of µ and ρ.
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9.9 A predator-prey model with density-dependent prey devel-
opment

Consider a prey population that is subdivided into juveniles and adults. We will denote the
densities of juvenile and adult prey by J and A, respectively. We will assume that adult prey
produce offspring at a per capita rate β, while juvenile and adult prey die at a per capita rate
of µj and µa, respectively. Both reproduction and mortality are hence density-independent
processes. The regulation of the prey population in the absence of any predator is assumed
to operate through density-dependent development. The per capita rate of maturation from
juvenile to adult is assumed to follow the function:

φ

1 + dJ2

1. Formulate the system of two differential equations describing the dynamics of juvenile and
adult prey density J and A, respectively.

Take as default values for the parameters: β varying between 0.2 and 1.5, φ = 1, d = 1, µj
varying between 0 and 0.15 and µa = 0.2.

2. Investigate the properties of the model as completely as possible, focusing on the influence
of the parameters β and µj .

We will assume that predators, indicated with the variable P , of this prey population only attack
adult prey following a linear functional response with an attack rate equal to a = 1 (default
value). Predators convert the prey biomass they consume into offspring with conversion efficiency
ε equal to 1.0. Predators experience a per capita death rate of δ per unit of time.

3. Formulate the system of three differential equations describing the dynamics of juvenile
and adult prey density J and A their predators P , respectively.

4. Investigate the properties of the model taking δ as a bifurcation parameter for different
values of β and µj .

5. In total there are 4 different parameter regions to be found, in which the number and
type of equilibria differs from the other regions. Try to localize these 4 different areas by
computing the boundaries between these regions as a function of β and µj .

Extra: Now assume that in addition to a predator on adults, there is also a predator population,
indicated with the variable Q, which exclusively forages on juvenile prey. Again assume a linear
functional response with an attack rate symbolized by b = 1. Furthermore, assume that the
conversion efficiency of this predator on juveniles equals m.

6. Formulate the system of 4 differential equations and investigate its properties.
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9.10 Chaotic dynamics of Hare and Lynx populations

The following system of ODEs describes the interaction between the hare (H) that graze the
vegetation (V ) and are preyed upon by lynx (L).

dV

dt
= a V

(
1 − V

Vmax

)
− a1 V

H

1 + k1V

dH

dt
= a1 V

H

1 + k1V
− bH − a2HL

dL

dt
= a2HL − q (L − Lmin)

Take as values for the parameters a = 1, Vmax = 150, a1 = 0.2, k1 = 0.05, b = 1, a2 = 1, c = 7
and Lmin = 0.006.

1. Try to understand the model formulation, in particular the term for the death rate of the
lynx. What biological assumption is made for this process?

2. Implement the model in R for analysis with bifurcation() using the parameters above.
Use V = 7, H = 6 and L = 0.08 as initial values. Adjust the time series plot to show L on
the y-axis. Compute a time series with the maximum integration time set equal to 300.
Make sure the axes of your graphical window are scaled appropriately.

3. Now change the plot to show all state variables on the y-axis. Take the scale of the y-axis
equal to 0 to 20. Compute time series with the maximum integration time equal to 300
for c = 7.0, c = 7.5, c = 8.0, c = 9.5 and c = 10.2. Determine the attractor of the system
for every one of these c-values and note the number of minima and maxima. Make sure
to distinguish the dynamics of the attractor from the transient dynamics. Which different
types of attractors do you find and what type of bifurcation separates these attractors?

4. Change the plot axes to V on the x -axis and H on the y-axis. Set the plotting range for
the x -axis to 0 to 15 and for the y-axis equal to 0 to 20 and study the dynamics in this
phaseplane.

5. Now turn to a 3D plot of the dynamics with V on the abscissa, H on the ordinate and
L on the third axis. Set the plotting range on the x -axis equal to 0 to 15, on the y-axis
equal to 0 to 12 and on the z -axis equal to 0 to 1. Compute a time series for c = 10.2 and
select the last point of this time series as new initial point. Delete all the curves that you
have computed up to now and integrate another time until a maximum integration time
of 300. Change the viewing angle of the 3D plot to study the dynamics in more detail.

6. Return to a two dimensional plot with L on the y-axis and the range of the y-axis equal
to 0 to 1. Set c = 12 and compute a time series till a maximum integration time of 300,
starting from the initial values V = 6.8, H = 6.4 and L = 0.015. Write down the densities
of V , H and L for t = 300. Now add a very small amount to the initial density of V (for
instance use V = 6.800001). Compute a new time series without deleting the previously
computed one. From which time point onwards do you start to see differences? And how
do the densities at t = 300 differ from the previous time series? Also try other nearby
starting points (e.g. V = 6.800002) and see how small changes in the initial value affect
the long term prediction. How predictable is this system and how does this predictability
depend on t and on the parameter c?
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7. Study the same time series started from slightly different initial values in a 3D plot of
the dynamics with V on the abscissa, H on the ordinate and L on the third axis with
the plotting range on the x -axis equal to 0 to 15, on the y-axis equal to 0 to 12 and on
the z -axis equal to 0 to 1. Describe the dynamics, and try to explain what causes the
unpredictability in the long term dynamics.
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