
One-Counter Threads
Reachability and Action Forecasting

Alban Ponse

Section Software Engineering
Informatics Institute

University of Amsterdam

PAM - June 13, 2007

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 1 / 28

Contents

1 Basics

2 Services and
one-counter threads

3 Action forecasting
(including risk
assessment)

4 Conclusion, digression
and discussion
(PAM’s future?)

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 2 / 28

1. Basics

Given a set A of actions, basic thread algebra (BTA) has the following
constants and operators:

1 the termination constant S
2 the inaction or deadlock constant D
3 for each a ∈ A, a binary postconditional composition operator

_ ! a " _

Execution of an action yields a reply value true or false.

The postconditional composition P ! a " Q represents action a
followed by thread P if true was replied, and a followed by Q
otherwise.

Action prefix: a ◦ P def
= P ! a " P

Action prefix binds stronger than postconditional composition.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 3 / 28

The approximation operator πn(_) gives the behavior of a thread up to
depth n (n ∈ N).

1 π0(P) = D
2 πn+1(S) = S
3 πn+1(D) = D
4 πn+1(P ! a " Q) = πn(P) ! a " πn(Q)

Example: π2(b ◦ c ◦ S ! a " S) = b ◦ D ! a " S

Every thread in BTA is finite: there is a finite upper bound to the
number of consecutive actions it can perform.
So, for every P ∈ BTA there exists n ∈ N such that

πn(P) = πn+1(P) = · · · = P

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 4 / 28

Infinite threads

We define BTA∞, the set of projective sequences of BTA terms:

BTA∞ = {(Pn)n∈N | ∀n ∈ N (Pn ∈ BTA & πn(Pn+1) = Pn)}

We turn the set BTA∞ into an algebra by defining operations on it.
Overloading notation, let

1 D = (D, D, D, . . .)
2 S = (D, S, S, . . .)
3 (Pn)n∈N ! a " (Qn)n∈N = (Rn)n∈N with R0 = D

Rn+1 = Pn ! a " Qn

The elements of BTA are included in BTA∞ by a mapping following this
definition.

We further use this inclusion implicitly and write P, Q, . . . to denote
elements of BTA∞.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 5 / 28

Regular threads

Informally, a thread is regular if it has finitely many states.

The regular threads are exactly the threads that can be defined by a
finite linear recursive specification, i.e., a set of equations

xi = ti

for i ∈ I with I some finite index set, variables xi , and all ti terms of the
form S, D, or xj ! a " xk with j , k ∈ I.

Fact
Variables in these specifications have unique solutions (fixed
points).
The finite threads form a proper subset of the regular threads,
which form a proper subset of BTA∞.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 6 / 28

Convention
We shall identify variables in linear recursive specifications and their
fixed points.

For example, we say that P is the thread defined by P = a ◦ P instead
of stating that P equals the fixed point for x in the specification
{x = a ◦ x}.

Example
We define regular thread P by

P = Q ! a " R
Q = b ◦ P
R = T ! c " P
T = S

Note the finite graphical representation of P. [Draw on blackboard]

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 7 / 28

Convention
We shall identify variables in linear recursive specifications and their
fixed points.

For example, we say that P is the thread defined by P = a ◦ P instead
of stating that P equals the fixed point for x in the specification
{x = a ◦ x}.

Example
We define regular thread P by

P = Q ! a " R
Q = b ◦ P
R = T ! c " P
T = S

Note the finite graphical representation of P. [Draw on blackboard]

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 7 / 28

2. Services and one-counter threads

We have assumed that a thread is executed in an environment that
supplies reply values for actions.
We can model (part of) this environment as one or more services.

A typical example of such a service is a stack: for n ∈ N, Sn is a
service that

holds a value in {0, . . . , n}∗,
and is controlled by 2n + 3 methods (i ≤ n):

push:i pushes i onto the stack and yields true,
topeq:i tests whether i is on top of the stack,

pop pops the stack with reply true if it is non-empty, and
yields false otherwise (while the stack contents is
preserved).

We write Sn(α) for a stack with contents α ∈ {0, . . . , n}∗, and initially
the stack is empty (Sn = Sn(ε) with ε the empty sequence).

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 8 / 28

Formally:

A service H is a pair 〈M, F 〉 consisting of
a set M of so-called methods, and
a reply function F .

The reply function is a mapping that gives for each non-empty finite
sequence of methods from M a reply true or false.

On input m1 . . . mk+1, function F gives the reply for mk+1 if m1, . . . , mk
(the history) were called before.
Write Hν for H with history ν.

The notation Sn(α) is convenient and adequate, but not history-based.

Focus-method notation: Let actions be of the form f .m where f is the
focus, and m is the method.

E.g., st .pop denotes the action which pops a stack via focus st .

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 9 / 28

Formally:

A service H is a pair 〈M, F 〉 consisting of
a set M of so-called methods, and
a reply function F .

The reply function is a mapping that gives for each non-empty finite
sequence of methods from M a reply true or false.

On input m1 . . . mk+1, function F gives the reply for mk+1 if m1, . . . , mk
(the history) were called before.
Write Hν for H with history ν.

The notation Sn(α) is convenient and adequate, but not history-based.

Focus-method notation: Let actions be of the form f .m where f is the
focus, and m is the method.

E.g., st .pop denotes the action which pops a stack via focus st .

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 9 / 28

Formally:

A service H is a pair 〈M, F 〉 consisting of
a set M of so-called methods, and
a reply function F .

The reply function is a mapping that gives for each non-empty finite
sequence of methods from M a reply true or false.

On input m1 . . . mk+1, function F gives the reply for mk+1 if m1, . . . , mk
(the history) were called before.
Write Hν for H with history ν.

The notation Sn(α) is convenient and adequate, but not history-based.

Focus-method notation: Let actions be of the form f .m where f is the
focus, and m is the method.

E.g., st .pop denotes the action which pops a stack via focus st .

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 9 / 28

Use-operator

P /f Hν models thread P using the service Hν via focus f .

Let H = 〈M, F 〉. We define for threads in BTA:
1 S /f Hν = S

2 D /f Hν = D
3 (P ! g.m " Q) /f Hν = (P /f Hν) ! g.m " (Q /f Hν) if g '= f
4 (P ! f .m " Q) /f Hν = D if m '∈ M
5 (P ! f .m " Q) /f Hν = P /f Hνm if m ∈ M and F (νm) = true
6 (P ! f .m " Q) /f Hν = Q /f Hνm if m ∈ M and F (νm) = false

The use operator is expanded to infinite threads in BTA∞ by defining

(Pn)n∈N /f Hν =
⊔

n∈N
Pn /f Hν

(For P defined by a linear specification, /fHν works nice and easy...)

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 10 / 28

Use-operator

P /f Hν models thread P using the service Hν via focus f .

Let H = 〈M, F 〉. We define for threads in BTA:
1 S /f Hν = S
2 D /f Hν = D

3 (P ! g.m " Q) /f Hν = (P /f Hν) ! g.m " (Q /f Hν) if g '= f
4 (P ! f .m " Q) /f Hν = D if m '∈ M
5 (P ! f .m " Q) /f Hν = P /f Hνm if m ∈ M and F (νm) = true
6 (P ! f .m " Q) /f Hν = Q /f Hνm if m ∈ M and F (νm) = false

The use operator is expanded to infinite threads in BTA∞ by defining

(Pn)n∈N /f Hν =
⊔

n∈N
Pn /f Hν

(For P defined by a linear specification, /fHν works nice and easy...)

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 10 / 28

Use-operator

P /f Hν models thread P using the service Hν via focus f .

Let H = 〈M, F 〉. We define for threads in BTA:
1 S /f Hν = S
2 D /f Hν = D
3 (P ! g.m " Q) /f Hν = (P /f Hν) ! g.m " (Q /f Hν) if g '= f

4 (P ! f .m " Q) /f Hν = D if m '∈ M
5 (P ! f .m " Q) /f Hν = P /f Hνm if m ∈ M and F (νm) = true
6 (P ! f .m " Q) /f Hν = Q /f Hνm if m ∈ M and F (νm) = false

The use operator is expanded to infinite threads in BTA∞ by defining

(Pn)n∈N /f Hν =
⊔

n∈N
Pn /f Hν

(For P defined by a linear specification, /fHν works nice and easy...)

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 10 / 28

Use-operator

P /f Hν models thread P using the service Hν via focus f .

Let H = 〈M, F 〉. We define for threads in BTA:
1 S /f Hν = S
2 D /f Hν = D
3 (P ! g.m " Q) /f Hν = (P /f Hν) ! g.m " (Q /f Hν) if g '= f
4 (P ! f .m " Q) /f Hν = D if m '∈ M

5 (P ! f .m " Q) /f Hν = P /f Hνm if m ∈ M and F (νm) = true
6 (P ! f .m " Q) /f Hν = Q /f Hνm if m ∈ M and F (νm) = false

The use operator is expanded to infinite threads in BTA∞ by defining

(Pn)n∈N /f Hν =
⊔

n∈N
Pn /f Hν

(For P defined by a linear specification, /fHν works nice and easy...)

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 10 / 28

Use-operator

P /f Hν models thread P using the service Hν via focus f .

Let H = 〈M, F 〉. We define for threads in BTA:
1 S /f Hν = S
2 D /f Hν = D
3 (P ! g.m " Q) /f Hν = (P /f Hν) ! g.m " (Q /f Hν) if g '= f
4 (P ! f .m " Q) /f Hν = D if m '∈ M
5 (P ! f .m " Q) /f Hν = P /f Hνm if m ∈ M and F (νm) = true

6 (P ! f .m " Q) /f Hν = Q /f Hνm if m ∈ M and F (νm) = false

The use operator is expanded to infinite threads in BTA∞ by defining

(Pn)n∈N /f Hν =
⊔

n∈N
Pn /f Hν

(For P defined by a linear specification, /fHν works nice and easy...)

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 10 / 28

Use-operator

P /f Hν models thread P using the service Hν via focus f .

Let H = 〈M, F 〉. We define for threads in BTA:
1 S /f Hν = S
2 D /f Hν = D
3 (P ! g.m " Q) /f Hν = (P /f Hν) ! g.m " (Q /f Hν) if g '= f
4 (P ! f .m " Q) /f Hν = D if m '∈ M
5 (P ! f .m " Q) /f Hν = P /f Hνm if m ∈ M and F (νm) = true
6 (P ! f .m " Q) /f Hν = Q /f Hνm if m ∈ M and F (νm) = false

The use operator is expanded to infinite threads in BTA∞ by defining

(Pn)n∈N /f Hν =
⊔

n∈N
Pn /f Hν

(For P defined by a linear specification, /fHν works nice and easy...)

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 10 / 28

Use-operator

P /f Hν models thread P using the service Hν via focus f .

Let H = 〈M, F 〉. We define for threads in BTA:
1 S /f Hν = S
2 D /f Hν = D
3 (P ! g.m " Q) /f Hν = (P /f Hν) ! g.m " (Q /f Hν) if g '= f
4 (P ! f .m " Q) /f Hν = D if m '∈ M
5 (P ! f .m " Q) /f Hν = P /f Hνm if m ∈ M and F (νm) = true
6 (P ! f .m " Q) /f Hν = Q /f Hνm if m ∈ M and F (νm) = false

The use operator is expanded to infinite threads in BTA∞ by defining

(Pn)n∈N /f Hν =
⊔

n∈N
Pn /f Hν

(For P defined by a linear specification, /fHν works nice and easy...)
Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 10 / 28

One-counter threads

A counter service C holds a value in N (determined by its history) and
is controlled by 2 methods:

inc increases the value of the counter and yields true,
dec decreases the value of the counter with reply true if it is

positive, and yields false otherwise (while the counter
value remains 0).

We write C(n) for a counter with value n, and initially the counter has
value 0 (C = C(0)).

A one-counter thread is a regular thread that uses a single counter.

Examples
1 (c.inc ◦ P) /c C(n) = P /c C(n+1)
2 (P ! c.dec " S) /c C(0) = S
3 (P ! c.dec " S) /c C(n+1) = P /c C(n)

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 11 / 28

One-counter threads

A counter service C holds a value in N (determined by its history) and
is controlled by 2 methods:

inc increases the value of the counter and yields true,
dec decreases the value of the counter with reply true if it is

positive, and yields false otherwise (while the counter
value remains 0).

We write C(n) for a counter with value n, and initially the counter has
value 0 (C = C(0)).

A one-counter thread is a regular thread that uses a single counter.

Examples
1 (c.inc ◦ P) /c C(n) = P /c C(n+1)
2 (P ! c.dec " S) /c C(0) = S
3 (P ! c.dec " S) /c C(n+1) = P /c C(n)

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 11 / 28

Obtaining non-regularity using a counter
Consider the regular thread

Q = c.inc ◦Q ! a " R, R = b ◦ R ! c.dec " S,

where actions a and b do not use focus c.

Then, for all n ∈ N,

Q /c C(n) = (c.inc ◦Q ! a " R) /c C(n)

= (Q /c C(n + 1)) ! a " (R /c C(n))

R /c C(n) =

{
b ◦ R /c C(n − 1) if n > 0
S otherwise.

So Q /c C(0) is an infinite thread such that a trace of n +1 a’s produced
by n positive and one negative reply on a is followed by bn ◦ S.

This yields a non-regular thread: the one-counter thread Q /c C(0) is
not definable by a finite linear recursive specification.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 12 / 28

Obtaining non-regularity using a counter
Consider the regular thread

Q = c.inc ◦Q ! a " R, R = b ◦ R ! c.dec " S,

where actions a and b do not use focus c. Then, for all n ∈ N,

Q /c C(n) = (c.inc ◦Q ! a " R) /c C(n)

= (Q /c C(n + 1)) ! a " (R /c C(n))

R /c C(n) =

{
b ◦ R /c C(n − 1) if n > 0
S otherwise.

So Q /c C(0) is an infinite thread such that a trace of n +1 a’s produced
by n positive and one negative reply on a is followed by bn ◦ S.

This yields a non-regular thread: the one-counter thread Q /c C(0) is
not definable by a finite linear recursive specification.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 12 / 28

Obtaining non-regularity using a counter
Consider the regular thread

Q = c.inc ◦Q ! a " R, R = b ◦ R ! c.dec " S,

where actions a and b do not use focus c. Then, for all n ∈ N,

Q /c C(n) = (c.inc ◦Q ! a " R) /c C(n)

= (Q /c C(n + 1)) ! a " (R /c C(n))

R /c C(n) =

{
b ◦ R /c C(n − 1) if n > 0
S otherwise.

So Q /c C(0) is an infinite thread such that a trace of n +1 a’s produced
by n positive and one negative reply on a is followed by bn ◦ S.

This yields a non-regular thread: the one-counter thread Q /c C(0) is
not definable by a finite linear recursive specification.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 12 / 28

Obtaining non-regularity using a counter
Consider the regular thread

Q = c.inc ◦Q ! a " R, R = b ◦ R ! c.dec " S,

where actions a and b do not use focus c. Then, for all n ∈ N,

Q /c C(n) = (c.inc ◦Q ! a " R) /c C(n)

= (Q /c C(n + 1)) ! a " (R /c C(n))

R /c C(n) =

{
b ◦ R /c C(n − 1) if n > 0
S otherwise.

So Q /c C(0) is an infinite thread such that a trace of n +1 a’s produced
by n positive and one negative reply on a is followed by bn ◦ S.

This yields a non-regular thread: the one-counter thread Q /c C(0) is
not definable by a finite linear recursive specification.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 12 / 28

3. Action forecasting

FOKKE & SUKKE thought to
pull her leg

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 13 / 28

Risk assessment
Risk assessment is the forecast that a certain action that models risky
behavior (viruses etc.) will NOT be executed:

The test action s.ok in P ! s.ok " Q yields true if the action risk is
not executed in P (its true-branch), and false otherwise

We shall model this as a thread-service composition

(P ! s.ok " Q) /s S(E)

where the risk assessment service S(E)

has ok as its only method, and
is aware of both the specification E that defines P ! s.ok " Q and
the current execution state.

Risk assessment is non-trivial if the test action s.ok occurs more than
once in P, the thread to be assessed.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 14 / 28

Risk assessment
Risk assessment is the forecast that a certain action that models risky
behavior (viruses etc.) will NOT be executed:

The test action s.ok in P ! s.ok " Q yields true if the action risk is
not executed in P (its true-branch), and false otherwise

We shall model this as a thread-service composition

(P ! s.ok " Q) /s S(E)

where the risk assessment service S(E)

has ok as its only method, and
is aware of both the specification E that defines P ! s.ok " Q and
the current execution state.

Risk assessment is non-trivial if the test action s.ok occurs more than
once in P, the thread to be assessed.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 14 / 28

An example of risk assessment

Here the superscripts on states relate to a finite linear specification E :
P1 = P2 ! s.ok " P8, . . . , P8 = S, and

P1 /s S(E) = T with T = b ◦ T ! a " c ◦ S

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 15 / 28

Risk states
From risk states the execution of action risk cannot be avoided: for any
equation in a given finite linear spec. E ,

if x = y ! risk " z then x is a risk state,
if x = y ! s.ok " z and both y , z are risk states, then so is x ,
if x = y ! a " z and y or z is a risk state, then so is x .

In the example, P6 is the only risk state:

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 16 / 28

A risk assessment service for regular threads
From risk states the execution of risk cannot be avoided: a risk
assessment S(E) should reply true to s.ok in

x = y ! s.ok " z (1)

iff y is not a risk state. This can be resolved for any finite linear
specification E : annotate s.ok to s.ok :y for equations of form (1).
In the example, the crossed-out arrows illustrate this:

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 17 / 28

Risk assessment and Cohen’s result

Observations:
1 The test action s.ok is interpreted in the context of a

postconditional composition (a thread specification E) and a
resolving risk assessment service S(E).

2 The reply false to s.ok in P ! s.ok " Q gives no clue about the
execution of risk in Q.

This brings us to a comparison with Cohen’s seminal impossibility
result on virus detection (1984), which in our setting reads:

There exists no predicate D on all programs (in a reasonable
class) that determines whether a virus (cf. our action risk) is
executed.

Proof. Existence is contradicted by the program P defined by
P = if D(P) then 〈safe behavior〉 else 〈spread virus〉.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 18 / 28

Risk assessment and Cohen’s result

Observations:
1 The test action s.ok is interpreted in the context of a

postconditional composition (a thread specification E) and a
resolving risk assessment service S(E).

2 The reply false to s.ok in P ! s.ok " Q gives no clue about the
execution of risk in Q.

This brings us to a comparison with Cohen’s seminal impossibility
result on virus detection (1984), which in our setting reads:

There exists no predicate D on all programs (in a reasonable
class) that determines whether a virus (cf. our action risk) is
executed.

Proof. Existence is contradicted by the program P defined by
P = if D(P) then 〈safe behavior〉 else 〈spread virus〉.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 18 / 28

First conclusions and a question

Some first conclusions:
1 While risk detection is impossible (à la Cohen), risk assessment is

possible for regular threads.
2 Risk assessment is defined in terms of a test s.ok (using a r.a.

service under focus s) that forecasts the absence of risk in its
true-branch, resisting the form of self-reference used by Cohen.

Question. Up to which class of threads is risk assessment decidable?

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 19 / 28

First conclusions and a question

Some first conclusions:
1 While risk detection is impossible (à la Cohen), risk assessment is

possible for regular threads.
2 Risk assessment is defined in terms of a test s.ok (using a r.a.

service under focus s) that forecasts the absence of risk in its
true-branch, resisting the form of self-reference used by Cohen.

Question. Up to which class of threads is risk assessment decidable?

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 19 / 28

Risk assessment for one-counter threads
Ponse & van der Zwaag (2006): Risk assessment is decidable for
one-counter threads (to appear in ToCS).

This follows from a reachability result of Rosier and Yen (1987):
1 Let P be defined by finite linear specification E . If

P /c C(n)
σ→ Q /c C(m)

then, for some ρ, P /c C(n)
ρ→ Q /c C(m) with

labels(ρ) = labels(σ), and
every intermediate state R /c C(n′) satisfies

n′ ≤ 3(4|Var(E)|)3 + max(n, m).

2 E can be adapted so that risk is only performed at counter value 0
(m = 0).

3 Then, wrt. risk assessment, P /c C(n) can be faithfully
approximated by a finite linear specification.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 20 / 28

Pushdown threads

Pushdown thread: a regular thread that uses a stack.

Example (a pd thread, not an oc thread)
x1 /st S1(ε) with α ∈ {0, 1}∗ the contens of S1(α) and ε the empty
sequence), and

x1 = st .push:0 ◦ x1 ! a " x2, x3 = c ◦ st .pop ◦ x3 ! st .topeq:1 " x4,

x2 = st .push:1 ◦ x2 ! b " x3, x4 = d ◦ st .pop ◦ x4 ! st .topeq:0 " S.

Open question. Is risk assessment decidable for pushdown threads?

The proof for one-counter threads does not generalize: control
decisions may occur at any stack contents (tests on identity of top
value).

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 21 / 28

Pushdown threads

Pushdown thread: a regular thread that uses a stack.

Example (a pd thread, not an oc thread)
x1 /st S1(ε) with α ∈ {0, 1}∗ the contens of S1(α) and ε the empty
sequence), and

x1 = st .push:0 ◦ x1 ! a " x2, x3 = c ◦ st .pop ◦ x3 ! st .topeq:1 " x4,

x2 = st .push:1 ◦ x2 ! b " x3, x4 = d ◦ st .pop ◦ x4 ! st .topeq:0 " S.

Open question. Is risk assessment decidable for pushdown threads?

The proof for one-counter threads does not generalize: control
decisions may occur at any stack contents (tests on identity of top
value).

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 21 / 28

Other forms of forecasting

Turing (1937): The Halting Problem, i.e.,

Undecidability (unsolvability) of the question whether a
Turing Machine halts on a certain input.

(This question can be modelled as a thread-service composition).
Bergstra & Ponse (J’nal of Appl. Logic 5, 2007):

Forecasting Reactors: services that need a third truth value to
escape paradoxes and give preference to reply true.
Rational Agents: services that intend to achieve an objective given
a thread to be executed (e.g., get another service in an “optimal
state”).
Execution architectures (modelling threads & services) in which a
service may be a forecaster of another one (Example: Newcomb
Paradox).

Goal assessment (with Mark van der Zwaag): decidable for
one-counter threads.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 22 / 28

Other results

Computable threads:
Risk assessment is undecidable for computable
threads (cf. the Halting Problem).

Pushdown threads:
Equality is decidable.
In risk assessment, recurrence of s.ok is the difficult
issue: if this is not the case, s.ok yields true iff

(P ! s.ok " Q) /st Sn(α) = (P ! s.ok " Q) /st Sn(α)

with in P all occurrences of risk replaced by a
different action; this is decidable.

One-counter threads:
Inclusion (*) is undecidable.
State reachability is preserved under bounded
counter values.
State reachability is decidable.

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 23 / 28

4. Conclusion, digression and discussion

Students like to program threads, also the secondary school ones
doing our Webklas Informatica Wat is een programma?

The simple concepts in both program algebra and thread algebra
appear to be appealing
Thread algebra (nice, compositional) can be seen/used as a
semantics for program algebra (non-compositional, common
programming constructs)

Risk assessment: we made it to VX Heavens (site on viruses,
on-line since Sept. 1999, some pictures on the next slides) in the
category Theory, models and definitions (25 papers).
Some advanced work in program and thread algebra:

Micro grids (concurrent hardware)
Tool set for PGA (including animation and multi-threading tools)
Predictable and Reliable Program Code: Virtual Machine-based
Projection Semantics
Maurer computers (finite computer models) with pipelined
instruction processing

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 24 / 28

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 25 / 28

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 26 / 28

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 27 / 28

PAM’s future?

PAM’s future:
At UvA perhaps?
Which habitual audience?
More open presentations/discussions?
PhD-sessions?

Future work at CWI that might be of interest in this respect:
...

Other work at UvA’s SSE that might be of interest in this respect:
Process algebra: continuation of research, tool development etc.
Algebraic specification (meadows, empty sorts & partial
operations)

Alban Ponse (SSE, UvA) One-Counter Threads PAM - June 13, 2007 28 / 28

