
Spark: Past, Present and Future
Baris Can Vural

I. INTRODUCTION

The term ”Big data” is often associated with 3 Vs: Volume,
Variety and Velocity. Volume refers to the massive size of
the data, Velocity refers to the speed at which the data is
coming in and going out and lastly Variety refers to the wide
scope of data formats and sources. These characteristics of
big data makes it crucial that parallel computing be utilized if
valuable information from this data is to be extracted. The
volume of data to be handled cannot fit in one computer,
and the computational power required to process the data is
simply too large for one computer to handle. However, writing
parallel programming algorithms is a cumbersome task. One
must consider the challenges that come with parallel program-
ming: Task distribution, data distribution, load balancing, fault
tolerance, using data locality, etc... The task requires high
technical knowledge and one could argue the cost of building
these systems could outweigh the benefit one would get by
extracting valuable information from big data.

With the famous map reduce paper being published in
2008[1], programmers became familiarized with the notion of
automated parallelism. Two programming abstractions were
introduced; Map and Reduce. In Map, programmers define
a function that takes an input as data to be processed and
produces an output that are key value pairs. In Reduce,
programmers can use these key value pairs to generate smaller
number of values. The parallelism is handled automatically
by the system, which is fault tolerant, reliable and is one
which exploits data locality where possible. Open source
implementation of the MapReduce concept followed in 2011
with Apache Hadoop MapReduce[2].

In this literature study we are going to take a look at the
a software called Spark, an open source cluster computing
framework. [3]. Apache Spark grew to include more pieces
within its ecosystem which made it the go-to cluster computing
framework for big-data processing today.

II. SPARK ECOSYSTEM AT A GLANCE

A large number of problems can be expressed by the
MapReduce abstraction. Some examples include word count
(counting how many times each word appear) Distributed
grep (returning the lines that match a given pattern) Inverted
index (Returning a list of document IDs in which a specific
word appears). These examples can be multiplied. The way
these programs are parallelized behind the scenes is the use
of acyclic data flow models in which the data goes through
a set of operations. There are limitations to the performance
of the implementation of this concept such as loading input
from disk for every individual MapReduce job. This creates a
major bottleneck for real world problems that include iterative

machine learning tasks and interactive querying of the inter-
mediate data[3] New programming concepts were introduced
by the Spark framework since its inception in 2009. At first,
it appeared to tackle the performance drawbacks of Hadoop
MapReduce in performing the mapreduce abstraction; but the
Spark ecosystem grew to include a SQL module for processing
intermediate data using SQL syntax, a machine learning library
to construct powerful ML pipelines for analysing data and a
graphx graph processing engine which leverages optimizations
that pre-existing graph processing engines could not enjoy. In
this section we take a glance at the Spark ecosystem as it
stands today.

Spark ecosystem consists of Spark core, Spark SQL, Spark
streaming engine, MLlib machine learning library, GraphX
graph processing engine

A. Resillient Distributed Datasets

The main programming abstraction provided by the Spark
framework is Resillient Distributed Datasets. A resilient dis-
tributed dataset (RDD) is a read-only collection of objects
partitioned across a set of machines that can be rebuilt if a
partition is lost[3]. RDDs can be viewed as a distributed shared
memory concept with limited possible actions that can be
performed over them. As far as the programmer is concerned,
they can be regarded as global variables with limitations,
which reside in the driver program. There are four ways of
constructing RDDs:

• From a shared file system such as GFS or HDFS:
Google file system (GFS) is a distributed, block-
structured, fault-tolerant file system which is managed
by a single master node[4]. HDFS is the open source
implementation of this concept. Spark can utilize these
systems to read data into the memory of the cluster nodes.

• Parallelization of a collection:
A collection of items(arrays, lists, or other collection
objects in various programming languages which are
accepted by Spark) can be distributed among the nodes
of the cluster by calling the parallelize() method.

• Transforming an existing RDD:

RDDs can be transformed into new RDDs by passing the
elements of an RDD through a user-defined function[3].
Operations such as flatMap, map or filter can be applied.

• By changing the persistence of an RDD:
By design, RDDs are designed as lazy structures. They
are not calculated until they are used in a parallel
operation[3] Programmers can call cache() and save()
methods to change the persistence of these RDDs. By
calling cache() method programmer advises Spark that
the RDD in question will be used in future operations and
that it should be kept in memory. However, if memory
is not available, Spark will spill the RDD into disks. By
calling save() method programmer can save an RDD in
the distributed file system.

The main motivation behind RDDs is improving perfor-
mance on iterative machine learning algorithms and interactive
querying of the intermediate data[5]. The performance draw-
backs of Hadoop MapReduce become more apparent in these
kind of tasks since every iteration must be defined as a seperate
MapReduce job and before every MapReduce job, input for
the job must be loaded from the disks. The same goes for the
output or the intermediate results, which have to be written to
disks. Keeping data in memory can provide major performance
improvement over reading the data from disks; as much as 10x
according to [3].

The main challenge behind coming up with a distributed
shared memory scheme is fault-tolerance. In order to achieve
this, one must replicate the data to multiple machines and
updates to data must be broadcasted to the replicates in order
to ensure coherence. This approach however, does not scale
well with data-intensive applications. RDDs achieve fault-
tolerance by the concept of lineage. The operations performed
on the RDDs are recorded and should any of the nodes that
carry a part of the RDDs fail, only the lost part of the RDD
partition is reconstructed by following the series of operations
in RDD’s lineage. However, only coarse-grained operations
are allowed on RDDs, removing the possibility of having
small updates being broadcasted to replicates and creating a
performance bottleneck. By limiting the possible actions that
can be performed, RDDs are made to scale well. Although
it may seem RDDs are limited with respect to the kind of
operations that can be performed; it is the case that many
parallel applications are naturally defined as applying the same
operation to multiple data items[5]. Another benefit of RDDs
over distributed shared memory systems is that since it only
allows coarse-grained operations, runtime scheduling can be
done in a way that exploits data locality which reduces com-
munication overhead among nodes and improve performance.

Spark allows a range of actions on RDDs. It makes a dis-
tinction between transformations and actions. Transformations
create new RDDs or modify existing RDDs to produce new
RDDs. Actions refer to operations which aim to reduce/collect
the values in the RDD which is distributed among cluster
nodes. Some of the more frequently used transformations
include:

• Map()
Creates a new RDD by passing each element in the source
RDD through a user defined function.

• flatmap()
The difference between this method and map() is that this
function may map items to 0 or more output items. This
function should return an array of values. (list in python)

• filter()
Creates a new RDD by passing each element in the source
RDD through a user defined function which may return
true or false.

These transformations are similar to Hadoop MapReduce
programming model. However, it has the added benefit of
being able to create cyclic data flows out of the interme-
diate RDDs which are created. Changing the persistence of
these intermediate results, which are results of user-defined
functions which get passed to the transformations, one can
significantly improve performance in comparison with Hadoop
MapReduce. Hadoop MapReduce would have to do disk I/O,
serialization, and data replication after each job which incur
significant performance issues.

Some of the more frequently used actions include:

• reduce()
This action aggregates the elements of an RDD in the
driver program. The function passed to it takes two
parameters and must return one value. The operation
performed within the user defined function must have
commutative and associative properties.

• collect() Returns elements of an RDD as a list(python
term) to the driver program. The caveat is that the
programmer should call this function after applying a
filter in order to avoid huge volumes of data to be flooded
into the driver program.

• count()
Returns the number of elements in an RDD, useful in
examples such as line counting.

• take()
Returns a list of elements from an RDD. Useful to call
before calling reduce() if the size of the RDD is relatively
large.

• saveAsTextFile()
Writes the elements of the RDD to a textfile, or to a
distributed file system such as HDFS.

Shared Variables Spark allows the use of restricted, glob-
ally shared variable types. These serve as helpers in creating
common usage patterns. The shared variables are:

• Broadcast Variables:
Broadcast variables are useful when the parallel worker
nodes need to access to large amounts of read-only data
such as lookup tables. Spark ensures that the read-only
data is copied to each worker node only once.

• Accumulators:
These ”add-only” variables are used to do counting in
parallel.

In [6], it is argued that the implementation of broadcast
variables in Spark is not made to scale well. This is due to
the fact that the broadcast variables are serialized and written
by the sender to a distributed file system such as HDFS.
All the receivers of the broadcast variable have to read from
HDFS and deserialize it to construct the variable. This creates
a bottleneck at HDFS if the system is scaled up. The systems
that rely heavily on broadcasting variables should come up
with better strategies than using the built-in shared variables.

B. SparkSQL
Hadoop MapReduce offers only two programming abstrac-

tions which are map and reduce. However, many data analytics
tasks can be expressed as a set of MapReduce jobs. These
include SQL query, data mining, machine learning and graph
processing. Hadoop is used to run ad-hoc queries on large
datasets, through SQL interfaces such as Pig and Hive [3]
The idea is to load the datasets to memory and query them.
This creates a performance bottleneck for Hadoop MapReduce
since every query has to run as a seperate mapreduce job and
in the beginning of every job the data has to be loaded from
the disks.

Spark’s RDD abstraction helps programmers achieve great
performance improvements over Hadoop MapReduce when it
comes to interactive analysis tasks. The reason for this is the
fact that RDDs are kept in memory and accessed much faster
than disks. In-memory computing is very important in large
scale data analytics for two reasons: Firstly, many machine
learning algorithms and graph algorithms are iterative; they
go over the data multiple times which means that in-memory
access will yield much better performane. Secondly, even
the traditional SQL workloads show strong temporal and
spatial locality: A study of Facebook’s Hive warehouse and
Microsoft’s Bing analytics cluster show that over 95% of
queries in both systems could be served out of memory using
just 64 GB/node as cache even though each system manages
more than 100 PB of total data [7]

Shark[7], is a data anaysis system that does query process-
ing in data analysis tasks. It achieves significant performance
improvements over Apache Hive, a SQL querying tool for
Hadoop MapReduce. It achieves this performance upgrade
by implementing in-memory columnar storage and columnar
compression which reduces the data size and the process-
ing time as much as 5x over traditional Spark programs.
Furthermore, there are query optimizations in place which
partially executes sql queries and dynamically changing query
execution strategies based on statistics. Lastly, Shark also
takes advantage of the control over data partitioning which
is provided by Spark.

SparkSQL[8] is built on the experience of the creators of
Shark. Programmers can leverage the benefits of relational
processing, and machine learning algorithms. It has two
main additions two the previous systems: a) DataFrame API,
which is a tight integration between relational and procedu-
ral processing. Programmers are able to combine relational
processing provided by the API with the procedural Spark

code. b) Catalyst: A highly extensible (e.g. easy to add
data sources, optimization rules, and data types for machine
learning) query optimizer leveraging the features of Scala
programming language.

Authors of SparkSQL claim that it is 10x faster and
more memory-efficient than naive Spark code in computations
which are expressible in SQL. SparkSQL is seen as an
evolution of both SQL-on-Spark and Spark itself.

Now we are going to look at two major features that seperate
SparkSQL from its predecessors:

1) DataFrame API: A dataframe is a distributed collection
of rows with a homogoneous schema[8] Dataframes are the
main programming abstraction provided within SparkSQL. A
dataframe is a table in traditional relational database terms.
They are made to work with the RDDs, which help program-
mers integrate their existing Spark programs to dataframes and
benefit from its performance benefits.

Programmers may create dataframes from a data source or
existing RDDs. Dataframes essentially can be seen as RDD of
row objects and therefore RDD transformations such as map
can be performed on them. Dataframes are lazy structures:
Dataframes represent a logical plan to compute an RDD,
but execution does not take place until an output operation
such as saveToTextFile() or reduce() is called. This allows for
optimizations.

Basic usage of dataframes is as follows:

c t x = new HiveCon tex t ()
u s e r s = c t x . t a b l e (” u s e r s ”)
young = u s e r s . where (u s e r (” age ”) < 21)
p r i n t l n (young . c o u n t ())

In this example, users and young variables are dataframes.
The user(”age”) expression refers to the ”age” column in user
table. Logical operations such as ”¡” can be performed and in
this example it is used as a filter in a where clause which
is standard SQL syntax. The dataframes merely represent
logical execution plans, i.e. they are not computed until the last
line which includes count() - an output operation. There are
possible optimizations behind the scenes such as only scanning
the users column if the data storage is columnar[8]

SparkSQL makes use of a wide range of data sources. It
supports major data types within SQL such as boolean, integer,
double, decimal, string, date, and timestamp. It also allows
for complex user-defined data types such as JSON or native
Java/Python objects.

SparkSQL offers some benefits over working with a tradi-
tional relational database systems. Since it is integrated in a
programming language, programmers may use the structures
within the language to break up SQL statements, add control
flow structures, or pass dataframes between functions. It also
provides eager error reporting: It checks small errors such as
column name typos in advance and provides a faster error
reporting as opposed to running big queries in traditional
relational database systems.

Another benefit of Spark SQL is that it offers even better in-
memory caching than standard Spark. Columnar compression

schemes are used which result in performance upgrades by an
order of magnitude[8].

Lastly, SparkSQL allows programmers to use User Defined
Functions or UDFs. User may specify their custom function
and use that function in the SQL queries.

def s q u a r e d (s) :
re turn s * s

s q l C o n t e x t . udf . r e g i s t e r (”
sq ua r edW i th Py t hon ” , s q u a r e d)

#We may use t h e f u n c t i o n i n q u e r i e s :

from p y s p a r k . s q l . f u n c t i o n s import udf
s q u a r e d u d f = udf (squa red , LongType ())
d f = s q l C o n t e x t . t a b l e (” t e s t ”)
d i s p l a y (d f . s e l e c t (” i d ” , s q u a r e d u d f (” i d ”)

. a l i a s (” i d s q u a r e d ”)))

In this example[9] we define and register a function called
squared which squares two numbers. After this point, we can
refer to this function in our SQL queries. In the dataframe
called ”test”, we search for ids and display the squared values
of those ids. Note that this custom function was written in
the programmer’s chosen programming language and not in
a domain specific language like one would in a relational
database system. This makes it straightforward to customize
queries in SparkSQL.

2) Catalyst optimizer: Catalyst optimizer is the SQL opti-
mization part of SparkSQL. It has an extensible design with
two purposes: Make it easy to add new optimization techniques
and features, and make it easy to extend the optimizer by
specifying data-specific rules. Catalyst supports both rule-
based and cost-based optimization.

Catalyst provides the possibility of extension of optimizer
by exploiting the features of the Scala programming language
such as pattern matching. This helps reduce the learning curve
required to come up with optimization rules. The systems
which require domain-specific language to generate optimiza-
tion code suffer from the learning curve. SparkSQL keeps
things simple in this regard.

In catalyst optimizer, main data type is a tree, with nodes
being the name of the operations, or the values that go inside
these operations. This representation is used to help achieve
optimization. An example tree looks like:

The tree above is the representation of the expression:
x+(1+2). In code, this would be represented as Add(x,
Add(1,2))

Rules are functions that take as input a tree and returns a
transformed tree. These rules can be arbitrary operations on
the tree but mainly they are defined as patterns that transform
a subtree to another. In scala language an example is:

t r e e . t r a n s f o r m {
c a s e Add (L i t e r a l (c1) , L i t e r a l (c2))=>

L i t e r a l (c1+c2)
}

Applying this rule to the tree above, we end up with a tree of
structure (x+3). The rule in this function is a partial function.
A partial function of type PartialFunction[A, B] is a unary
function where the domain does not necessarily include all
values of type A[10]. Catalyst will look only at the subtrees
that a given rule is applicable to. This allows for adding one
rule after another without modifying the previously added
rules.

Catalyst executes rules or tree transformations repetitively
until a fixed point. Rules sometimes modify the trees and this
makes the parts of the tree applicable to other rules. One set
of rules may assign types to variables while other set of rules
may transform the tree in a different way.

Catalyst optimization is consisted of 4 stages: Analysis,
logical optimization, physical planning and code generation.

Analysis
In analyis, Catalyst starts with a dataframe and resolves the

references and relations mentioned in the SQL statement. It
resolves the types of the variables mentioned in the SQL and
checks the relations by looking up the tables in question. It
finally constructs a logical plan to execute the SQL statement
so that further optimizations based on rules and costs can be
applied.

Logical Optimization In logical optimization, rule based
optimizations such as predicate pushdown, constant folding,
boolean expression simplification and null-propagation are
performed

Physical Planning In this phase the optimizer generates one
or more physical plans out of the logical plans. Physical plan
is expressing the logical plan in terms of the Spark’s execution
engine. The optimizer selects a physical plan based on a cost
model. Rule based optimizations are also performed in this
phase; such as pipelining projections or filters into one Spark
map operation.

Code Generation In this phase the bytecode to be run on
all cluster nodes is generated. The designers went for code
generation because they wanted to speed up execution since
spark works on in-memory data which is CPU bounded. In
code generation, the ”quasiquotes” feature in Scala language
is leveraged[11].

C. Spark Streaming

So far, we only looked at the batch processing features of
Spark. As of 2012, Apache Spark framework also provides a
module for processing streaming data.

Processing streaming data pertains to Velocity of Big Data;
the speed at which the data arrives for processing. There are
well-known systems that process data such as TimeStream,
MapReduce Online and Storm. These systems can be used for
various tasks such as:

• Provide site statistics
A distributed near-time system that provides statistics
about visitors’ activity such as clicking on ads. Face-
book’s Puma is one exmample.

• Cluster monitoring
A distributed system is error prone by its nature. There
are systems where log file of large distributed systems
are processed as streaming data. Apache Flume is one
example.[12]

• Machine learning in real time
Predictive statistical models can be run on streaming
data to get results as the data is coming in. One useful
example is real-time spam detection. Twitter for example,
can identify spam/scam tweets in real time using stream
processing.

The stream data processing systems, when scaled up,
face two major problems: Fault recovery and stragglers(slow
nodes). Overcoming these problems is crucial for real-time
systems as slow recovery or slow nodes might cost the system
its time window to make a key decision. The stream data
processing systems such as TimeStream, MapReduce Online
and Storm are based on continuous operator model, which
implies the following: There are operators that receive incom-
ing stream data. They process the data, update their internal
state and they output the modified stream to another operator.
Although this model design seems natural when one thinks
about processing streaming data, this model makes it difficult
for the system to recover from failures or respond well to slow
nodes. These systems recover from errors by following two
approaches:Replication, where there are two copies of each
operator node, or upstream backup where nodes store every
sent message and send them to a newly created recovery node.
Neither approach is preferable as replication means doubling
the hardware costs and upstream backup incurs large recovery
time. Also, neither approach handles the case of slow nodes.

In Spark, the approach to streaming data is quite different
than the pre-existing systems. The concept of discretized
systems or D-streams is introduced. It essentially means taking
batches of streaming input data and processing them as batch
jobs in one time-step. The idea is to exploit the fault-tolerant,
easily recovering nature of RDDs in stream processing. In
each time-step the input streaming data is taken as RDD and
this provides two major benefits: 1- Stateless, deterministic
computation in each time-step; which can only be achieved
in the continuous operator model systems with the help
of synchronization algorithms.(wait until nodes synchronize)

2-easier analysis of dependencies between RDDs, allowing
optimizations such as starting a job in the next time interval
before the current time interval is not complete.

There are two challenges to D-streams. Firstly, discretizing
the input stream incurs a minimum latency. However, in
[13] it is argued that this minimum latency is acceptable
in real-life scenarios. Secondly, recovering from faults is
made easy by recovering in paralell. Here, Spark’s existing
recovery mechanism is leveraged. This is difficult to achive in
continuous operator model systems because of the complex
synchronization algorithms to ensure determinism.

Spark streaming is said to be a performance upgrade over
Storm[14] by 2x to 5x[13]. It also has the benefit of being able
to combine batch jobs and streaming jobs as in Spark system
both task types are using RDDs.

An example of using strema processing in Spark is as
follows:

pageViews = r e a d S t r e a m (” h t t p : / / . . . ” , ” 1 s ”)
ones = pageViews . map (e v e n t =>(e v e n t . u r l , 1)

)
c o u n t s = ones . runn ingReduce ((a , b)=>a+b)

In the example, pageViews is an RDD created by the input
stream and the second parameter to the readStream function is
the time interval for each discretized step. ”ones” is an RDD
which are (url, 1) pairs and the last line runs a reduce operation
on keys, which finally yields the (url, number of visits) pairs.

Spark streaming allows programmers to define input streams
from outside sources or loading it from a file system such
as HDFS. It also allows stateless transformations on the data
such as map, reduce, groupBy. These operations are stateless
in the sense that their processing does not remember what
happened in the previous discretized step. Spark streaming
also allows for stateful transformations across time-steps such
as 1-Windowing: Programmers can define time intervals to
access the RDDs of the specified time interval;2-Incremental
aggregation: where group operations such as reduce can be
performed per time interval provided; 3-State tracking: where
programmers would like to get notified when certain events
take place such as socket connection from client and socket
close by the client if, for example, the programmer wants to
keep track of a user’s statistics when they watch a video.

D. MLlib

The combinination of machine learning algorithms in big
data analytics has become very important. In its evolution,
spark ecosystem grew also to have its own machine learning
library called MLlib. This library has features such as[15]:

• ML Algorithms: common learning algorithms such as
classification, regression, clustering, and collaborative
filtering

• Featurization: feature extraction, transformation, dimen-
sionality reduction, and selection

• Pipelines: tools for constructing, evaluating, and tuning
ML Pipelines

• Persistence: saving and load algorithms, models, and
Pipelines

• Utilities: linear algebra, statistics, data handling, etc.
The MLlib library provides many benefits to the developers.

It exploits the fact that Spark keeps the data in memory;
the iterative nature of machine learning algorithms result in
huge performance boosts because of this. The library also
provides sophisticated implementations of the most popular
learning algorithms; the complexity of having to implement
these algorithms and potential errors that could arise is avoided
if one uses this library.

The MLlib library is huge and it would take too long to
mention all of its features here. However, to demonstrate how
easy to use it is, here is an example of a logistic regression
example in spark:

d a t a = [L a b e l e d P o i n t (1 . 0 , [1 . 0 , 0 . 0]) ,
L a b e l e d P o i n t (1 . 0 , [1 . 0 , 0 . 0]]

l rm = Log i s t i cRegres s ionWi thLBFGS . t r a i n (
sc . p a r a l l e l i z e (d a t a) , i t e r a t i o n s =10)

l rm . p r e d i c t ([1 . 0 , 0 . 0]) # r e t u r n s 1
l rm . p r e d i c t ([0 . 0 , 1 . 0]) # r e t u r n s 0

In the example above, ”data” represents our training data
set. Our training data consists of labeled points which are
of structure: outcome,feature vector. Next, we can train our
logistic regression model using this data. We have to pass the
model an RDD which we create by parallelizing the array
we have in the driver program. Spark also supports reading
training data in other formats such as libsvm. Next and finally
we can ask our model the prediction outcome of a given
feature vector. Since we ask exactly what we gave in the
training data, the model returns the expected values. This is a
trivial example to show the user-friendlienss of the library.

MLlib library reduces the developer’s development time
greatly by providing very sophisticated algorithms like the one
mentioned above. Normally, if one is to implement logistic
regression, one would go about doing this using parameter
learning using gradient descent since this is the most standard
and easy way to solve the problem. In the example above, the
algorithm uses the technique called LBFGS, which is a great
deal more sophisticated than gradient descent and has better
performance, and it is available for Spark developers without
them knowing how it exactly works.

MLlib used to use RDDs as its standard data abstraction but
now, the standard is to use dataframes instead. This allows for
SQL optimizations on the data and allows pipelining which is
a popular concept in machine learning workflows. Here is an
example of dataframes and pipelines in Apache Spark MLlib:

s e n t e n c e D a t a = s p a r k . c r e a t e D a t a F r a m e ([
(0 . 0 , ” Hi I h e a r d a b o u t Spark ”) ,
(0 . 0 , ” I wish Java c o u l d use c a s e

c l a s s e s ”) ,
(1 . 0 , ” L o g i s t i c r e g r e s s i o n models a r e

n e a t ”)

] , [” l a b e l ” , ” s e n t e n c e ”])

t o k e n i z e r = T o k e n i z e r (i n p u t C o l =” s e n t e n c e ” ,
o u t p u t C o l =” words ”)

wordsData= t o k e n i z e r . t r a n s f o r m (
s e n t e n c e D a t a)

hash ingTF =HashingTF (i n p u t C o l =” words ” ,
o u t p u t C o l =” r a w F e a t u r e s ” , numFea tu res
=20)

f e a t u r i z e d D a t a = hash ingTF . t r a n s f o r m (
wordsData)

i d f =IDF (i n p u t C o l =” r a w F e a t u r e s ” , o u t p u t C o l =
” f e a t u r e s ”)

id fMode l = i d f . f i t (f e a t u r i z e d D a t a)
r e s c a l e d D a t a = id fMode l . t r a n s f o r m (

f e a t u r i z e d D a t a)

r e s c a l e d D a t a . s e l e c t (” l a b e l ” , ” f e a t u r e s ”) .
show ()

The above example computes IDF values in a given corpus.
”sentenceData” is a dataframe with columns ”label” and
”sentence”. Next, we can use MLlib’s tokenizer and give it an
input and output column. By giving the exact column names
as we use in our dataframe, we construct our pipeline. The
functions IDF and HashingTF follow similar structure. One
output column is followed by the next MLlib library function’s
input column. Using this structure, one can construct powerful
machine learning data flows.

E. GraphX

In the past, the graph processing systems like Pregel [16]
or PowerGraph [17], were preferred over distributed dataflow
frameworks such as Hadoop MapReduce to increase perfor-
mance. These systems provided graph programming abstrac-
tions which accelerated iterative graph algorithms. Early on,
distributed dataflow frameworks relied on single computation
and disk storage, which limited the performance of graph
algorithms. Also, these frameworks did not allow fine-grained
control over the partitioned distributed data.

The graph processing systems provided optimizations that
the distributed dataflow frameworks could not because they
had a narrower focus. Implementing a graph processing system
using operations such as map, reduce, groupby proved to be
challenging and these operations did not take into considera-
tions the optimizations that could be derived from the graph
structure. Furthermore, most of the time graph processing is
only a part of a data analytics task. Data analytics task requires
graph computation as well as working with structured or
semi-structured data. This complexity resulted in performance
drawbacks.

GraphX, is the graph processing system within Spark. It is
a variant of the graph processing system Pregel[16]. Develop-
ments in the Spark framework made it advantageous for Spark

to have its own graph processing engine. These developments
include control over the partitioning of the data in memory,
and low cost fault recovery through the concept of RDDs. The
existing graph processing systems relied on recovery based on
snapshotting: saving graph state as a checkpoint.

Graph processing systems represent graph structured data
as a property graph, which associates user-defined properties
with each vertex and edge[18]. The term triplet refers to the
Vertex-edge-Vertex structure in graphs. These are represented
as collections in Spark, which makes room for optimizations
that are not available in graph processing systems.

GraphX provides some programming abstractions to Spark
in addition to the existing dataflow operators. Some of these
are:

• mrTriplets ”Map reduce triplets” is the operator which
comprises map and a groupby operations on the triplets.
The map function is applied to each triplet and the result
is aggregated to the destination vertex.

• edges Returns the edges in a graph as a collection
• vertices Returns the vertices in a graph as a collection
• triplets Returns the triplets in a graph as a collection
• mapV Applies a map function to all vertices and returns

a graph
• mapE Applies a map function to all edges and returns a

graph

Essentially graphX treats graph representations as horizon-
tally partitioned collections and it performs the join-map-
groupBy operations to achieve typical graph processing op-
erations.

GraphX scales well against other graph processing engines.
In [18], graphx is benchmarked against other graph processing
engines such as giraph.

We can observe that a graph processing engine such as
giraph outperforms naive spark and optimized spark in this
pagerank algorithm. However, graphx engine seems to outper-
form giraph with a little margin.

III. EVOLUTION OF SPARK AND WHAT IS NEXT

Spark was built in 2009 at UC Berkeley and open-sourced
in 2014[19]. It quickly grew from a research project to the
world’s biggest open source project in cluster computing.
Spark has a large ecosystem today: SQL querying, machine
learning, graph analytics, stream analytics... Spark’s rich lan-
guage support as well as these tools make it a very good choice
for big-data analysis.

Early on, Spark’s main attraction was RDDs. RDDs are
fault-tolerant collection of replicated data that sits in-memory
of the computers in the cluster. Data engineers, however,
required more tools for data analytics such as SQL or iterative
machine learning algorithms.

Spark introduced the concept of dataframes within its inte-
gration with the SQL engines for interactive analysis of data.
Machine learning algorithm library MLlib was added to make
sense of this data with standardized methods. D-streams allow
the use of all of Spark’s features from an input stream. Graphx
engine likewise can be utilized to process graphs in a fault-
tolerant manner

Spark offers many different features under one framework.
Big-data analytics engineers do not have to switch to other
programs. This helps with productivity and uniformity among
other professionals.

In spark 1.6, the concept of datasets was introduced as an
experimental api:

Datasets The Apache Spark Dataset API provides a type-
safe, object-oriented programming interface. In other words, in
Spark 2.0 DataFrame and Datasets are unified[20]. It provides
compile-time type safety while preserving the optimizations
of the Catalyst optimizer.

Datasets are an etenstion to the dataframe API. They are
created through the sqlcontext object just like dataframes.
Datasets make use of Tungsten’s1 in-memory encoding.
Datasets api uses the dataframe query planner to achieve more
optimizations. This is achieved by converting expressions and
fields into java bytecode on the fly.

A small example of datasets looks like this(In scala):

v a l d f = s q l C o n t e x t . r e a d . j s o n (” p e o p l e . j s o n ”
)

c a s e c l a s s Pe r s on (name : S t r i n g , age : Long)
v a l ds : D a t a s e t [P e r s on]= df . a s [P e r son]

Datasets make sense in type-safe languages like scala or
java. In python, variable types are inferred therefore datasets
are not supported in python.

IV. CONCLUSIONS

Spark has major performance benefits over other distributed
dataflow frameworks. The concept of RDDs as in-memory
data sets distributed over cluster nodes speeds up big-data
computation especially in two scenarios:

1Tungsten helps Spark keep objects out of memory. It also makes use of
columnar storage to save space.

• Iterative jobs where the intermediate results are being
reused such as in some machine learning operations
such as gradient descent. In Hadoop MapReduce, each
intermediate result would have to be written to disk and
reread in the beginnning of the next MapReduce job. This
incurs a huge performance bottleneck.

• Interactive analytics where a dataset of huge volume
can be loaded into the memory of the cluster nodes
to be queried in reasonable response times. The RDD
abstraction

At first spark’s main selling point was RDDs, but the
ecosystem grew to include other common data-analytics task
libaries and now these structures are started to being replaced
by concepts such as dataframes and datasets. Using Spark, one
can query big-data interactively in-memory using SQL syntax,
do graph computations, apply machine learning algorithms,
and achieve all of this using streams as well as distributed file
systems such as hdfs.

Spark ecosystem is constantly evolving to include the com-
monplace data analytics task of data engineers. Judging by its
evolution in only 2 years, it is safe to say that it will grow
bigger and be better suited to the needs of its users.

REFERENCES

[1] J. Dean and S. Ghemawat, “Mapreduce: simplified data processing on
large clusters,” Communications of the ACM, vol. 51, no. 1, pp. 107–113,
2008.

[2] “Apache hadoop,” https://en.wikipedia.org/wiki/ApacheHadoop.
[3] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, and I. Stoica, “Spark:

Cluster computing with working sets.” HotCloud, vol. 10, no. 10-10, p. 95,
2010.

[4] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The google file system,” in ACM
SIGOPS operating systems review, vol. 37, no. 5. ACM, 2003, pp. 29–43.

[5] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J.
Franklin, S. Shenker, and I. Stoica, “Resilient distributed datasets: A fault-
tolerant abstraction for in-memory cluster computing,” in Proceedings of the
9th USENIX conference on Networked Systems Design and Implementation.
USENIX Association, 2012, pp. 2–2.

[6] M. Chowdhury, “Performance and scalability of broadcast in spark,” 2014.
[7] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica,

“Shark: Sql and rich analytics at scale,” in Proceedings of the 2013 ACM
SIGMOD International Conference on Management of data. ACM, 2013,
pp. 13–24.

[8] M. Armbrust, R. S. Xin, C. Lian, Y. Huai, D. Liu, J. K. Bradley, X. Meng,
T. Kaftan, M. J. Franklin, A. Ghodsi et al., “Spark sql: Relational data
processing in spark,” in Proceedings of the 2015 ACM SIGMOD International
Conference on Management of Data. ACM, 2015, pp. 1383–1394.

[9] “Call the udf in spark sql,” https://docs.databricks.com/spark/latest/spark-
sql/udf-in-python.html.

[10] “Partial functions,” https://www.scala-lang.org/api/current/scala/PartialFunction.html.
[11] “Quasiquotes,” http://docs.scala-lang.org/overviews/quasiquotes/intro.html.
[12] “Apache flume,” https://flume.apache.org/.
[13] M. Zaharia, T. Das, H. Li, T. Hunter, S. Shenker, and I. Stoica, “Discretized

streams: Fault-tolerant streaming computation at scale,” in Proceedings of the
Twenty-Fourth ACM Symposium on Operating Systems Principles. ACM,
2013, pp. 423–438.

[14] A. Toshniwal, S. Taneja, A. Shukla, K. Ramasamy, J. M. Patel, S. Kulkarni,
J. Jackson, K. Gade, M. Fu, J. Donham et al., “Storm@ twitter,” in Proceed-
ings of the 2014 ACM SIGMOD international conference on Management of
data. ACM, 2014, pp. 147–156.

[15] “Machine learning library,” http://spark.apache.org/docs/latest/ml-guide.html.
[16] G. Malewicz, M. H. Austern, A. J. Bik, J. C. Dehnert, I. Horn, N. Leiser,

and G. Czajkowski, “Pregel: a system for large-scale graph processing,”
in Proceedings of the 2010 ACM SIGMOD International Conference on
Management of data. ACM, 2010, pp. 135–146.

[17] J. E. Gonzalez, Y. Low, H. Gu, D. Bickson, and C. Guestrin, “Powergraph:
Distributed graph-parallel computation on natural graphs.” in OSDI, vol. 12,
no. 1, 2012, p. 2.

[18] J. E. Gonzalez, R. S. Xin, A. Dave, D. Crankshaw, M. J. Franklin, and
I. Stoica, “Graphx: Graph processing in a distributed dataflow framework.” in
OSDI, vol. 14, 2014, pp. 599–613.

[19] “Apache spark,” https://en.wikipedia.org/wiki/ApacheSpark.
[20] “Datasets,” https://databricks.com/product/getting-started-guide/datasets.

