
Evaluation Trees for Proposition Algebra

Alban Ponse
–

joined work with Jan A. Bergstra

section Theory of Computer Science

Informatics Institute, University of Amsterdam

https://staff.fnwi.uva.nl/a.ponse/

ERO’60 - September 9, 2015

https://staff.fnwi.uva.nl/a.ponse/

1. Introduction 2. Evaluation trees 3. Valuation congruences 4. Remarks and conclusions

1. Introduction

Short-circuit evaluation (SE) in imperative programming:

if (not(j==0) && (i/j > 17)) then (..) else (..)

Clearly, SE is sequential and && (Logical and) is not commutative...

Questions:

Q1. For conditions as above: which are the logical laws that
characterize SE?

Q2. As Q1, but restricting to atoms that evaluate to either true or
false (either exclude atoms as (i/j > 17), or require such evalutions)

Q3. As Q2, but involving constants T and F for true and false

Alban Ponse (TCS, UvA) Evaluation Trees for Proposition Algebra ERO’60 - September 9, 2015 2 / 18

1. Introduction 2. Evaluation trees 3. Valuation congruences 4. Remarks and conclusions

An example that falsifies idempotency of && (programmable in Perl):

1) For program variable i, atom (i==k) with k ∈ Z is a test, and

2) Boolean evaluation of assignment (i=e) yields false iff e’s value is 0.

Then, if i has initial value 2,

(i=i+1) && (i==3) evaluates to true, and

((i=i+1) && (i=i+1)) && (i==3) evaluates to false

Wrt. Q2 and Q3, some logical laws that are not valid: (equational)

� Idempotency, thus x && x = x and x || x = x , where
|| represents “Logical or”

� Distributivity, e.g. x && (y || z) = (x && y) || (x && z)

� Absorption, e.g. x && (x || y) = x
Alban Ponse (TCS, UvA) Evaluation Trees for Proposition Algebra ERO’60 - September 9, 2015 3 / 18

1. Introduction 2. Evaluation trees 3. Valuation congruences 4. Remarks and conclusions

Towards a systematic answer of Q2 and Q3:

� Involve Hoare’s conditional (1985), a ternary connective
characterized by

P / Q . R ≈ if Q then P else R

With the conditional, one can define negation and the (binary)
propositional connectives that prescribe SE:

¬x = F / x . T
x && y = y / x . F
x || y = T / x . y

Fact: basic equational axioms for the conditional imply ¬¬x = x (DNS),
associativity of the propositional connectives, and De Morgan’s laws.

Alban Ponse (TCS, UvA) Evaluation Trees for Proposition Algebra ERO’60 - September 9, 2015 4 / 18

1. Introduction 2. Evaluation trees 3. Valuation congruences 4. Remarks and conclusions

2. Evaluation trees

CProp(A), Conditional Propositions with atoms in A:

P ::= a | T | F | P / P . P (a ∈ A).

TA, Evaluation trees over A, provide a simple semantics for CProp(A):

X ::= T | F | X / a . X (a ∈ A).

Pictorial representation:
a

X Y
for X / a . Y

Thus: binary trees with leaves in {T ,F} and internal nodes in A, e.g.

a

b

T F

F
OR (T / b . F) / a . F

Alban Ponse (TCS, UvA) Evaluation Trees for Proposition Algebra ERO’60 - September 9, 2015 5 / 18

1. Introduction 2. Evaluation trees 3. Valuation congruences 4. Remarks and conclusions

Idea: For (i=i+1) && (i==3), thus for (i==3) / (i=i+1) . F , an
evaluation is a complete path in the evaluation tree

(i=i+1)

(i==3)

T F

F

where

� the evaluation starts in the root node (i=i+1), and continues in the left
branch if (i=i+1) evaluates to true, and otherwise in the right branch

� evaluation in the internal node (i==3) proceeds likewise

� leaves represent the final evaluation value

Alban Ponse (TCS, UvA) Evaluation Trees for Proposition Algebra ERO’60 - September 9, 2015 6 / 18

1. Introduction 2. Evaluation trees 3. Valuation congruences 4. Remarks and conclusions

Leaf replacement in X ∈ TA, notation

X [T 7→ Y ,F 7→ Z]

is defined by

T [T 7→ Y ,F 7→ Z] = Y

F [T 7→ Y ,F 7→ Z] = Z

(X1 / a . X2) [T 7→ Y ,F 7→ Z] =
a

X1 [T 7→ Y ,F 7→ Z] X2 [T 7→ Y ,F 7→ Z]

Alban Ponse (TCS, UvA) Evaluation Trees for Proposition Algebra ERO’60 - September 9, 2015 7 / 18

1. Introduction 2. Evaluation trees 3. Valuation congruences 4. Remarks and conclusions

The short-circuit interpretation function se : CProp(A)→ TA is defined
by

se(T) = T

se(F) = F

se(a) = T / a . F

se(P / Q . R) = se(Q) [T 7→ se(P),F 7→ se(R)]

Example:

se(F / a . T) = (T / a . F) [T 7→ F ,F 7→ T] = F / a . T =
a

F T

Thus, se(F / a . T) models the evaluation of ¬a, and we can involve
negation by

se(¬P) = se(P) [T 7→ F ,F 7→ T]

Alban Ponse (TCS, UvA) Evaluation Trees for Proposition Algebra ERO’60 - September 9, 2015 8 / 18

1. Introduction 2. Evaluation trees 3. Valuation congruences 4. Remarks and conclusions

CP, a set of axioms for .. / (Proposition algebra [BP10]):

x / T . y = x
x / F . y = y
T / x . F = x

x / (y / z . u) . v = (x / y . v) / z . (x / u . v)

Example: CP ` F / (F / x . T) . T = (F / F . T) / x . (F / T . T)

= T / x . F
= x

and thus with ¬x = F / x . T we find DNS: ¬¬x = x .

Theorem. CP ` P = Q ⇐⇒ se(P) = se(Q)

Proof. Easy (incl. se-equality is a congruence).

Note. se-equality is further called Free valuation congruence (FVC).
Alban Ponse (TCS, UvA) Evaluation Trees for Proposition Algebra ERO’60 - September 9, 2015 9 / 18

1. Introduction 2. Evaluation trees 3. Valuation congruences 4. Remarks and conclusions

Evaluation trees for expressions with ¬, && , and || :

se(¬P) = se(P) [T 7→ F ,F 7→ T] = se(F / P . T)

se(P && Q) = se(P) [T 7→ se(Q)] = se(Q / P . F)

se(P || Q) = se(P) [F 7→ se(Q)] = se(T / P . Q)

Example: for a,b, c ∈ A we find

se(a && (b && c)) = se((a && b) && c) = ((T / c . F) / b .) / a . F

FVC-axioms (thus, valid wrt. se-equality) not mentioned before:

F = ¬T F && x = F
T && x = x x && F = ¬x && F
x && T = x (x && F) || y = (x || T) && y

(x && y) || (z && F) = (x || (z && F)) && (y || (z && F))

Alban Ponse (TCS, UvA) Evaluation Trees for Proposition Algebra ERO’60 - September 9, 2015 10 / 18

1. Introduction 2. Evaluation trees 3. Valuation congruences 4. Remarks and conclusions

Theorem (Staudt, 2012). “Short-circuit logic for Free VC”

For propositional formulae over A, T , F , ¬, && , || , FVC is
axiomatized by the seven axioms listed on the previous slide, and

¬¬x = x (DNS)
x || y = ¬(¬x && ¬y) (def. of || , implying DM’s laws)

(x && y) && z = x && (y && z) (implying assoc. of ||)

say E , thus E ` P = Q ⇐⇒ se(P) = se(Q).

Proof. Soundness (incl. congruence property) is easy.
Completeness is non-trivial (20+ pages) and depends on:

� normal forms,

� decomposition properties of evaluation trees for && and || , and

� the existence of an inverse g of se for normal forms: g(se(P)) = P

Alban Ponse (TCS, UvA) Evaluation Trees for Proposition Algebra ERO’60 - September 9, 2015 11 / 18

1. Introduction 2. Evaluation trees 3. Valuation congruences 4. Remarks and conclusions

3. Valuation Congruences

FVC (equationally axiomatized by CP)

⊆ Repetition-proof VC:
equationally axiomatized by CP + two axiom schemes over A

⊆ Contractive VC:
equationally axiomatized by CP + two axiom schemes over A

⊆ Memorizing VC: equationally axiomatized by CP + one axiom
typical properties: x && x = x

x / y . z = (y && x) || (¬y && z)

⊆ Static VC ≈ “sequential propositional logic”:
equationally axiomatized by CP + two axioms

These VC’s are defined by varieties of Valuation algebra’s [BP10].

[BP15]: RpVC – MVC also have simple semantics: transformations
on evaluation trees (cf. the use of truth tables in Propositional Logic).

Alban Ponse (TCS, UvA) Evaluation Trees for Proposition Algebra ERO’60 - September 9, 2015 12 / 18

1. Introduction 2. Evaluation trees 3. Valuation congruences 4. Remarks and conclusions

Contractive VC: Subsequent occurrences of the same atom are
contracted; equational axiomatization:

CPcr (A) = CP ∪ {(x / a . y) / a . z = x / a . z,

x / a . (y / a . z) = x / a . z | a ∈ A}

Example: a && (a || x) = (T / a . x) / a . F = T / a . F = a

se(a && (a || P)) and its contracted evaluation tree:

a

a

T se(P)

F
cr()7−−→

a

T F

The transformation cr : TA → TA is the contraction function, and
recursively traverses the tree.

Alban Ponse (TCS, UvA) Evaluation Trees for Proposition Algebra ERO’60 - September 9, 2015 13 / 18

1. Introduction 2. Evaluation trees 3. Valuation congruences 4. Remarks and conclusions

A more concrete example for Contractive VC.

Programming with n Boolean registers. For 1 ≤ i ≤ n consider
registers Ri with for B ∈ {T,F},

� the atom (set:i:B) can have a side effect: it sets Ri to value B
and evaluates in each state to true

� the atom (eq:i:B) has no side effect and evaluates to true if Ri
has value B, and otherwise to false

Then all instances of CPcr (A) are valid, but not all instances of the
stronger equation x && x = x (valid under MVC): Let

t = (eq:1:F) && (set:1:T)

and assume R1 has initial value F, then

{
t evaluates to true

t && t evaluates to false

Note. Not all valid eq’s are derivable, e.g., (eq:1:F) && ¬(eq:1:F) = F .
Alban Ponse (TCS, UvA) Evaluation Trees for Proposition Algebra ERO’60 - September 9, 2015 14 / 18

1. Introduction 2. Evaluation trees 3. Valuation congruences 4. Remarks and conclusions

Theorem [BP15, BP10]. CPcr (A) ` P = Q ⇐⇒ cr(se(P)) = cr(se(Q))

Corollary. “Short-circuit logic for Contractive VC”

For propositional formulae over A,T ,F ,¬, && , || , ¬x = F / x . T ,
x && y = y / x . F ,
x || y = T / x . y

 ∪ CPcr (A) ` P = Q ⇐⇒ cr(se(P)) = cr(se(Q))

Open question. Does a finite, equational axiomatization of CVC exist
without the use of .. /?

(An approach as in [Staudt12] seems not possible.)

Note. Wrt. Repetition-proof VC we have a similar Theorem, Corollary,
and open question.

Alban Ponse (TCS, UvA) Evaluation Trees for Proposition Algebra ERO’60 - September 9, 2015 15 / 18

1. Introduction 2. Evaluation trees 3. Valuation congruences 4. Remarks and conclusions

4. Remarks and conclusions

4.1 Hoare’s conditional (1985):

� Original approach: characterization of Propositional Logic

� Original definition: P / Q . R = (P ∧Q) ∨ (¬Q ∧ R)
However, wrt. side effects the alternative, intuitive reading

P / Q . R ≈ if Q then P else R,

is preferable: it suggests/prescribes a sequential, short-circuited
interpretation

With this intuition AND the naturalness of se() AND the definitions of

¬, && , || ,

it is evident that CP is most basic.
Alban Ponse (TCS, UvA) Evaluation Trees for Proposition Algebra ERO’60 - September 9, 2015 16 / 18

1. Introduction 2. Evaluation trees 3. Valuation congruences 4. Remarks and conclusions

4.2 Sequential, propositional connectives:

T , ¬, and && (and/or definable counterparts) seem primitive:

� For example, strict (complete) sequential evaluation of
conjunction, notation & , is defined by

x & y = (x || (y && F)) && y

(one more argument to include T (and F) in this setting)

� BUT, a sequential version of XOR, notation ⊕, is defined by

x ⊕ y = ¬y / x . y

and cannot be defined modulo Free, Repetition-proof, or
Contractive VC with T , ¬, and && only

Hence: .. / is a convenient primitive, and the possible side
effects of the atoms of interest determine an appropriate VC.

Alban Ponse (TCS, UvA) Evaluation Trees for Proposition Algebra ERO’60 - September 9, 2015 17 / 18

1. Introduction 2. Evaluation trees 3. Valuation congruences 4. Remarks and conclusions

4.3 Transformations on Evaluation trees for more identifying VC’s:

� Transformation to a Repetition-proof evaluation tree is natural and
simple (cf. [ERO60]); semantics by term rewriting is not easy in
this case, e.g. (x / a . F) / a . F → (x / a . x) / a . F

� Transformation to a Contractive or Memorizing evaluation tree is
also N&S (see [BP15])

� Transformation to a static evaluation tree is more complicated and
requires an ordering of the atoms [Hoare85 + BP15]

4.4 Extensions of .. / to many-valued logic’s are easily defined
(and seq. evaluation often provides good intuitions):

E.g., Belnap’s 4VL [PZ07], or 5VL [BP99] = Belnap’s 4VL + Bochvar’s
constant M which majorizes all truth values

Alban Ponse (TCS, UvA) Evaluation Trees for Proposition Algebra ERO’60 - September 9, 2015 18 / 18

	1. Introduction
	Part 1

	2. Evaluation trees
	3. Valuation congruences
	4. Remarks and conclusions

