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Abstract

Deep Learning is becoming an important tool in modern computing applications.
Based on the idea of deep neural networks and inspired by the interconnected
model of mammal brain, it able at observing and inferring from very large bodies
of data. It has been successfully implemented for a wide range of different disci-
plines, from classification to medical applications to playing games to autonomous
cars. Due to the nature of these systems and the fact that a considerable portion
of their use-cases deal with large volumes of data, training them is a very time
and resource consuming task and requires vast amounts of computing cycles. To
overcome this issue, it is only natural to try to scale deep learning applications
to be able to run them across a variety of different infrastructure and achieve
fast and manageable training speeds while maintaining a high level of accuracy.
This paper addresses the issue of scaling deep learning and gives and overview
of how to scale deep learning both on a hardware and software level and how to
benchmark the performance of these kinds of systems from different aspects.
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Saba Amiri 1 BACKGROUND AND RATIONALE

1 Background and Rationale

There is a set of tasks in machine learning, e.g., image classification and speech
recognition, which can not be solved using the traditional methods of engineer-
ing features and training a model-or a stacked set of models to predict values or
classes for new input samples(drawn from an unknown set of samples with the
same distribution as the training data). To solve these specific tasks, the need
arose for new paradigms in machine learning and researchers began looking at
biologically-inspired models. There has been extensive research in the field of
neuroscience on how mammals learn. Studies suggest that neocortex might con-
sist of identical cortical circuits with a hierarchical structure(Douglas & Martin,
2004). This model helps solve the above mentioned subset of tasks by learning
hierarchical features without the need for hand-crafted features. These structures
enable mammals to represent partition high-dimensional information effectively
and model them based on emerging patterns which leads to a scalable learning
system, capable of handling complicated patterns and a theoretically infinite flow
of information. This model was the inspiration behind Hinton’s famous paper in
2006 which formally introduced deep neural networks (G. E. Hinton & Salakhut-
dinov, 2006), and has been the main inspiration behind deep learning models
like Convolutional Neural Networks (LeCun, Boser, et al., 1990), Deep Belief
Networks (G. E. Hinton, Osindero, & Teh, 2006) and Convolutional Deep Belief
Networks (H. Lee, Grosse, Ranganath, & Ng, 2009). With the deep models’ in-
crease in popularity and the advent of scaling efforts on deep neural networks and
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Saba Amiri 1 BACKGROUND AND RATIONALE

also developments on the hardware front, the size of these networks has grown
with a fast pace, with deep neural networks with over a billion parameters being
constructed and trained (Dean et al., 2012; Le, 2013; Chilimbi, Suzue, Apaci-
ble, & Kalyanaraman, 2014). Deep neural networks have proven to be powerful
tools in tasks such as image classification, speech coding and recognition, machine
translation, human motion modeling and information retrieval. (G. E. Hinton et
al., 2006; Taylor, Hinton, & Roweis, 2007; Salakhutdinov & Hinton, 2009; Seide,
Li, & Yu, 2011; Bahdanau, Cho, & Bengio, 2014; G. Hinton et al., 2012; Dahl, Yu,
Deng, & Acero, 2012). However, since training these kinds of architectures are
computationally intensive, the need for a scalable approach is imminent. Meth-
ods like gradient descent which are used to fine-tune deep neural networks hardly
lend themselves to the scalable paradigm. With the shift of training from CPUs
to GPUs, we’ve seen a significant increase in performance of single processing-
unit training of deep neural networks (Seide et al., 2011; Dahl et al., 2012; Zeiler
& Fergus, 2014). But even GPUs have their own limitations and with the emer-
gence of big data-both in volume and the platforms to store, access and process
them- the move towards scalable methods is unavoidable. To this end, a substan-
tial amount of research has been done on deep learning scalability and several
frameworks have been designed to perform the learning task of the network in
a distributed manner. Some of notable examples include DeepImage (Wu, Yan,
Shan, Dang, & Sun, 2015), Chainer (Tokui, Oono, Hido, & Clayton, 2015), Ten-
sorFlow (Abadi et al., 2016), FireCaffe (Iandola, Moskewicz, Ashraf, & Keutzer,
2016) and S-Caffe (Awan, Hamidouche, Hashmi, & Panda, 2017). But scaling
across clusters of computers brings its own set of problems to the table like syn-
chronization, communication overhead, the need for a global clock, storage and
data access, redundancy and fault tolerance. The fast speed of development in
this area and the complications involved in setting up an accurate, scalable and
functional system has lead to a very diverse field of study. This review aims to try
to categorize the existing efforts in scalable deep learning in different categories,
explore different perspectives and concerns in this research area and introduce
the most prominent efforts to solve them.
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2 Research Basics

In this section, the basic research workflow and plans are defined. Research
questions are formulated and search and selection process if formalized.

2.1 Research Process and Planning

To conduct this study, we carried out the following steps:

• Initial search and selection with focus on reviews and surveys: In
this phase, we conducted an initial search of available literature using lax
filters and criteria to form the big picture regarding to the initial research
subject. 183 papers including reviews and book chapters were selected and
reviewed in this stage and a hierarchical structure was produced about
different subjects and categories observed in the literature.

• Defining a focus point: Based on the results from previous step, different
main areas of research were identified. Among them, “deep learning” was
chosen as the main focus point due to extensive research currently being
done in this area. Using the previously gathered research, special care went
into making sure the subject was neither too vague and broad neither too
narrow to explore.

• Second search and selection with focus on reviews and surveys on
focus point: A second phase of research was done on this topic. Different
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surveys and reviews were studied in the field and an outline of research was
created.

• Forming research questions: Based on the study of previous step, 3
research questions were formed. The research questions were formed in a
way to capture main trends and areas of contribution of each research and
enable us to compare them.

• Defining framework for comparison and evaluation: To answer re-
search questions, a framework has been designed to enable us to categorize
and compare different research areas and to review them from different
angles.

• Final search and selection to cover as many different trends as
possible: Based on the different traits and research interests identified
in the previous step, a comprehensive search was made to identify and
obtain notable and novel research work in each of the defined criteria. This
selection was filtered out based on our inclusion and exclusion criteria to
select the final candidates.

• Data extraction: The selected works were thoroughly reviewed and rel-
evant data was extracted from selected research work. The results were
reported to define the different paradigms and trends in this research area.
Also, preliminary bibliographic research has been done on this topic.

• Analysis and results: Finally research questions were answered and the
report was concluded with an overview over the research done and the future
works.

2.2 Research Questions

In this section, three research questions resultant from our initial research are
defined and the rationale for each is given.

2.2.1 RQ1: What are the primary and notable algorithms and learn-
ing methods for scalable deep learning?

Since the research trend around deep learning is well established and we have al-
ready reasoned about the need for scalable deep learning, it is important to review
the latest developments in this area. This includes new methods, frameworks and
paradigms(e.g., deep learning in an IoT context).

4



Saba Amiri 2 RESEARCH BASICS

2.2.2 RQ2: Are existing frameworks for deep learning sufficient for
the current demand? If not, what kind of research is being done
to extend and enhance them?

There are a handful of scalable deep learning-and more generally, distributed
computing- frameworks available, many of which created and maintained by big
tech giants like Google(TensorFlow) and Facebook(PyTorch). The relevant ques-
tion would be: are these frameworks performing adequately for the current needs
in this field? If not, what notable research has been done to extend them and
develop them furthermore?

2.2.3 RQ3: What are the most notable works in benchmarking and
evaluation of available methods and frameworks?

As diverse as the research in the field of deep learning and consequently scalable
deep learning is, evaluation of different frameworks and methods’ performance-
from many different aspects- is a challenging and complicated subject. The
scalable deep learning systems are fairly complicated, with different parts like
pre-training, partitioning, optimization, etc.. Scaling them on clusters of com-
pute nodes only adds to the complications and makes evaluation of methods and
frameworks and their comparison all the more challenging and essential.

2.3 Search and Selection Process

2.3.1 Data Sources

The data sources used to do our research using VU and UvA library tools which
include results from publishers like IEEE, Elseview and ACM among others. Also,
Google Scholar was consulted to gather edge cases not included in the library
tools.

2.3.2 Search Query

The search query used to gather the initial set of papers was:
(Deep Learning OR Deep Neural Network OR DNN) AND (Scalable OR

Scalability OR Distributed OR Cluster OR Large Scale )
It should be noted that during the course of research, a number of papers

were added to the initial collection of papers.

2.3.3 Inclusion/Exclusion Criteria

In this section, the main inclusion or exclusion conditions for research results
from our search queries are included.

5



Saba Amiri 2 RESEARCH BASICS

Inclusion Criteria

I1: The study has proposed a new theory, framework, method, algorithm or
toolbox with significant contribution to the paradigm of "scalable deep learning"

I2: The study has been done from 2006(the year Hinton’s seminal paper on
deep neural networks was published) onwards.

I3: The research results have been published in English.

Exclusion Criteria

E1: No empirical results have been offered in for of real world experiments or
simulations

E2: Study has been focused solely on hardware design and architecture.

E3: The study results have been refuted or challenged by notable researchers
in the field.

6
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3 Scalability in Deep Learning: A Review

3.1 Bibliographic Research

In this section we are going to do some basic research into publications on the
subject of this report and provide some insight into the available research and
literature. This data is gathered from SCOPUS.

Figure 1: Trend of "scalable deep learning" publications, 2000-2018,

Figure 1 show the trend of publications on the subject "scalable deep learn-
ing" from 2000-2018. The search query used is:
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Figure 2: Trend of "deep learning" publications, 2000-2018,

Figure 3: Trend of "neural networks" publications, 2000-2018,

(Deep Learning OR Deep Neural Network OR DNN) AND (Scalable OR
Scalability OR Distributed OR Cluster OR Large Scale ).

As can be seen, the research in this area began to thrive in 2013 and gained
full momentum in 2016. In comparison, Figure 2 shows the publications on the
subject of "deep learning". The query in use for this section is

(Deep Learning OR Deep Neural Network OR DNN)

As can be observed, although the number of papers published is much higher
than the "scalable" research area, both figures show almost the same trend, which
leads us to conclude that the interest in "scalable deep learning" is rising with
the same speed as the interest in "deep learning". In comparison, Figure 3 shows
the trend of publications on "neural networks" using the query:
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(Neural Networks)

As can be seen, the increase in research shows an almost linear trend up
until 2016 and it can be inferred that a part of increase in interest in neural
networks from 2018 onwards is in part due to research on "deep learning" gaining
momentum.

Figure 4: Contribution of countries to the "deep learning" research area, 2000-
2018

Figure 4 shows the contribution of countries to the "deep learning" research.
As can be seen, China and United States are responsible for the biggest share of
research in this area. It should also be noted that the most cited paper in the field
of "scalable deep learning" is Dean et al.’s 2012 paper on large scale distributed
learning (Dean et al., 2012).

3.2 Study of Existing Literature

3.2.1 RQ1: Methods and Frameworks

DeSTIN(Deep SpatioTemporal Inference Network) was one of the first notable
scalable frameworks proposed for scalable deep learning (Arel, Rose, & Coop,
2009). Based on Bayesian inference and unsupervised learning for dynamic pat-
tern representation, the proposed architecture provides a scalable model capable
of dealing with high-dimensional input data while modeling the spatiotemporal
dependencies in the data via an unsupervised method. Each node in this architec-
ture acts like a cortical building block, modeling input patterns using clustering
methods while constructing a belief state over the distribution of sequences using
Bayesian inference. Nodes don’t need to share information and states in any stage
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of the learning process, so the clustering and update process of belief rules are
performed independently, making the architecture highly scalable and suitable to
be run on GPUs. A big difference of this method with deep belief networks is in
the fact that this method doesn’t require initialization through pre-training while
DBNs must be initialized by being trained in a greedy layer-wise manner.

Project Adam is another framework designed as a distributed system to train
large deep neural networks on commodity machines (Chilimbi et al., 2014). The
aim of this project is to optimize and balance communication and computa-
tion across the platform, achieve high performance and scalability by exploit-
ing the underlying algorithms’ ability to deal with inconsistencies, and improve
the accuracy of the model. The communication and computation is optimized
in this framework by partitioning the model across the cluster, hence minimiz-
ing the need for communication and synchronization. The high performance
and scalability is achieved through multithreaded dirty parameter updates, asyn-
chronous batch updates and by permitting computations over stale parameters.
The machines and partitioned into data-serving machines and model training
machines, with the global model updated asynchronously across multiple replicas
via a global parameter server. The data serving machines are in charge of data
storage and initial pre-processing and transformations(to avoid overfitting). The
images are pre-cached in system memory and incoming requests are processed
asynchronously. Across model training machines, the model is partitioned verti-
cally to minimize the cross-machine communication. On each machine, training is
performed in a multi-threaded fashion, with different images assigned to threads,
which then perform the feed-forward and back-propagation computations. The
shared model weights are updated across threads in a dirty fashion without using
locks to increase performance. The race conditions and stale parameter computa-
tions are permitted, with the presumption that the model can handle these kinds
of discrepancies. The weight updates are stored in a local buffer and sent to the
parameter server after the processing of k images. After receiving weight updates
from model training machines, the parameter server directly applies them to the
stored weights for convolutional layers since the number of weight parameters is
low. For fully connected layers instead of weights, activation and gradient error
vectors are sent to the parameter server. Parameter server then does the matrix
multiplication locally and computes and applies weight updates.

In 2012, Deng et al. proposed Deep Stacking Network, which uses a parallel
training algorithm on its deep architecture (Deng, Yu, & Platt, 2012). Inspired
by deep belief networks and deep Boltzman machine, DSN stacks the cortical
building blocks of the deep learning architecture, with each processing unit solving
a convex learning problem. The learning is done in batches by adjusting weight
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matrices module by module and without the need for any global fitting over the
entire architecture, making it overfitting-prone and suitable for being deployed
over different machines and thus scalable. The main idea of this method is based
on function stacking, with simple functions put in a chain and the output of each
function used as the input of the next one (Wolpert, 1992).

In their 2017 paper, Wang et al. argue that popular deep learning frame-
works are not suitable for performing distributed deep learning over GPUs on
large clusters and propose Nexus as a platform that lets existing deep learning
frameworks scale out across large clusters and perform GPU-based deep learning
effectively (Y. Wang, Zhang, Ren, & Zhang, 2017). The problem with distributed
GPU-based learning is the overhead cost of communication and data movement
between host and device memory and also among nodes in the network. Nexus is
a high performance parameter orchestration framework which can be used along-
side existing platforms and enable them to scale efficiently on GPU clusters. It
employs data-parallel execution model which enables the current applications de-
veloped on the aforementioned frameworks to be still usable without any modifi-
cations, while Nexus handles the parameter communication and updates on GPU
clusters. On the framework level itself, Nexus exploits unique characteristics of
both the frameworks and the DNNs to reduce the communication overhead. It
is done by hierarchical and hybrid parameter caching and update frequency ad-
justment based on performance of the individual networks. Also, Nexus exploits
the sparse nature of parameters and transforms the format of data structures
containing parameters to reduce network load. Lastly, Nexus leverages protocols
on high performance hardware to speed up the training process, including the
use of RDMA protocol for transferring large tensors and performing parameter
aggregation on GPUs.

Chen and Huo did propose a scalable training algorithm for deep learning by
incremental block training and blockwise model updates (Chen & Huo, 2016).
The incremental block training is done by partitioning data into non-overlapping
chunks. After blocking the data, each block is selected and N splits of this block
is distributed to N workers in a single processing node which will work in parallel
to optimize the local model of the processing unit. Intra-block optimization can
be performed with different algorithms. A simple broadcast method is utilized
here which communicates the global model to all workers to initialize local models
and then each of these models are updated locally by the workers independently
with 1-sweep mini-batch stochastic gradient descent. In the end, the final model
would be obtained by averaging the optimal local models. After intra-block op-
timization is done in the parallel scheme described, a Blockwise Model-Update
Filtering(BMUF) is proposed to update the global model through a block-level
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stochastic optimization process which will stabilize the learning process.
The Livermore Tournament Fast Batch Learning(LTFB) method proposed by

Jacobs et al. is a multi-level tournament voting parallel algorithm that deals with
the problem of synchronization between workers in a distributed learning scheme
by creating a set of models which will be trained independently and periodically
will compete with each other in local tournaments (Jacobs, Dryden, Pearce, &
Van Essen, 2017). In this approach, a number of deep learning models are created
and are trained independently and in parallel. Training data is partitioned across
compute nodes and each node has a copy of the model. At certain intervals, each
model selects another candidate model, exchange models with the candidate and
then run a tournament with a hold-out dataset. The winning model will continue
the training on local dataset. This method is dependant on heterogeneity and
large amount of memory available per worker node and is in fact deployed on HPC
machines available at Lawrence Livermore National Laboratory. Large memories
on compute nodes allows for caching of hold-out dataset for utilization in local
tournaments. A communication graph is maintained to manage the frequency of
pairwise communication, as well as to control how far each compute node’s model
is allowed to digress from other nodes’ models. As for the model parameters,
instead of performing hyperparameter optimization on a single model, diversity
is ensured in parameters of different trainers’ models and and after a model wins
a tournament, its metadata and set of hyperparameters are communicated to the
new compute node.

Another multi-model approach is proposed by Ding et al. (Ding, Hu, Kar-
moshi, & Zhu, 2017). In this paper a two stage learning model is proposed for
DNN training. It uses a subset of training data to train several independent
local models. These local models are used for fast response in case of real time
services. Then, based on these DNNs a global re-optimized global DNN model
is constructed with higher accuracy compared to local models. There are two
global models: The combination DNN and the optimization DNN; The combina-
tion DNN is linearly synthesized using pre-trained local models with parameters
unchanged, while the optimization DNN fuses features resulting from combina-
tion DNN and learns a new set of features which will lead to a more accurate
classification. This global model is then communicated to local nodes.

BAIPAS is a distributed deep learning framework proposed by Lee et al.
which tackles the problem of the data transfer from the locality of access angle
(M. Lee, Shin, Hong, & Song, 2017). In this framework, data is distributed and
stored on compute nodes by a data locality and shuffling manager. It analyzes the
training data and the local state of compute nodes. The data is then distributed
based on the free space available at each compute node and its performance. To
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avoid overfitting, the manager also shuffles the training data and moves the data
already used for training to other compute nodes. The shuffling is done parallel to
training and on each worker, the new dataset-copied from another worker which
was already trained on it- is used for the new round of training.

Yet another approach for data distribution in a distributed deep learning
system was proposed by Wang et al. based on a distributed variant of New-
ton method (C.-C. Wang et al., 2018). Using variable and feature-dependant
partitioning of data, the Jacobian matrix is used for matrix-vector products in
the Newton method. A diagonalization method is employed so that the New-
ton direction can be calculated without the need of intra-worker communication.
Subsampled Gauss-Newton matrices are used to reduce the runtime and commu-
nication overhead. To further reduce runtime, a termination criteria is defined
which will kill the worker threads during the process of finding the Newton di-
rection whether they have finished their run or not.

DeepSecure is another scalable deep learning framework that tackles the chal-
lenges of privacy in a setup where a IaaS company holds a pre-trained model
and clients use this service to process their own private data (Rouhani, Riazi, &
Koushanfar, 2017). It is based on the assumption that neither the IaaS provider
of the cloud servers that host the deep learning models nor the clients who own
the data are willing to reveal and share their information. This framework uses
Yao’s Garbled Circuit (GC) protocol to keep both the data and model parame-
ters secure. The function that needs to be evaluated in the secure environment
should be represented as a set of Boolean logic gates, also known as netlists. Prior
to computation, the netlist of the publicly known deep learning architecture is
obtained. During the execution the client garbles the Boolean circuit of the deep
learning architecture, then sends the garbled tables to the cloud server along with
the input wire labels. Next, the cloud server evaluates the garbled circuit and
computes the corresponding encrypted data inference and sends the encrypted
results back to the client to be decrypted using garbled keys.

SCALEDEEP is a scalable server architecture proposed by Venkataramani et
al. with processing, memory and interconnect subsystems specialized for scalable
training of DNNs (Venkataramani et al., 2017). SCALEDEEP’s main focus is on
training stage rather than inference or evaluation stages. It includes heteroge-
neous processing tiles and chips, hierarchical memory and a 3-tiered interconnect
topology specialized for communications and memory access in DNNs, an ef-
ficient synchronization mechanism based on hardware data-flow trackers and a
scheme to map DNNs to the mentioned architecture. A compiler was developed
to allow the translation of any deep topology into SCALEDEEP and a simula-
tor to estimate performance. Lim et al. in their 2017 paper have proposed a
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shared memory architecture for scalable deep learning across clusters (Lim, Ahn,
& Choi, 2017). This shared memory structure is used for parameter storage and
maintenance of deep models. The memory server is connected to the network via
a high-speed interface and exposes its memory which is accessible via low-latency,
high-performance RDMA and is shared among compute nodes. A virtual address
space is defined for each process and it is mapped to the shared memory space
of the server. A space in worker’s physical memory is reserved and mapped to
the virtual memory. Whenever the worker wants to access that region of its local
memory, shared memory driver handles the resulting page fault and transfers the
data from the corresponding page in the shared memory to the local memory of
the worker node. Thus, the threads in compute node can access the shared mem-
ory and read from and write to it like their own local memory since the memory
access is abstracted by the proposed shared memory scheme and is transparent
to the worker thread.

3.2.2 RQ1: Scalability by Workload Reduction

A different approach towards scalability would be to reduce the computational
load instead of trying to distribute it to a large number of machines. In case of
deep networks, we will try to reduce the number of calculations by calculating
only a subset of network parameters. There are notable methods for reduction of
parameters like optimal brain damage (LeCun, Denker, & Solla, 1990), factored
restricted Boltzmann machines (Krizhevsky, Hinton, et al., 2010), randomly con-
nected deep convolutional neural network (Cireşan, Meier, Masci, Gambardella, &
Schmidhuber, 2011), approximate convolutional filter banks (Rigamonti, Sironi,
Lepetit, & Fua, 2013) and locally connected features (Coates, Ng, & Lee, 2011).
Here we will mention the method proposed by Denil et al. in 2013 (Denil, Shak-
ibi, Dinh, Ranzato, & de Freitas, 2013). Instead of distributing the computations
across different processing units, their proposed method reduces the workload
by computing a small subset of weight values and predicting the rest. A usual
approach in training a large network is to distribute many copies of the model
across a number of machines and update them independently, and use a synchro-
nization method to align the same parameters over different machines. As can
be seen in (Dean et al., 2012), this method proves ineffective in utilizing parallel
resources, with 81 machines speeding up the mini-batch training time by a factor
of 12, and increasing the number of machines by almost 50% slightly increasing
the speed up factor to 14. In their work, Denil et al. leverage the fact that
weights in learned networks are structured to estimate parameters. Here, the
weight matrix is represented as low rank product of two smaller matrices. The
size of the parameterization is controlled by rank of the factored weight matrix.
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3.2.3 RQ1: Scalability in IoT, Wireless Networks and Embedded Sys-
tems

Another consideration on scalability of deep learning methods is the infrastruc-
ture on which data is gathered and the computation is performed. Most of the
methods we discussed previously start from the simple assumption of a large
dataset being already available-e.g., in case of ImageNet competition- and since
processing of this data in a non-distributed manner is not scalable, they try to
achieve scalability by distributing the workload, or in some cases by reduction of
it. This assumption would not hold in some the more modern contexts, namely
IoT and sensor networks. A sensor network has serious limitations on communi-
cation between sensors and the central processing facilities and it might not be
feasible to gather all the data from a vast network of sensors on a fusion system
and then perform machine learning tasks on them. Li et al. tackle this prob-
lem by devising a deep learning framework with different layers places on the
sensors themselves (Li, Xie, Huang, Wang, & Niu, 2015). This approach helps
avoid huge computational load on fusion servers and saving the wireless sensor
network’s transmitting power. Two challenges are addressed here: the synchro-
nization between calculating nodes, and the trade-off between calculating power
consumption and transmission power consumption. To overcome there problems,
the DNN is trained in the fusion center. Data is sampled from all WSN sensors,
the DNN is trained and the results of parameter calculation are sent to DNN
layers located in different calculating units. Moreover, a formula is provided to
calculate the upper limit of calculations where transmission of the data directly
to the fusion center would become the more viable option. Another notable
method that deals with IoT and embedded devices is the SC-DCNN proposed by
Ren et al. (Ren et al., 2017). Stochastic Computing-Deep Convolutional Neural
Network(SC-DCNN) is based on the principles of stochastic computing, which
represents a number between [-1,1] by counting the number of ones in the bit-
stream encoding the number. This enables us to do add and multiply operations
using AND gates and Multiplexers, which has a significantly lower power con-
sumption. This reduction in power consumption and hardware utilization leads
to enhanced scalability.

3.2.4 RQ2: Systems Based on and Extending Existing Frameworks

Since many sophisticated and powerful frameworks for deep learning have been
proposed and implemented in recent years, some of the research in this area
have leveraged these existing frameworks and have built upon them their system
of choice. Zhang and Chen in (Zhang & Chen, 2014) propose a distributed
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framework for training deep belief networks with restricted Boltzmann machines
using MapReduce. A series of distributed RBMs are stacked for pre-training and
a distributed back-propagation method is introduced for model fine-tuning. Each
level RBM is stored in a key-values structure and pre-training step is done in a
layer-wise distributed fashion on MapReduce. The back-propagation stage is also
distributed across different machines, also on MapReduce. A main controller is in
charge of both processes. The utilization of MapReduce framework contributes
to the scalability of the proposed method and the scalability of the proposed
method is only limited by the MapReduce framework itself.

Another example of methods based on existing frameworks is the work of
Rao et al. (Rao, Kumar, Cadabam, & Praveena, 2017) on a distributed deep
reinforcement learning system based on TensorFlow. They use the Q-learning
algorithm to train their deep model. In this method, the agent constantly ob-
serves the environment-e.g., images, signals- and also gathers feedback from the
environment. The deep Q-learning algorithm produces the optimal action based
on the input observation and feedback, while the hyperparameters of the deep
Q-network will remain unchanged in different environments. The algorithm is
implemented on the distributed TensorFlow and is designed to work on GPUs.
The weights of deep Q-network are stored on a parameter server and are repli-
cated across training systems. the deep Q-learning algorithm calculates the loss
value which is then used to update the weights of the deep Q-network.

ChainerMN by Akiba et al. is an extension to the Chainer framework which
enables it to perform the deep network training in a distributed manner (Akiba,
Fukuda, & Suzuki, 2017). They have implemented a data-parallel extension to
the Chainer framework with synchronous updates. The mentioned data-parallel
approach has four steps: feed-forward step, back-propagation step, Allreduce step
and optimization step. In the Allreduce phase, compute nodes communicate and
calculate the average of gradients calculated by other nodes and communicate
this average across the network. Next, all compute nodes will update their local
models using the communicated average gradient.

GossipGraD is a gossip communication based stochastic gradient descent algo-
rithm which extends the Caffe framework with the aim of scaling up deep learning
on clusters of compute nodes (Daily, Vishnu, Siegel, Warfel, & Amatya, 2018).
This algorithm tries to reduce the complexity of communication to a constant
O(1) while maintaining asynchronous communications. Each node at each step
communicates with only one other node, and after log(p) steps each node would
have communicated with all other nodes either directly or indirectly. Direct dif-
fusion of model updates is done by batch-wise rotation of partners and updates
to the network parameters are asynchronously communicated to other nodes in
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a layer-wise/batch-wise manner. Like BAIPAS, memory shuffling is employed-in
an asynchronous fashion- to avoid over-fitting. The shuffle step is done during
the feed-forward phase, so there is no extra communication overhead.

3.2.5 RQ3: Evaluation and Benchmarking

Although many methods and frameworks have been proposed to scale up deep
learning in recent years, since many of them are optimized for specific tasks-e.g.,
image processing, speech processing-, it is hard to compare them and also to
evaluate them individually in a more holistic manner. In this section we try to
focus on methods and rationale proposed in literature for evaluation of these types
of scalable systems. It should be noted that we are not interested in the actual
results of the evaluations, but rather the metrics and the methods employed
for the evaluation. One of the recent efforts in evaluation of current scalable
deep learning methods have been published by Shi et al. (Shi, Wang, & Chu,
2017). This work evaluates the performance of Caffe-MPI, CNTK, MXNet and
TensorFlow frameworks in different settings. The low level parameters recorded
for each experiment include:

• Number of total GPUs

• Number of GPUs on each node

• Number of training samples per GPU in a mini-batch

• Time of an iteration

• Time of I/O in each iteration

• Data transfer time from CPU to GPU in each iteration

• Time of the forward phase in each iteration

• Time of the backward phase in each iteration

• Time of the backward phase of the layer i in each iteration

• Time of the model update in each iteration

• Time of the gradients aggregation in each iteration

• Gradients aggregation time of layer i in each iteration.
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They have carried out their experiments on a cluster with homogeneous hard-
ware. The experiments were designed in single-node/single-GPU, single-node/multi-
GPU and multi-node/multi-GPU settings. Th nodes are connected using a high-
bandwidth, low-latency network. Three convolutional neural networks(AlexNet,
GoogLeNet, and ResNet-50) have been used as driver models. To remove the
overhead of disk I/O from calculations, the results from the first epoch are dis-
carded.

DAWNBench is a benchmark and competition framework focusing on end-to-
end training time to achieve high accuracy level and the inference time elapsed
to reach the pre-set level of accuracy (Coleman et al., 2017). It used only the
metrics mentioned above and is mostly focused on the effect of different design
decisions and settings of the models like type of optimizer used, stochastic depth
and the infrastructure(CPU, GPU; single, multi compute elements) on the end
to end performance of the model.

Pumma et al. in their 2017 paper focus on the I/O subsystem of Caffe
(Pumma, Si, Feng, & Balaji, 2017). They perform extensive scalability tests
on this platform and conclude that the I/O subsystem of Caffe is inefficient. The
reason for this shortcoming is, Caffe’s I/O subsystem, namely LMDB, relies on
memory-mapped I/O to access its database which is proven to be ineffective on
large scale systems because of the high volume of interactions in generates with
process scheduling system and the parallel storage system.

Bianco et al. have done an in-depth analysis of the state of the art deep
neural network systems in the field of image recognition (Bianco, Cadene, Celona,
& Napoletano, 2018). The DNN systems include AlexNet, GoogLeNet, ResNet-
18, -34, -50, -101, -152, DenseNet, etc. The evaluation is done on the PyTorch
framework, but the focus of this research is on the models themselves, not the
framework. The performance metrics evaluated include:

• Accuracy rate

• Model complexity

• Memory usage

• Computational complexity

• Inference time

• Learning power

• Accuracy rate vs Learning power

• Accuracy rate vs Inference time
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• Memory usage vs Model complexity
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4 Conclusion

In this report, we did a review of available literature and research in the area
of scalable deep learning. We established the importance of deep learning and
the impact of this theory on both academic and industrial efforts. We defined
the need for deep learning algorithms and methods to be scalable to be able to
keep up with its intense computational complexities and the considerably large
size of the training data available. We defined our research strategy and based on
this strategy, defined three research questions related to the notable methods and
algorithms in the area of deep learning, already existing frameworks and efforts
to extend them towards scalability and the methods to evaluate and benchmark
scalable deep learning methods. We discussed several notable scalable deep learn-
ing methods and frameworks. We’ve observed that many of these methods have
evolved from running on CPUs to running on clusters of CPUs to running on
multi-GPU single compute nodes and finally to GPU clusters. We’ve also ob-
served that the main challenges in scalable deep learning these methods aim to
tackle are related to I/O, data partitioning and locality, network throughput and
latency and synchronization.

Some of the literature we reviewed were directly aimed at super computers,
which are not readily available to masses and are difficult and costly to set up and
maintain, but are not affected by some of the problems of more common clusters,
e.g., homogeneity of hardware.

We have also looked at the scalability issue from security perspective and
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introduced a framework which assumes a IaaS scheme in which the model is
trained by the provider and the data is the property of the client and neither are
willing to share the details of their intellectual property.

We briefly discussed methods which try to achieve scalability by reducing the
workload instead of scaling the intensive workload through a series of compute
nodes.

We argued that deep learning need not always be in an ideal setting in which
data is available in one place and there is a cluster of compute nodes present. We
investigated this situation in wireless sensor networks and introduced methods
that are designed to perform deep learning in such an environment.

We’ve observed a considerable amount of research being done on existing
frameworks provided by large tech companies and reviewed some notable efforts
to extend and scale them.

Lastly, we discussed metrics and methods to evaluate the performance and
the "scalability" of the existing methods and frameworks.

For future works, one can also add a hardware perspective to this research
which could be argued that is not explicitly related to deep learning, but rather
a field of research and development driven directly by the computational needs
of deep learning methods.

Also, the evaluation and benchmarking methods have a lot more to cover,
which could be a very interesting topic of research.
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