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1. Intro 2. SCL: Case 1 3. SCL, Case 2 4. CPs 5. Several SCLs 6. Conclusions

1. Introduction

Imperative programming: let P and Q be program fragments and consider

if (a && (b || c)) then (P) else (Q)

QUESTION: Wrt conditions as above, which logical laws are valid?

For example, is left-distributivity of && over || , that is

x && (y || z) = (x && y) || (x && z)

a valid law for conditions in imperative programming?
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Assume (i==k) is an instruction that tests whether program variable i

has value k ∈ Z

(a) Suppose the mentioned left-distributivity is valid

(b) Suppose the assignment [i:=i+1] when evaluated as a test yields
true if i has (initial) value 2, then

[i:=i+1] && ((i==2) || (i==3)) yields true and

([i:=i+1] && (i==2)) || ([i:=i+1] && (i==3)) yields false

⇒ (a) and (b) are contradictory

⇒ (a) is not true here because (b) is (±) common programming practice
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Different forms of sequential evaluation of && (and || ) exist:

Suppose i has (initial) value 2, then

((i==2) || [i:=i+1]) && (i==2)

evaluates to

true with short-circuit evaluation (SCE)

false with full evaluation (all atoms are evaluated)

We first restrict to SCE:

The semantics of Boolean operators in programming languages in which
the second argument is only executed/evaluated if the first argument does
not suffice to determine the value of the expression

QUESTION: which logic characterizes SCE?
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2. Short-Circuit Logic, Case 1: atoms only

A truth table inspired semantics with ingredients:

1 A, a countable set of atoms (atomic propositions) a, b, ...

2 SProp, the set of sequential propositional statements (closed terms)
over the signature

{ ∧rb , ∨rb ,¬, a | a ∈ A}

where ∧rb and ∨rb are directed versions of conjunction and disjunction,
respectively, that prescribe SCE (cf. && and || , respectively)

Notation: T for true and F for false
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All possible evaluations of a ∧rb b are characterized by the following
evaluation tree:

a

b

T F

F

1 Branches descending to the left of an internal node indicate that the
node is evaluated T and to the right that it yielded F

2 An evaluation is a complete path

3 The leaf in which an evaluation ends represents the (final) value of
that evaluation
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Two more examples of evaluation trees that illustrate negation and
left-sequential disjunction ∨rb :

a

F b

T F

a

T b

F T

Evalution tree of ¬a ∧qa b Evalution tree of a ∨qa ¬b

Given some evaluation tree X , an evaluation can be represented by

(σ,B)

with σ ∈ (A ∪ {T ,F})∗ and B ∈ {T ,F}, where (σ �A)B is a full path in X

Example: (aFbF ,T ) is the rightmost evaluation of a ∨rb ¬b in the rightmost

tree above
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T : evaluation trees over A with leaves in {T ,F} is defined inductively:

T ∈ T, F ∈ T, (X E aD Y ) ∈ T for any X ,Y ∈ T and a ∈ A

X E aD Y can be represented by
a

X Y

Leaf replacement of T with Y and F with Z in X is denoted

X [T 7→ Y ,F 7→ Z ]

and is defined inductively by

T [T 7→ Y ,F 7→ Z ] = Y

F [T 7→ Y ,F 7→ Z ] = Z

(X E aD X ′)[T 7→ Y ,F 7→ Z ] = X [T 7→ Y ,F 7→ Z ]E aD X ′[T 7→ Y ,F 7→ Z ]
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Convention: no listing of identities inside the brackets, e.g.,

X [F 7→ Z ] = X [T 7→ T ,F 7→ Z ]

⇒ Terminology and notation to formally define the interpretation of
SCE-terms as evaluation trees in T (i.e., the set of all full binary trees
with nodes in A and leaves in {T ,F})

⇒ Define the unary Short-Circuit Evaluation function

se : SProp → T

as follows, where a ∈ A:

se(a) = T E aD F

se(¬P) = se(P)[T 7→ F ,F 7→ T ]

se(P ∧rb Q) = se(P)[T 7→ se(Q)]

se(P ∨rb Q) = se(P)[F 7→ se(Q)]
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Thm 0. se-equality for SProp has this equational axiomatization:

¬¬x = x

x ∨rb y = ¬(¬x ∧rb ¬y)

(x ∧rb y) ∧rb z = x ∧rb (y ∧rb z)

That is, for all P,Q ∈ SProp,

E ` P = Q ⇐⇒ se(P) = se(Q)

Proof. Soundness (=⇒) is trivial; completeness (⇐=) is less...

(Note: axiomatization defines left-sequential duality)
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3. Short-Circuit Logic, Case 2: adding T and F as constants to SProp

se(T ) = T

se(F ) = F

se(a) = T E aD F

se(¬P) = se(P)[T 7→ F ,F 7→ T ]

se(P ∧rb Q) = se(P)[T 7→ se(Q)]

se(P ∨rb Q) = se(P)[F 7→ se(Q)]

Example:

se(a ∧rb F ) = F E aD F =
a

F F

NOTE: the three axioms mentioned are sound under this extension and
se-equality remains a congruence
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Four obvious axioms (and their duals):

¬T = F ¬F = T

T ∧rb x = x F ∨rb x = x

x ∧rb T = x x ∨rb F = x

F ∧rb x = F T ∨rb x = T

There are many more non-trivial identifications, e.g., for all propositions P,

se(P ∧rb F ) = se(¬P ∧rb F )
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Three more axioms:

x ∧rb F = ¬x ∧rb F

(x ∧rb F ) ∨rb y = (x ∨rb T ) ∧rb y

(here, y will always be evaluated)

(x ∧rb y) ∨rb (z ∧rb F ) = (x ∨rb (z ∧rb F )) ∧rb (y ∨rb (z ∧rb F ))

(here, ∨rb right-distributes over ∧rb
whenever its right-argument yields F )
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Thm 1. (Daan Staudt, 2012) The set E containing the ten listed
axioms is an equational axiomatization of SCE for SProp :
for all P,Q ∈ SProp,

E ` P = Q ⇐⇒ se(P) = se(Q)

Proof.

=⇒: (Soundness) trivial

⇐=: (Normal forms + decomposition properties of se-trees) ⇒
inverse of normalization function

(this part of the proof takes 20+ pages)

Alban Ponse (s. TCS, UvA) Short-Circuit Logic November 4, 2013 14 / 29



1. Intro 2. SCL: Case 1 3. SCL, Case 2 4. CPs 5. Several SCLs 6. Conclusions

4. Conditional Propositions (and proposition algebra)

Hoare’s ternary conditional operator (1985) y / x . z resembles

if (x) then (y) else (z)

where if (..) then (..) else (..) is used as a propositional connective

Hoare’s equational laws that characterize Propositional Logic include the
equational basis of free valuation congruence, which we named CP (for
Conditional Propositions):

x / T . y = x

x / F . y = y

T / x . F = x

x / (y / z . u) . v = (x / y . v) / z . (x / u . v)
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SCE is the only reasonable kind of evaluation for conditional propositions:

Let CPprop be the set of conditional propositional statements over the
signature

{ / . ,T ,F , a | a ∈ A}

Extend the function se : CPprop → T by

se(P / Q . R) = se(Q)[T 7→ se(P),F 7→ se(R)]
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Thm 2. CP is an equational axiomatization of SCE as adapted here,
that is, for all P,Q ∈ CPprop,

CP ` P = Q ⇐⇒ se(P) = se(Q)

Proof. =⇒ is trivial

⇐= immediately follows from the proof in our paper on Proposition
Algebra [Bergstra and Ponse (2011)] (that employs valuation varieties)
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All of ∧rb , ∨rb ,¬ are definable in CP:

¬x = F / x . T

x ∧rb y = y / x . F

x ∨rb y = T / x . y

... but / . is not expressible with ∧rb , ∨rb ,¬ only (for example,
se(a / a . a) contains four traces with atom length 2 etc.)

In CP extended with these connectives, one easily derives
x /¬y . z = x / (F / y .T ) . z = (x / F . z) / y . (x /T . z) = z / y . x , and thus

¬(¬x ∧rb ¬y) = F / (¬y / ¬x . F ) . T

= (F / ¬y . T ) / ¬x . (F / F . T )

= T / x . y

= x ∨rb y
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5. Several Short-Circuit Logics

A generic definition: a Short-circuit logic is

- a logic that implies all consequences of CP that can be expressed with
∧rb , ∨rb , ¬ and a ∈ A

- or, more precisely, a logic that implies all consequences of the module
expression SCL defined by

SCL = {T ,¬, ∧rb } � (CP

+ 〈 ¬x = F / x . T 〉
+ 〈 x ∧rb y = y / x . F 〉)

Now F can in SCL be used as a shorthand for ¬T because

CP + 〈 ¬x = F / x . T 〉 ` ¬T = F / T . F = F

(and ∨rb is also definable)
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⇒ All axioms in E can easily be derived from CP and the definitions of
∧rb , ∨rb , ¬ in CP i.e., from the module SCL

Example: ¬x ∧rb F = F / (F / x . T ) . F
= (F / F . F ) / x . (F / T . F )
= F / x . F

= x ∧rb F

FSCL (Free short-circuit logic) is the short-circuit logic that implies no
other consequences than those of CP

NOTE: FSCL is the least identifying short-circuit logic we define

(As a consequence,)

Thm 1. (Daan Staudt, 2012) The set E containing the ten listed
axioms is an equational axiomatization of FSCL
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A more identifying SCL:

Write CP rp(A) (Repetition-proof CP) for CP extended with these axiom
schemes (a ∈ A):

(x / a . y) / a . z = (x / a . x) / a . z

x / a . (y / a . z) = x / a . (z / a . z)

RPSCL (Repetition-proof short-circuit logic) is the short-circuit logic that
implies no other consequences than those of CP rp(A)

i.e., no other consequences than those of the module expression

{T ,¬, ∧rb , a | a ∈ A} � (CP rp(A)

+ 〈 ¬x = F / x . T 〉
+ 〈 x ∧rb y = y / x . F 〉)
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Axioms for RPSCL include those in E and for a ∈ A,

a ∧rb (a ∨rb x) = a ∧rb a

a ∨rb (a ∧rb x) = a ∨rb a

Properties of T and F as defined in E can be mimicked in context, and
imply more axioms, e.g.,

(a ∨rb ¬a) ∧rb x = (¬a ∧rb a) ∨rb x (T ∧rb x = F ∨rb x)

(¬a ∨rb a) ∧rb x = (a ∧rb ¬a) ∨rb x

(a ∧rb ¬a) ∧rb x = a ∧rb ¬a (F ∧rb x = F )

QUESTION: Has E a finite/countable extension that is an equational
axiomatization of RPSCL?
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Example on RPSCL:

- arithmetic expressions over Naturals (or Int’s)

- each atom is either test or assignment

- assignments as conditions (Boolean evaluation) yield T

Then, RPSCL ` a ∧rb (a ∨rb x) = a ∧rb (a ∨rb y), e.g.,

[i:=i+1] ∧rb ([i:=i+1] ∨rb (i==2))

[i:=i+1] ∧rb ([i:=i+1] ∨rb (i==0))

both evaluate to T and have the same (side) effect

[Wortel (2011)]: Case study on an “extension” of Dynamic Logic

(extension?: in DL, each program can be turned into to a test)
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RPSCL does not model the equivalence discussed in the Introduction
(imperative programming), even not if the atoms in conditions are
restricted to assignments and pure tests (like (i==2))

not: In practice (“Expression languages”), the Boolean evaluation of an
assignment is that of the assigned value (Int’s: F for 0, and T otherwise):

While RPSCL ` a ∧rb (a ∨rb x) = a ∧rb (a ∨rb y), we find

[i:=i+1] ∧rb ([i:=i+1] ∨rb (i==2)) yields

F if i equals −2,

T otherwise,

but [i:=i+1] ∧rb ([i:=i+1] ∨rb (i==0)) always yields T
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Write CPst (Static CP) for CP extended with these axioms:

T / x . y = T / y . x

(x / y . z) / y . F = x / y . F

that is, “x ∨rb y = y ∨rb x” and “positive contraction”, respectively

(equivalent extensions of CP that define CPst are recorded)

SSCL (Static short-circuit logic) is the short-circuit logic that implies no
other consequences than those of CPst

i.e., no other consequences than those of the module expression

{T ,¬, ∧rb } � (CPst

+ 〈 ¬x = F / x . T 〉
+ 〈 x ∧rb y = y / x . F 〉)
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Thm 3. SSCL (and sequential propositional logic) is axiomatized by

T = x ∨rb ¬x

F = ¬T

x ∧rb y = y ∧rb x

x ∧rb (y ∨rb z) = (x ∧rb y) ∨rb (x ∧rb z)

x ∧rb (y ∨rb ¬y) = x

+ the duals of the last two axioms (cf. [Sioson (1964)])

Now T and F are definable, and only now: in all valuation semantics that
identify less, this is not so

Sequential propositional logic applies to the case of conditions composed
from atoms that have no side effects (pure tests)
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6. Conclusions and Future Work

1 Some more SCLs were defined, and for one of those we have an
equational axiomatization (Memorizing SCL)

2 Based on the proposition algebras we introduced, more SCLs can be
defined; many SCLs are natural and simple and deserve attention

3 A next step: consider a partition of the set A of atoms into side effect
free atoms (like (i==3)) and the rest (like (i:=3), finer partitions
are possible); wrt RPSCL an initial study was done by Wortel (2011)

(NOTE: in this case, an atom like (3==3) can play the role of T )
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4 Full left-sequential evaluation is also relevant (x & y in
programming), and was studied by Blok (2011) and Staudt (2012):

x ∧s y = (x ∨rb (y ∧rb F )) ∧rb y

Less expressive; complete axiomatizations were found;
both families of connectives and item 3 provide setting for general
analysis (normalization or simplification of conditions)

5 “cand” is sometimes used for ∧rb in a setting with SCE, and && is
often used in programming

6 SCE is also named minimal evaluation, McCarthy evaluation or
shortcut evaluation
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7 Last version short-circuit logic paper (Bergstra, Ponse, Staudt):
http://arxiv.org/abs/1010.3674 (v4, 12 March 2013)

(More info at my home page > Research)

8 The notation ∧rb , ∨rb was introduced in
J.A. Bergstra, I. Bethke, and P.H. Rodenburg (1995).
A propositional logic with 4 values: true, false, divergent and meaningless.
Journal of Applied Non-Classical Logics, 5(2):199-218.

9 More references:

J.A. Bergstra and A. Ponse (2011). Proposition Algebra.
ACM Transactions on Computational Logic, 12(3), Article 21 (36 pp).

C.A.R. Hoare (1985). A couple of novelties in the propositional calculus.
Zeitschr. f . Math. Logik und Grundlagen d. Math., 31(2), 173-178.

F.M. Sioson (1964). Equational Bases of Boolean Algebras.
Journal of Symbolic Logic 29 (3):115-124.
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