
Virtual machine and Docker container:
different approach to Virtualization

Carlo Butelli

VU University Amsterdam,
Computer Science Editorial,

De Boelelaan 1105, 1081 HV Amsterdam,
The Netherlands

c.butelli@student.vu.nl

April 29, 2017

Abstract

This paper is focused on virtualization approaches. The intention is to provide some key answers to the question "What
does virtualization need to be beneficial in respect to the use of physical servers? Since physical servers are know to be
expensive in costs and even more often effectively under-utilized, how can this wastage be avoided(or at least decreased)
to increase the overall profits?". A couple of solutions to build virtualization are presented and the expectations from a
developer point of view about those technologies to build a virtualized system are also shown. The first part starts with a
brief introduction about cloud computing and a description of "virtualization" meaning, then the article will range over
some Virtual Machines(VMs) and Docker descriptions to conclude with evaluations and discussion of both the solutions.

I. Introduction

Nowadays, cloud computing has become the center
of demand from many sectors. Instead of build-
ing their own IT infrastructure, including hard-
ware and involving the development (and mainte-
nance) of software applications and databases, en-
terprises have started to move towards the acces-
sibility of computing resources, hosted by third
parties, over the Internet. Subsequent to this in-
crease of demands, the cost of cloud infrastruc-
tures has progressively increased.[1] The adoption
of cloud technologies has driven to the creation of
large scale data centers to provide cloud services
which in turn lead also to a massive increase of
electricity consumption rising data center property
costs and carbon footprints. Most businesses even
more often use a combination of several applica-
tion servers, web servers, document servers, im-
age servers, audio/video servers and the database
servers. However, most of the hardware appears
to be used by reason of the average number of
server requests recorded, meaning that the servers

are often broadly under-utilized. A server in gen-
eral takes only about 1 to 10ms to return a response
for each request. Given that, the amount of time
a server is maintained up and running is much
higher compared with the relative time it takes to
service such request. This clearly shows that a sig-
nificant amount of energy is wasted per server just
in the process of keeping the servers up and ready
to service requests upon their arrival. Designing
energy-efficient data centers has recently received
considerable attention. As days passes the impor-
tance of new services increases along with the re-
quest of more hardware and more effort from IT
administrators as well as capacity, storage and net-
working that are increasing day by day. "Cloud com-
puting focus on what IT always needs: a way to in-
crease capacity on the fly without investing in new
infrastructures. [2] So, how exactly do we get rid of
this wastage and by that increase the profits? The
answer seems to dwell with virtualization.

1

mailto:c.butelli@student.vu.nl


Virtual machine and Docker container: different approach to Virtualization − April 29, 2017

II. Cloud computing

Over the years IT complexity has grown while effi-
ciency has plummeted. Virtualization reverses this
trend simplifying IT infrestructure so you can do
more with less. Virtualization lets run your applica-
tion on pure physical servers. Most of the time, for
non-IT folks, confusion occurs because virtualization
and cloud computing work together to provide differ-
ent types of services. In reality Virtualization appears
in the picture of cloud computing as the software used
to manipulate hardware and to divide physical infras-
tructures to make various dedicated virtual resources.
While cloud computing is the actual service result and
describes the delivery of shared computing resources.
CPU, memory, hard drive space can be emulated in
software, having this pretended environment, where
all of this hardware seems to be, allowing to reduce
IT costs increasing efficiency, utilization and agility.
[3]

In [2] benefits of Cloud computing have been ex-
posed:

• Flexibility, IT costs can be adjusted to meet or-
ganizationâĂŹs needs.

• Security, since it has been studied that data in
the Cloud are much more secure than in classic
server room.

• Capacity, that can always be increased.
• Cost, since Cloud and Virtualization can sub-

stantially reduce maintenance fees(in general a
subscription fee is used to cover all the previous
costs).

The Cloud Computing model comprehends two
main models, deployment and delivery.[4] The cloud
platform deployment models are exposed below:

Private cloud dedicated for specific organization.

Public cloud intended for public users to register
and use the available infrastructure. Those rep-
resent the the most vulnerable among the de-
ployment models because they are available for
public users to host their services who may be
malicious users.

Hybrid cloud is a private cloud that can extend to
use resources in public clouds.

The cloud service delivery models instead consist
of:

Infrastructure-as-a-service (also referred to as IaaS):
this service model is based on the virtualization
technology providing virtualized computed re-
sources, storage and network over the Internet
and abstracting the user from the details of in-
frastructure like physical computing resources,
location, data partitioning, scaling and so on.
It offers highly scalable resources that can be
adjusted on-demand. Amazon EC2 is a good
example to express this model.

Platform-as-a-service (also referred to as PaaS): a
cloud provider delivers hardware and software
tools needed for application development allow-
ing the customer to develop, deploy and man-
age their own applications, without installing
anything on their local machines. This model
may also be hosted on top of IaaS model or on
top of the cloud infrastructures directly. Google
Apps and Microsoft Windows Azure are the most
known PaaS.

Software-as-a-service (also referred to as SaaS): a
cloud provider hosts applications and makes
them available to customers over the Internet
removing the need for organizations to install
and run applications on their own computers or
in their own data centers. This solution also allow
to avoid most of the expenses hardware related
like acquisition, provisioning and maintenance,
as well as software licensing, installation and sup-
port. This model may be hosted on top of PaaS,
IaaS or directly on cloud infrastructure. Sales-
Force CRM is an example of the SaaS provider.

Virtual machines are extensively used in cloud com-
puting and nowadays, the concept of infrastructure
as a service (IaaS) is widely synonymous of VMs.
Many PaaS and SaaS providers are built on IaaS,
meaning that they all run their workloads in VMs.
However, Linux is the preferred OS to work in the
cloud, thanks to its good performance, zero price,
good hardware support and reliability. By reason
of this fact, containers-based virtualization result as
an interesting alternative to VMs in the cloud and
although the key concepts underlying Docker con-
tainers(like namespaces) are really old, some kernel
features required to implement containers in Linux
have become mature only the last few years where
Docker arise as build system for Linux containers.

2



Virtual machine and Docker container: different approach to Virtualization − April 29, 2017

III. Virtual machine - VM

Nowadays x86 server’s limitations bring IT compa-
nies to run only one OS/application at time, on
the same machine, with the result that even small
data centers have to deploy many servers ending up
in operating at a really low percentage of capacity.

Figure 1: A typical virtual ma-
chine

With VM Virtualization
is possible to create
a completely new
virtual environment
encapsulating an entire
machine allowing the
user to have the same
experience of working
with a real machine.
Application and OS
live in a separate soft-
ware container called
virtual machine or VM.
VMs are completely
isolated and computing
resources, CPUs, storage and network are pulled
together and delivered to each VM dynamically
through a software called Hypervisor (abstraction
layer because it first abstracts resources then real-
locates them more efficiently). The latter emulates
a whole client’s PC allocating the shared resources
needed to build the VM and to make it working. Fig.
1 shows a typical structure of a VM. The Hypervisor
is so able to emulate a variety of virtual hardware
platforms isolated from each other, every one running
its own OS instance (Linux, Windows, OS X) on the
same underlying physical host while providing high
efficiency. The host machine is a computer where an
hypervisor runs one or more VMs while each VM is
called guest machine.

In [5] Gerald J. Popek and Robert P. Goldberg have
categorized two kind of hypervisor:

1. Native hypervisors, run directly on the host al-
lowing to control the hardware and to manage
guest’s OS(reason why they are also referred to
as bare-metal hypervisors). The first native hy-
pervisors was developed by IBM in the 1960s
IBM.[6] Some examples of native hypervisors are
Microsoft Hyper-V[7], Xen[8], KVM[9], Virtual
Box[10] and VMware[11].

2. Hosted hypervisors run on traditional OSs same
as a program does and a guest OS runs as a
process on the host. This kind of hypervisors ab-
stract the guest OS from the host OS itself. Some
examples can be VMware Workstation, Virtual-
Box or Parallels Desktop for Mac.

While the performance of this virtual system is not
equal to the performance of the OS running on true
hardware, the concept of virtualization works because
most guest OSs and applications don’t need the full
use of the underlying hardware.

If all the servers are not running at full capacity,
there is not need to have as nearly as many. By using
VM’s virtualization, hardware count and overhead
drop dramatically while application’s performance
improves by leaps and bounds reaching greater values
at lower costs with less complexity and faster main-
tenance. Again, no business can afford application
downtime and because of this VM’s virtualization
make sure to provide high availability and fault toler-
ance in such a way that if a server fails, your applica-
tion will stay up and running with non downtime, no
data lost and no need for human intervention. [12]

Fig. 2 shows the structure of a simple web applica-
tion by using VM virtualization. As it can be seen the
VM contains the full OS, everything is in single sys-
tem with all the things needed from the application to
work (NGINX, PHP, MYSQL). The drawback to put
everything in a single system is that administrators
have to make sure that every update is supported
by every other dependency used by the application
itself. For instance, if a dependency like NGINX used
in your application needs to be updated and to do
that it also need to update the OS(let’s say because
the new NGINX version does not support the current
OS) you have to be sure that all the other technolo-
gies support the new OS’s version otherwise you are
screwed.

i. VM’s advantages

In [13] some advantages of using VM virtualization
in respect of using physical servers are described as
follow:

• Maximum server utilization, minimum server
count − Every physical machine is used to its
full capacity allowing you to significantly reduce
costs by deploying fewer servers overall.

3



Virtual machine and Docker container: different approach to Virtualization − April 29, 2017

• A faster, easier application and resource provi-
sioning VMs are self-contained software files
that can be manipulated with copy-and-paste
ease. Bringing simplicity, ease of management,
speed and flexibility.

• Reduce the complexity of the environment.

As it has been described so far Virtualization helps
to limit costs by reducing the need for physical hard-
ware systems, power and cooling demand. If you
need a new server, you can just create a new VM and
if you need more memory or CPU in a device, you
simply need to change the resources’ allocation with
a few clicks. System administrators can then benefit
the use of virtual environments to simplify backups,
disaster recovery, new deployments and also basic
system administration tasks. In contrast with this,
Virtaulization requires more bandwidth, storage and
processing capacity than a normal Server or Desktop
if the physical hardware is hosting multiple running
VMs.

ii. How VM virtualization works

A VM can be created by using:

• ISO files in a repository (only hardware virtual-
ized).

• Mounted ISO files on an NFS, HTTP or FTP
server (only paravirtualized).

• VM templates (by cloning a template).
• Existing VM (by cloning the virtual machine).
• VM assemblies.

VMs may run in three domain types, paravirtual-
ized (PVM), hardware virtualized machine (HVM)
and hardware virtualized machine with paravirtual-
ized drivers (PVHVM).

During the creation process of PVM type, the loca-
tion of the mounted ISO file(NFS, HTTP or FTP server
accessible to the VM on the VM network) used to cre-
ate the VM is required. Moreover, PVM does not have
a BIOS so the kernel has to be loaded directly and for
this reason the VM needs direct access to a kernel that
can be loaded at boot. The kernel of the guest’s OS is
then recompiled to be made available of the virtual
environment optimizing memory, disk and network
access to achieve maximum performance possible and
to allow the PVM guest to run very close to the native
speed.

HVM(or fully virtualized) instead requires to pro-
vide an ISO file preloaded into a storage repository
where the VM is to be deployed. In creating HVM
guests it may be required to activate the hardware
virtualization in the BIOS of the server. The ISO in-
deed is configured as a virtual CDROM device inside
the VM’s BIOS and at boot step, the VM boots from
the virtual CDROM in the same manner a common
physical system does.

The third virtualization mode, PVHVM, follows
the same line of HVM but it uses additional par-
avirtualized drivers to improve performance of the
virtual machine since this domain type is used to
run Microsoft Windows guest OS with an acceptable
performance level. [14]

However, a really common way to deploy VMs
is using either templates or assemblies. Templates
are essentially copies of an already existing VM that
can be reused and distributed to deploy a prein-
stalled/preconfigured VM quickly. Assemblies are
way similar to templates but they can contain mul-
tiple VMs and are provided as Open Virtualization
Format.

If a VM requires network connectivity to per-
form the operating system install, at creation point
some virtual network interfaces will be generated
and bridged to a network defined on the VM
Server. All the VM’s resources(configuration files,
templates, assemblies, ISO files, shared/unshared
virtual disks etc.) are stored in the storage repos-
itory, a logical disk space available through a file
system on top of physical storage hardware, so
that they can be available in a server pool(at least
one) without having to copy them to each server.

Figure 2: VM of a simple Web
APP

In a server pool, VM
Servers can access to
these resources by using
a file-based storage(to
multiple server pools)
or through a physical
disk-based storage(to a
single server pool).

Supposing that in Fig.
1 the host machine con-
tains Windows OS (it
could also be Linux or
MacOS). On top of that
host there is the Hyper-

4



Virtual machine and Docker container: different approach to Virtualization − April 29, 2017

visor that mainly spawns processes (running some-
thing in the VM and then clicking on the task manager
it can be seen that VM has actually multiple processes
running) each one pointing to a VM that runs in a
specific platform virtualization software (some of the
most famous are Hyper-V from Microsoft, KVM from
RedHat, Virtualbox from Oracle, VMware and so on)
and each one utilizing the hardware resources like
any normal process. Since every OS uses the hard-
ware in a different way, Hypervisor does the magic
through different drivers installed in it so that it gets
compatibility with every OS.

A classic web application set up is shown Fig. 2
where there is the host machine, the Hypervisor and
three services (NGINX, PHP and MySQL).

IV. Docker Container

A lightweight alternative to the hypervisor is the
so called container-based virtualization. [15, 16]
Some example of this solution are: Docker[17], So-
laris Container[18], Linux containers(LXC)[19] or
OpenVZ[20]. In this work our attention is focused
on Docker which is a technology based on open
standards and allows containers to run on most
of the Microsoft Windows, Linux and Mac distri-
butions. Docker containers are a widely used al-
ternative to build the cloud computing environ-
ment making such environment dressed with fun-
damental features, like scalability and elasticity.

Figure 3: Docker containers

While in a VM’s virtu-
alization one or more
independent machines
run "virtually" on phys-
ical hardware through
the Hypervisor interme-
diate layer, Docker con-
tainers run user space
on top of an OS’s ker-
nel wrapping a piece of
software in a file sys-
tem and containing ev-
erything needed to run
(libraries, code, binaries,
system tools and so on). Reason why containerization
is seen as a sort of "kernel level virtualization". It
ensures that the software will always run the same,
independently from its environment, allowing multi-

ple isolated user space instances to be run on a single
host. The aspect of sharing the kernel rise up the first
security issue, since if you login into a container with
root permissions(containers have two different states,
they can run as privileged containers(root) or non-
privileged containers(user)), you can screw up the
kernel itself and the entire system. As known, Linux
has policies limiting what an user can do outside its
own space. This kernel shared, however, could be
also considered an advantage because running on top
of your Linux kernel make it really fast since it does
not really need to boot a container e.g. supposing
that you already have your Linux running, you can
just keep spoiling containers without affect to much
the performance of your system, unlike VMs.

Due to the fact that they can only run the same (or
a similar guest OS) as the underlying host, containers
are considered with a lack of flexibility.[21]

In Fig. 3 an example of Docker container archi-
tecture is shown. Compared with fig.1 it is easy to
see that the Hypervisor is entirely cut off(now there
is the Docker engine) to directly interact with the
host machine’s hardware. Each one of the previous
services (NGING, PHP, MySQL) runs in its own OS
using immediately the hardware it needs without
going through the intermediate Hypervisor(this is
way better because the Hypervisor slow downs the
system). Contrary, the Docker Engine provides the
core Docker technology that enables images(stateless,
created once and used over and over again) and con-
tainers which represent the running state of images
and so they change state. Each Linux container has a
based Linux OS which share the kernel with the other
containers without havaing to boot the entire kernel
every time or without having intermediary serving
those OSs.

Having an OS for each service used in your appli-
cation in some cases could be a real big advantage
because, based on your system, you can optimize
the environment getting the optimal set up for each
specific service.

i. Docker’s advantages

Docker containerization provide a cost-effective alter-
native to hypervisor-based VMs. They have a bunch
of single features helping in building the cloud com-
puting environment which best fits the user needs[22]:

5



Virtual machine and Docker container: different approach to Virtualization − April 29, 2017

• Lightweight: Since containers share the same
OS’s kernel and images are built from a layered
file system that share common files(binaries, li-
braries) it helps to use less RAM than VMs and
to make disk usage much more efficient.

• Rapid application deployment, to reduce con-
tainer size and to allow a quickly deployment,
the minimal runtime requirements are included
in each container of the application.

• Easy building/sharing: through the Docker In-
dex. An application and all its dependencies can
be wrapped into a single container independent
from the platform distribution or from the host
version of Linux kernel and it can be easily trans-
ferred and executed in another machine running
Docker without compatibility issues. The con-
tainer can also be shared with others by using a
remote repository.

• Namespaces isolation, no process running into
a container is able to see or affect other processes
running in another container or in the host sys-
tem.

• Version control and component reuse: Docker
uses btrfs(a copy on write file system(CoW) for
Linux) to keep track of challenging tasks, like
tracking container’s versions, inspecting differ-
ences or rolling-back to previous versions, leav-
ing to the system advanced features and focusing
on fault tolerance and easy administration. Con-
tainers reuse components from the preceding
layers making them definitely lightweight.

ii. How Docker virtualization works

Docker is basically a client-server architecture
where the Docker client talks with the Docker
server(represented by a daemon) responsible of all
the main tasks like starting and stopping contain-
ers, building and downloading images, exposing a
REST API for remote management and distributing
the Docker containers.

The Docker client is represented by a command
line program used to communicate with the daemon
through UNIX sockets, by using the REST API or a
network interface. A developer will so interact with
Docker by using such client to send commands to the
server.

The Docker host (that could be any machine, a

Figure 4: Docker’s architecture

developer’s local host, a server in the Cloud or in a
physical/VMs within a data center) is the machine
used to run the server. Such host machine must be
running Linux kernel because Docker uses features
that are only available to Linux. Both, client and
server can be run on the same system or in different
systems by connecting the client to a remote daemon.

A graphical example of a simple Docker container
architecture is shown in Fig. 4 from[23]. The daemon
runs on the host machine but the developer(user)
does not interact directly with the daemon, instead
through the Docker client which in turn talks to the
Docker daemon. Internally docker is made by four
fundamental objects[21]:

• Docker Images: read-only template(the building
block of Docker) used to create and launch con-
tainers. Generally it contains the OS with all the
web development tools and the web application
[23].

• Docker containers are the run components that
contain everything needed for the application to
run. Containers are created from a Docker image
and each one represents an isolated application
platform [23].

• Docker registries: the distribution compo-
nent used to store the images once they are
built(compiled). (the public Docker registry is
provided with the Docker Hub)[23].

• Dockerfile is a text document made by all the
commands that a user can call to assemble an im-
age. The Dockerfile can be considered as the
"source code" while images as the "compiled
code" for the containers which are represented
as the "running code".

6



Virtual machine and Docker container: different approach to Virtualization − April 29, 2017

Images consist of several layers (files and direc-
tories from different file systems overlaid to create
a single coherent file system) combined to a single
image by a so called union file systems. They are
built by using a series of basic steps (like run a com-
mand, add file/directory, create environmental vari-
able, specify which process to run when a container
is launched from this image etc.) stored in a Dockerfile
and each step creates a new layer. Every image starts
from a basic clean OS image (Ubuntu, Fedora, etc.)
taken from Docker Hub or with an image of your own.
When a developer requests to build an image, Docker
goes through all the Dockerfile and executes every
step eventually returning an image. An image is a
filesystem and parameters to use at runtime. When a
command is executed, Docker Engine firstly checks if
the image is already present otherwise it downloads
the image from the Docker Hub then loads the image
into the container, runs it and the latter start getting
data(that is the running state).

The lightweightness of Docker comes from these
layers. When, for instance, an application is updated
to a new version, Docker does not replace or rebuild
the whole image (as it may happen with VMs) instead
it creates a new layer which is the only thing that
needs to be distributed.

The life-time of a container matches the life-time
of the command specified in the Dockerfile. The con-
tainer could be built and run for a single command ex-
ecution then terminate right away, or it could be kept
running by using a long-running command. Making
use of Docker Engine allows developers not to care if
the computer can run the software in a Docker image
because a Docker container can always run it.

The underlying Docker’s technology takes advan-
tage from some Linux kernel’s features making use
of four important components:

• Control groups(cgroups) allow Docker Engine
to share available hardware resources to contain-
ers, setting up limits and constraints like how
many CPUs has to be used or how many cycles
it should take or how much memory it should
have.

• Namespaces provide the first and most straight-
forward form of isolated workspace. When a
container is started, behind the scenes Docker
creates a set of namespaces (and control groups)
for that container and each aspect of a container

runs in a separate namespace with the access
limited on such namespace.

• Union file systems(UnionFS) are file systems
that operate by creating layers, making them fast
and lightweight. Those UnionFS are used by the
Docker Engine to provide building blocks for
containers.

• Container format represents the wrapper where
Docker Engine combines cgroups, namespaces
and UnionFS. The default is called libcontainer.

In an ideal deployment container-based applica-
tions are delivered as a series of stateless microser-
vices.

V. Performance comparison

Along the years there has been a lot of different per-
formance evaluation on hypervisors, although, most
of them compared to non-virtualized execution or
other hypervisors. [24, 25, 26] Comparison of VMs
against Docker were also made in the past but mainly
using older software like Xen or out-of-tree container
patches. [27, 15]

Fig. 1 and 3 show that both VM and Docker con-
tainer adopt a different structure. VMs represent an
entire server including all the software and mainte-
nance concerns, bringing high-level isolation and se-
curity since all the communication among guests and
host are done through the hypervisor. However, this
approach incurs in performance overhead(high per-
formance overheads of hardware virtualization have
been deeply studied in [25]) due to the hardware em-
ulation. To reduce this hypervisor overhead many
approaches have been proposed in [28] while Docker
containers provide namespaces isolation and requires
minimum run-time environment for applications to
be configured. Furthermore, in the latter both the
kernel and parts of the OS’s resources are efficiently
shared while VMs are isolated and a full OS must
be included, that means, dedicated kernel for each
application, duplicated binaries, duplicated libraries
and also duplicated user spaces. Additionally, due to
the need to run their own OS, VMs take a few min-
utes to come up and boot while containers only need
a few milliseconds since they do not require to start
any OS. In addition to that, at the creation step of
both technologies, only one VM can be started from
one set VMX and VMDK files in contrast with Docker

7



Virtual machine and Docker container: different approach to Virtualization − April 29, 2017

where many containers can be built with the same
Docker image. Containers could also limit you since
you are forced into a particular OS, but on the other
side it can be a good thing as well considering that
you don’t have to worry about dependencies once
your application is properly up and running in the
container.

The architecture presented in Docker is built in such
a way that dissimilarities between 2 different images
can be tracked, for instance, if you start a container
with a base Ubuntu image, then you add NGINX
and you make a fresh image out of it, the new image
will be a layer that depends on the OS(Ubuntu) layer
so it will not contain the whole Ubuntu OS but just
NGINX. Thanks to this, a large number of snapshots
can be taken for backup reasons with Docker. With
VMs instead this doesn’t happen, mainly due to the
fact that VMs are way heavier than containers. In [29]
with 500GB HDD, it shows that 45 VMs snapshot of
10GB each can be generated while Docker uses half
of the same HDD and 177MB of resources to generate
more than 100 images.

Another dissimilarity which underline a drawback
for Docker is about migration, VMs can be migrated
also during execution while containers cannot and
must be stopped before moving from an host machine
to another one with the consequent waste of time and
resources.

An interesting comparison has been done in [30],
where, to explore the performance of traditional VM
deployments(using KVM[9]) in contrast with Linux
containers, high workloads were used to stress mem-
ory, storage, CPU and network’s resources. Their
results show that both Docker and KVM introduced
trivial overhead on CPU and memory performance
while KVM seems to add some overhead to every I/O
operations making it less suitable for high I/O rates or
latency-sensitive workloads. In contrast Docker adds
overhead with networking in workloads with high
packet rates. A similar test has been developed in [31],
where both virtualization techniques in idle state and
in CPU/Memory with high workloads test seem to
behave in a similar way since they both make use of
an optimized Linux power saving system, while, the
network performance shows dissimilarities between
them.

Another question that worths to be made is about
the practice of deploying a technology inside an-

other. Considering to deploy containers inside VMs,
it results worthless if not useless since the operation
would add the performance overhead of VMs with-
out giving any benefit compared to the deployment
of containers in a non-virtualized environment. The
vice versa, that is, deploying a VM inside a container
could be useful since it generates an extra security
layer e.g. even if an attacker succeeds in hacking the
hypervisor, it still will be inside the container. Overall
results from [30] reveal that containers outcome in
equal or better performance than VM in almost all
cases. [31]

From the resulting studies presented in [32] its
seems that containers "may suffer from performance
interference in multi-tenant scenarios". Containers
look also representing a viable alternative to VMs
in concerns where rigorous isolation is not the most
important thing(like big data processing[33] or high
performance computing)[34].

VI. Evaluations and discussion

This work is not meant to find which way of virtu-
alization is the best between the two analyzed tech-
nologies, no experiments have been running here,
no plain metrics available, instead it is intended to
give some guidance about how cloud infrastructure
can/should be built in order to be profitable in re-
spect to the use of physical servers and reduce the
wastage caused by their under-utilization. Ordinary
insight tells that IaaS should be implemented using
VMs and PaaS by using containers. Of course, there
are no fixed rules or technology constraints especially
in situation where container-based IaaS can provide
a more straightforward deployment or give better
performance.

Virtualization brings up the advantage to reduce
costs of maintenance and energy wastage which is not
very surprising. Since the amount of energy wasted
turns out to be function of the number of running
physical servers, having them virtualized brings to
have a much lower number of physical ones, allowing
to preserve a lot more energy(go green!). Moreover,
as you have less physical servers, only the ones you
have need to be maintained with the result that main-
tenance becomes easier and cheaper and also helps
to reduce the data center footprint(fewer servers, less
networking gear, a smaller number of racks needed...).

8



Virtual machine and Docker container: different approach to Virtualization − April 29, 2017

Faster server provisioning is another valuable advan-
tage of virtualization that enable flexible capacity to
provide deployment at a moment’s notice. A gold
image, template or VM can quickly be cloned to get
a server up and running in a small amount of time.
Most virtualization’s server platforms offer advanced
features like live/storage migration, fault tolerance,
high availability, and distributed resource scheduling
helping to increase uptime and continuity. Combin-
ing servers to fewer physical machines in production,
a business can easily make a cheap replication site,
which in turn with the hardware abstraction capabil-
ity by removing dependencies on a specific hardware
vendor(or model), increases disaster recovery avoid-
ing the requirement to keep identical hardware on
hand in order to match the production environment.

As day passes, containers are getting extremely
popular. Name any tech enterprise and you will
see that is investing in containers. This of course
does not mean that VMs are outmoded. They are
not. The advent of containers is not meant to blow
away VMs, rather those two technologies are compli-
mentary. As it has been mentioned in the previous
section, VMs can run inside containers(or vice versa)
as they would run in any public cloud environment,
they can work well together and they are supported
together. Both technologies have similar resource
isolation and allocation benefits, both allow to save
money on hardware, consolidate management and
use resources in a much more efficient way obtain-
ing greater capabilities in power consumption, physi-
cal space, and energy reuse, although, their peculiar
architectural/structural approach makes containers
more portable and more efficient(in some way).

Whereas every single VM includes binaries, li-
braries, application and in principle an entire OS,
all stuff that can yield in some GBs in size, containers
only include the application with all of its depen-
dencies sharing the kernel with other containers and
running as isolated processes in the user space of
the host’s OS. Docker containers also augment the
existing stack of software and infrastructure bringing
additional capabilities like deployment, speed(and so
on...) to the stack itself.

On important aspect that every business should
take into account is the scope of their work and the
classification of the personal workloads, not only in
respect of the technology to use but also to under-

stand where these technologies do make sense to be
used, where they do not and if they are suited to han-
dle such workloads and use cases. If your scope is to
run a large amount of applications on a really small
number of servers, you may want to create highly
specific Docker containers each one intended to run
one application (e.g. MySQL, Nginx, Php, or any
other). Container technology allows to modularize
applications and run components in their own sepa-
rate space giving the the user the possibility to scale
or update individual components independently. Af-
ter all, Docker’s quick startup times and low overhead
make running multiple containers banal. On the other
hand, if you are interested in having high flexibility
coming up in running multiple applications you may
want to use VMs which is scoped to any recent OS
release(unlike containers where you are forced to one
OS). Additionally, if one big concern is the budget,
it is most probably best to use containers since they
allow you to use more of them with way less physical
servers.

In most cases Linux is the preferred OS to use in the
cloud thanks to their free of costs, good performance,
reliability and good support. Because of this and
from the previous section Docker may appear as the
right technology(implemented in short time and use
resource economically though) to choose from the
point of view of a business who wants to build its
infrastructure on the cloud. However, a VM can be
expressed like a new computer to the user which in
turn can feel the easiness in managing and applying
the policy of system, network, user, security.

To gain more efficiency in using VMs some kind of
optimization could be used apart from the obvious
hardware(BIOS and firmware) updates. A good prac-
tice on the network setup is it to create a separated
isolated network used for moving workloads among
hosts to provide fast and secure layer. Reducing the
number of vCPUs(virtual CPUs) can also decrease
the wait on host resources resulting in a VM’s perfor-
mance increase. Last but not the least is making use of
templates(copy of a VM used to build clones) to speed
up efficiency since templates allow administrator to
deploy VMs rapidly.

The best approach, although, remains certainly not
to get rid of VMs, rather to encourage the proper use
of containers in addition to VMs when it worths.

9



Virtual machine and Docker container: different approach to Virtualization − April 29, 2017

References

[1] Dines Dwivedi Nagaraj Bhat K C Gouda,
Anurag Patro. Virtualization approaches in
cloud computing. International Journal of Com-
puter Trends and Technology (IJCTT), June 2014.

[2] M. Masud Rana Mohammad Mamun Or Rashid
and Jugal Krishna Das. Implementation of the
open source virtualization technologies in cloud
computing. arXiv:1605.03283v1 [cs.DC], page 19,
2016.

[3] Sara Angeles. Virtualization vs. cloud
computing: What’s the difference?
http://www.businessnewsdaily.com/
5791-virtualization-vs-cloud-computing.
html, 2014.

[4] John Grundy Mohamed Al Morsy and Ingo
MÃijller. An analysis of the cloud computing
security problem. APSEC 2010 Cloud Workshop,
September 2016.

[5] Gerald J. Popek and Robert P. Goldberg. Formal
requirements for virtualizable third generation
architectures. Commun. ACM, 17(7):412–421, July
1974.

[6] Shannon Meier. IBM Systems Virtualization:
Servers, Storage, and Software. Redpaper, Decem-
ber 2015.

[7] Microsoft hyper-v. http://www.microsoft.com/
Hyper-V.

[8] Xen. http://www.xenproject.org/.

[9] D. Laor U. Lublin A. Kivity, Y. Kamay and
A. Liguori. Kvm: the linux virtual machine mon-
itor. June 2007.

[10] ORACLE VirtualBox. Virtualbox. https://www.
virtualbox.org/, 2016.

[11] Vmware. http://www.vmware.com/.

[12] vmware. Virtualization. http://www.vmware.
com/solutions/virtualization.html, 2016.

[13] Matthew Portnoy. Virtualization Essentials, 2nd
Edition. SYBEX, The Doker Book, 2016.

[14] Oracle. Understanding virtual machines.
https://docs.oracle.com/cd/E50245_01/
E50249/html/index.html, July 2016.

[15] Stephen Soltesz, Herbert Pötzl, Marc E. Fiuczyn-
ski, Andy Bavier, and Larry Peterson. Container-
based operating system virtualization: A scal-
able, high-performance alternative to hypervi-
sors. SIGOPS Oper. Syst. Rev., 41(3):275–287,
March 2007.

[16] Performance evaluation of container-based virtu-
alization for high performance computing envi-
ronments. Parallel, Distributed and Network-Based
Processing (PDP), 2013 21st Euromicro International
Conference on, April 2013.

[17] Docker Inc. What is docker? https://www.
docker.com/what-docker, 2016.

[18] Solaris containers. http://www.oracle.
com/technetwork/server-storage/solaris/
containers-169727.html.

[19] Linux containers. https://linuxcontainers.
org/, 2008.

[20] Openvz. https://openvz.org/.

[21] James Turnbull. The Docker Book: Containerization
is the new virtualization. James Turnbull, The
Doker Book, 2016 - v1.10.3.

[22] Inc. Red Hat. Linux containers with docker
format. https://access.redhat.com/
documentation/en-US/Red_Hat_Enterprise_
Linux/7/html/7.0_Release_Notes/chap-Red_
Hat_Enterprise_Linux-7.0_Release_
Notes-Linux_Containers_with_Docker_
Format.html, 2017.

[23] Docker Inc. Understand the architec-
ture. https://docs.docker.com/v1.8/
introduction/understanding-docker/, 2016.

[24] Nikolaus Huber, Marcel von Quast, Michael
Hauck, and Samuel Kounev. Evaluating and
modeling virtualization performance overhead
for cloud environments. pages 7–9, 2011.

[25] Jinho Hwang, Sai Zeng, Frederick Wu, and Tim-
othy Wood. A component-based performance

10

http://www.businessnewsdaily.com/5791-virtualization-vs-cloud-computing.html
http://www.businessnewsdaily.com/5791-virtualization-vs-cloud-computing.html
http://www.businessnewsdaily.com/5791-virtualization-vs-cloud-computing.html
http://www.microsoft.com/Hyper-V
http://www.microsoft.com/Hyper-V
http://www.xenproject.org/
https://www.virtualbox.org/
https://www.virtualbox.org/
http://www.vmware.com/
http://www.vmware.com/solutions/virtualization.html
http://www.vmware.com/solutions/virtualization.html
https://docs.oracle.com/cd/E50245_01/E50249/html/index.html
https://docs.oracle.com/cd/E50245_01/E50249/html/index.html
https://www.docker.com/what-docker
https://www.docker.com/what-docker
http://www.oracle.com/technetwork/server-storage/solaris/containers-169727.html
http://www.oracle.com/technetwork/server-storage/solaris/containers-169727.html
http://www.oracle.com/technetwork/server-storage/solaris/containers-169727.html
https://linuxcontainers.org/
https://linuxcontainers.org/
https://openvz.org/
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/7.0_Release_Notes/chap-Red_Hat_Enterprise_Linux-7.0_Release_Notes-Linux_Containers_with_Docker_Format.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/7.0_Release_Notes/chap-Red_Hat_Enterprise_Linux-7.0_Release_Notes-Linux_Containers_with_Docker_Format.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/7.0_Release_Notes/chap-Red_Hat_Enterprise_Linux-7.0_Release_Notes-Linux_Containers_with_Docker_Format.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/7.0_Release_Notes/chap-Red_Hat_Enterprise_Linux-7.0_Release_Notes-Linux_Containers_with_Docker_Format.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/7.0_Release_Notes/chap-Red_Hat_Enterprise_Linux-7.0_Release_Notes-Linux_Containers_with_Docker_Format.html
https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/7/html/7.0_Release_Notes/chap-Red_Hat_Enterprise_Linux-7.0_Release_Notes-Linux_Containers_with_Docker_Format.html
https://docs.docker.com/v1.8/introduction/understanding-docker/
https://docs.docker.com/v1.8/introduction/understanding-docker/


Virtual machine and Docker container: different approach to Virtualization − April 29, 2017

comparison of four hypervisors. pages 269–276,
2013.

[26] Richard McDougall and Jennifer Anderson. Vir-
tualization performance: Perspectives and chal-
lenges ahead. SIGOPS Oper. Syst. Rev., 44(4):40–
56, December 2010.

[27] Performance evaluation of virtualization tech-
nologies for server consolidation. Enterprise Sys-
tems and Software Laboratory, April 2007.

[28] Eric Keller, Jakub Szefer, Jennifer Rexford, and
Ruby B. Lee. Nohype: Virtualized cloud infras-
tructure without the virtualization. SIGARCH
Comput. Archit. News, 38(3):350–361, June 2010.

[29] Il-Young Moon Oh-Young Kwon Byeong-
Jun Kim Kyoung-Taek Seo, Hyun-Seo Hwang.
Performance comparison analysis of linux con-
tainer and virtual machine for building cloud.
Advanced Science and Technology Letters, 66:105–
111, 2014.

[30] An updated performance comparison of virtual
machines and linux containers. Performance Anal-
ysis of Systems and Software (ISPASS), 2015 IEEE
International Symposium on, March 2015.

[31] Power Consumption of Virtualization Technologies:
an Empirical Investigation. IEEE, December 2015.

[32] Prateek Sharma, Lucas Chaufournier, Prashant
Shenoy, and Y. C. Tay. Containers and virtual
machines at scale: A comparative study. pages
1:1–1:13, 2016.

[33] Miguel Gomes Xavier, Marcelo Veiga Neves, and
Cesar Augusto Fonticielha De Rose. A perfor-
mance comparison of container-based virtual-
ization systems for mapreduce clusters. pages
299–306, 2014.

[34] Miguel G. Xavier, Marcelo V. Neves, Fabio D.
Rossi, Tiago C. Ferreto, Timoteo Lange, and Ce-
sar A. F. De Rose. Performance evaluation of
container-based virtualization for high perfor-
mance computing environments. pages 233–240,
2013.

11


	Introduction
	Cloud computing
	Virtual machine - VM
	VM's advantages
	How VM virtualization works

	Docker Container
	Docker's advantages
	How Docker virtualization works

	Performance comparison
	Evaluations and discussion

