
Distributed file systems: a current overview and
future outlook

Boudewijn Braams
University of Amsterdam/Vrije Universiteit

UvANetID: 10401040/VUnetID: bbs820 (2527663)
bbx1992@gmail.com

Abstract—Many applications require access to data sets that
do not fit on a single server. Additionally, such application might
have varying degrees of performance, availability and fault-
tolerance requirements. One way to address these issues is by
making use of a distributed file system (DFS). In this paper
we give an overview of several established DFS solutions (GFS,
HDFS, GlusterFS, Ceph, Lustre and cloud-based object storage),
while also taking a look at future challenges we expect to be
relevant for the advancement of DFS design. For the established
solutions, we highlight differences in their design and outline
characterizing aspects. For the future challenges, we discuss
novel research projects and how these attempt to tackle the
challenges. Besides focussing on fault tolerance and scalability
characteristics, we briefly consider the solutions in the context of
exa-scale computing to see whether they would be appropriate.

I. INTRODUCTION

The capacity of storage devices has been ever growing
since the inception of the first hard disk drives (HDD’s)
more than 60 years ago. State-of-the-art technology currently
limits HDD storage capacity for a single device at around
∼10TB, with technology to support ∼100TB HDD’s expected
by 2025 [9] [1]. However, many modern applications deal
with data sets sized beyond what fits on a single machine or
server. Moreover, these applications potentially require varying
degrees of performance, availability and fault-tolerance. To
facilitate this, one has to make use of a distributed file system
(DFS). DFSs are not a new technology, traditional solutions
like the Network File System (NFS) have been around since
the 1980s [31]. Although these traditional technologies are
still being used, it are the developments in high-performance
computing (HPC) and the advent of big data and cloud-based
applications that have lead to the development of many novel
DFS designs and architectures. Moreover, since we are slowly
but steadily heading towards the era of exa-scale computing.
It will be interesting to see how DFS designs are developing
in this regard.

With this paper, we will provide an overview of several
established state-of-the-art DFS solutions while also highlight-
ing novel research projects and regarding them in an exa-
scale computing context. We will start by giving a high-level
overview of the main concepts of DFS design in Section II,
in which we will briefly discuss desired properties, potential
architectures, the CAP theorem and exa-scale computing. In
Section III we will evaluate various established DFS solutions
from a design perspective, reflecting back on the design aspects
introduced in the previous section. Finally, in Section IV we
will discuss future challenges and highlight recent research

projects.

II. DFS DESIGN

In a traditional, non-distributed file system, the file system
manages access to storage devices on a single machine, pro-
viding well known file system semantics for reading/writing
files and managing hierarchical namespaces. It acts as the
layer between an application or operating system (OS) and
the block-based interface provided by the storage devices
directly attached to the machine. The storage devices are thus
mounted on a single machine and can only be accessed directly
by this machine. However, in the case of a DFS, the file
system manages access to storage devices attached to multiple
machines or servers. In order for the file system to actually
manage data stored on multiple servers, these servers will
have to communicate with each other over a network. Thus
in the case of a DFS, another layer is placed on top of the
traditional file system in the form of a network protocol to
facilitate the communication between servers. This additional
layer of abstraction should allow for a DFS to mount storage
devices physically attached to different servers on multiple
client machines.

In this section we will touch upon the desired properties
of a DFS, potential architectures, the CAP theorem and briefly
discuss exa-scale computing and what it implies for DFS
design.

A. Desired properties

From a design perspective, there are three properties that
are desirable for a DFS, namely: transparency, fault tolerance
and scalability [23]. Transparency means that ideally the
complexity of the distributed file system should be completely
abstracted away and thus be hidden. Interaction with the DFS
should mimic that of interacting with a local file system, the
user or client should not be concerned with the intricacies
of where and how the data is distributed and/or replicated.
Fault tolerance means that in the event of a transient server
failure (e.g. a failing HDD) or partial network failure (i.e.
network partition) the system should continue to function,
ideally without any compromising of data integrity. Lastly,
scalability means that the system be able to withstand high load
and allow for new resources (such as servers) to be integrated
into the system with relative ease.

B. Architecture

In essence, a DFS will always comprise of a set of servers.
There are however many ways in which these can be arranged



architecturally to realize distributed storage. In Sections III and
IV we will see various different approaches. From architectures
in which all servers manage data and metadata to architectures
in which data and metadata are handled by a different server
or servers entirely. Moreover, one can choose handle client
request directly on data/metadata servers or introduce a addi-
tional layer of servers acting as a proxy. It is important to note
that these architectural decisions can have serious implications
for both fault tolerance and scalability. We will therefore reflect
on this the aforementioned sections.

C. CAP theorem

Since data in a DFS will be distributed among several
servers and will likely have to be replicated in places to
ensure availability in case of a server failure, the notion of
state becomes blurry. In 2000, Brewer proposed the CAP
theorem, which essentially suggests that it impossible for a
distributed system (and thus a DFS) to provide Consistency
(C), Availability (A) and Partition tolerance (P) guarantees
all at the same time [16]. The theorem was formalized and
proved correct in 2002 by Gilbert and Lynch and states that
at most two out of the three guarantees can be provided
simultaneously [22].

The probability of server failure increases with the number
of servers used, some form of replication is thus required
to provide fault-tolerance. However, since data is replicated,
failures in such a concurrent system can lead to state in-
consistencies. Consistency in this context refers to the notion
that replicated copies are identical. More formally, the strict
consistency guarantee states that there must be a single total
order on all concurrent data operations such that to an out-
side observer, they appear as a single operation, essentially
behaving as though the operation was performed on a single
machine.

While occasional server failures are inevitable, it is de-
sirable for a distributed system to be continuously available.
Availability thus refers to the guarantee of a distributed system
to always provide a response to a request eventually (i.e it
should not fail or give an error).

Communication among servers happens via a network.
Similar to how server failures are inevitable, it is likely that
there will be errors and failures in the network (e.g. loss of
network messages or corruption). Partition tolerance refers
to the ability of a system to cope with partitioning within a
network, a situation that can occur when a certain set of servers
is unable to deliver network messages to other servers in the
network. In accordance with this guarantee, only complete
network failure should allow the system respond incorrectly.
In any other case, the system should behave as expected.

The CAP theorem essentially divides systems into the
following three categories (see Figure 1):

• CA: These systems offer consistency and availability
guarantees, but sacrifice partition tolerance. Such sys-
tems are not designed to gracefully handle network
failures. It is evident that this design is not a good
fit when designing a large scale DFS. However, for
example for a relational database running on a single
machine, sacrificing partition tolerance is perfectly
acceptable.

• CP: These systems offer consistency and partition
tolerance, but sacrifice availability. Such systems take
into account the unreliable nature of computer net-
works, and prefer responding with an error to a request
over responding with stale state. When a system
requires atomic reads and writes (e.g. in a banking
system), a design like this is preferred.

• AP: These systems offer availability and partition
tolerance, but sacrifice consistency. Such a design is
applicable when the consistency of the data is not an
integral part of for example the business value (e.g. in
the case of social networks).

Fig. 1. Visual representation of the traditional CAP theorem

Given the seemingly hard limitations presented by the
CAP theorem, the choice for a DFS will almost always come
down to a CP or AP design, as a we would like our DFS
to continue functioning in the case of network errors (i.e.
we can not give up P). However, regarding the ‘two out of
three’ formulation as a hard limitation on distributed system
design is an oversimplification. In a 2012 article reflecting on
his initial proposed idea, Brewer argues that the traditional
notion of CAP has served its purpose (which was to ‘open the
minds of designers to a wider range of systems and tradeoffs’)
and that system designers should be freed of these perceived
limitations [15]. In it he states that while networks can behave
unreliably and partitions can occur, such events are relatively
rare. Why should a system therefore have to choose between
C or A when the system is not partitioned? Systems can be
designed to deal with partitions explicitly and perform recovery
afterwards. The choice between the three guarantees should not
be thought of as a hard choice (e.g. choosing P means losing
either C or A), but in terms of probabilities (e.g. the probability
of P is deemed lower than other failures).

When a distributed system is able to detect partitions, it can
explicitly account for them in a three stage process: partition
detection, partition mode, recovery mode. In the first stage, the
network partition must be detected and the system should enter
partition mode. While in partition mode, the system should
either impose limits on certain operations (reducing A) or
record extra information regarding operations by storing the
intent of an operation so it can be executed after partition
recovery (hiding the reduction of A). In the last stage, the



system will have to reimpose C by essentially re-computing the
state. Note that the last stage can lead to merge conflicts which
can either required to be resolved manually or automatically
(by imposing a deterministic choice on what option to choose).

Ultimately the key insight here is that when there is a
network partition, there need not be a hard choice between
either C or A: a choice between C and A can be made on sub
system level granularity.

D. Exa-scale context

In the realm of HPC, supercomputers comprising of thou-
sands of interconnected servers are being used to solve the
world’s most complex problems. We see application of HPC in
both the scientific domain and industry: ranging from modeling
global climate phenomenon to designing more efficient drugs.
Currently, the state of the art in HPC is at the peta-scale (in the
order of 1015 FLOPS1), first achieved in 2008 [6]. However,
we now see an enormous increase in the size of commercial
and scientific datasets. Consequently, it is likely that the current
peta-scale technologies will not be able to handle this and that
we will require new solutions to prepare ourselves for the next
milestone: exa-scale computing (1018 FLOPS).

Exa-scale systems are expected to be realized by 2023 and
will likely comprise of ∼ 100, 000 interconnected servers; sim-
ply scaling up peta-scale solutions will likely not suffice [36].
Evidently, this raises many challenges in how the required
hardware but also how to design applications that can make
use of that many computing nodes. However, what is relevant
for this paper is how the large volumes of data involved will be
stored. Exa-scale systems will need novel DFSs, sufficiently
scalable to accommodate for the increase in memory capacity
requirements. While not the solely focus of this paper, we will
attempt to take this into account when discussing DFSs and
recent research projects to see how well they might be suited
for an exa-scale computing context.

III. ESTABLISHED DFS SOLUTIONS

In this section we will start of with a brief description of
the traditional approach to networked file systems in the form
of NAS/SAN and why these techniques are by themselves
not a good fit for modern DFS requirements. After that we
will discuss several established DFS solutions (GFS, HDFS,
GlusterFS, Ceph, Lustre) and will also regard cloud-based
object storage as a higher level alternative. For each of the
solutions we will describe the architectural design, character-
izing aspects, relation to the CAP theorem and put them in an
exa-scale context.

A. Traditional solutions

Before the advent of big data and cloud computing there
were three main prevalent storage architectures: direct-attached
storage (DAS), storage area networks (SANs) and network-
attached storage (NAS) [26]. With DAS, the storage device is
directly connected to server and accessed via the block-based
I/O bus of the machine. The limitation of DAS is obvious,
namely that access to a storage device is limited to the hosting
server. Both SAN and NAS attempt to overcome this limitation

1Floating point operations per second

by allowing the sharing of access to storage devices over a
network. A SAN is a network in which block-level access
to storage devices is shared among different servers. This is
done via a specialized infrastructure comprising of servers and
switches running a specialized network layer (layer 2 in both
the TCP/IP and Open Systems Interconnection (OSI) models)
protocol. In contrast, in the case of NAS, access to the storage
is presented at file system level over a general purpose network
via an application layer protocol (TCP/IP layer 4, OSI layer
5).

In the case of both DAS and SAN, the file system running
on a client node will see the storage device as being attached
locally since all the administrative complexity is manifested in
the lower level protocols and hardware. In the case of NAS,
a specialized higher level OS level protocol like the Network
File System (NFS) is required to interface with the server’s
storage device. This means that all access to the file system
will have to go through a single file server, which is evidently
a major bottleneck in terms of performance. It must be noted
that a NAS/SAN hybrid where the backing storage of the NAS
is actually a SAN is possible, this however only mitigates
part of the inherent performance issue [30]. The advantages of
SAN compared to NAS are thus performance and scalability,
however these come at the cost of tight coupling between
servers in the form of expensive dedicated supporting hardware
and specialized network layer switches [35].

The inherent lack of scalability of NAS makes it a poor
fit for achieving large scale distributed data storage. With the
advent of cloud computing and open-source big data toolkits
there is a trend of solving scalability issues using commodity
hardware at the application level of abstraction. The need for
specialized hardware and infrastructure and lack of application
level configurability of SAN therefore largely rules it out as a
solution for current day large scale data storage needs. Ideally
what we want is solution that was designed from the ground up
with modern scalability needs in mind running on commodity
hardware.

B. GFS

To cope with the ever growing storage demands of their
search engine, Google decided developed their own DFS in
2003 dubbed the Google File System (GFS). Even though the
software is proprietary and not open-source, at the time of
release they did write a paper describing the design of the
DFS [21]. While the original design has since been replaced
with a newer version called Colossus, no such paper has been
released describing the updated design [19]. Since the original
GFS was one of the pioneering DFSs for internet-scale data
and the fact that its design has heavily inspired open-source
alternatives such as HDFS, we will discuss it here.

The design of GFS is based around a few key assumptions.
The first of which states that component failure should be
regarded as the norm, rather than as an exception (which was
common for distributed system designs at the time). Seeing as
the DFS would be running on hundreds of commodity servers
each with several HDDs, it is evident failures will definitely
occur. Secondly, the system will be designed to deal with
a moderate number of large files. Dealing with billions of
KB-sized files inconvenient, which is why in GFS all files



are stored in fixed size 64MB chunks. Not only does this
drastically reduce the size of the metadata required for each
chunk, it also reduces the number of requests. Furthermore,
they noticed that for their most common workloads, data
mutations usually take the form of appending data, rather than
replacing existing data at a random offset. This insight lead to
a design that features an atomic append operation for multiple
clients appending data, aiming for minimal synchronization
overhead. Lastly they stated that high sustained bandwidth is
preferred over low latency.

A GFS cluster runs on commodity hardware as a user-
space application, providing a file like interface (although not
fully POSIX compliant). Note that this makes the DFS not
completely transparent, as it required a user space application
instead of being mounted directly in the OS. Architecturally,
such a cluster consists of a single master server and nu-
merous chunkservers. Files are split into fixed-size chunks
and each get assigned a unique identifier. By default, each
chunk is replicated on at least 3 chunkservers. The master
manages all the metadata such as the namespace, access
control information, the mapping of files to chunks and the
current locations of chunks in main memory to speed up
the operations. At regular intervals, the master communicates
with each chunkserver via a HeartBeat message, giving it
instructions and receiving a reply with the server state and
the list of chunks a chunkserver contains. Note that these
messages are also used to check whether a chunkserver is still
functioning. To minimize interaction with the master as it is
a potential performance bottleneck, clients only interact with
it for metadata operations, the actual transfer of data happens
directly between the clients and chunkservers.

The choice for only a single master server was made since
it lead to a relatively simple design, especially in contrast to
having multiple servers managing a global metadata state. To
provide fault tolerance in the case of a master failure, all meta-
data mutations are logged, stored on disk and replicated on
remote servers. To keep the log small, the master periodically
saves its state to disk and subsequently resets the log. Keeping
track of all mutations allows for data recovery in the event of
a master failure, in which case the log is simply played back
on the last checkpoint. Note that a client operation is only
responded to when the relevant log record is flushed to disk
locally and on the remove servers.

With respect to consistency, GFS employs a relaxed con-
sistency model. For metadata there is strict consistency with
a global ordering of operations defined in the log. As there
is only a single server managing metadata, the metadata
operations are made atomic by means of a locking mechanism.
For non-concurrent data mutations, file regions are said to be
consistent (all clients always see the same data, regardless
of which replica) and defined (consistent, with all mutations
processed serially). For concurrent data mutations, a single
ordering will be defined for all replicates, and the state will
be consistent but potentially undefined (mutations may be
interleaved).

To summarize, GFS can be regarded as having laid a solid
foundation for modern DFS designs and research to build upon.
GFS is a good fit for batch processing applications on large
files, providing reliability by actively replicating chunks on
multiple servers. With respect to the CAP theorem, the design

favors availability and partition tolerance over consistency,
given its relaxed consistency model. For latency sensitive ap-
plications however, the GFS is not a good fit. The original GFS
design has proven to be scalable up to thousands of servers,
hosting approximately 50M files comprising in the order of
10 petabytes of data [19]. However, the single metadata server
design combined with the scalability limits stated above mean
that it is unlikely to be suited for exa-scale computing.

C. HDFS

The Hadoop Distributed File System (HDFS) was devel-
oped as part of the popular open-source big data framework
Hadoop and officially released in 2011 [32]. The design of
HDFS was heavily inspired by that of GFS, one might even go
as far as stating that is an open-source implementation of GFS.
However, in contrast to GFS, Hadoop (and thereby HDFS) is
an Apache project and is thus available under the Apache open-
source license. This has lead to widespread use of HDFS, in
the context of Hadoop but also as a separate entity [8]. Since
it is nearly identical in design as GFS, we will not go over it
in its entirety, but will only highlight the main differences.

One of the more superficial differences between HDFS
and GFS is the terminology. Instead of the master and
chunkservers, we deal with the NameNode and DataNodes
respectively, and instead of chunks we deal with blocks. In
GFS, the locations of chunks are not persistently stored on the
master (they are determined by the HeartBeat messages) while
in HDFS the NameNode does maintain persistent location
information. Although GFS is optimized for append-only op-
erations, it does allow for random writes within files. In HDFS
random writes are not possible, only append write operations
are allowed. Lastly, as described in Section III-B, concurrent
writes in GFS can lead to consistent but undefined state. HDFS
on the other hand employs a single-writer, multiple-reader
model meaning that files will always be consistent and defined.

The limitations of HDFS are identical to those of GFS.
While scalable to thousands of servers and capable of storing
tens of petabytes of data, the single server metadata man-
agement severely limits its further scalability. Note that new
solution based on HDFS are being researched and developed
to address these issues, several of these will be discussed in
Section IV.

D. GlusterFS

Originally developed by Gluster and now owned by Red
Hat after acquiring them in 2011, GlusterFS is an open-source
networked file system designed for running on commodity
hardware [7]. It is marketed as being a scale-out NAS system,
relying on a more traditional client server design rather than
employing a metadata server based architecture like GFS or
HDFS. GlusterFS is fully POSIX compliant, runs on com-
modity Ethernet networks but also on Infiniband RDMA (an
alternative networking standard often used in the context of
HPC). While it is a user-space file system like GFS and HDFS,
it can be mounted as native storage on Linux via Filesystem
in Userspace (FUSE) or NFS.

In GlusterFS, data is stored on sets of servers called
volumes. Each volume is a collection of bricks, where each



brick is a directory exported from a server. Data is sub-
sequently distributed and potentially replicated on servers
within a volume. The level of redundancy within a volume is
customisable. Distributed volumes: files are simply distributed
without replication, limiting the placement of a file to at
most one brick. Replicated volumes: for better availability
and reliability, files can be replicated across bricks within a
volume. Distributed replicated volumes: files are distributed
across replicated sets of bricks in the volume, potentially
providing improved read performance. Dispersed volumes:
based on erasure codes, stores encoded fragments of a file
on multiple bricks in such a way that the original file can be
recovered with only a subset of the encoded fragments. Dis-
tributed dispersed volumes: similar to replicated vs. distributed
replicated volumes, providing higher reliability.

Besides the customisable replication within GlusterFS,
what makes its design stand out is the fact that it doe snot
maintain a separate metadata index of file locations. Instead,
the file location is determined algorithmically using its elastic
hashing algorithm (EHA). Given a path and file name, the
hashing algorithm will determine where this file will be placed.
Not having to explicitly store a metadata record is huge advan-
tage in terms of scalability. However, a possible disadvantage
of such a placement strategy is that while file placement might
be uniform, uniformity of the actual distribution of data need
not be, since not all files are equal in size.

With respect to CAP, GlusterFS favors consistency and
availability by default. However, with replicated enabled, Glus-
terFS allows you to set up a server quorum which effectively
allows you to trade in availability for partition tolerance. In the
event of a network partition, i.e. when different sets of servers
are concurrently handling different writes, we can end up with
inconsistent state for the same files. When no quorum is set
up, clients are always allowed to perform write operations,
regardless of any network partition (high availability). As a
consequence, any file that is left in an inconsistent state will
be marked as such, and will require manual intervention to
resolve the merge conflict. When a quorum is set up, only a
single set of servers is allowed to perform write operations.
This means that availability is sacrificed for the servers not in
this set, write operations will simply. However, this does mean
that the system is able to handle network partitions.

To summarize, there are several clear advantages to the
design of GlusterFS. First of all, it offers POSIX file semantics,
which means that it is mountable like any other traditional
file system and adheres to strict consistency requirements.
Secondly, its replication via erasure codes is a more space
efficient way of replicating data than naively storing multiple
copies. But the main advantage however is the fact the de-
sign does not feature a server explicitly storing file location
metadata. With respect to scalability, not requiring a metadata
server that can potentially be a performance bottleneck is a
significant benefit. For certain workloads, a disadvantage of
the design of GlusterFS is that it works on file granularity (as
opposed to aggregated data blocks or chunks). Such a design
can introduce more internal administrative overhead when for
example replicating huge numbers of small files. However,
we deem it likely that its approach of having a decentralized
namespace will manifest itself in exa-scale DFS solutions of
the future.

E. Ceph

Ceph is an open-source storage system providing object,
block and file storage. It was initially presented in 2006 by
Weil et al. as a research project [37]. In 2011, Weil founded
Inktank Storage to lead the development of Ceph, which
was subsequently acquired by Red Hat in 2014, now making
them the lead development contributor. As with the previously
discussed DFSs, Ceph is designed to be run on commodity
hardware. It is POSIX compliant and natively mountable in
Linux.

Like with GFS and HDFS, there is a decoupling of data
and metadata. Data transfer occurs between client and data
storage servers directly, while metadata operations are handled
by metadata servers. However, unlike GFS and HDFS which
employ a single metadata server, in Ceph, metadata is managed
by an actual cluster of metadata servers (MDSs). It thereby
attempts to tackle the problem of metadata management scal-
ability, allowing for up to tens or hundreds of MDSs to form a
metadata cluster [25]. Within this cluster, the metadata work-
load is attempted to be evenly distributed by the use of dynamic
subtree partitioning, delegating the workload for parts of the
file hierarchy to certain MDSs taking into account metadata
popularity. Additionally, it allows MDSs to serve in standby
mode, ready to take over in the event of an MDS failure,
thereby increasing fault tolerance. Similarly to GlusterFS’s
EHA, Ceph uses its Controlled Replication Under Scalable
Hashing (CRUSH) to algorithmically determine where objects
are to be placed.

In Ceph, data is stored in a distinct cluster referred to as
the Reliable Autonomic Distributed Object Storage (RADOS),
exposing an single autonomous object store to clients and
the metadata cluster. Within this cluster, objects are stored in
conceptual object storage devices (OSDs) which are stored on
the local file system of a server. Since 2017, besides allowing
OSDs to be run on top of conventional Linux file systems,
Ceph now offers its own file system called BlueStore which is
optimized for the OSD design (thereby removing the transla-
tion overhead due between OSD semantics and traditional file
system semantics) [3]. Within the data cluster, data replication
is available and customizable. Similar to GlusterFS’s dispersed
volume, Ceph too uses erasure codes in replication.

Ceph offers a lot of customizability with respect to con-
sistency and availability. Not only does it support MDS/OSD
clusters ranging from a handful to hundreds of servers, allow-
ing for high availability, it also offers a choice between strict or
relaxed consistency models within these clusters. With regard
to partition tolerance, Ceph supports a cluster of monitors
which maintain a map of the storage cluster, keeping track of
the state of the storage servers allowing for action to be taken
when necessary. In agreement with the revised take on the
CAP theorem and given the amount of customizability Ceph
offers, it is not appropriate to label it as either a CA, CP or
AP system, thus we will refrain from doing so.

The design of Ceph, allowing for clusters of not only
data, but also metadata and monitor servers provides it with
excellent scalability characteristics. Currently, it is currently
already being used by Yahoo to store petabytes of data and
is chosen as the technology to prepare their infrastructure for
storing exabytes of data [12]. This in combination with the



level of customizability makes Ceph a good candidate for an
exa-scale computing DFS.

F. Lustre

Originally started as a research project in 1999, it was offi-
cially released in 2003. Lustre is an open-source DFS tailored
to HPC environments, scaling up to thousands of servers and
storing petabytes of data [10]. It is fully POSIX compliant,
natively mountable on Linux and can be run over standard
Ethernet or HPC oriented interconnects such as Infiniband.

In Lustre, storage and transfer of data and metadata are
performed by different servers. Similar to the design of Ceph,
metadata is stored on a cluster of metadata targets (MDTs).
The metadata is distributed over these servers via the Lustre
Distributed Namespace (DNE), an approach along the same
lines as Ceph’s dynamic subtree partitioning. However, unlike
Ceph, clients do not access MDTs directly. Instead the client
endpoint for metadata operations are the metadata servers
(MDSs). The same goes for data storage; files are stored
in objects on object storage targets (OSTs) while the client
request for the objects are handled by object storage servers
(OSSs), which delegate the requests to the ODTs. Thus we
see a clear separation of the actual storage of data/metadata
and the handling of their respective client requests. This should
help in distributing the workload, at the cost of requiring more
servers.

Lustre was originally designed for use in HPC, whereby it
was assumed that the storage devices provide internal redun-
dancy and fault tolerance. Therefore Lustre does not provide
any file system level replication. However, a high level design
is provided by the Lustre team for file level replication [11].
In terms of consistency, Lustre is able to provide strong
consistency via a locking mechanism. Lustre aims to achieve
high availability by providing failover mechanism, essentially
allowing redundant servers to take over in the event of server
failures.

In conclusion, there are several clear advantages to Lustre’s
design. The first of which is that it allows for clusters of
data and metadata, like Ceph. Secondly, the handling of client
requests and actual storage of data and metadata occurs on
different machines. In terms of scalability this is a clear
advantage since it allows for explicit control over how many
server to dedicate to the handling of client requests and
actual storage. Similarly, availability can be customized by
introducing redundant backup servers to a cluster. The number
of files that are stored in a single object is customizable as
well, which means that Lustre is not necessarily tied to single
type of workload with respect to file size. However, the lack of
replication at the software level makes it a poor fit for failure
sensitive commodity hardware, especially when the cluster
size grows. That being said, its metadata and data cluster
architecture, given hardware providing built-in redundancy and
fault tolerance, make it a good candidate for an exa-scale
computing DFS.

G. Cloud-based object storage

Although arguably not a DFS at the same level of abstrac-
tion as those previously discussed, we deemed it necessary
to discuss the object storage services provided by practically

all major cloud providers. These services essentially provide
a complete virtualization of storage, not burdening application
developers with the intricacies of cluster management or the
cost of running and maintaining a private cluster. Additionally,
these services are comparably trivial to set up and provide easy
to use interfaces. Here we will briefly discuss the advantages
and disadvantages of these services and discuss the consistency
models offered by the three major cloud providers: Amazon,
Microsoft and Google.

There are many advantages to cloud-based object storage.
For system designers and application developers, an object
interface that abstracts away nearly all of the administrative
complexities that come with distributed data storage is a major
selling point. The relative ease of use and pricing of cloud
services make it so that large scale data storage is available
to small companies or even individuals, and not just in the
reach of large enterprises or universities. Since the major cloud
providers have data centers all around the globe, data can be
replicated over these data centers and can thus lead to better
performance when accessed from varying locations.

With respect to the interfaces provided for these services, in
addition to the availability of language bindings for practically
all popular programming languages in the form of official or
third-party libraries, they all provide very similar RESTful
API’s for interfacing with them over HTTP/HTTPS. Since the
interfaces are web-based it means that cross platform data
sharing is trivial. It must be noted however that while the
interfaces are similar, they are not identical. Thus there is the
risk of vendor lock-in. Fortunately, efforts are being made by
the SNIA to standardize the interface for clients in the form
of the Cloud Data Management Interface (CDMI) [13].

In terms of CAP, usually cloud-based object storage solu-
tions used to fall in the AP category, providing high availability
(through replication) and partition tolerance while offering
only eventual consistency [24]. Informally put, eventual consis-
tency only guarantees that given the absence of future updates,
eventually all read operations on a particular data item will
yield the latest version. It should be noted that preservation
of the ordering of operations is not at all guaranteed. One
of the most obvious use cases for eventual consistency is the
hosting of large sets of unstructured data that are not subjected
to frequent change such as static images or videos. Where it
evidently falls short is when stale reads can compromise the
business logic of an application. An extreme example of this
would be a banking application.

In an effort to allow for stronger consistency guarantees
for replicated cloud storage, Mahmood et al. propose a system
enabling causal consistency for cloud storage services [24].
With causal consistency, preservation of the causal relation-
ships between operations is guaranteed. More specifically it
guarantees that write operations that are potentially causally
related must always be observed in the same order, while
concurrent writes may be seen in a different order [34].
For example, in the context of a web shop, a notification
about a discount on a certain product (itself a write operation
causally related to the previous write operation on the price
of the product) should be followed by the customer seeing
the discounted price when visiting the web shop. In this case
it is evident that preservation of the causal relationship is
desired, otherwise the customer could be presented with the



non-discounted price while having received the notification.
In their work they note that while there has been a lot of
research into achieving causal consistency in storage systems,
their adoption has been limited and is impractical since they
require full replication of the entire data set among all data
centers. They propose a promising new system dubbed Karma
that achieves causal consistency using only partial replication
(making it both more feasible and economical). The system
is able to offer causal consistency and guarantees availability
under a single AZ2 failure and simple network partitions. It
retains availability by operating in a degraded mode upon
network partition, aligning with the revised take on the CAP
theorem discussed in Section II-C.

Today, the three major cloud providers offer different con-
sistency guarantees for their object storage services. Amazon’s
S3 offers only eventual consistency for update and delete
operation but does offer so called read-after-write consistency
for newly created objects [5]. This means that when an object is
newly created, it should be immediately available (no need for
parts of an application to introduce an artificial delay to assure
the creation has propagated). Google’s Cloud Storage offers
full consistency for creating, deleting objects and performing
meta-data updates, while only offering eventual consistency for
object access revocation [4]. Lastly, Microsoft’s Azure Storage
claims to offer full consistency in addition to availability and
partition tolerance guarantees ‘in practice’ by layering their
system design around a specific fault model [17].

Since major cloud providers have immense backing in-
frastructures, they are able to offer virtually unlimited storage
capacity. This means that at least in terms of memory capacity,
cloud-based object storage is scalable to petabytes and even
exabytes. They offer it at a level of abstraction that is easy to
interface with from a system designer or application developer
point of view. They major downside however will be the
relatively high latency of the web based interfaces, making
it unsuitable for latency sensitive (HPC) workloads. With
regard to consistency, the major cloud providers initially only
offered eventual consistency for their object storage services,
ruling out their use in applications which rely on stronger
consistency restraints. However, we are seeing efforts being
made in both academia and industry to improve these services
by providing stronger consistency models in the presence of
high availability and partition tolerance. Although at a higher
level of abstraction than the previously discussed DFSs, cloud-
based object storage can be an appropriate solution when
extremely low latency is not required.

IV. FUTURE CHALLENGES AND RESEARCH

The open-source solutions discussed in the previous section
are production ready and can be used today. However, there is
also an active research community with respect to improving
DFS design, both in academia and in open-source communi-
ties. For this section, we have chosen three challenges that
we expect to be relevant for the advancement of DFS design.
We will briefly describe them and novel research projects
attempting to address these challenges.

2Availability zone: a term used by the major cloud providers referring to
a logical data center with a physically distinct, independent infrastructure in
terms of power, networking and cooling [2]

A. Scalability of metadata management

To ensure future use of current DFS designs means that
they not only have to be scalable in terms of actual storage
capacity, but also in metadata management. In a comparison
of typical file system workloads, it was found that nearly half
of all operations are metadata operations [29]. It is for this
reason that there is a continuous effort being made to make
metadata management more scalable. Here we will briefly go
over the metadata scalability characteristics of the discussed
DFSs and take a look at two recent research projects.

From the discussed DFSs we have observed the inherent
lack of metadata scalability of GFS and HDFS, since they both
feature a design with only a single metadata server. Lustre
allows for multiple metadata servers, but relies on explicitly
storing the locations of files. GlusterFS somewhat improves
on this aspect by not explicitly storing metadata regarding
file locations but instead it opting for algorithmic placement.
It must be noted however that even with this in place, all
the other metadata operations still happen on the data storage
servers. The design of Ceph is probably the most scalable with
respect to metadata management, since it allows for a cluster of
metadata servers and also features algorithmic file placement
and dynamic metadata workload distribution.

A notable recent development in relational databases is
NewSQL, a class of databases seeking to combine the scalabil-
ity characteristics of NoSQL databases with the transactional
characteristics of traditional relational databases. In a 2017
paper Niazi et al. present HopFS, a DFS built on top of HDFS,
replacing the single metadata server with a cluster of NewSQL
databases storing the metadata [27]. They attempt to address
the issue of metadata management scalability by storing all
HDFS metadata in a Network Database (NDB), a NewSQL
engine for MySQL Cluster. They tested their solution on a
Spotify workload (a Hadoop cluster of 1600+ servers storing
60 petabytes of data) for which they observed a throughput
increase of 16-37x compared to regular HDFS. What makes
this solution noteworthy is that it is a drop-in replacement for
HDFS, allowing it to be used in existing Hadoop environments,
allowing them to scale beyond the limits imposed by the single
metadata server approach.

Using a similar approach, Takatsu et al. present PPFS
(Post-Petascale File System), a DFS optimized for high file
creation workloads. In their paper they argue that modern
DFSs are not optimized for high file creation workloads,
and that for exa-scale computing this can turn out to be
a serious performance bottleneck [33]. They have evaluated
their system against IndexFS (2014), a middleware for file
systems such as HDFS and Lustre aiming to improve metadata
performance [28]. With respect to file creation performance,
they observed a 2.6x increase in performance. They achieved
this by employing a distributed metadata cluster design using
key-value metadata storage and non-blocking distributed trans-
actions to simultaneously update multiple entries. Although
only tested on relatively small clusters comprising of tens of
servers, it good to see that an effort is being made to improve
upon aspects such as file creation performance, which might
turn out to be a bottleneck in an exa-scale context.



B. Small file performance

There is a discrepancy in performance between DFSs
with respect workloads involving many small files as opposed
to workloads with fewer, but larger files. In a comparative
analysis of various DFSs, it was established that the design
of GFS, HDFS and Lustre make them not well suited to-
wards workloads involving many small files, while Ceph and
GlusterFS seemed to perform reasonably well for both types
of workloads [18]. That being said, there is room left for
improvement with regard to small file workload performance.
Here we will briefly highlight two recent research projects
attempting to address this issue.

In their paper, Zhang et al. present HybridFS, a DFS
framework that runs on top of multiple DFSs and dynamically
chooses which DFS to use for file placement [38]. As not
to impose a tight coupling between an application and a
specific DFS based on file size performance characteristics
of the DFS, Zhang et al. present HybridFS. It is a DFS
framework that runs on top of multiple DFSs and features an
additional metadata management server that is in charge of file
placement on the underlying DFSs, features a partial metadata
store for small files and can perform dynamic file migration
to balance storage usage on the DFSs. They have evaluated
their solution on an 8 node cluster running Ceph, HDFS and
GlusterFS. They observed a best-case performance increase of
30% in read/write operations when compared to single DFS.
HybridFS is definitely a step in the right direction with regard
to providing a workload agnostic DFS framework. With respect
to exa-scale computing, the relatively small cluster size on
which it was tested and the fact that the additional metadata
management server introduces an additional single point of
failure limit its scalability and thereby suitability for exa-scale
computing.

A different approach is taken by Fu et al., who present
iFlatLFS (Flat Lightweight File System), an OS level file
system designed as a replacement for file systems such as
Ext4, ReiserFS or XFS when deployed on storage servers
in a DFS [20]. The file system was explicitly designed to
address the issue of poor small file performance. In iFlatFS,
data can be directly addressed from disk instead of through
a hierarchical file tree as is the case for the conventional file
systems. They achieve this by using a much simpler metadata
scheme that occupies much less space, which allows it to be
entirely cached in memory. This in turn means that all metadata
requests can be server from memory, instead of having to
go through disk. They have tested their solution using the
Taobao File System (TFS, developed by Alibaba) in which
they observed an almost twofold increase in 1KB-64KB file
performance when compared to Ext4.

C. Decentralization

In the solutions discussed so far we have seen various
approaches to positively influence the scalability characteristics
of a DFS. A recurring concept is that of decentralization,
distributing responsibility of certain aspects of the system
to multiple non-authoritative servers instead of relying on a
single or multiple dedicated centralised servers. Removing a
single point of failure by distributing the workload should
help to increase fault tolerance and scalability. We see such

an approach in GlusterFS and Ceph, which both feature a
decentralized approach towards file placement. Here we will
briefly discuss a recent project that seeks to go even further, a
completely decentralized peer-to-peer DFS.

Originally designed by Benet and currently an open-source
project with active development from a community of devel-
opers, the InterPlanetary File System (IPFS) is a DFS protocol
designed to allow all connected peers to access the same set of
files [14]. The author describes it as being similar to the Web
in a single BitTorrent swarm exchanging objects within a Git
repository. It makes use of distributed hash tables, incentivized
block exchange and a self certifying namespace to create
content addressable peer-to-peer network of files. Any type
of data can be stored as an object in IPFS, with integrity
validation and automatic deduplication as built-in features.

Removing all single points of failure by taking a com-
pletely distributed peer-to-peer approach is very interesting,
since it in theory provides infinite scalability. However, having
to rely on servers beyond your control likely rules it out for
latency sensitive or mission critical applications. That being
said, leveraging a globally distributed network of intercon-
nected machines as a DFS is very relevant to at least capacity
requirements. One can envision that given a large peer count,
storing exabytes of data becomes almost trivial. Generally,
we expect that the concept of decentralization will play a
significant role in the development of future DFSs to cope
with ever increasing scalability demands.

V. CONCLUSION

The goal of this paper was to construct an overview of
the state-of-the-art of DFSs. We have evaluated the design of
several well established DFS solutions while also taking a look
novel research attempting to solve the challenges of future
DFSs.

With respect to the established solutions, we have seen
drastically varying designs. From single metadata server archi-
tectures such as GFS/HDFS, to clusters of metadata servers
in the case of Ceph and Lustre. GlusterFS and Ceph both
employ algorithmic file placement, which mean that there is
no need to explicitly store file location metadata. Purely based
on high-level design comparison, Ceph seems to cater the most
to modern scalability requirements and will therefore be a
likely candidate to be used in an exa-scale computing context.
Lastly we discussed cloud-based object storage, which with
its immense backing infrastructure is be able to store exabyte
sized data sets. However, for latency sensitive applications like
HPC it is unlikely to be a good fit.

We have taken a look at recent research and presented
them in the context of three challenges that we deemed
relevant for future DFS designs. Firstly, we discussed the
issue of scaling metadata management. We found that with
respect to metadata clusters, we are seeing efforts being made
to incorporate techniques from the database world such as
distributed transactions and NewSQL databases to speed up
metadata performance. Secondly, we discussed the issue of
performance in small file workloads. We regarded two research
projects attempting to tackle this issue. The first of which
by running multiple DFSs, each optimized for certain file
sizes, and having an additional layer on top of it dynamically



choosing an appropriate underlying DFS based on the type of
workload. The second introduced an entirely new HDD level
file system to be run on the storage servers in a DFS, increasing
performance by reducing the size of stored metadata, allowing
it to be stored entirely in main memory. Lastly we discussed
the concept of decentralization with respect to DFSs. We
regarded IPFS, a completely decentralized peer-to-peer DFS
allowing for all peers to access the same set of files.

Note that the presented information here is far from ex-
haustive and that there are a lot of current DFS solutions and
research projects that we have not covered. Especially in the
light of preparing systems for exa-scale computing, there is a
lot of ongoing research into developing new techniques and
designing refined architectures for future DFSs. That being
said, we believe that what we have presented in this paper
provides a reasonable representation of the state-of-the-art and
future development challenges of DFSs.

REFERENCES

[1] Astc technology roadmap.
http://idema.org/?page id=5868. Accessed: 03-12-
2017.

[2] Overview of availability zones in azure (preview).
https://docs.microsoft.com/en-us/azure/availability-
zones/az-overview. Accessed: 18-12-2017.

[3] Ceph v12.2.0 luminous released - ceph.
http://ceph.com/releases/v12-2-0-luminous-released/.
Accessed: 06-01-2018.

[4] Consistency — cloud storage documentation.
https://cloud.google.com/storage/docs/consistency, .
Accessed: 18-12-2017.

[5] Introduction to amazon s3 -
amazon simple storage system.
http://docs.aws.amazon.com/AmazonS3/latest/dev/Introduction.html#ConsistencyModel,
. Accessed: 18-12-2017.

[6] June 2008 — top500 supercomputer sites.
https://www.top500.org/lists/2008/06/. Accessed:
04-01-2018.

[7] Gluster docs. http://docs.gluster.org/en/latest/. Accessed:
05-01-2018.

[8] Poweredby - hadoop wiki.
https://wiki.apache.org/hadoop/PoweredBy. Accessed:
05-01-2018.

[9] Hgst ultrastar hs14. http://www.hgst.com/products/hard-
drives/ultrastar-hs14. Accessed: 03-12-2017.

[10] Lustre. http://lustre.org/, . Accessed: 06-01-2018.
[11] Lustre - file level replication high level design.

http://wiki.lustre.org/File Level Replication High Level Design,
. Accessed: 06-01-2018.

[12] Yahoo cloud object storage.
https://yahooeng.tumblr.com/post/116391291701/yahoo-
cloud-object-store-object-storage-at. Accessed: 06-01-
2018.

[13] Storage Networking Industry Association. Cloud data
management interface (cdmi) version 1.1.1. 2015.

[14] Juan Benet. Ipfs-content addressed, versioned, p2p file
system. arXiv preprint arXiv:1407.3561, 2014.

[15] Eric Brewer. Cap twelve years later: How the” rules”
have changed. Computer, 45(2):23–29, 2012.

[16] Eric A Brewer. Towards robust distributed systems. In
PODC, volume 7, 2000.

[17] Brad Calder, Ju Wang, Aaron Ogus, Niranjan Nilakantan,
Arild Skjolsvold, Sam McKelvie, Yikang Xu, Shashwat
Srivastav, Jiesheng Wu, Huseyin Simitci, et al. Windows
azure storage: a highly available cloud storage service
with strong consistency. In Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles,
pages 143–157. ACM, 2011.

[18] Benjamin Depardon, Gaël Le Mahec, and Cyril Séguin.
Analysis of six distributed file systems. 2013.

[19] Andrew Fikes. Storage architecture and challenges. Talk
at the Google Faculty Summit, 2010.

[20] Songling Fu, Ligang He, Chenlin Huang, Xiangke Liao,
and Kenli Li. Performance optimization for managing
massive numbers of small files in distributed file systems.
IEEE Transactions on Parallel and Distributed Systems,
26(12):3433–3448, 2015.

[21] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Le-
ung. The google file system. In ACM SIGOPS operating
systems review, volume 37, pages 29–43. ACM, 2003.

[22] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and
the feasibility of consistent, available, partition-tolerant
web services. Acm Sigact News, 33(2):51–59, 2002.

[23] Eliezer Levy and Abraham Silberschatz. Distributed
file systems: Concepts and examples. ACM Computing
Surveys (CSUR), 22(4):321–374, 1990.

[24] Tariq Mahmood, Shankaranarayanan
Puzhavakath Narayanan, Sanjay Rao, TN Vijaykumar,
and Mithuna Thottethodi. Achieving causal consistency
under partial replication for geo-distributed cloud
storage. 2016.

[25] Carlos Maltzahn, Esteban Molina-Estolano, Amandeep
Khurana, Alex J Nelson, Scott A Brandt, and Sage Weil.
Ceph as a scalable alternative to the hadoop distributed
file system. login: The USENIX Magazine, 35:38–49,
2010.

[26] Mike Mesnier, Gregory R Ganger, and Erik Riedel.
Object-based storage. IEEE Communications Magazine,
41(8):84–90, 2003.

[27] Salman Niazi, Mahmoud Ismail, Seif Haridi, Jim Dowl-
ing, Steffen Grohsschmiedt, and Mikael Ronström.
Hopsfs: Scaling hierarchical file system metadata using
newsql databases. In FAST, pages 89–104, 2017.

[28] Kai Ren, Qing Zheng, Swapnil Patil, and Garth Gibson.
Indexfs: Scaling file system metadata performance with
stateless caching and bulk insertion. In Proceedings of
the International Conference for High Performance Com-
puting, Networking, Storage and Analysis, SC ’14, pages
237–248, Piscataway, NJ, USA, 2014. IEEE Press. ISBN
978-1-4799-5500-8. doi: 10.1109/SC.2014.25. URL
https://doi.org/10.1109/SC.2014.25.

[29] Drew S Roselli, Jacob R Lorch, Thomas E Anderson,
et al. A comparison of file system workloads. In USENIX
annual technical conference, general track, pages 41–54,
2000.

[30] David Sacks. Demystifying storage networking das, san,
nas, nas gateways, fibre channel, and iscsi. IBM storage
networking, 2001.

[31] Russel Sandberg, David Goldberg, Steve Kleiman, Dan
Walsh, and Bob Lyon. Design and implementation or the
sun network filesystem, 1985.

[32] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and
Robert Chansler. The hadoop distributed file system.



In Mass storage systems and technologies (MSST), 2010
IEEE 26th symposium on, pages 1–10. IEEE, 2010.

[33] Fuyumasa Takatsu, Kohei Hiraga, and Osamu Tatebe.
Ppfs: A scale-out distributed file system for post-
petascale systems. Journal of Information Processing,
25:438–447, 2017.

[34] Andrew S Tanenbaum and Maarten Van Steen. Dis-
tributed systems: principles and paradigms. 2016.

[35] John R Vacca. Optical Networking Best Practices Hand-
book. John Wiley & Sons, 2006.

[36] Thiruvengadam Vijayaraghavany, Yasuko Eckert,
Gabriel H Loh, Michael J Schulte, Mike Ignatowski,
Bradford M Beckmann, William C Brantley, Joseph L
Greathouse, Wei Huang, Arun Karunanithi, et al. Design
and analysis of an apu for exascale computing. In
High Performance Computer Architecture (HPCA), 2017
IEEE International Symposium on, pages 85–96. IEEE,
2017.

[37] Sage A Weil, Scott A Brandt, Ethan L Miller, Darrell DE
Long, and Carlos Maltzahn. Ceph: A scalable, high-
performance distributed file system. In Proceedings of
the 7th symposium on Operating systems design and
implementation, pages 307–320. USENIX Association,
2006.

[38] L. Zhang, Y. Wu, R. Xue, T. C. Hsu, H. Yang, and Y. C.
Chung. Hybridfs - a high performance and balanced file
system framework with multiple distributed file systems.
In 2017 IEEE 41st Annual Computer Software and Appli-
cations Conference (COMPSAC), volume 1, pages 796–
805, July 2017. doi: 10.1109/COMPSAC.2017.140.


