Kleene’s three-valued logic and process algebra

Jan A. Bergstra a,b,1, Alban Ponse a,*

a University of Amsterdam, Programming Research Group, Kruislaan 403, 1098 SJ Amsterdam, The Netherlands
b Utrecht University, Department of Philosophy, Heidelberglaan 8, 3584 CS Utrecht, The Netherlands

Received 23 December 1997
Communicated by H. Ganzinger

Abstract

We propose a combination of Kleene’s three-valued logic and ACP process algebra via the guarded command construct. We present an operational semantics in SOS-style, and a completeness result. © 1998 Elsevier Science B.V. All rights reserved.

Keywords: Process algebra; Three-valued logic; Guarded command; Design of algorithms; Concurrency; Formal languages

1. Introduction

In considering algorithms or programs in an operational manner, there is ample motivation to include a third truth value next to T (true) and F (false). For some illustrative references, see, e.g., [4,13]. Evaluation of the condition in a conditional construct, such as \(\phi \) in

if \(\phi \) then \(P \) else \(P \),

for some program \(P \) may turn out divergent, or be distinguished as meaningless (e.g., a type clash, or division by zero). In such a case one certainly does not want to consider \(P \) and if \(\phi \) then \(P \) else \(P \) as equal. Typically, the principle of the excluded middle— tertium non datur—is not anymore acceptable. Of course, if \(\phi \) then \(P \) else \(P \) and if \(\neg \phi \) then \(P \) else \(P \) should be considered the same.

In this paper we view process expressions with conditions as a vehicle to describe concurrent algorithms, and consider the question how to deal with a third truth value \(D \), expressing divergence. This value is inspired by Kleene [15], in which it is called undefined, and is used to reason about partial recursive predicates being either undefined, true, or false. We rather use ‘divergence’ instead of ‘undefined’, as for example a type clash in a program is a kind of undefinedness that we want to distinguish from divergence. Naturally, \(\neg D = D \), for divergence in the evaluation of a condition also implies divergence of its negation (cf. \(\phi \) in if \(\phi \) then \(P \) else \(P \) and if \(\neg \phi \) then \(P \) else \(P \)).

We shortly recall the combination of process algebra and logic via the guarded command, an operation which stems from [11], and was introduced in process algebra with two-valued logic in [2] with the following typical laws where \(\phi \rightarrow _ \) is the guarded command resembling if \(\phi \) then \(_ \):

\[
\begin{align*}
T & \rightarrow x = x, \\
F & \rightarrow x = \delta, \\
\phi & \rightarrow x + \psi \rightarrow x = \phi \lor \psi \rightarrow x.
\end{align*}
\]

Here + denotes ‘choice’, and \(\delta \) denotes ‘inaction/deadlock’. The constant \(\delta \) is well known in ACP based
approaches [6,7,10], and is axiomatized by
\[x + \delta = x \quad \text{“inaction is not considered an alternative,} \]
\[\delta \cdot x = \delta \quad \text{... and is perpetual”}. \]

Here \(\cdot \) represents “sequential composition”. We involve the constant \(D \) with the axiom
\[D : \rightarrow x = \delta. \]

This preserves the three laws mentioned above in the present three-valued setting. Roughly, the idea is that if evaluation of a condition diverges, there is no point in considering it in the presence of an alternative, whereas it implies deadlock in case there are no alternatives. Now consider the derivations
\[
\begin{align*}
x &= x + \delta \\
 &= T :\rightarrow x + D :\rightarrow x \\
 &= T \lor D :\rightarrow x,
\end{align*}
\]
\[
\begin{align*}
\delta &= \delta + \delta \\
 &= F :\rightarrow x + D :\rightarrow x \\
 &= F \lor D :\rightarrow x.
\end{align*}
\]

Clearly, the interpretation \(D :\rightarrow x = \delta \) leads to the logical consequence
\[T \lor D = T, \]

and leaves only two options for the definition of \(F \lor D \), namely: \(F \lor D \in \{ F, D \} \). The only reasonable one seems \(F \lor D = D \).\(^2\) So we end up with \(\neg, \lor \) and its dual \(\land \) as defined by the following truth tables:
\[
\begin{array}{c|c|c|c|c|c|c}
\hline
x & \neg x & \lor & T & F & D \\
\hline
T & F & T & T & T \\
F & T & T & F & F \\
D & D & T & F & F \\
\hline
\end{array}
\]

This precisely entails Kleene’s three-valued logic as defined in [15], which we further call \(\mathcal{K}_3 \). (Notice that \(\mathcal{K}_3 \) is not functionally complete: one cannot define \(f \) with \(f(D) = F \) and \(f(v) = T \) for \(v \in \{ T, F \} \).)

\(^2\) By duality, the other option implies \(T \land D = T \), which indeed seems a rather implausible interpretation of \(\land \).

Structure of the paper: In the next section we shortly discuss \(\mathcal{K}_3 \). In Section 3 we combine this extension with ACP. In the next two sections we define an operational semantics and bisimulation equivalence, and we prove a completeness result.

2. Kleene’s three-valued logic with propositions

Consider Kleene’s three-valued logic \(\mathcal{K}_3 \) as introduced in the previous section (cf. [15,3]). An equational specification of \(\mathcal{K}_3 \) follows from [14], and is given in Table 1. As usual, \(\land \) and \(\lor \) are commutative and associative operations. In case we use proposition symbols from set \(P \), we shall write \(\mathcal{K}_3(P) \), and for concise notation we shall identify \(\mathcal{K}_3 \) and \(\mathcal{K}_3(\emptyset) \).

Let \(T^0_3 = \{ T, F, D \} \). In the following we describe a prototypical, generic occurrence of \(D \), starting from considerations that also apply to a two-valued setting. Consider the natural numbers
\[\omega = \{ 0, S(0), S(S(0)), \ldots \}. \]

and write \(S^0(x) = x \) and \(S^{k+1}(x) = S(S^k(x)) \). Let \(f : \omega \rightarrow T^0_3 \) be some arbitrary function. We define infinitary \(f \)-disjunction, notation \(\lor f \), by
\[\lor f = f(0) \lor (f \circ S). \]

The recursive definition of \(\lor f \) implies computation of \(f(0), f(S(0)), f(S^2(0)), \ldots \) until \(f(n) = T \) for some value \(n \). In the particular case that for all \(n \in \omega \), \(f(n) = F \), it makes sense to define \(\lor f = D \). We apply this idea in the following example.

Example 2.1. We define equality \(\equiv : \omega \times \omega \rightarrow T^0_3 \) as a binary infix function by
\[
\begin{align*}
0 &\equiv 0 = T, \\
0 &\equiv S(x) = F, \\
S(x) &\equiv 0 = F, \\
S(x) &\equiv S(y) = x \equiv y.
\end{align*}
\]

Next, we define the partial predecessor function \(\text{pprd} : \omega \rightarrow \omega \) using auxiliary function \(g : \omega \times \omega \rightarrow \omega \)
\[
\text{pprd}(x) = g(x, 0),
\]
\[
g(x, y) = \begin{cases}
 y & \text{if } S(y) \equiv x, \\
 g(x, S(y)) & \text{otherwise}.
\end{cases}
\]
One easily sees that

\[\text{pprd}(S^{k+1}(x)) \equiv S^k(x). \]

Now consider the case of \(\text{pprd}(0) \). To model its computation, we define an auxiliary predicate \(\text{Aux} \) as follows:

\[\text{Aux}(x, y, z) \leftrightarrow g(x, y) \equiv z. \]

The recursive definition of \(\text{Aux} \) follows easily from that of \(g \), and falls within \(K_3(\mathbb{P}) \):

\[\text{Aux}(x, y, z) = (S(y) \equiv x \land y \equiv z) \]

\[\lor \]

\[(\neg(S(y) \equiv x) \land \text{Aux}(x, S(y), z)). \]

In particular, \(\text{Aux}(0, 0, z) \) models computation of \(\text{pprd}(0) \). We have

\[\text{Aux}(0, 0, z) = (S(0) \equiv 0 \land 0 \equiv z) \]

\[\lor \]

\[(\neg(S(0) \equiv 0) \land \text{Aux}(0, S(0), z)). \]

By \(T \land x = x \) and \(S(x) \equiv 0 = F \), it follows that

\[\text{Aux}(0, 0, z) = (S(0) \equiv 0 \land 0 \equiv z) \]

\[\lor \]

\[(S^2(0) \equiv 0 \land S(0) \equiv z) \]

\[\lor \]

\[(S^3(0) \equiv 0 \land S^2(0) \equiv z) \]

\[\lor \]

\[\ldots \]

so, if \(f = \lambda x . (S(x) \equiv 0 \land x \equiv z) \), we find

\[\text{Aux}(0, 0, z) = \lor f. \]

Furthermore, we have for each \(n \) that \(f(n) = F \) by axiom \(S(x) \equiv 0 = F \). Hence

\[\text{Aux}(0, 0, z) = D, \]

and thus \(g(0, 0) \equiv z = D \). The assumption that

\[\text{pprd}(0) = g(0, 0) \]

can be computed to some value \(z \) leads to value \(D \) of the predicate modeling its computation, irrespective of \(z \). This motivates the following definitions:

\[\text{pprd}(0) = D, \]

\[\omega_D = \omega \cup \{D\}, \]

so \(\text{pprd} : \omega \rightarrow \omega_D \). In order to integrate this example with process algebra, we extend the domains of all defined functions to \(\omega_D \) by taking

\[S(D) = D, \]

\[D \equiv x = x \equiv D = D, \]

\[\text{pprd}(D) = D. \]

We continue with this example after having combined \(K_3(\mathbb{P}) \) with process algebra.

3. Process algebra with \(K_3(\mathbb{P}) \)

In the left column of Table 2 we present a slight modification of \(ACP(A, y) \), the Algebra of Communicating Processes [6,7,10]. Here \(A \) is a set of atomic actions, and \(y \) a communication function that is commutative and associative. We take \(y \) total on \(A \times A \rightarrow A_3 \), where \(A_3 = A \cup \{\delta\} \), and the communication merge (commutative (CMC) (by which (CM6) and (CM9), the symmetric variants of (CM5) and (CM8) [10], become derivable). In the right column additional axioms on pre-abstraction (\(t_I \), i.e., renaming of all actions in \(I \) to action \(I \)), and guarded command are listed, where \(\phi \) is taken from \(K_3(\mathbb{P}) \). These axioms are parameterized by action set \(A_I = A \cup \{x\} \). We mostly suppress the...
in process expressions, and brackets according to the following rules: \(\cdot \) binds strongest, \(
rightarrow \) binds stronger than \(\| \), \(| \), all of which in turn bind stronger than \(+ \).

We use

\[
\text{ACP}_D(A_t, \gamma, \mathcal{P})
\]

both to refer to this axiom system and the signature thus defined. We write

\[
\text{ACP}_D(A_t, \gamma, \mathcal{P}) + \mathcal{K}_3(\mathcal{P}) \vdash x = y
\]
or shortly \(\vdash x = y \), if \(x = y \) follows from the axioms of \(\text{ACP}_D(A_t, \gamma, \mathcal{P}) \) and \(\mathcal{K}_3(\mathcal{P}) \). The following derivabilities turn out to be useful:

\[\begin{array}{ll}
(\text{A1}) & x + (y + z) = (x + y) + z \\
(\text{A2}) & x + y = y + x \\
(\text{A3}) & x + x = x \\
(\text{A4}) & (x + y)z = xz + yz \\
(\text{A5}) & (xy)z = x(yz) \\
(\text{A6}) & x + \delta = x \\
(\text{A7}) & \delta x = \delta \\
(\text{CF1}) & a \parallel b = \gamma(a, b) \quad \text{if } a, b \in A_t \\
(\text{CF2}) & a \parallel \delta = \delta \\
(\text{CM1}) & x \parallel y = (x \parallel x + y \parallel x) + x \parallel y \\
(\text{CM2}) & a \parallel x = ax \\
(\text{CM3}) & ax \parallel y = a(x \parallel y) \\
(\text{CM4}) & (x + y) \parallel z = x \parallel z + y \parallel z \\
(\text{CMC}) & x \parallel y = y \parallel x \\
(\text{CM5}) & ax \parallel b = (a \parallel b)x \\
(\text{CM7}) & ax \parallel by = (a \parallel b)(x \parallel y) \\
(\text{CM8}) & (x + y) \parallel z = x \parallel z + y \parallel z \\
(\text{D1}) & \partial_H(a) = a \quad \text{if } a \notin H \\
(\text{D2}) & \partial_H(a) = \delta \quad \text{if } a \in H \\
(\text{D3}) & \partial_H(x + y) = \partial_H(x) + \partial_H(y) \\
(\text{D4}) & \partial_H(xy) = \partial_H(x)\partial_H(y)
\end{array}\]

\[
\begin{array}{ll}
(\text{GT}) & T \rightarrow x = x \\
(\text{GF}) & F \rightarrow x = \delta \\
(\text{GD}) & D \rightarrow x = \delta \\
(\text{GC1}) & \phi \rightarrow x + \psi \rightarrow x = \phi \lor \psi \rightarrow x \\
(\text{GC2}) & \phi \rightarrow x + \phi \rightarrow y = \phi \rightarrow (x + y) \\
(\text{GC3}) & (\phi \rightarrow x)y = \phi \rightarrow xy \\
(\text{GC4}) & \phi \rightarrow (\psi \rightarrow x) = \phi \land \psi \rightarrow x \\
(\text{GC5}) & \phi \rightarrow x \parallel y = \phi \rightarrow (x \parallel y) \\
(\text{GCD}) & \phi \rightarrow x \parallel \psi \rightarrow y = \phi \land \psi \rightarrow (x \parallel y) \\
(\text{T1}) & t_1(\phi \rightarrow x) = \phi \rightarrow t_1(x) \\
(\text{T2}) & t_1(\phi \rightarrow t_1(x)) = \phi \rightarrow t_1(x) \\
(\text{T3}) & t_1(x + y) = t_1(x) + t_1(y) \\
(\text{T4}) & t_1(xy) = t_1(x)t_1(y)
\end{array}\]

Lemma 3.1.

1. \(\text{ACP}_D(A_t, \gamma, \mathcal{P}) + \mathcal{K}_3(\mathcal{P}) \vdash \phi \rightarrow \delta = \delta. \)
2. \(\text{ACP}_D(A_t, \gamma, \mathcal{P}) + \mathcal{K}_3(\mathcal{P}) \vdash \phi \rightarrow x = \phi \lor D \rightarrow x. \)

Proof. As for (1), \(\phi \rightarrow \delta = \delta \rightarrow \delta + T \rightarrow \delta = \delta \lor T \rightarrow \delta = \delta. \)

As for (2), \(\phi \rightarrow x \rightarrow x = \phi = \phi \rightarrow x + D \rightarrow x = \phi \lor D \rightarrow x. \)

We end this section by using the functions defined in Example 2.1 in a process algebraic setting.
Example 3.2. Recall the data type \(o \), and consider the following counter-like process with parameter in \(o \):

\[
C(x) = r(up) \cdot C(S(x)) + r(down) \cdot C(pprd(x)) + r(\text{set-zero}) \cdot C(0) + x \equiv 0 \Rightarrow r(\text{is-zero}) \cdot C(x).
\]

Here, action \(r(up) \) models “receive command to increase”, action \(r(down) \) represents “receive command to decrease”, action \(r(\text{set-zero}) \) can be used to reset the counter to \(C(0) \), and action \(r(\text{is-zero}) \) indicates that the counter value equals 0. We find:

\[
\begin{align*}
C(D) &= r(up) \cdot C(D) + r(down) \cdot C(D) + r(\text{set-zero}) \cdot C(0), \\
C(0) &= r(up) \cdot C(S(0)) + r(down) \cdot C(D) + r(set-zero) \cdot C(0) + r(is-zero) \cdot C(0), \\
C(S^k(0)) &= r(up) \cdot C(S^{k+2}) + r(down) \cdot C(S^k(0)) + r(set-zero) \cdot C(0).
\end{align*}
\]

Clearly, this modeling is preferred to the case in which \(pprd \) is replaced by \(prd : \omega \rightarrow \omega \) with \(prd(0) = 0 \) and \(prd(S(x)) = x \), which mixes up the number of \(r(down) \) and \(r(up) \) actions in the case of \(C(0) \).

4. Operational semantics

In this section we provide \(ACP_D(A_t, \gamma, \mathcal{P}) \) with an operational semantics. Of course this semantics depends on interpretations of the propositions occurring in a process expression.

Assume a (non-empty) set \(\mathcal{P} \) of proposition symbols, and let \(w \) range over the values (interpretations) \(\mathcal{V} \) of \(\mathcal{P} \) in \(\mathbb{T}^k \). In the usual way we extend \(w \) to \(\mathbb{K}_3(\mathcal{P}) \):

- \(w(c) \triangleq c \) for \(c \in \{T, F, D\} \),
- \(w(\neg \phi) \triangleq \neg (w(\phi)) \),
- \(w(\phi \land \psi) \triangleq w(\phi) \land w(\psi) \) for \(\land \in \{\land, \lor\} \).

It follows that if

\[\models w(\phi) = w(\psi) \]

for all \(w \in \mathcal{V} \), then \(\models \phi = \psi \), and thus \(\vdash \phi = \psi \).

In Table 3 we give axioms and rules that define transitions

\[\begin{align*}
&\vdash_{w,a} \models \mathcal{X} \mathcal{A} \mathcal{P} \mathcal{D}(A_t, \gamma, \mathcal{P}) \times \mathcal{A} \mathcal{P} \mathcal{D}(A_t, \gamma, \mathcal{P}) \\
&\vdash_{w,a} \mathcal{X} \mathcal{A} \mathcal{P} \mathcal{D}(A_t, \gamma, \mathcal{P})
\end{align*} \]

for all \(w \in \mathcal{V} \) and \(a \in A_t \). Transitions characterize under which interpretations a process expression defines the possibility to execute an atomic action, and what remains to be executed (if anything, otherwise \(\mathcal{X} \) symbolizes successful termination). So, a process expression either resembles deadlock (\(\delta \)), or defines outgoing transitions with labels taken from \(\mathcal{V} \times A_t \).

The axioms and rules in Table 3 yield a structured operational semantics (SOS) based on the work described by Groote and Vaandrager in [12]. In particular, this SOS satisfies the so-called path-format (see Baeten and Verhoef [9]), going with the following notion of bisimulation equivalence:

Definition 4.1. Let \(B \subseteq \mathcal{A} \mathcal{P} \mathcal{D}(A_t, \gamma, \mathcal{P}) \times \mathcal{A} \mathcal{P} \mathcal{D}(A_t, \gamma, \mathcal{P}) \). Then \(B \) is a bisimulation if for all \(P, Q \) with \(P \not\equiv Q \) the following conditions hold for all transitions \(P \vdash_{w,a} Q \):

1. \(\forall P' (P \vdash_{w,a} P' \Rightarrow \exists Q' (Q \vdash_{w,a} Q' \land P'BQ')) \)
2. \(\forall Q' (Q \vdash_{w,a} Q' \Rightarrow \exists P' (P \vdash_{w,a} P' \land P'BQ')) \)
3. \(P \vdash_{w,a} Q \iff Q \vdash_{w,a} Q \)

Two processes \(P, Q \) are bisimilar, notation

\[P \equiv Q. \]

if there exists a bisimulation \(B \) containing the pair \((P, Q)\).

According to [9], bisimilarity is a congruence relation. It is not difficult to establish with induction on the size of terms that in the bisimulation model thus obtained all equations of Table 2 are true. Hence we conclude:

Lemma 4.2. The system \(\mathcal{A} \mathcal{P} \mathcal{D}(A_t, \gamma, \mathcal{P}) + \mathbb{K}_3(\mathcal{P}) \) is sound with respect to bisimulation:

\[\text{for all } P, Q \in \mathcal{A} \mathcal{P} \mathcal{D}(A_t, \gamma, \mathcal{P}), \quad \mathcal{A} \mathcal{P} \mathcal{D}(A_t, \gamma, \mathcal{P}) + \mathbb{K}_3(\mathcal{P}) \vdash P = Q \implies P \equiv Q. \]
Table 3
Transition rules in path-format.

<table>
<thead>
<tr>
<th>$a \in A_t$</th>
<th>$a \xrightarrow{w,a} \checkmark$</th>
</tr>
</thead>
<tbody>
<tr>
<td>\cdot, \parallel</td>
<td>$x \xrightarrow{w,a} \checkmark \quad x \xrightarrow{w,a} x'$</td>
</tr>
<tr>
<td></td>
<td>$x \cdot y \xrightarrow{w,a} y \quad x \cdot y \xrightarrow{w,a} x'y$</td>
</tr>
<tr>
<td></td>
<td>$x \parallel y \xrightarrow{w,a} y \quad x \parallel y \xrightarrow{w,a} x' \parallel y$</td>
</tr>
<tr>
<td>$++, \parallel$</td>
<td>$x \xrightarrow{w,a} \checkmark \quad x \xrightarrow{w,a} x'$</td>
</tr>
<tr>
<td></td>
<td>$x + y \xrightarrow{w,a} \checkmark \quad x + y \xrightarrow{w,a} x'$</td>
</tr>
<tr>
<td></td>
<td>$y + x \xrightarrow{w,a} \checkmark \quad y + x \xrightarrow{w,a} x'$</td>
</tr>
<tr>
<td></td>
<td>$x \parallel y \xrightarrow{w,a} y \quad x \parallel y \xrightarrow{w,a} x' \parallel y$</td>
</tr>
<tr>
<td></td>
<td>$y \parallel x \xrightarrow{w,a} y \quad y \parallel x \xrightarrow{w,a} y \parallel x$</td>
</tr>
<tr>
<td>$\mathbin{</td>
<td>}, \mathbin{\parallel}$</td>
</tr>
<tr>
<td></td>
<td>$x \mathbin{</td>
</tr>
<tr>
<td>(Communication)</td>
<td>$x \xrightarrow{w,a} x' \quad y \xrightarrow{w,b} \checkmark \quad a \mathbin{</td>
</tr>
<tr>
<td></td>
<td>$x \mathbin{</td>
</tr>
<tr>
<td></td>
<td>$x \mathbin{</td>
</tr>
<tr>
<td>∂H</td>
<td>$x \xrightarrow{w,a} \checkmark \quad \partial H(x) \xrightarrow{w,a} \partial H(x')$ if $a \notin H$</td>
</tr>
<tr>
<td></td>
<td>$x \xrightarrow{w,a} x' \quad \partial H(x) \xrightarrow{w,a} \partial H(x')$ if $a \notin H$</td>
</tr>
<tr>
<td>t_1</td>
<td>$x \xrightarrow{w,a} \checkmark \quad \text{if } a \notin I$</td>
</tr>
<tr>
<td></td>
<td>$t_1(x) \xrightarrow{w,a} t_1(x') \quad \text{if } a \notin I$</td>
</tr>
<tr>
<td></td>
<td>$x \xrightarrow{w,a} x' \quad \text{if } a \in I$</td>
</tr>
<tr>
<td></td>
<td>$t_1(x) \xrightarrow{w,a} t_1(x') \quad \text{if } a \in I$</td>
</tr>
<tr>
<td>\Rightarrow</td>
<td>$x \xrightarrow{w,a} \checkmark \quad \phi \Rightarrow x \xrightarrow{w,a} \checkmark \quad \text{if } w(\phi) = \top$</td>
</tr>
<tr>
<td></td>
<td>$x \xrightarrow{w,a} x' \quad \phi \Rightarrow x \xrightarrow{w,a} x' \quad \text{if } w(\phi) = \top$</td>
</tr>
</tbody>
</table>
5. Completeness

In this section we prove completeness of \(\text{ACP}_D(A_t, \gamma, \mathcal{P}) + \mathbb{K}_3(\mathcal{P}) \), i.e.,

\[P \equiv Q \iff \text{ACP}_D(A_t, \gamma, \mathcal{P}) \vdash P = Q. \]

Our proof is based on a representation of process expressions for which bisimilarity implies derivability in a straightforward way.

Definition 5.1. A process expression \(P \in \text{ACP}_D(A_t, \gamma, \mathcal{P}) \) is a basic term if

\[P = \sum_{i \in I} \phi_i \rightarrow Q_i, \]

where \(\equiv \) is used for syntactic equivalence, \(I \) is a finite, non-empty index set, \(\phi_i \in \mathbb{K}_3(\mathcal{P}) \), and \(Q_i \in \{ \delta, a, aR \mid a \in A_t, R \) a basic term\}.

Lemma 5.2. All process expressions in \(\text{ACP}_D(A_t, \gamma, \mathcal{P}) \) can be proved equal to a basic term.

Proof. Standard induction on term complexity. \(\square \)

For \(a \in A_t \) and \(\phi \in \mathbb{K}_3(\mathcal{P}) \), the height of a basic term is defined by

\[
\begin{align*}
 h(\delta) &= 0, \\
 h(a) &= 1, \\
 h(\phi \rightarrow x) &= h(x), \\
 h(x + y) &= \max(h(x), h(y)), \\
 h(a \cdot x) &= 1 + h(x).
\end{align*}
\]

Lemma 5.3. If \(P \) is a basic term, there is a basic term \(P' \) with \(\vdash P = P' \). \(h(P') \leq h(P) \), and \(P' \) has either the form

\[\phi \rightarrow \delta, \]

or the form

\[\sum_{i \in I} \psi_i \rightarrow Q_i \]

with

(i) for all \(i, j \in I \). \(Q_i \neq \delta \), and \(Q_i, Q_j \in A_t \Rightarrow Q_i \neq Q_j \) if \(i \neq j \),

(ii) for each \(i \in I \) there is \(w \in \mathcal{W} \) such that \(w(\psi_i) = T \),

(iii) for no \(i \in I \) and valuation \(w \), \(w(\psi_i) = F \).

Proof. Assume

\[P \equiv \sum_{i=1}^{n} \phi_i \rightarrow Q_i \]

for some \(n \geq 1 \). By Lemma 3.1(1) we may assume that \(Q_i \neq \delta \) for all \(i \in \{ 1, \ldots, n \} \). With (GC1) we easily obtain that each single action occurs at most once. This proves property (i) of the form (2).

Next we consider all summands from \(P \) for which no valuation makes the condition true. For each such summand \(\phi_i \rightarrow Q_i \) it holds that \(\models \phi_i = \phi_i \land D \), and thus \(\models \phi_i = \phi_i \land D \), by which

\[\vdash \phi_i \rightarrow Q_i = \phi_i \land D \rightarrow Q_i = \phi_i \rightarrow (D \rightarrow Q_i) = \phi_i \rightarrow \delta = \delta. \]

In case all summands can be proved equal to \(\phi_j \rightarrow \delta \) in this way, we are done. In the other case we obtain

\[\vdash P = \sum_{i=1}^{k} \phi_i \rightarrow Q_i \]

with \(k \leq n \) (and possibly some rearrangement of indices), and for each \(i \in \{ 1, \ldots, k \} \) there is a valuation \(w \) with \(w(\phi_i) = T \). This proves property (ii), and preserves property (i) for \(P \). Finally we define

\[\psi_i \equiv \phi_i \lor D \]

\[P' = \sum_{i=1}^{k} \psi_i \rightarrow Q_i. \]

By Lemma 3.1(2) we obtain

\[\vdash P = P'. \]

By definition of \(\psi_i \) it follows that \(w(\psi_i) \neq F \) for all \(w, i \), which proves property (iii) for \(P' \). (Properties (i) and (ii) are preserved for \(P' \).) \(\square \)

With these two lemma’s we can prove completeness:

Theorem 5.4. The system \(\text{ACP}_D(A_t, \gamma, \mathcal{P}) + \mathbb{K}_3(\mathcal{P}) \) is complete with respect to bisimulation.

Proof. Let \(P_1 \equiv P_2 \). By soundness, we may assume that both \(P_1 \) and \(P_2 \) satisfy the representation format
defined in Lemma 5.3. We proceed by induction on $h = \max(h(P_1), h(P_2))$.

Case $h = 0$. By Lemma 3.1(1), $\vdash P_n = \delta$ for $n = 1, 2$, so $\vdash P_1 = P_2$.

Case $h > 0$. Let $P_n = \sum_{i \in I_n} \psi_{n,i} :\rightarrow Q_{n,i}$ for $n = 1, 2$, so the P_n satisfy form (2) given in Lemma 5.3. Furthermore, we may assume that for all $i \in I_n$, $Q_{n,i} \setminus Q_{n,j}$ for $j \in I_n \setminus \{i\}$. For the case $Q_{n,i} = aR_{n,j}$ and $Q_{n,j} = aR_{n,j}$ this follows by induction: $R_{n,i} \Leftrightarrow R_{n,j}$ implies $\vdash R_{n,i} = R_{n,j}$, so $\vdash aR_{n,i} = aR_{n,j}$, and thus $(GC1)$ can be applied.

Now each summand of P_1 can be proved equal to one in P_2, and by Lemma 5.3, each such summand yields a transition for a certain $w \in \mathcal{W}$.

- Assume that $P_1 \xrightarrow{\text{w.a.}} \top$ for some w,a. Thus $w(\psi_{1,i}) = \top$ for some unique $i \in I_1$. By $P_1 \equiv P_2$, there must be some unique $j \in I_2$ for which $P_2 \xrightarrow{\text{w.a.}} \top$ and $\vdash \psi_{1,i} = \psi_{2,j}$ (the latter derivability follows from Lemma 5.3 and the non-bisimilarity of different summands). Thus $\vdash \psi_{1,i} :\rightarrow a = \psi_{2,j} :\rightarrow a$.

- Assume that $P_1 \xrightarrow{\text{w.a.}} R_{1,i}$ for some w,a and unique $i \in I_1$. Thus $w(\psi_{1,i}) = \top$. By $P_1 \equiv P_2$, there must be some unique $j \in I_2$ for which $P_2 \xrightarrow{\text{w.a.}} R_{2,j}$ and $R_{1,i} \Leftrightarrow R_{2,j}$, and for which $\vdash \psi_{1,i} = \psi_{2,j}$ follows from Lemma 5.3. By induction we find $\vdash R_{1,i} = R_{2,j}$, and therefore $\vdash aR_{1,i} = aR_{2,j}$ and hence $\vdash \psi_{1,i} :\rightarrow aR_{1,i} = \psi_{2,j} :\rightarrow aR_{2,j}$.

By the derivabilities above and symmetry, $\vdash P_1 = P_2$ quickly follows. □

6. Conclusion

The extension of process algebra with guarded command to a setting with Kleene’s three-valued logic seems a modest one, and can be characterized as giving up the principle of the excluded middle, and hence giving up the identity

$$x = \phi :\rightarrow x + \neg\phi :\rightarrow x,$$

but otherwise no surprising identities arise: D and F often play the same role in guarded commands. This matches with the intuition that a process like

$$(D :\rightarrow a) \parallel bc$$
equals bc\delta. The deadlock, caused by a divergence, is postponed until all alternative behaviour has been executed.

We have argued that divergence arises from considerations about partial predicates (cf. [15]), and can be involved in process algebra by $D :\rightarrow x = \delta$. Of course, in the case that the process of evaluation is prominent in the algorithm represented as a process expression, evaluation rather should be modeled as a process (which possibly diverges) than as a condition.

References

