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1. Introduction

Short-circuit evaluation (SE) in imperative programming:
if (not(j==0) &«& (i/3 > 17) ) then(..) else (..)

Clearly, SE is sequential and «& (Logical and) is not commutative...

Questions:

Q1. For conditions as above: which are the logical laws that
characterize SE?

Q2. As Q1, but restricting to atoms that evaluate to either t rue or
false (either exclude atoms as (i/j > 17), or require such evalutions)

Q3. As Q2, but involving constants T and F for true and false
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An example that falsifies idempotency of && (programmable in Perl):
1) For program variable i, atom (i==k) with k € Z is a test, and

2) Boolean evaluation of assignment (i=e) yields false iff &'s value is 0.
Then, if i has initial value 2,

(i=i+1) && (i==3) evaluatesto true, and

((i=i+1) && (i=1i+1)) && (i==3) evaluatesto false

Wrt. Q2 and Q3, some logical laws that are not valid:

» ldempotency, thus x s& x = x and x | | x = x, where
| | represents “Logical or”

» Distributivity, e.9. xss& (y 11 2) = (x&sy) || (X && 2)

» Absorption, e.g. x && (x || y)=x
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Towards a systematic answer of Q2 and Q3:

» Involve Hoare’s conditional (1985), a ternary connective
characterized by

P<«Qv R ~ if Qthen P else R

With the conditional, one can define negation and the (binary)
propositional connectives that prescribe SE:

X=Fax>T
Xssy=y<x»F
X|ly=Taxvy

Fact: basic equational axioms for the conditional imply =—x = x (DNS),
associativity of the propositional connectives, and De Morgan’s laws.
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2. Evaluation trees
CProp(A), Conditional Propositions with atoms in A:
P:=a|T|F|P«P>P (acA).
Ta, Evaluation trees over A, provide a simple semantics for CProp(A):
X:=T|F|X<sarc X (acA).
Pictorial representation: - . N for X<ar Y

X Y

Thus: binary trees with leaves in { T, F} and internal nodes in A, e.g.

b F
VRN
T F
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Idea: For (i=i+1) && (i==3),thusfor (i==3) « (i=i+1) v F, an
evaluation is a complete path in the evaluation tree

(i=1i+1)
(i:: ) \ F
T F

where

» the evaluation starts in the root node (i=i+1), and continues in the left
branch if (i=i+1) evaluates to t rue, and otherwise in the right branch

» evaluation in the internal node (i==3) proceeds likewise

» leaves represent the final evaluation value
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Leaf replacement in X € T4, notation

X[T—Y,F— 2
is defined by
TIT—Y,F=2Z]=Y
FIT—Y Fo2Zl=2
X; <av Xp)[T— Y, FsZ]=

4. Remarks and conclusions
000

I

Xi[T—Y,F—Z]
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The short-circuit interpretation function se : CProp(A) — Ta is defined
by

se(T)=T
se(F)=F
se(a)=TzsaxF
se(P < Qv R)=se(Q)[T — se(P),F — se(R)]

Example:

a
se(Faav T)=(T2av F)[T—=FF=T =F<acT= ,
F T

Thus, se(F <« a > T) models the evaluation of —a, and we can involve
negation by
se(—P)=se(P)[T — F,F — T]
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CP, a set of axioms for .. < .. = .. (Proposition algebra [BP10]):

xXaT>y=x
XaFpvy=y
TaxsF=x
X< (yazou)yvv=(Xx<ayvv) <z> (Xaurv)

Example: CPF Fa(Faxv> T)p T=(F<FprT)<x<x>(FaTo>T)
=Taxv F
=X

and thus with =x = F < x > T we find DNS: ——x = x.

Theorem. CP+-P=Q < se(P)=se(Q)

Proof. Easy (incl. se-equality is a congruence).

Note. se-equality is further called Free valuation congruence (FVC).
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Evaluation trees for expressions with -, s«& ,and || :
se(—P)=se(P)[T — F,F — T]
se(P s& Q) = se(P) [T — se(Q)]
se(P || Q) =se(P)[F — se(Q)]

Example: for a,b,c € A we find
se(ass (bssc))=se((asab)ssac)=((TasceF)abr)aar F

FVC-axioms (thus, valid wrt. se-equality) not mentioned before:

F—-T Fssx=F
Tssx=x xss F=-xss F
Xxss T=x (xsaF) | ly=(x11T)sasy

Alban Ponse (TCS, UvA) Evaluation Trees for Proposition Algebra ERO’60 - September 9, 2015 10/18



1. Introduction 2. Evaluation trees
000

3. Valuation congruences 4. Remarks and conclusions
000000e 0000 000
Theorem (Staudt, 2012). “Short-circuit logic for Free VC”
For propositional formulae over A, T, F, =, s&, || ,FVCis

axiomatized by the seven axioms listed on the previous slide, and
=X =X

X 1 1y=-(-xs&sy)
(xsay)ssz=xs&& (¥ && 2)

say E,thus EFP=Q <= se(P)=se(Q).
Proof. Soundness (incl. congruence property) is easy.

Completeness is non-trivial (20% pages) and depends on:

» normal forms,

» decomposition properties of evaluation trees for s and ||, and

» the existence of an inverse g of se for normal forms: g(se(P)) = P
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3. Valuation Congruences
FVC

C Repetition-proof VC:
equationally axiomatized by CP + two axiom schemes over A

C Contractive VC:
equationally axiomatized by CP + two axiom schemes over A
-

Memorizing VC: equationally axiomatized by CP + one axiom
typical properties: x &¢s x = x
xXayvz=(yssax)ll (nyss2z)
C Static VC =~ “sequential propositional logic”:
equationally axiomatized by CP + two axioms

These VC'’s are defined by varieties of Valuation algebra’s [BP10].

[BP15]: RpVC — MVC also have simple semantics: transformations
on evaluation trees (cf. the use of truth tables in Propositional Logic).
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Contractive VC: Subsequent occurrences of the same atom are
contracted; equational axiomatization:

CPs;(A)=CPU {(x<avry)aavrz=x<arv z,
x<av(y<avz)=x<avz|acA}
Example:ass (a1l x)=(T<avx)<av F=T<avr F=a

se(ass (a || P))and its contracted evaluation tree:

a a
T 20, T
al F T F
T se(P)

The transformation cr : T4 — 74 is the contraction function, and
recursively traverses the tree.
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A more concrete example for Contractive VC.

Programming with n Boolean registers. For 1 < i < n consider
registers R; with for B € {T,F},

» the atom (set:i:B) can have a side effect: it sets R; to value B
and evaluates in each state to true

» the atom (eq:i:B) has no side effect and evaluates to true if R;
has value B, and otherwise to false

Then all instances of CP.(A) are valid, but not all instances of the
stronger equation x && x = x (valid under MVC): Let

= (eq:1:F) && (set:1:T)

— t evaluates to true
and assume R; has initial value F, then
tsst evaluatesto false

Note. Not all valid eqg’s are derivable, e.g., (eq:1:F) s& = (eq:1:F) = F.
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Theorem [BP15, BP10]. CP,(A)-P=Q <= cr(se(P)) = cr(se(Q))

Corollary. “Short-circuit logic for Contractive VC”
For propositional formulae over A, T, F, -, s&, ||,

Xx=F<x0v> T,
Xssy=y<axv F, »UCP4(A)FP=Q < cr(se(P)) = cr(se(Q))
X|ly=Taxpy

Open question. Does a finite, equational axiomatization of CVC exist
without the use of .. « .. > .7

(An approach as in [Staudt12] seems not possible.)

Note. Wrt. Repetition-proof VC we have a similar Theorem, Corollary,
and open question.
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4. Remarks and conclusions
4.1 Hoare’s conditional (1985):

» Original approach: characterization of Propositional Logic

» Original definition: P « Q> R=(PAQ)V (-QAR)
However, wrt. side effects the alternative, intuitive reading

P<Q»>R =~ if Qthen P else R,

is preferable: it suggests/prescribes a sequential, short-circuited
interpretation

With this intuition AND the naturalness of se() AND the definitions of
s &&7 | ‘ )

it is evident that CP is most basic.
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4. Remarks and conclusions
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4.2 Sequential, propositional connectives:

T,—,and ss& (and/or definable counterparts) seem primitive:

» For example, strict (complete) sequential evaluation of
conjunction, notation & , is defined by

xey=(x11(yssF))ssy
(one more argument to include T (and F) in this setting)

» BUT, a sequential version of XOR, notation @, is defined by

XGy=-yaxovy

and cannot be defined modulo Free, Repetition-proof, or
Contractive VC with T, =, and ss& only

Hence: .. < .. > .. is a convenient primitive, and the possible side
effects of the atoms of interest determine an appropriate VC.
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4.3 Transformations on Evaluation trees for more identifying VC'’s:

» Transformation to a Repetition-proof evaluation tree is natural and
simple (cf. [EROG60]); semantics by term rewriting is not easy in
thiscase,e.g. (x <av F)<ar F - (x<avrx)<aar F

» Transformation to a Contractive or Memorizing evaluation tree is
also N&S (see [BP15])

» Transformation to a static evaluation tree is more complicated and
requires an ordering of the atoms [Hoare85 + BP15]

4.4 Extensions of .. < .. > .. to many-valued logic’s are easily defined
(and seq. evaluation often provides good intuitions):

E.g., Belnap’s 4VL [PZ07], or 5VL [BP99] = Belnap’s 4VL + Bochvar’s
constant M which majorizes all truth values
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