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Abstract

Machine learning has seen an enormous surge in popularity. Nowadays, machine
learning models are often placed in cloud environments to make them publicly
accessible. This access heightens the privacy and security risk, as an increasing
amount of attacks has been launched against these models. This work aims to
give a structured review of the literature on three types of attacks: membership
inference, model inversion and model extraction. We analyze the prerequisites,
methods and defenses as different aspects of these attacks. The main findings from
our research are: (1) there is a large privacy-utility trade-off in defending against
membership inference and model inversion attacks; (2) more research needs to be
done regarding protection against model extraction; (3) model inversion and model
extraction attacks require substantial knowledge beforehand. Although not all
attacks are directly applicable to real-world scenarios, some do pose clear security
risks to publicized machine learning models.

1 Introduction

In the past decade, machine learning (ML) has been used for a diverse set of applications in various
domains, such as medical treatments (Fredrikson et al., 2014), text prediction (Carlini et al., 2019)
and authentication systems (Al-Rubaie and Chang, 2016). Increasingly, these models are placed in
the cloud for easy access and use, giving rise to Machine Learning as a Service (MLaaS).
However, this convenience comes with a cost: access can be abused to extract information from a
model that model owners and data contributors would rather keep private. As models are regularly
trained on sensitive data, containing for example medical facts or passwords, obtaining any kind of
information about the training set often means a serious breach of privacy. This is the case for partial
or entire data samples, but even confirmation of membership in the training set could cause a privacy
risk. Knowledge about the model internals, while not strictly related to personal privacy, does make
such attacks easier to execute. Additionally, business competitors could steal the model internals and
training data for their own use.
In this paper the existing literature on these types of attacks is reviewed. We discuss the prerequisites
for mounting an attack, the types of methods used, and the effect of various defenses on the efficiency.
It is organized as follows: in Section 2, some preliminaries are provided on the machine learning and
privacy preservation context, as well as a more precise demarcation of the research space. Then, the
literature on the different types of attacks is reviewed in three dedicated sections, one for each type
of attack. Lastly, in Section 6 we conclude the discussion and propose some directions for future
research in this field.
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2 Background

2.1 On Machine Learning

Machine learning (ML) can be understood as having three main categories: supervised learning,
unsupervised learning, and reinforcement learning.
Supervised learning uses labelled data as input, consisting of a set of samples X and corresponding
labels Y . The model is trained to learn the function f mapping samples to output labels, Y = f(X).
This results in a classification or regression model depending on whether the labels are discrete or
continuous.
With unsupervised learning, the algorithm attempts to find some structure in unlabelled training data.
An example of this type is a generative adversarial network (GAN) that is used to create new data
samples representative for some dataset.
Finally, reinforcement learning works by defining an agent and a world, with rules for the agent to
prosper in that world. The agent iterates taking actions that have an effect on the world, receiving
feedback on those actions, and improving its decision process. Learning the preferred action of some
agent is usually done by neural networks with large parameter sets.

The main ML technique that is used throughout most research for this paper are neural networks
(NN), and specifically deep neural networks (DNN). To understand how these pertain to ML in
general we will explain briefly what the different techniques are within this field.
A neural network is an architecture consisting of multiple layers of nodes that connect in some sense
to the previous and next layer. The first layer is the input layer, the last layer is the output layer, and
all possible layers in between are the hidden layers. A neural network with at least one hidden layer
is called a deep neural network. The nodes calculate their values based on the weighted sum of the
previous nodes that are connected to it. To get a non-linear model, an activation function is used.
This process repeats at every layer and finally, the output is calculated at the output layer (Chen and
Ran, 2019).
The training of such a network happens with stochastic gradient descent (SGD), which applies many
of these iterations. First, a forward pass through the network is done with a random sample. Every
time an output value is calculated, the result is compared to a known value (supervised) or some other
result measure (unsupervised), and the error is back-propagated through the network and the weights
at each node are updated. This process starts at the final layer of the model and ends at the starting
layer (Chen and Ran, 2019). For each pass, or epoch, a randomly selected ‘mini-batch’ of data is
used to update the gradients so that the training loss is minimized (Ruder, 2016).
Training a network can be done for any preferred amount of iterations. Nonetheless, it is possible to
train too little or too much, which can lead to underfitting or overfitting respectively. Underfitting
refers to a model that does not capture the subtleties of a dataset, while overfitting refers to a model
that also captured the outliers within the training set and thus does not generalise well.
When the training phase is done, the result for a single (new) datapoint can be obtained by entering it
in the trained network; this process is called inference. The type of result depends on whether the
dataset that the NN was trained on modelled regression or classification. There are many different
types of NNs that all have their own domain of application, e.g. convolution neural networks (CNN)
which are used for image processing, or recurrent neural networks (RNN) used for time-series
problems.

Lastly, there is the concept of collaborative learning. Until recently, it was assumed that ML
applications would run centralized and offline (Park et al., 2019). However, recent developments, such
as an increase in edge devices, have made collaborative learning a much more common phenomenon.
Participants in collaborative learning can keep their training data on a local device, as well as a local
version of the machine learning model that is being trained. After iterating one or several rounds on
the local model, the model parameters are exchanged between devices (Park et al., 2019). This can be
done via a central server, which receives and averages all parameters, or by sending the parameters to
all participants and aggregating them locally.

2.2 On Attacks

In this work, we will focus on three types of attacks intended to extract private information from
machine learning models. Attacks designed to interfere with the functionality of the model, such as
adversarial or poisoning attacks, are not treated in this survey.
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Membership Inference attacks attempt to determine membership status. Given a data instance and
access to a model, the goal is to detect whether this instance was used to train the model. As this
depends on differences in the treatment of training versus test samples, overfitting is a key concept.

Model Inversion is a related attack which also aims to extract information about the training set.
The precise goal differs across works, but generally, the adversary wants to obtain new information
on the training data: statistical properties, sensitive attributes, or even complete data points can be
extracted. The term data reconstruction can refer to model inversion attacks as well as to attacks on
statistical databases, without the intermediary of a machine learning model. In this survey we only
consider the first type.

Model Extraction attacks attempt to recover the specifications of the model itself. Commonly
this happens in situations where the adversary only has query access to the model, such as MLaaS
(Machine Learning as a Service) applications. Model extraction can also be done via access to the
hardware that the model is running on. We will not be covering these types of attacks, as the methods
used for this have a different focus.

In reviewing the literature on these three types of attacks, we will use three aspects to frame the
discussion: prerequisites, methods, and defenses. The prerequisites consist of a set of information and
access needs that should be met before launching an attack. The method describes the algorithm or
process of attacking. Lastly, defenses can be used to repel an attack. Some preliminaries on defense
will be discussed in Section 2.3.

Access Level

An often-used distinction in the literature, which is an important part of the prerequisites of any
attack, is that between white box and black box access. An adversary with white box access will be
able to see the internals of a model, for example in situations where the model can be downloaded or
accessed from the server it is running on. In the context of collaborative learning, the participants
have white box access by definition, as they are training the model and exchanging model parameters
themselves.
Black box access means that the model internals are hidden. Usually in these cases the adversary
has query access to the model, sometimes with a limit on the number of queries that can be done,
called the query budget. On occasion the term grey box is used to indicate an intermediate access
form where only some information about the model is known. Model extraction attacks are always
grey or black box.

2.3 On Differential Privacy

For defending against attacks on the training data, differential privacy (DP) is a very important notion.
In short, it is a formal guarantee that the privacy of a single sample in a set is not breached when
doing some operation on the set. In the context of this review, that operation is a machine learning
algorithm, but it is also used in other contexts. Usually it is defined as follows:

Pr[M(d) ∈ S] ≤ eεPr[M(d′) ∈ S]

for an operationM : D → R working on adjacent inputs d, d′ ∈ D and a subset of outputs S ∈ R.
This formula expresses that the likelihood of getting some specific output for two similar inputs must
be smaller than the term eε to achieve ε-differential privacy. The value of the ε parameter differs
per application, but generally it is considered that ε ≤ 1 is a strong guarantee (Abadi et al., 2016;
Fredrikson et al., 2014).

There are various algorithms that implement differential privacy for machine learning models. One
that is often used is that by Abadi et al. (2016), which takes into account an extra parameter δ added
to the term. This parameter is then used to define (ε, δ)-DP, where δ stands for the probability that
normal ε-DP is broken. The algorithm works by clipping and adding small amounts of noise to the
gradients in each step of the training process.

Another type of DP is f -differential privacy, which can be used to find the upper bounds of privacy
leakages. This can be used as a tool for hypothesis testing (Dong et al., 2019). It is described as
follows:

T (M(S),M(S′)) ≥ f
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Stochastic Gradient Descent (SGD), the standard optimization technique for training DNNs, has
been modified in a couple of ways so it can ensure more privacy. For example, there is Distributed
Selective SGD, where sharing of the gradients is done by adding noise to ensure privacy (Shokri and
Shmatikov, 2015). There is also the Private SGD (DP SGD) algorithm for GANs (Abadi et al., 2016),
which uses norm clipping in combination with noise addition.

3 Membership Inference

Attacker selects
target datapoint

Target model
Prediction from
 target model

Attack model

Knowledge about target model

Prediction about membership status target 
datapoint in training set of target model

General membership inference attack

Figure 1: General workflow of a membership inference attack. Knowledge of the attacker depends
on the setting (black-box vs white-box). The structure of the attack model varies greatly, depending

on the target model type and dataset.

Membership inference attacks can achieve the goal of verifying if a certain datapoint was used to train
the machine learning model in question. An unethical party can decide to try and see if a datapoint
was used to train a model in a problem setting where privacy is an important aspect. Think of a
machine learning model that is used to predict whether or not a patient has symptoms that point
towards cancer. A person being a member of this training set could point towards this person having
cancer, meaning an invasion of privacy. On a more ethical note, a membership inference attack could
also be executed to help confirm whether a datapoint was used to see if the model was trained on data
that it was not allowed to use (Pyrgelis et al., 2018). For example when auditing a model to see if it is
compliant with GDPR (Song and Shmatikov, 2019).

Similar types of attacks have also been achieved on non machine learning models, where single
datapoints have been confirmed to be a part of aggregate data (Calandrino et al., 2011).

Moreover, membership inference attacks can serve as a way to quantify how much models overfit
(Hayes et al., 2019) and thus as a measurement tool for safety of releasing MLaaS models to the
public.

Membership inference attacks also allow us to learn more about what overfitting means in generative
models (Hayes et al., 2019), meaning that it can give new insights to machine learning as a whole.

3.1 Prerequisites

In the current research domain of membership inference attacks on machine learning models there
are varying assumptions on the knowledge of the attacker, the attack time, the type of ML model, or
even the type of dataset the model was trained on. In the following section we discuss the current
range of these parameters.

As was shortly discussed in section 2.2, there are different assumptions that can be made about
the knowledge of the attacker possesses. It is a scale from only black-box knowledge towards full
white-box knowledge. A strict black box attack would give the attacker only information about the
output of the model when he enters an input, as is the case in many MLaaS applications.
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In a white box attack the attacker has access at least some of the following: the hyperparameters
of the victim model, the type of the model, a subset of samples that belong to the training set, the
distribution of the training data, the size of the training set, the training algorithm of the model, or
some samples from the training set. There is a substantial body of work that exists somewhere in
between strictly black box or fully white box. It is sometimes assumed that in a black-box attack the
attacker has access to at least some of the training samples, or the distribution of the training data (for
example in Shokri et al. (2017)).

Another relevant factor in attack knowledge is the amount of queries an attacker can afford before
risking being found out or running out of money. In MLaaS models, it is probably the case that some
alarm bells will go off if a single user submits 100s of queries to a single model in a short time, or it
could be pay per query (Hayes et al., 2019).

There are different stages in which a ML model can be targeted by a membership inference attack.
A membership inference attack can happen during both training and inference time. If the attack
happens during training time, it is in a federated learning setting where the attacker is either one of
the training parties or someone who acts as the central update server (Nasr et al., 2019).

The type of model that a membership inference attack targets is of great influence on how that attack
can look. Attacks on discriminative models often take into account the confidence score that a model
gives in combination with its prediction (Chen et al., 2019). Generative models, however, do not
output this kind of confidence score. This complicates the problem and a new approach is needed for
this type of model. GANs as well as VAEs have been researched by Hayes et al. (2019) and Chen
et al. (2019). Chen et al. (2019) propose a taxonomy to order the types of attack on GANs on the
access level that is assumed, ranging from black-box generator, to partial black-box generator, to
white-box generator, and finally to accessible discriminator.

The assumption that Shokri et al. (2017) make is that similar models trained on similar data records
using the same service will behave similarly. The type of dataset and its distribution influence the
success of a membership inference attack. So in addition to an attacker being privy to this information,
the information itself is also of importance. Models trained on high dimensional datasets (e.g. on
images) are different to attack than models trained on lower dimensional datasets, and models that are
trained on bodies of text are different still. Many papers solve this by testing their attack on multiple
types of dataset (Chen et al. (2019), Yeom et al. (2018), Salem et al. (2019)).

It is often assumed that what makes models vulnerable to membership inference attacks is decided
by whether or not that model overfits and how much (Yeom et al., 2018). However, successful
membership attacks are not only determined by whether the target model overfits, but are also
influenced by whether or not target attributes have significant influence on the output of a model
(Yeom et al., 2018). Even if overfitting looks different in some types of models, it can still play a role
in susceptibility to membership inference (Song and Shmatikov, 2019).

3.2 Methods

To perform a membership inference attack, many papers utilise a similar model structure as their
target model to achieve their goal. For example, using generative models to attack generative models
(Chen et al. (2019), Hayes et al. (2019)). Many papers choose to use a variety of experiments on a
variety of datasets. An overview of all papers and their different methods can be found in table 1.

3.2.1 Attacking discriminative models

A very influential paper treating the subject of membership inference attacks was by Shokri et al.
(2017). Shokri et al. (2017) made use of ‘shadow models’, as many as there are classes that the
target model can output. These are trained on some dataset and return ‘in’ or ‘out’ corresponding
to whether or not they are in the training set. These shadow models are then used to train the attack
model that learns to distinguish whether an input was ‘in’ or ‘out’ the training set. This model gets
fed a correctly labelled input pair together with the prediction vector of one of the shadow models.
They find they can stage a successful membership attack, even with minimal levels of assumptions
about the model. With SocInf, Liu et al. (2019) use a similar approach as Shokri et al., however they
use only one ‘mimic’ model and make use of a GAN to train it. They are successful in staging their
attacks on supervised models in combination with social media datasets.
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Authors Model Type Assumption level Centralized/Federated
Chen et al. (2019) Generative All Centralized
Farokhi and Kaafar
(2020)

Discriminative White box Centralized

Hilprecht et al. (2019) Generative Black box Centralized
Hayes et al. (2019) Generative Black and White box Centralized
Hisamoto et al. (2020) Sequence Grey box Centralized
Jayaraman et al. (2020) Discriminative Black box Centralized
Liu et al. (2019) Discriminative Black box Centralized
Melis et al. (2019) Discriminative Grey box Federated
Nasr et al. (2019) Discriminative White box Both
Long et al. (2018) Discriminative Black box Centralized
Pyrgelis et al. (2018) Discriminative White box Centralized
Rahman et al. (2018) Discriminative White box Centralized
Sablayrolles et al. (2019) Discriminative White and Black box Centralized
Salem et al. (2019) Discriminative Black box Centralized
Shokri et al. (2017) Discriminative Grey box Centralized
Shokri et al. (2019) Discriminative Black box Centralized
Song and Shmatikov
(2019)

Sequence Black box Centralized

Truex et al. (2019) Discriminative Black box Centralized
Yeom et al. (2018) Discriminative Black box Centralized

Table 1: Global overview of all reviewed membership inference papers. Generative or discriminative
refers to the target model’s structure, and more specifically whether a shadow-model-type attack is
possible without adjustments. Black, white, and grey box refer to assumption levels about the target
model. Black is no knowledge, white is a lot of knowledge, and grey is somewhere between. Grey is
often used if the authors leave their assumption level unspecified. Centralized and federated refer to

the way the target model is trained.

Whenever a shadow model or similar needs to be trained, a suitable dataset to train it on has to be
found or created. There are multiple approaches used to generate an appropriate dataset. Shokri et al.
(2017) propose to use either model-based synthesis, which uses the target model in combination with
a hill climbing algorithm, or statistics-based synthesis where feature values are sampled from their
marginal distribution to synthesize a training set. Another way to synthesize data is to query the
target model repeatedly with possible inputs and use the model output to classify the generated input
to create a new dataset (Liu et al., 2019).

In continuation of Shokri et al. (2017), Truex et al. (2019) try to gain insight in the specific factors
that make a membership inference successful or not. They use a multitude of models and datasets
with an empirical characterization. They try different combinations of attack and victim models and
try to measure impact of different kinds of attacker knowledge by investigating the effect of accurate
target data and accurate shadow data. Truex et al. (2019) find that in their broader attack setting
membership inference attacks can still be successful.

Extending the research of Shokri et al. (2017) by relaxing their two main assumptions Salem et al.
(2019) perform a successful membership attack. The two main assumptions made by Shokri et al.
(2017) are the need for multiple shadow models as well as the need for the distribution of the training
set for the shadow models and the target model to be the same. Salem et al. (2019) show that broader
range of attack scenarios can still be successful.

Pyrgelis et al. (2018) propose a new kind of attack on discriminative models. They propose an attack
that is meant to distinguish whether or not a datapoint was part of aggregate time-series location data.
They propose a few white box settings with differing levels of knowledge and model their attack as a
distinguishability game where they train a classifier to decide whether or not a user was part of the
training data. In one of their attack settings, a subset of locations of the target are known, and in
the other setting the attacker has information about a subset of groups that the target was included
in. They train their attack model on a balanced dataset of labeled aggregates over user groups that
include or exclude the user of which they want to determine membership status (Pyrgelis et al., 2018).

Sablayrolles et al. (2019) try to find the optimal strategies for membership inference attacks with the
help of a probabilistic framework. The optimal attack is not tractable, but can be approximated by
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relying on the loss of the target model and not the parameters of the target model. With this, they
show that a black box attack is as good as a white box attack (Sablayrolles et al., 2019).

Furthering the research into what makes membership inference attacks feasible, Long et al. (2018)
show that overfitting is a sufficient condition for this. However, they also find that it is not necessary
when a target datapoint has unique influence on the model. They also note that a truly black box
attack on a well generalised model has not yet been shown to be successful. To stage their attack,
they first build ’reference’ models to mimic the target model. Then they select records that should be
vulnerable to the membership inference attack. Then they query the target model and run a hypothesis
test to decide whether its classification is in line with what the reference models would predict (Long
et al., 2018).

Nasr et al. (2019) design multiple attacks to gain more understanding of the privacy preserving
capabilities of deep learning models. They design passive and active white-box inference attacks
against both centralized and federated learning. They stage their attack by exploiting the SGD
optimization algorithm. Nasr et al. (2019) show that models that do not overfit are still susceptible to
a membership attack.

Taking a more formal approach are Yeom et al. (2018) by first introducing definitions for membership
inference attacks where they replace the training algorithm by a malicious one. They implement this
attack under varying knowledge assumptions. They test their proposed attacks on a variety of models
and datasets. Yeom et al. (2018) find that models that overfit are the most vulnerable to their attacks,
although influence of a target attribute also plays a role.

Looking intro what influences a models’ privacy leakage through membership inference, Farokhi and
Kaafar (2020) take a theoretical approach with some empirical experiments where they assume white
box access to the target model. They use mutual information and Kullback-Leibler divergence to
measure information leakage from membership inference. They find that membership information
leakage decreases when the size of the training set that is used to train the target model increases.

Contributing to more insight in privacy preserving models and membership inference attacks, Rahman
et al. (2018) apply a white box attack on a differential private classification model, with the basic
attack method of Shokri et al. (2017). They mention the trade-off between keeping models private
and preserving utility.

Looking further into the possibilities of membership inference attacks on differentially private models
and non-private models, Jayaraman et al. (2020) show that an attack on such a model can still be
successful even with skewed prior probabilities, which is a realistic setting. They consider the
case where only a small fraction of the datapoints that are targeted actually belong to the training
dataset or the target model, they assume that a training example will be near a local minimum in
the loss function. They also consider dynamic inference thresholds that are selected by the attacker.
Jayaraman et al. (2020) propose to use the positive predictive value together with the f-differential
privacy notion to better measure their imbalanced setting. Only when the privacy loss budget is very
high, are the differentially private models vulnerable to their attack (Jayaraman et al., 2020).

The vulnerability of membership inference during federated learning is researched by Melis et al.
(2019). Their key observation is that ML models memorize latent features independent of the task
being learned. They use an active adversary that can use multi-task learning and they stage an attack
against in a federated learning setting with model averaging and are still successful in their goal of
property inference for a subset of the class (Melis et al., 2019). They do this by having a participant
in the federated learning process be the adversary and he tries to steal training data from another
participant. They use a varying number of participants in their experiments and note that the more
participants take part in collaborative learning, the less successful attacks become.

The need for transparency and privacy is a key element of trustworthy machine learning (Shokri
et al., 2019). However, model explanations can be used to undermine the privacy preserving qualities
of said model (Shokri et al., 2019). Shokri et al. (2019) show this by investigating three types of
model explanations, namely backpropagation-based, perturbation-based and example-based. For the
backpropagation-based and example-based explanations they find that the privacy of the model is not
preserved.
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3.2.2 Attacking sequence models

Song and Shmatikov (2019) use membership inference to audit ML models and focus on deep
learning text generation models. They assume a black box setting with knowledge of the training
algorithm of the target model and assume the target model does not output any confidence values or
probabilities, they use well-generalized models. An approach with shadow models similar to Shokri
et al. (2017) is used. Song and Shmatikov (2019) find that overfitting in RNNs manifest by shifting
probabilities in samples that are not often seen, which is a different manifestation of overfitting than
what ’usually’ happens in ML models. They show that their membership inference attempts are more
successful when they include rarer words.

To deepen the understanding about which models are sensitive to membership inference attacks,
Hisamoto et al. (2020) research an attack on a sequence-to-sequence model. Carlini et al. (2019)
showed that generative sequence models are sometimes sensitive to remembering specific sequences,
meaning they could be sensitive to a membership inference attack. They use a machine translation
model in combination with the shadow model method from Shokri et al. (2017). They also try some
more advanced tricks like trying slight variations of the same input sentence and analyzing the change.
Hisamoto et al. (2020) were not yet very successful but their best results were better than random
guessing.

3.2.3 Attacking generative models

To attack generative models requires a different approach than when attacking discriminative models.
Hayes et al. (2019) do this by leveraging GANs themselves, and training a GAN on data that was
generated by their target model. They device a black box setting and a white box setting for their
attacks (in the black box setting the adversary is aware of how big the training set of the target
model was). The method for the white box setting requires access to the discriminator of the GAN,
thus restricting the attack to GANs, this attack once again leverages the confidence values that the
discriminator puts out. Their black box attack is also suitable for VAEs and requires a dataset with
datapoints that were probably included in the training set of the target model. Hayes et al. (2019) also
introduce two sort of grey box attacks, a discriminative one and a generative one. In the discriminative
one they leverage overfitting of the target to train a discriminative model to distinct whether or not a
sample was in the training set. The generative setting is similar, but they train a GAN to distinguish
between training and non-training data.

Chen et al. (2019) propose a generic attack model for their attacks on generative models. They
use a Bayesian perspective where they aim to compute the probability of whether or not a sample
was a member of the training set. Calculating this is intractable, so they use a kernel density
estimationParzen (1962) to approximate it (Chen et al., 2019).

Hilprecht et al. (2019) propose two attacks on generative models, the first attack is based on Monte
Carlo integration and applicable for all types of generative models, the second attack is a so-called
reconstruction attack that can be used on VAEs (Hilprecht et al., 2019). The Monte Carlo attack is
based on their intuition that the generator part of a generative model overfits when the output is close
to its training set. They use an appropriate distance measure and heuristic.

3.3 Defenses

Overfitting is one of the most important factors in determining the susceptibility of a model for a
membership inference attack (Shokri et al. (2017), Yeom et al. (2018), Liu et al. (2019)). Therefore
defenses for a membership attack can consist of making sure your model does not overfit and is
trained on a representative training set. Notably, overfitting is not the only aspect of a model that
makes it vulnerable in terms of privacy leakage (Shokri et al., 2017). There is also the influence that
individual datapoints have on the model. As mentioned by Long et al. (2018), a technique where
some samples are excluded from training because of their influence could be of importance. An
aspect that is prominent in many of the current body of work on membership inference is the trade-of
between utility and privacy. Where a mitigation tactic reduces the accuracy of the model, making it
no longer useful in a competitive real-world setting (Rahman et al., 2018).

Other proposed defenses are limiting ow much information the model puts out, by clipping the
prediction vector to only output the probabilities of the top k classes (Shokri et al., 2017). Similarly,
a defense where the probabilities of the prediction vector of discriminative models are coarsened
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by decreasing their precision (Shokri et al. (2017), Liu et al. (2019)). Shokri et al. (2017) propose
to use a softmax function with temperature, to increase the entropy of the output, which decreases
information leakage. Finally, they propose to use regularization to reduce overfitting of the model
(Shokri et al., 2017). However, only regularization seems to help significantly against information
leakage of the model. (Truex et al., 2019) propose model hardening by model choice, fit control,
regularization, and anonymization. They mention the privacy-utility trade-off.

(Salem et al., 2019) mention two main defenses. Just like Melis et al. (2019) they mention dropout,
finding that there is a trade-off between utility and privacy, except for when dropout decreases
overfitting in the target model. In the case a target model might not be a neural network, they propose
model stacking.

Pyrgelis et al. (2018) employ differential privacy to research the trade-off between utility and privacy
of their model. They find that differentially private training ensures privacy in some cases, however
not in all. They find that an adversary that tries to copy the target model and trains on noisy aggregate
data to be partly immune to differentially private mechanisms (Pyrgelis et al., 2018). Moreover,
Jayaraman et al. (2020) find that differentially private models can still be vulnerable to membership
inference attacks.

Defenses against membership attacks in collaborative learning are similar to those in the centralized
setting. Melis et al. (2019) propose to share fewer gradients between participants, a dimensionality
reduction of the predictions, which could hurt performance, and they propose dropout (Srivastava
et al., 2014) to avoid overfitting. Finally, Melis et al. (2019) use participant-level differential privacy,
however they find it hard to still obtain a useful model when enough noise is added to preserve the
privacy of the training set. Melis et al. (2019) mention that more research is needed for an effective
defense.

(Chen et al., 2019) implement differential private DP SGD algorithm for GANs Abadi et al. (2016).
They find that using DP SGD causes slower training, higher computation costs, and worse generation
outputs from the model.

In generative models, weight normalization, dropout and differential privacy are also viable options
for a defense mechanism (Hayes et al., 2019). Hayes et al. (2019) also propose using their attack
as a defense mechanism, by checking vulnerability to a possible attack with a mock-attack. Or
alternatively to use the inference attack as a stopping measure for when to halt training, when attack
accuracy is still low but model utility is already high enough.

Differential privacy seems to be in the forefront of defenses against the membership inference attack.
Next to the mention of the inherent privacy-utility trade-off.

4 Model inversion

A model inversion attack goes a step further than membership inference: beyond testing for mem-
bership, this attack can recover new information about the training data, optimally even the entire
training set. The name model inversion is really an umbrella term for multiple types of attacks, and
in the literature, there are various terms used, sometimes interchangeably, for this subject. Data
reconstruction or extraction usually refers to the direct reconstruction of data points from the training
set, possibly even the entirety of it. Attribute inference is sometimes used for the case in which only
one or a few of several attributes of training data are recovered. Property inference is also used in this
context; however, this term more commonly means that some statistical properties of the training set
are extracted that are not necessarily contained directly in the data points themselves.

We will refer to all these types of attacks as model inversion attacks throughout the rest of this section.

Figure 2 shows a general workflow for model inversion. Note that is not a complete model, as there
are some exceptions and a lot of detail is omitted. These aspects will be discussed in section 4.2.

4.1 Prerequisites

As described in section 2.2, attacks can be white or black box, depending on whether knowledge
about the model internals is required to execute the attack. This is a good starting point for discussing
the assumptions made and the access needed prior to starting an attack. Table 2 below shows for

9



Reconstructed
Data

Training Data

Target Model Inference
API

Auxiliary Data

Shadow
Model

GAN Prototypical
Complete

Partial

Property

Meta
Model

Figure 2: General workflow for multiple types of model inversion attack. Colored black for the
target architecture, blue for the adversary architecture, and red for the result. Different components
of the adversary architecture are needed for different types of attacks. In the context of collaborative

learning, the target model and training data are those of one specific participant.

reference a rough classification of the literature on model inversion attacks in terms of the amount of
necessary information.

In general, attacks done in a collaborative setting assume white box access. The participants usually
share a common learning objective, which means that they know which model is being trained and
which labels are declared. Model parameters or gradients are exchanged during the training phase.
The adversary can have access to this training as either a participant (Hitaj et al., 2017; Melis et al.,
2019) or a potential central server (Wang et al., 2019). In this last case, the adversary can even
actively isolate a participant to make the attack more straightforward.
Some methods do not require knowledge of the common learning objective and achieve success only
by using the gradients (Zhu et al., 2019; Zhao et al., 2020). Therefore, an adversary does not have to
gain access by participating in the training but could instead intercept the gradients when they are
exchanged, which can be easier to achieve in some cases.

There are also some white box attacks that use a centralized setting, which are of course done during
the inference phase. A few of these exploit the parameters or other information explicitly (Gambs
et al., 2012; Zhang et al., 2020). Others use the information about model internals to create shadow
models that have the same functionality (Ateniese et al., 2015; Ganju et al., 2018).

Not all white box attacks need an exact copy of the target model to work. For attacks that use
shadow models, it could be enough to have an approximation of the model, which can be acquired
by performing a model extraction attack. In fact, some authors even explicitly state which model
extraction attack could be used as a preparation for their model inversion (e.g. Ganju et al. (2018);
Salem et al. (2019)).

Shadow models can also be used in black box attacks. These methods are weaker and usually do not
get results quite as good as their white box counterparts. Nonetheless, some attacks work fine when
using just the same type of model if that information is known, or even an arbitrary model that can be
trained to have the same functionality as the target (He et al., 2020). This is very useful, as a white
box attack is often not feasible in real-world situations.
However, using shadow models does mean—in black as well as white box attacks—that an auxiliary
dataset to train these models on is essential. For some methods it is acceptable to use an arbitrary
dataset, but for others the data needs to come from the same domain (Ateniese et al., 2015) or even
the same distribution (Salem et al., 2019) as the data that is being extracted. Property inference
attacks with this method also require the data to have samples both with and without the property
that is being inferred (Ateniese et al., 2015; Ganju et al., 2018; Melis et al., 2019). How to create or
obtain these auxiliary datasets, apart from simply grabbing suitable data from public repositories, is
not discussed.

Other black box attacks have less stringent information needs. Knowing the distribution of some
or all of the attributes could be important (Fredrikson et al., 2014, 2015), but not always necessary
(Shokri et al., 2019; He et al., 2020). For the attribute inference attacks by Fredrikson et al. (2014);
Yeom et al. (2018), the values of some non-sensitive attributes are also required, which might not be
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feasible depending on the context of the attack. Although if it is feasible, many works have a way to
use this extra information to improve their results. The attack by Yeom et al. (2018) also works with
access to a membership oracle instead of to the model, which is interesting even if it will in most
cases be simpler to use the model itself.

For Carlini et al. (2019) and Wilkinson and Legg (2020), who perform attacks on text prediction
models, it is essential to know the pattern or format of the data that is targeted. However, although
this depends on the target and other situational details, such a format could be as simple as “My
social security number is [. . . ]”.

A few other attacks can be done using only query access to the target model, although auxiliary
information will improve the results (Al-Rubaie and Chang, 2016; Aïvodji et al., 2019; He et al.,
2020).

Lastly, an interesting new avenue is the use of model explanations (Shokri et al., 2019). Especially
example-based explanations are relevant for model inversion, although different types of explanations
can be used for other attacks.

Black Box White Box
nothing Auxiliary

Dataset
Attribute
Distributions

nothing Auxiliary
Dataset

Al-Rubaie and Chang
(2016)

Salem et al.
(2019)

Shokri et al.
(2019)

Gambs et al.
(2012)

Zhang et al.
(2020)

Aïvodji et al. (2019) Fredrikson et al.
(2014)

Zhu et al.
(2019)

Ateniese et al.
(2015)

Yeom et al. (2018) Fredrikson et al.
(2015)

Zhao et al.
(2020)

Ganju et al.
(2018)

Carlini et al. (2019) Hitaj et al.
(2017)

Melis et al.
(2019)

Wilkinson and Legg
(2020)

Wang et al.
(2019)

He et al. (2020)

Table 2: Classification of model inversion attacks by level of prerequisites. They are first split by
access level to the model, then split by type of auxiliary information needed. If there are multiple

levels of prerequisites covered in a work, it is categorized by the minimum required level.

4.2 Methods

As we established at the start of this section, there are various different terms used in the literature
to refer to the different model inversion attacks. These terms commonly indicate the type of result
that is obtained, and roughly map to the different methods used for the attacks as pictured in figure 2,
although not all methods match this diagram completely. A classification is made of the attacks based
on these terms, which is shown in table 3 and will also be used here. We first make a distinction
between the methods extracting properties and those constructing data samples. This last category
is further split into methods that generate new samples, methods that extract partial samples, and
methods that extract complete samples.

Property Inference

Some methods aim to infer information about the dataset that is not directly an attribute or class
label, but rather a statistical property. The environment that the data was produced in or a class that
it belongs to unrelated to the learning task are examples of such properties. These can be extracted
from the global dataset or from a single user or class.
As discussed in the previous section, there are multiple attacks that use shadow models with the same
functionality as the target model. These are mostly employed in the context of property inference.
The method by Ateniese et al. (2015) uses multiple such shadow models, trained on data that is
similar to the target data but partitioned on some statistical property. Property inference is then
performed by training a meta-classifier on these shadow models. This meta-classifier will be able to
classify a target model on the statistical property that distinguishes the data partition used to train it.
The precision and recall of this method as tested by Ateniese et al. (2015) are around 0.95, although

11



they only test relatively simple models like HMM and SVM.
Ganju et al. (2018) extends this attack by adding support for fully connected NNs. This is not very
practical, as most NNs are not completely connected, but it is a step towards attacks that work on
general NNs. Their precision and recall scores are also good, being all above 0.85. However, both of
these attacks do inference only on binary properties, and it is unclear how well they would work on
multi-class properties.
Melis et al. (2019) uses a similar method with a meta-classifier in the context of collaborative learning,
where its input consists of the gradients that are exchanged during an update. This allows for property
inference on the iteration level, as the meta-classification is done per batch. Melis et al. (2019) also
test aggregating gradients across more participants, and reducing the number of samples in the batch
that have the property. Although the performance goes down in these more difficult conditions,
generally it performs as well as the centralized attacks.

Prototypical Reconstruction

Another type of attack uses Generative Adversarial Networks (GANs) to construct data points
representative of some class or, in a collaborative setting, of some participant. These attacks produce
non-existing data that is prototypical for that class, but not a direct reconstruction. Thus, a limitation
of this method is that the samples of the targeted class should be similar enough for the generated
prototype to be coherent.
Hitaj et al. (2017) perform a GAN attack in a collaborative setting. The adversary is a participant
in the learning process, and alongside their local training model they use a GAN to generate data
belonging to some class A that the target participant has training data of. The adversary can, as a
participant, actively influence the target to release more data of that class by using their generated
data as some other class B, which means that the model is less able to differentiate data of class A.
However, this influence could cause the global model utility to decrease.
The results are only evaluated visually and therefore difficult to compare, but it is clear that the
generated data is of lower quality than the training set.
Wang et al. (2019) apply the same method but have the adversary control the central server instead,
which gets more accurate results without having to influence the model utility. However, in a real-
world setting it is less likely that the adversary has access to this server than to one of the participants.
The results are compared with attacks like those of Hitaj et al. (2017) and Fredrikson et al. (2015),
and it does generate better results, visually as well as using a quality measurement called inception
score (see Salimans et al. (2016)).
Aïvodji et al. (2019) apply the method in a centralized setting. Interestingly, this is the only paper on
model inversion attacks that mentions a query budget, although they set it at over a million queries
and it is never reached. The results are visually evaluated using a survey with 13 participants, but no
mention is made about the background of the participants or the setting of the survey. Most of the
results are unrecognizable, scoring at best 55% correct guesses in the survey.
Zhang et al. (2020) adds a public knowledge distillation phase that involves training the GAN on a
similar or partial dataset to improve its generation of realistic data. They introduce various evaluation
metrics that measure different aspects of the result quality. These metrics are useful in comparing the
different attack settings, although they do not give a readable quality estimate.
Salem et al. (2019) attacks a model in an online learning scenario, which is constantly updated with
small batches. A shadow model using online learning is used to train the GAN, which can then be
applied to the target model. The input for this training is the posterior difference of the online learning
model. This is the difference between the model outputs before and after an update. To get the best
possible quality result, a large amount of samples are generated and then clustered. Based on this
clustering the optimal samples can be chosen. The results are good on the MNIST image set, where
all images have a black background with a white digit in the middle, but other more heterogeneous
datasets result in fuzzy and unrecognizable images.
All GAN-based attacks discussed here are applied on image data, often even using the same datasets
like MNIST. Nonetheless, the attacks cannot be fully compared, as there is no standard metric used
for the evaluation, and some of the papers have no reproducible way of evaluation at all.

Partial Reconstruction

An attack aiming for partial reconstruction of the training data, also called attribute inference, targets
only one or a few sensitive attributes from the data. Fredrikson et al. (2014, 2015) were the first to

12



define such an attack, called the MAP (Maximum A Posteriori) estimator. Given some non-sensitive
attributes of a data point and query access to the target model, it reconstructs the other attributes
by repeatedly querying the model with possible candidate inputs. Candidates are generated using
auxiliary information about possible values for the unknown attributes. Feeding them to the model
returns confidence scores, and by maximizing these scores, the most likely values for the sensitive
attributes can be found.
The original attack by Fredrikson et al. (2014) relies on knowledge of the output value to choose
the most likely candidate. By using the confidence scores, Fredrikson et al. (2015) overcome this
limitation. However, the method requires that the sensitive feature is drawn from a small and thus
discrete set of values. Also important to note is that only using white box access do the results not
contain false positives. A black box attack could perform, depending on the dataset, no better than
random guessing, which is especially relevant for an assessment of privacy risks.
Yeom et al. (2018) formalize the MAP attack and introduce the notion of attribute advantage, defining
the risk to the training data specifically, as compared to the general population. They show that
overfitting by the target model is a factor in the effectiveness of the attack, as is the influence of the
target attribute on the model output.

A related attack which is not shown in figure 2 is the membership oracle attack, created by Yeom
et al. (2018). In this setting, the candidate inputs are given to a membership inference oracle instead
of to the target model directly. The membership oracle tests it for membership in the training set. It
should then yield ‘true’ when the right sensitive attribute value is found, because only in that case
will the complete candidate input be a correct member of the training set. This attack is theoretically
interesting, as it shows that attribute inference is ‘harder’ than membership inference, but in practice,
it is less feasible than the original MAP attack.

Lastly, He et al. (2020) apply various different methods to steal links from a graph dataset. Without
any auxiliary information, they simply use distance metrics on the posteriors. When some attribute
information or the partial training set is available, a MLP model is trained on features built from this
information, again using distance metrics and some entropy measures. Lastly, using an auxiliary
dataset, a shadow GNN model can be trained, and a MLP model can be trained in turn on features
built from the auxiliary data (instead of from real data). These three methods can even be combined if
multiple types of information are available. Most of the attacks outperform traditional link prediction,
and especially attacks using the partial training set or shadow models achieve good results, with an
AUC score around 0.95 depending on the auxiliary dataset.

Complete Reconstruction

This type of attack aims to extract complete data points from the training set, optimally recovering it
entirely.

The first reconstruction attack was inspired by attacks on statistical databases. Gambs et al. (2012)
walk through the structure of a decision tree model and collect the attribute values and leaf counts that
the tree contains. These are then used to produce what they call a probabilistic version of the training
dataset, which is the set or range of possible values that the data points in the set could have. It is a
very simple attack that depends completely on white box access to the decision tree model type.

Complete reconstruction is also performed by Fredrikson et al. (2015), extracting images from a NN
using the MAP estimator. The candidate inputs are generated by a gradient descent computation.
Without access to the gradients, the attack could still be achieved by approximating them, but
depending on the architecture of the target model this could take more than a month to execute.
However, the reconstructed images are only approximations and do not reach the original quality.
The images are evaluated by Mechanical Turk workers, with reproducible settings that are clearly
described. All attack settings achieve over 55% correct guesses, with 80% for the least complex NN.
Al-Rubaie and Chang (2016) apply a similar attack to extract gesture data. Instead of gradient descent,
a randomization algorithm generates the candidate inputs. Their attack executes in 8 minutes without
requiring white box access. The results are not evaluated on intrinsic similarity, but again the quality
is suboptimal.

In a distributed setting, a different method by Zhu et al. (2019) exploits the gradients exchanged during
the training process. These gradients are used to update ‘dummy’ inputs and labels, minimizing the
distance between the ‘dummy’ gradient and the target gradient. Zhao et al. (2020) extends this method
by first analytically extracting the labels, and this information in turn improves the reconstruction of
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the data points. The results from this attack, applied on image data, are very close to the original data,
only differing in some artifact pixels. However, the larger the ‘batch size’ used for producing the
gradient, the more time is required to produce this quality. Unfortunately only a number of iterations
is given, with no mention of the time each iteration takes.

Carlini et al. (2019); Wilkinson and Legg (2020) attack generative text models, extracting sensitive
words and phrases with a distinct pattern. Both use a type of shortest path search on the list of
predictions combined with the pattern to search for. Carlini et al. (2019) test both word and character-
level prediction on a variety of models and datasets. Additionally, they use multiple regularization
methods to show that overfitting is not the cause of this success. The exposure or level of memorization
of the pattern can be calculated, and this metric indicates whether the attack will succeed. It does
take multiple hours to finish the attack.
Wilkinson and Legg (2020) test the extraction of a single 16-character password, without using a
surrounding context pattern. The attack has a success rate of 90%, which drops when the size of the
text corpus is increased. However, it is uncertain whether the attack will work on passwords with a
shorter or unknown length. It is also unclear whether this result will carry over to real-world settings,
as the dataset and model type are not representative of this.

Lastly, Shokri et al. (2019) perform their attack based on model explanations. Specifically, they use
example-based explanations, which given a data point return the k points in the training set that were
the most influential in deciding its label. This means that by traversing this ‘influence graph’ in an
effective way, most or all of the training set can be recovered. A shadow model, trained on a similar
dataset, results in a shadow ‘influence graph’ that can help determine a more effective query strategy.

Property Inference Data Reconstruction
Prototypical Partial Complete

Ateniese et al. (2015) Hitaj et al. (2017) Fredrikson et al. (2014) Gambs et al. (2012)
Ganju et al. (2018) Wang et al. (2019) Fredrikson et al. (2015) Al-Rubaie and Chang (2016)
Melis et al. (2019) Aïvodji et al. (2019) Yeom et al. (2018) Carlini et al. (2019)

Salem et al. (2019) He et al. (2020) Wilkinson and Legg (2020)
Zhang et al. (2020) Zhu et al. (2019)

Zhao et al. (2020)
Shokri et al. (2019)

Table 3: Classification of model inversion attacks by type of result. Property Inference extracts
statistical properties of the dataset; Prototypical reconstruction generates new data samples

representative of the set; Partial reconstruction extracts some sensitive attributes of the data samples;
Complete reconstruction extracts complete data samples.

4.3 Defenses

Depending on the exact method and the prior assumptions made, it is possible to defend against
model inversion attacks in various different ways. As described in section 2.3, differential privacy
is used to protect single data points from membership inference. It can also be applied in some
cases against data reconstruction, but in other cases and especially for property inference attacks this
will likely have no effect. Other methods to defend these attacks are needed and indeed sometimes
implemented in the literature. An added complication is the fact that the use of differential privacy,
as well as some other defense methods that rely on adding noise to some element of the model or
training process, could result in a decrease in utility. We will examine the various defenses that have
been theorized or tested for the attacks discussed above.

Carlini et al. (2019) implement DP on a text prediction model using the algorithm by Abadi et al.
(2016). This causes a slight utility loss, but does defend completely against the attack. Interestingly,
even very high ε values which should offer no meaningful protection already defend well enough to
make extraction impossible. The very similar attack by Wilkinson and Legg (2020) could theoretically
also be mitigated by DP, although the authors have not tested this.

Fredrikson et al. (2014) implement DP on a pharmacogenetics model, which does defend against
their MAP attack with low values of ε. However, they also tested its influence on the utility of the
model by simulating clinical trials. The results from this test indicate that the utility needed to use
the model in medical contexts, without increasing risk to the patients, can only be achieved with an
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ε ≥ 20, which is too high to be effective.
This does not mean, of course, that DP is ineffective for this model type. In a different situation,
these measures could very well be a good solution. However, for medical and other contexts where a
decrease in utility could mean an increase in risk, other defenses should be investigated.

On the attack of Zhu et al. (2019) and Zhao et al. (2020), which is based on gradient leakage in a
collaborative setting, DP could theoretically be useful. Zhu et al. (2019) applies various distributions
of noise to the gradients, and the results indicate that the attack is only stopped at a point where the
noise seriously affects the utility of the model. However, they do not connect this to a DP framework,
and it is possible that some implementation of DP would succeed without impeding utility too much.
Zhu et al. (2019) does test some other defenses, and finds that compressing or encrypting the gradients
successfully deters the attack; as well as increasing the batch size or image quality, which the attack
in its current form cannot handle.

In other cases, even without considering utility, DP will not work at all. Property inference attacks
fail to be prevented by DP measures, as Ateniese et al. (2015) show. As this type of attack extracts
statistical properties that apply on the entire training set, protecting single samples in it will not
have any effect on the property itself. Ganju et al. (2018), whose attack is based on this one, do test
some other defenses, most of which are not generally feasible. They theorize without testing about
one defense that could work against their method, which consists of encoding some extra arbitrary
information into the model parameters of deep NNs. This would confuse the meta-classifier that they
use but not affect the utility of the target model.
Using this type of attack in a collaborative learning context means that there are some possible
defenses related to the logistics of that. Though most of the defenses Melis et al. (2019) test are
insufficient, they do introduce an interesting notion: DP at the participant-level. Based on their
experiments, models trained using this version of DP will only converge in settings with thousands of
participants. Nonetheless, it could be valuable to explore this avenue, to possibly adapt it to a more
practical setting.

Attacks that use GANs to reconstruct training data are also not averted by the usual DP methods.
Hitaj et al. (2017) find that record-level DP is not sufficient, but do theorize that DP with coarser
granularities – such as device, class, or participant level – would protect against their attack. Zhang
et al. (2020) and Aïvodji et al. (2019) also test and reject DP, which solidifies the notion that DP will
not have an effect against this attack. Though Aïvodji et al. (2019) only test one ε value, which would
not have been enough to say something useful about DP.
This result is consistent with that on property inference attacks. The GAN-based attacks do not
reconstruct single samples, but rather class or participant representatives.

It is clear that differential privacy can be used to defend against attacks aiming to recover (attributes
of) exact data points from the training set. This conforms to the definition of DP itself, which attempts
to minimize the privacy risk to single records. Correspondingly, attacks that are aimed at statistical
properties or class averages of the training data are not impeded by implementing DP.
Nevertheless, against these types of attacks other defense methods can be used, as multiple authors
have shown. Some of these are very specific to one attack, such as for instance the encoding of
arbitrary information in the model parameters protecting against property inference attacks. Others,
though, do protect more generally: rounding or completely excluding confidence scores for instance
will give an adversary less information to go on no matter what method is used.

For white-box attacks, where access to the model internals is needed, sometimes the best option
is to shut off that access. Query access is usually possible, and in cases where the model needs to
be downloaded, it should be encrypted. However, model extraction is of course a possibility, and
often in the literature for model inversion, no distinction is made between legal white box access and
model extraction done prior to the attack. This is not always a valid assumption, as we’ll discuss
in section 5, but approximations of the model might be enough to work with. Still, in some cases
protection against model extraction could be sufficient also against these white box model inversion
attacks.

Collaborative learning is often already partly privacy preserving. Participants do not have to share
their training data but instead exchange model parameters or gradients. Using differential privacy
with participant-level granularity could improve the protection substantially, as could operations that
encode, compress, or otherwise protect the gradients themselves.
Differential privacy with other granularities could also be a solution for centralized models. Datasets
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where participants contribute multiple samples exist in this setting as well, and perhaps defense
against GAN attacks on a class-level is possible.

Lastly, there are many works in which no attention is paid to defenses. For the subject of model
inversion, this is the case for as many as half the papers considered. Some of these mention defense
as a topic for future research, and give suggestions for what type might work best, whereas others
do not mention it at all. This is an oversight: to know how feasible it is to execute an attack in the
real world, possible defenses are an important piece of information. Additionally, authors often have
good intuitions for methods to deter their own attacks, and it would be useful to mention if not test
these ideas.

5 Model Extraction

The goal of model extraction techniques is to fully recreate a model that is not yours. The general
flow of model extraction techniques is depicted in Figure 3. To commence the model extraction
attack, there is an adversary model that is usually pre-trained with similar data to the victim model.
Then, the adversary queries samples to the victim models and trains itself on the returned labels.
Sometimes, there is also some selection technique available that determines which set of samples is
the most will provide the most effective results when querying the victim model. When the process is
complete, the adversary will obtain a model that is ideally fully equivalent with the victim model. In
the following sections, we will discuss the prerequisites for model extraction techniques (Section 5.1),
discuss the methods used for various model types (Section 5.2) and which defense mechanisms are
tested against the proposed model extraction attacks (Section 5.3). Table 4 gives a global overview of
these three sections. Each section will contain a more in depth table specific for that theme. For the
Prerequisites column, we have looked at the results of Table 5 and summarised the total prerequisites
in three categories: Low, Medium and High. When a paper is classified as Low, the paper does not
require any or much knowledge beforehand. When the paper is classified as Medium, it is comparable
with the average of other papers. When the paper is classified as High, it requires more knowledge
beforehand compared to the other the papers on average.

Training Data
Adversary Model Victim Model

Training of the adversary model

Querying victim model with samples

Learning from returned labels

Some selection technique to determine next samples 

Figure 3: General workflow for model extraction attacks. Adversary trains on some dataset and then
queries the victim model with some selection technique to determine the samples. The labels of the

victim model are learnt.

5.1 Prerequisites

As described in Section 2, there are almost always some prior assumptions when executing attacks.
Therefore we will group papers with different assumption characteristics together in this section. We
will focus on characteristics that are based on assumption of the papers. Firstly, there are assumptions
about the models. Some experiments assume prior knowledge about the model type, such as a
DNN or SVM and some papers even assume knowledge about the architecture of the victim model.
Furthermore, assumptions are often made about the dataset that is used by the victim. We make a
distinction here between knowledge of the dataset itself, so the distribution of the dataset for example,
and knowledge about the problem domain, so images of traffic signs for example. Lastly, there can
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Authors Model Type Attention
To Defense

Prerequisites Novelty

Shi et al. (2018) All models No Medium Active learning with query budget
Pal et al. (2019) DNN Yes Medium Extract DNN without domain knowl-

edge with query budget
Yu et al. (2020) DNN Yes High Near-perfect performance on DNN

extraction with significant less
queries

Atli et al. (2020) DNN Yes Medium Reproducing and validating Knock-
off nets and introducing new defense
method

Pal et al. (2020) Yes Medium Universal thief dataset from unanno-
tated public data, evading PRADA.

Kariyappa et al. (2020) DNN Yes High MAZE, does not require any data but
creates synthetic data

Mosafi et al. (2019) DNN Yes Low Generating composite images for
model extraction, impervious to wa-
termarking

Tramèr et al. (2016) DNN, DT,
LR, SVM

Yes Medium Simple, effective attacks with near-
perfect fidelity

Duddu et al. (2018) NN Yes High Side channel leakage
Duddu and Rao (2019) NN Yes Low Side channel leakage
Jagielski et al. (2019) NN Yes High Fidelity as performance measure for

model extraction
Oh et al. (2019) NN No High Exposing attributes of neural net-

works
Correia-Silva et al.
(2018)

CNN No Low Copycat network by using random
non-labeled data

Orekondy et al. (2019) CNN Yes Low Creating Knockoff nets by querying
random images

Roberts et al. (2019) CNN No High Framework for extracting model pa-
rameters by training a new model on
random impulse response pairs

Krishna et al. (2019) BERT Yes High Model extraction in NLP
Wallace et al. (2020) MT Yes Medium Stealing machine translation (MT)

systems
Chen et al. (2020) DRL Yes Medium Extracing DRL models
Reith et al. (2019) SVM, SVR No Medium Highly accurate SVM and SVR ex-

traction with feasible and cheap at-
tack

Chandrasekaran et al.
(2018)

SVM, DT,
RF

Yes High Formalizing model extraction and
drawing parallels between model ex-
traction and active learning

Shi et al. (2017) NB, SVM No Medium Inferring Naive Bayes and SVM
with deep learning

Takemura et al. (2020) RNN, LTSM No High Infer RNN and LTSM
Wang and Gong (2018) RR, LASSO,

KRR, SVM,
L1-LR, L2-
LR

Yes High Stealing hyperparameters

Table 4: Global overview of all reviewed model extraction papers. Papers are categorized by: the
model type that has been extracted (Section 5.2), if there was any attention to defense mechanisms

(Section 5.3), how many prerequisites are needed (Section 5.1) and the novelty of the paper.

be assumptions about the amount of queries that are needed for the attacks. Some papers use queries
as an basis of efficiency and some authors even impose query budgets on their experiments. We will
make a distinction between acknowledging the amount of queries needed for the attack and enforce
query budgets. The assumptions are summarised in Table 5.

Most paper discussed in this review have a prerequisite that the model type is known before com-
mencing the attack. The only papers that do not assume this are from Shi et al. (2018, 2017); Pal et al.
(2020); Reith et al. (2019); Wallace et al. (2020); Tramèr et al. (2016). Almost half of the papers
discussed do not require any knowledge of the model architecture. We assume that not knowing the
model type beforehand greatly complicates the model extraction technique. There is a big difference
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when attacking a RNN or DT for example. Therefore, having the model extracting attack work on
multiple model types which are unknown beforehand requires an excellent structure of the attack.

Pal et al. (2019) is an good example where no domain knowledge is required of the model to launch
the attack. The authors do know the victim’s model type, specifically a DNN. However, the model
structure and specifics is unknown to the attackers. Furthermore, Pal et al. (2019) executed their
experiments with various query budgets: 10K, 15K, 20K, 25K and 30K respectively. Pal et al.
(2019) implemented two model extraction techniques, one for image classification and one for text
classification. They conclude that in general there is a substantial increase of agreement between two
models when the query budget is increased, with 30K bringing the best results most of the time.

In the paper of Shi et al. (2018), the authors require no knowledge of the target’s architecture and type
beforehand. Furthermore, the distribution of the training data is also unknown to the attackers. The
only information the attackers have is how to properly call the online API of the model. With regards
to any query budget, the model explores two options. In the first option, they are limited in their
amount of API calls allowed per day, thus operating on a tight query budget. This attack is combined
with active learning methods, as described in Section 5.2.6. In the other attack the assumption of the
query budget is relaxed and a large amount of API calls is permitted.

Shi et al. (2017) is partly similar to Shi et al. (2018), Shi et al. (2017) also do not require any
knowledge of the victims model type or architecture before launching the attack. However, the
problem domain and the dataset for training by the victim is known. First, the victim is trained on a
part of the dataset and afterwards, the adversary tries to extract the victim’s model with the remaining
part of the dataset. There is some mention about the amount of queries that have been used to extract
the model, since this is the remaining part of the training data set of the victim. Although, there is no
real restriction of the amount of queries used, except for the size of the remaining dataset. Therefore,
we conclude that there was no query budget imposed during the experiments.

Additionally, there is the paper of Pal et al. (2020). Pal et al. (2020) describe two different methods.
In both methods, the training dataset is kept secret. With the first method, there is full knowledge of
victim model architecture and with the second method, there is no knowledge about the victim model
architecture. Similarly to Pal et al. (2019), Pal et al. (2020) have the same query budget restrictions
for their attacks. The results are also similar, the higher the query budget, the higher the agreement
between the victim and the stolen model. However, it is noted that ActiveThief performs similar when
comparing between a query budget of 30K (30% of the dataset available) and no query budget (100%
of the dataset available).

In the case of Atli et al. (2020), Knockoff nets are evaluated against other complex models. The
experiments of the Knockoff nets are reproduced and the results are the same as the original paper, by
Orekondy et al. (2019). Orekondy et al. (2019) assume no access to the distribution of the training
data set of the victim, no knowledge of the model architecture and no knowledge of the problem
domain. Furthermore, the experiments are allowed to collect unlimited API calls. Atli et al. (2020)
iterate on this and conduct extra experiments, where access to the victim’s dataset is assumed.

Chen et al. (2020) try to extract Deep Reinforcement Learning (DRL) models by using a Recurring
Neural Network (RNN). Since the authors are focused on extracting DRL models, the authors
obviously have knowledge of the model type beforehand. However, the authors do not require any
information regarding the model structure. Further, the authors do not have any considerations about
the amount of queries and therefore also do not have a query budget. Lastly, the authors do require
information about the problem domain, but the authors do not have any access to the dataset that has
been used by the victim.

Correia-Silva et al. (2018) have two different approaches regarding creating their fake dataset
comprised of images that is used to steal the model. In their first approach they use random
images that are non-labeled while the problem domain is unknown. In their second approach, the
problem domain is known, and images from the same problem domain are used to create the dataset.
Additionally, the structure of the victim model is not known to the attackers. Since both approaches
have no query budget, the authors explore the costs creating the two fake datasets. The dataset where
the problem domain is known is financially feasible. The first dataset was created for less than 10
dollars and the second dataset needed some more queries, therefore costing over 300 dollars. The
authors conducted four experiments: facial expression classification, object classification, crosswalk
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classification and the Microsoft Azure Emotion API. The authors launched three attacks: dataset with
problem domain, dataset without problem domain and a combination of the two.

Yu et al. (2020) have created FeatureFool that adopts internal representation for generating a subset
of malicious samples. Yu et al. (2020) assume black-box access to the victim model, meaning
that the attacker has no knowledge of the victim model architecture, hyperparameters, weights and
training data. Yu et al. (2020) have implemented their model extraction technique based on image
classification and have also experimented with the query budget. In their experiments, they created
three different budgets: A, B and C. For their four datasets, Budget A ranged from 0.43K - 0.68K,
Budget B ranged from 1K to 1.53K and Budget C ranged from 1.05K to 2.15K. The influence of the
query budgets on the accuracy of the stolen models varies per experiment. In one of their experiments,
the accuracy results from Budget A to Budget C increase up to almost 4 times. In other experiments,
the results increase only up to 1.3 times.

Kariyappa et al. (2020) propose a method, MAZE, that does not require any dataset to extract the
victim model, instead it "creates synthetic data using a generative model". MAZE also requires
knowledge of the victim’s architecture, which is similar to Yu et al. (2020). The authors also proposed
an extension of the MAZE algorithm, MAZE-PD. This can be used when the attacker has small partial
access to the victims training dataset. Kariyappa et al. (2020) have imposed query budget for their
MAZE algorithm, albeit being relatively high. Their MAZE algorithm requires a query budget of 30M
to reach an accuracy of 0.90. The reason for this high query budget is that MAZE does not require
any data to be present for stealing the model, since the data is synthetically created. MAZE-PD has a
query budget reduction between 2 and 24 times for the same accuracy as MAZE. Despite the high
large query budgets, the algorithms still requires problem domain knowledge before the commence
of the attack.

Duddu and Rao (2019) propose a theoretical framework for extracting machine learning models via
side channel leakage. The authors assume that the target model type is a neural network (NN), whilst
the architecture is unknown to the attackers, which is comparable to Pal et al. (2019); Chandrasekaran
et al. (2018); Atli et al. (2020); Orekondy et al. (2019). Furthermore, the attacker has no knowledge
of the data that the victim has used to train the model, similar to Orekondy et al. (2019); Pal et al.
(2019) The attacker must rely on creating a synthetic dataset to train the adversary model, which is
similar to Kariyappa et al. (2020). Additionally, since this is only a theoretical framework, and not
tested in real world situations, there is no real consideration of a query budget. The authors declare
that the minimal amount of queries is desirable. However, we feel that anyone can simply state this
and this has no real weight.

Duddu et al. (2018) attempt to steal neural networks by exploiting timing side channels and effectively
reconstructing the substitute model architecture. The attacks are proposed in the black-box setting,
where the adversary has no knowledge of the victim’s architecture and no knowledge of the training
data used by the victim. However, Duddu et al. (2018) assume that the adversary has knowledge of
the underlying data distribution from which the training data was sampled. Therefore, we decide to
label this as having knowledge of the dataset in Table 5, similar to Shi et al. (2017, 2018); Pal et al.
(2020); Yu et al. (2020); Reith et al. (2019); Chandrasekaran et al. (2018); Atli et al. (2020); Jagielski
et al. (2019); Shi et al. (2017); Takemura et al. (2020); Roberts et al. (2019); Wang and Gong (2018).
There if no further mention of the amount of queries that are necessary for the attack. The authors do
note that they want to use the least amount of queries possible. However, similar to Duddu and Rao
(2019), we don’t see this as valuable information about the query budget, and therefore decide that
the authors have no consideration for either the query budget and the amount of queries used.

Similarly, Jagielski et al. (2019) show the same characteristics for their attack. Of the victim models,
it is known that it is a fully connected neural network with a single hidden layer and between 16 and
512 hidden units. Furthermore, the training set, MNIST and CIFAR-10, are also known before the
attack is commenced. However, there is no mention of a query budget that has been imposed. The
authors do describe how many queries are needed for the extraction of the ImageNet model, which is
around 217 queries.

In the experimenets of Takemura et al. (2020), the knowledge of the model type and architecture
is known, Recurrent Neural Networks (RNN). Takemura et al. (2020) also have full knowledge of
the training data that is used by the victim, similar to Jagielski et al. (2019). When executing the
experiments, they first train the victim model with the MNIST or Air Quality dataset. The dataset is
split into five equal parts, the first four parts are used for training the victim model and the last part is
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used for extracting the victim model by the adversary, which is similar to Shi et al. (2017). Despite
having some limitations in the amount of data that is available to the authors, we do not recognize
this as a imposed query budget. Since the amount of queries that can be done is restricted by how
much data is left after training the victim model. If the authors would use two different datasets for
training the victim and extracting the victim, we see no indications that the authors would limit the
amount of queries executed by the attack. Therefore, we decide that the authors did not impose a
query budget, which is comparable to the paper of Shi et al. (2017).

Similar to Yu et al. (2020); Jagielski et al. (2019); Kariyappa et al. (2020); Takemura et al. (2020),
the model type and architecture of the victim is known before the attack is initiated. Furthermore,
there is no imposed query budget, the authors assume that they can make unlimited API calls to
extract the victims properties. The authors also don’t specify how many queries are needed for the
attack, with is comparable to the approach of Atli et al. (2020); Orekondy et al. (2019). Moreover,
the victim’s training datasets are also known to the adversary, and the adversary also has access to
these datasets, MNIST and KMNIST. This problem domain is similar to the attacks of Jagielski et al.
(2019); Takemura et al. (2020).

Reith et al. (2019) mainly explored attacks on SVMs and SVRs where the victim model was
completely known, also known as a white-box model attack. They also describe one kernel agnostic
algorithm, also considered a black-box attack.. Furthermore, the datasets that the victims have
used for training are known, California Housing, Boston House Prices , UJIIndoorLoc respectively.
While the authors did not explicitly impose a query budget for the attacks, the attacks executed with
relatively low amount of queries. Most of their attacks completed with the amount of queries between
35 and 400, which does not only mean it is very cheap, but also very fast when applied to an Internet
setting. The runtime of these queries range between 3 seconds and 4 minutes. Some of the other
attacks completed with between 1700 and 5151 queries. This results in a runtime in the range of 3
minutes to 7 hours. The big increase of the amount of queries is mainly due to the drastic increase
of features of the model. While the fast experiments had between 8 and 20 features, the slower
experiments that between 100 and 520 features.

Wallace et al. (2020) describe four different methods for launching their attacks for extracting a
machine translation system. Similar to Reith et al. (2019), in some of their methods, they assume
knowledge of both the architecture, the hyperparameters and the source data. However, in other
methods they use different data than the victim and having little to no knowledge about the structure
of the model, having more similarities with Shi et al. (2018, 2017). Since the model extraction
technique is specific for machine translation systems, the problem domain is always known to the
attackers. With regards to the amount of queries for the attacks, the authors do provide the amount
of queries that are necessary to extract the machine translation systems. However, there is no real
indication of an imposed query budget for the experiments.

Chandrasekaran et al. (2018) has similar assumptions as Reith et al. (2019) with regards to datasets
and the amount of queries. Chandrasekaran et al. (2018) have full knowledge of the dataset that
has been used by the victim, and there is no real query budget. Nonetheless, the authors realise
that having a low amount of queries is beneficial for speed and financial reasons. Therefore is the
amount of queries measured as a form of efficiency. With regards to the models that are extracted, the
authors have knowledge of the model type, but give no indication of knowledge on the architecture
of the victim models. This is comparable with the approach of Pal et al. (2019) with regards to the
knowledge of models.

Wang and Gong (2018) are stealing hyperparameters in machine learning. For their attacks, the
authors assume knowledge about the training dataset, the ML algorithm that has been used by the
victim and (optionally) the learnt parameters of the victim model. This would be motivated by the
increasing MLaaS models from Amazon machine learning1 and Microsoft Azure machine learning2

for example. The authors do not consider a query budget for the attacks, but the attacks are naturally
low in the amount of queries that are necessary for a accurate extraction.

Mosafi et al. (2019) present a novel method for generating composite images for attacking a mentor
neural network using a student model. The authors do not require any information regarding model
architecture or weights of the mentor’s model, comparable with Chandrasekaran et al. (2018); Atli

1https://aws.amazon.com/cn/machine-learning
2https://azure.microsoft.com/sevices/machine-learning
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et al. (2020); Orekondy et al. (2019); Duddu and Rao (2019); Chen et al. (2020). Furthermore, the
authors have no expected knowledge of and access to the training data that has been used by the
mentor. Moreover, the authors also do not require any information about the problem domain of the
mentor, similar to Pal et al. (2019). This issue is solved by using a dataset that is large enough to
comprise multiple image domains.

Tramèr et al. (2016) explore attacks against multiple model classes: Logistic Regression, Neural
Networks (NN), Decision Trees (DT) and Support Vector Machines (SVM). The attacks are also
executed in online cases studies, against BigML and Amazon Web Services. In their attacks, they use
multiple methods for extracting the victim model. With some of their attacks, the model type and
parameters are already known beforehand by reading the documentation of the MLaaS provider. In
other attacks, the model type and parameters are not disclosed by the MLaaS provider, for example
with Amazon. When this is the case, certain model characteristics may be narrowed down to a small
range. Then, it is tested which characteristics of the models seem the most likely and afterwards this
is assumed as correct when the errors are low enough. With regards to the training data of the victim
model, the authors may have knowledge beforehand of the training data. However, this information is
limited by what is provided by the ML API. For example, attacks against Amazon’s system directly
leak summary statistics about the training data, while other providers do not. Therefore, we decide
that the authors can work with both situations. The authors also introduce a query budget of the form
a ∗ k, where k is the number of unknown model parameters and a is the budget scaling factor.

Krishna et al. (2019) have developed a method of extracting BERT-based API (Devlin et al. (2018)).
For this method, the attackers have full knowledge of the model type and architecture, since BERT
only comes in two sizes, BERT-large and BERT-base. Furthermore, the authors have regulated their
experiments with query budgets. With regards to the dataset, the problem domain is already known,
since the authors know what the BERT API consists of. Moreover, the authors note that the attacks
can commence even without any real training data. More specifically, the attacker does not have to
use grammatically or semantically correct queries. The attack can also be commences with random
sequences of words coupled with task-specific heuristics form effective queries for model extraction
on a diverse set of NLP tasks Krishna et al. (2019)

Oh et al. (2019) shows that multiple attributes of a neural network can be exposed from a sequence of
queries. The attack starts with applying a supervised learning classification problem over applied over
models. For this to work, the authors first collect a diverse set of white-box models that are similar
to the target black-box model as their training set. Then, a new model, the meta-model is trained,
to infer the model attributes. The this meta-model takes a model as input and returns the model
attributes. In the paper, the model attributes is comprised of: architecture, optimisation process and
the training data. Because of this method, we have decided that the authors do have prior knowledge
of the model architecture and type. Since the training data of the models must contain white-box
models that are similar. If the authors would have no knowledge of the target black-box type and
architecture, they also would not know which white-box models to collect for the training data. The
same reasoning holds for the training data set, since this attribute is included in the model attributes.
With regards to the query budget, the authors do consider a query budget for their experiments.

To conclude this section, we have seen many papers that exhibit different attributes regarding the
assumption level of the attacks and potential query budgets. We have categorized two different
themes of assumption: assumptions about the target model and assumptions of the data. Moreover,
we have also compared the papers on the use of their queries for extracting the desired model. We
have seen some papers who require no prior knowledge of the models at all (Shi et al., 2017, 2018;
Pal et al., 2020; Reith et al., 2019; Wallace et al., 2020; Tramèr et al., 2016). A limited amount of
papers who do not require any knowledge of the data and the problem domain beforehand (Pal et al.,
2019; Mosafi et al., 2019). A small amount of papers impose query budgets on the experiments (Pal
et al., 2019; Shi et al., 2018; Yu et al., 2020; Kariyappa et al., 2020; Tramèr et al., 2016; Krishna
et al., 2019; Oh et al., 2019), while almost all papers mention how many queries are necessary for the
attack to be successful.

From this analysis, we can conclude that model extraction is more difficult when the type and the
architecture is not known beforehand. Almost always, the model type itself is already known and in
almost half of the papers, a grey-box model is assumed. Prior of the knowledge domain is almost
always necessary for a successful extraction, while the dataset may remain secret in about half of
the papers. Most of the papers have consideration of the amount of queries that are used, which is
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Authors Model Type
Knowledge

Model Arch
Knowledge

Attention to
# queries

Query
Budget

Knowledge
of Dataset

Knowledge
of Domain

Pal et al. (2019) Yes No Yes Yes No No
Shi et al. (2018) No No Yes Yes Yes No
Pal et al. (2020) Yes & No Yes & Yes Yes No Yes No
Correia-Silva et al.
(2018)

Yes No Yes No No Yes & No

Yu et al. (2020) Yes No Yes Yes No Yes
Reith et al. (2019) Yes & No Yes & No Yes No Yes Yes
Chandrasekaran et al.
(2018)

Yes No Yes No Yes Yes

Atli et al. (2020) Yes No No No Yes Yes
Orekondy et al. (2019) Yes No No No No Yes
Jagielski et al. (2019) Yes Yes Yes No Yes Yes
Shi et al. (2017) No No Yes No Yes Yes
Wallace et al. (2020) Yes & No Yes & No Yes No Yes & No Yes
Kariyappa et al. (2020) Yes Yes Yes Yes Yes & No Yes
Takemura et al. (2020) Yes Yes Yes No Yes Yes
Roberts et al. (2019) Yes Yes No No Yes Yes
Duddu and Rao (2019) Yes No No No No Unknown
Chen et al. (2020) Yes No No No No Yes
Wang and Gong (2018) Yes Yes Yes No Yes Yes
Mosafi et al. (2019) Yes No Yes No No No
Tramèr et al. (2016) Yes & No Yes & No Yes Yes Yes & No Yes
Duddu et al. (2018) Yes No No No Yes Yes
Krishna et al. (2019) Yes Yes Yes Yes No Yes
Oh et al. (2019) Yes Yes Yes Yes Yes Yes

Table 5: Prerequisites per paper. Papers are categorized on the knowledge required with regards to
model type and model architecture. If there is attention to # queries and if there is a query budget. If

knowledge of the dataset or domain is required.

valuable. More specifically, when there is no mention of the amount of queries necessary, the reader
cannot assume that the attack is feasible in reasonable time. The attack may as well be brute-forcing
the imitation phase by submitting tens of millions of queries. Imposing a query budget is even better,
since now the attack does not have unlimited time to extract the model at an acceptable level.

5.2 Methods

In this section, we will analyze the model type distributions and the different attacks for these models.
Most noticeable is that most of the papers extract some from of Neural Network (NN). The different
types of NNs that are extracted are: Deep Neural Network (DNN), Graph Neural Network (GNN),
Convolutional Neural Network (CNN) and Recurrent Neural Network (RNN). Papers attacking
similar models often have similar attack methods, often building on earlier versions. This section
illustrates the similarities but also the differences between these attacks. To give a clear overview
on which papers extract which type of model, this information is summarised in Table 6. We will
structure this section per model type. For this, we have grouped similar models, such as all forms of
NNs, together to allow for more comparison between extraction techniques.

5.2.1 SVM and SVR

The first model types that we will be discussing are the SVM and SVR models. Reith et al. (2019);
Chandrasekaran et al. (2018); Shi et al. (2017); Wang and Gong (2018); Tramèr et al. (2016) all have
developed extraction techniques that extract SVM or SVR models.
Tramèr et al. (2016) developed attacks for multiple types of classifiers, which will also be discussed
in further parts of this section. For the SVM classifier, the authors based their approach on the
approach of Lowd and Meek (2005), which is a black-box attack with membership queries that only
return the predicted class label. The extension of Tramèr et al. (2016) adds three types of retraining
to these attacks. Firstly, retraining with uniform queries. This is a baseline strategy where points
are uniformly sampled at random and then presented as queries. The second approach, line-search
retraining, can be seen as a model-agnostic generalization of the Lowd-Meek attack. Here, samples
close to the decision boundary are found by using adaptive queries to the victim using line search
techniques. The last approach, adaptive retraining is based on active learning. Over multiple rounds,
new points are chosen along the decision boundary of which the adversary model is the least certain
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Authors Type of Model Stolen
Shi et al. (2018) Can be all models
Pal et al. (2019) DNN
Yu et al. (2020) DNN
Atli et al. (2020) DNN
Kariyappa et al. (2020) DNN
Mosafi et al. (2019) DNN
Tramèr et al. (2016) DNN, DT, LR, SVM
Duddu et al. (2018) NN
Duddu and Rao (2019) NN
Jagielski et al. (2019) NN
Oh et al. (2019) NN
Correia-Silva et al. (2018) CNN
Pal et al. (2020) CNN, RNN
Orekondy et al. (2019) CNN
Roberts et al. (2019) CNN
Krishna et al. (2019) BERT
Wallace et al. (2020) MT
Chen et al. (2020) DRL
Reith et al. (2019) SVM, SVR
Chandrasekaran et al. (2018) SVM, DT, RF
Shi et al. (2017) NB, SVM
Takemura et al. (2020) RNN, LTSM
Wang and Gong (2018) RR, LASSO, KRR, SVM, L1-LR, L2-LR

Table 6: Global overview of model type stolen. Abbreviations are as follows: DNN = Deep Neural
Network, NN = Neural Network, RNN = Recurrent Neural Network, CNN = Convolutional Neural
Network, GNN = Graph Neural Network, SVM = Support Vector Machine, SVR = Support Vector

Regression, DT = Decision Tree, RF = Random Forest, NB = Naive Bayes, MT = Machine
Translation, LTSM = Long Short-Term Memory, RR = Ridge Regression, KRR = Kernel Ridge
Regression, L1-LR = L1-Regularized Logistic Regression, L2-LR = L2-Regularized Logistic
Regression, BERT = Bidirectional Encoder Representations from Transformers, DRL = Deep

Reinforcement Learning.

about. These points are then sent to the victim and that output is used for training the adversary
model again.
Reith et al. (2019) propose various attacks for the SVM. First, they describe equation solving attacks
that can extract exact models for linear and quadratic kernels in a white-box setting. Then, they
extend on the attacks described by Tramèr et al. (2016) which are based on the retraining approach.
Lastly, they describe an attack to extract a model in a black-box setting. In this last attack, they use
the previously described attacks but then for multiple models at once, each having a different kernel.
Then, with a test set, the algorithm compares the predictions of each model to the original one. The
model with the lowest error is presumed as the correct one and this kernel is assumed to be the kernel
of the victim.
Chandrasekaran et al. (2018) also base their methods on the attacks proposed by Tramèr et al. (2016)
in combination with active learning strategies from the literature on active learning for SVMs.
Wang and Gong (2018) propose novel methods for extracting SVM with regular hinge loss functions
and with squared hinge loss functions (SVM-RHL & SVM-SHL) as well as attacks on the kernel
versions of the aforementioned SVMs (KSVM-RHL & KSVM-SHL). Furthermore, the authors also
propose attacks on L1-regularized logistic regression and L2-regularized logistic regression (L1-LR
& L2-LR) as well as the kernel versions of the aforementioned LRs (L1-KLR & L2-KLR). Shi et al.
(2017) has launched a three-step attack on the SVM. First, the victim is polled with input data. That
data is observed and lastly, this data is then served as input data for the adversary model.

5.2.2 MT and BERT

There are two papers that only extract text based models: Wallace et al. (2020); Krishna et al. (2019).
The paper of Wallace et al. (2020) focuses on Machine Translation (MT) and the paper of Krishna et al.
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(2019) focuses on a diverse set of NLP tasks by extracting Bidirectional Encoder Representations
from Transformers (BERT). With regards to MT, the attack that the authors have proposed is pretty
straightforward. In particular, the authors assume access to a corpus of monolingual sentences and
query the victim model with these sentences. The output is recorded and this is used for learning
the new model. Krishna et al. (2019) have a similar approach, but they are working with a bit more
restrictions. Firstly, the authors do not assume any access to training data. The training data is
randomly generated and the sentences do not have to be grammatically or semantically correct. Then,
the same approach is taken as by Wallace et al. (2020). However, since this attack is not based
Machine Translation systems, but on BERT-based APIs, four NLP tasks are defined on which the
model will be attacked: (1) binary sentiment classification using SST2 (Socher et al. (2013)), where
the input is a single sentence and the output is a probability distribution between positive and negative;
(2) ternary natural language inference (NLI) classification using MNLI (Williams et al. (2018)), where
the input is a pair of sentences and the output is a distribution between entailment, contradiction and
neutral; (3) extractive question answering (QA) using SQuAD 1.1 (Rajpurkar et al. (2016)), where
the input is a paragraph and question and the output is an answer span from the paragraph; and (4)
boolean question answering using BoolQ (Clark et al. (2019)), where the input is a paragraph and
question and the output is a distribution between yes and no.
To summarise the two papers of Krishna et al. (2019); Wallace et al. (2020), both papers have similar
approaches, while Krishna et al. (2019) have some more restrictions regarding the dataset that can be
used. Furthermore, Krishna et al. (2019) define four NLP tasks on which the model can be extracted.
Wallace et al. (2020) only extract the model for translation purposes.

5.2.3 NN and variations

Many papers extract some form of NN: Pal et al. (2019); Shi et al. (2018); Pal et al. (2020); Correia-
Silva et al. (2018); Yu et al. (2020); Atli et al. (2020); Orekondy et al. (2019); Jagielski et al. (2019);
Kariyappa et al. (2020); Takemura et al. (2020); Roberts et al. (2019); Duddu et al. (2018); Chen
et al. (2020); Mosafi et al. (2019); Tramèr et al. (2016); Duddu and Rao (2019); Oh et al. (2019). In
general, most of the papers have the same general approach for stealing a neural network related
model. The attacker picks some subset of initial seed samples of the training dataset of the adversary.
Then, the victim model is queried with these samples and the obtained labels are saved. Next, the
adversary model is trained with these observed labels. After some iterations, the adversary model
is trained on the remaining samples of the training set. This attack method is also similar to the
flow depicted in Figure 3. While in general, the approaches of all the papers are similar, there are
some differences between the attacks. One of these differences can be the evaluation metrics on
which the closeness between the victim and adversary model is measured, which can influence how
many training data needs to be queried to the victim model before deciding that enough queries are
sent and the adversary model can be trained on the remaining dataset. Other differences can be the
deployment of active learning strategies Pal et al. (2020, 2019); Shi et al. (2017); Yu et al. (2020);
Chandrasekaran et al. (2018); Tramèr et al. (2016), which will be discussed shortly in Section 5.2.6.
For the NN extraction methods, we will discuss the papers that had interesting techniques compared
to other papers and we will discuss papers that have noteworthy discoveries. The other papers do not
differentiate themselves with regards to the chosen technique for model extraction.
Kariyappa et al. (2020) have created an attack with their MAZE algorithm where synthetic data
is generated for the model extraction attack. Although the authors do not call their method active
learning, it has some key similarities. First, the MAZE algorithm trains a Generator to produce queries
that maximizes the disagreement between the predictions of the victim and adversary by maximizing
the KL-divergence. Then, using these generated queries, the adversary model is trained to match the
predictions of the victim. Thus obtaining a highly accurate clone model.
Jagielski et al. (2019) has defined various goals that the adversary might have when attempting model
extraction. First is the functionally equivalent extraction, where the goal is to create such a network
that has the same output as the victim model for every input, which is the hardest one of all three
goals. The second goal can be fidelity extraction where the difference between both the mistakes and
correct labels are minimised. The last goal can be task accuracy extraction where the goal is to match
or exceed the accuracy of the target model. Jagielski et al. (2019) deploy two attacks in their paper,
one focusing one being a functionally equivalent extraction and one having fidelity extraction and
task accuracy extraction as goal. When considering this classification of goals, other papers can be
categorized similarly according to Jagielski et al. (2019). More specifically, Tramèr et al. (2016);
Chandrasekaran et al. (2018); Lowd and Meek (2005) have functionally equivalent extraction as goal,
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Pal et al. (2019) has fidelity extraction as goal, Orekondy et al. (2019) has task accuracy extraction
as goal and Tramèr et al. (2016); Correia-Silva et al. (2018) have both task accuracy and fidelity
extraction as main goal for their proposed attacks.
Since most of the papers focus on model extraction for classification tasks, there is less attention for
regression tasks. However, Takemura et al. (2020) have created attacks for the regression models
and noted that designing attacks for classification and regression tasks is not the same. One of the
biggest differences is that a softmax function cannot be used as loss function for the regression tasks.
This is important because the output of the softmax will be in the interval (0, 1), while a loss function
with the norm, such as L1-loss and L2-loss does not have any restrictions in the range of output.
This means that when using softmax, a corrupted prediction will not do much harm to the adversary
model, while the L2-loss may be affected greatly by a corrupted prediction from the victim model.
Therefore, Takemura et al. (2020) use the method as described by Chen et al. (2017) which utilizes
the outputs as an upper bound to be achieved for the adversary model.
Lastly, Tramèr et al. (2016) have defined their attacks against logistic model with confidence values
as equation solving attacks. Many models that the authors have researched directly compute class
probability as continuous function of the input x. When an API does provide these class probabilities,
the adversary is presented with samples (x, f(x)) that can be viewed as equations in the unknown
parameters. The authors claim that for a large class of models, these equations can be solved
efficiently.

5.2.4 DRL

Chen et al. (2020) is the only paper that extracts a form of Deep Reinforcement Learning (DRL)
model. Chen et al. (2020) observes that attacks on DRL are often more difficult because DRL often
have more complicated and deeper network structures to handle complex tasks. Therefore, the author
has designed two stages for the attack on DRL networks. First, a RNN classifier is built which can
identify the algorithm of the target DRL based on its run time actions. Secondly, imitation learning is
used to replicate the behaviors of the target model based on the extracted algorithm.

5.2.5 All remaining models

For the remaining models, the papers described below encompass attacks on the following models:
Decision Trees (DT), Logistic Regression (LR), Random Forests (RF), LASSO and KRR. The attack
on a DT introduced by Tramèr et al. (2016) is a path-finding attack. The key idea behind the attack
is to extract the path that has been traversed by the input in the tree. This can be done by using the
information that is provided by the API as a pseudo-identifier. By varying the value of each input
feature, the authors can find the predicates that have to be satisfied for an input to follow a given path
in the tree.
The attacks on DT and RF by Chandrasekaran et al. (2018) are based on the idea of importance
weighted active learning (IWAL), as described by Beygelzimer et al. (2010). In the results, the attacks
based on IWAL is compared with the path-finding attack as described by Tramèr et al. (2016) for the
decision trees, with all four models having different datasets. For 2 out of 4 attacks, the attacks by
Chandrasekaran et al. (2018) needed 12 times more queries with almost similar results. For one out of
the 4 attacks, Chandrasekaran et al. (2018) performed 40.3% better than Tramèr et al. (2016) despite
needing only half the amount of the queries. In the last attack Chakraborty et al. (2018) outperformed
Tramèr et al. (2016) by only 2.99% while needing 1.5 times the amount of queries. Therefore, we
conclude that the attacks proposed by Tramèr et al. (2016) for the decision trees are better than the
ones proposed by Chandrasekaran et al. (2018). Wang and Gong (2018) introduce attacks for LASSO
and Ridge Regression (RR) models. Similar to the approach with SVMs by Wang and Gong (2018),
the attack of RR models has also been implemented for the Kernel version of RR, KRR. However,
since this paper is the only paper that we evaluate which proposed methods for these models, we will
not discuss this in further detail.

5.2.6 Active Learning

Active learning is a subset selection strategy that chooses the optimal subset of queries to be send
to the victim model. Active learning performs better than sending random queries since it provides
data samples that are uncertain with respect to the original inferred classifier (Shi et al. (2018)). So
in the case of attacks on SVMs, new points are chosen along the decision boundary of which the
adversary model is the least certain about. Some papers have used some form of active learning or

25



methods that were based on active learning techniques: Pal et al. (2019); Shi et al. (2018); Pal et al.
(2020); Yu et al. (2020); Chandrasekaran et al. (2018); Kariyappa et al. (2020); Tramèr et al. (2016).
Although we find this technique interesting and promising, we will not be going into detail because
of the limited adoption in the reviewed papers.

5.3 Defenses

There are defense techniques that can prevent model extraction attacks or make them less efficient. In
this section, we will compare the various defense mechanisms that have been applied by the authors
on their own attacks, if any. The results of this comparison can be found in Table 7.

Authors Attention to defense techniques
Pal et al. (2019) PRADA, Xu et al. (2018); Kesarwani et al. (2018)
Duddu and Rao (2019) PRADA, Kesarwani et al. (2018), Lee et al. (2018)
Yu et al. (2020) PRADA, DefenseNet
Pal et al. (2020) Lee et al. (2018)
Atli et al. (2020) Detecting out-of-distribution samples
Tramèr et al. (2016) Prediction API minimization, Rounding
Chandrasekaran et al. (2018) Data randomization
Duddu et al. (2018) Adding noise to execution time, Adversarial machine learning
Kariyappa et al. (2020) Remove probabilities, Output probabilities with noise, Limit amount

of queries
Chen et al. (2020) Perturbing or removing output probability, returning only class output,

Query pattern analysis & Watermarking
Mosafi et al. (2019) Watermarking, Removing probability values, Perturbing output proba-

bility,
Jagielski et al. (2019) Removing probability values
Krishna et al. (2019) Membership Classification, Watermarking
Orekondy et al. (2019) Top-k, Rounding
Wang and Gong (2018) Rounding
Wallace et al. (2020) Naive Defense
Reith et al. (2019) -
Shi et al. (2018) -
Roberts et al. (2019) -
Oh et al. (2019) -
Correia-Silva et al. (2018) -
Shi et al. (2017) -
Takemura et al. (2020) -

Table 7: Summary of defense mechanisms evaluated per paper

Firstly, the papers who have not gave any attention to possible defense mechanisms for their attacks:
Yu et al. (2020); Correia-Silva et al. (2018); Reith et al. (2019); Shi et al. (2017); Roberts et al. (2019);
Oh et al. (2019); Takemura et al. (2020). While this is not particularly wrong, we feel that the validity
of the model is slightly decreased when the proposed attack is not tested on the most basic defense
mechanisms. When the most basic defense system already makes the proposed attack irrelevant, then
one must ask oneself if your proposed attack is really that great.

One popular defense mechanism is PRADA (Juuti et al. (2019)), which is a generic and effective
detection of DNN model attacks. PRADA analyzes the distribution of consecutive API queries and
will raise an alarm when this distribution deviates from benign behavior (Juuti et al. (2019)). The
authors claim that PRADA can detect all prior model extraction attacks with no false positives. While
Duddu and Rao (2019) mentions PRADA as defense mechanism, but does not apply PRADA to
its own attacks, Pal et al. (2019) speculate that their attacks will not be detected by PRADA. Due
to the fact that PRADA expects the distribution of pairwise distances between benign samples to
fit a bell curve. However, Pal et al. (2019) speculate that their universal thief datasets will also
produce samples where the distribution will fit the bell curve. Therefore, PRADA is speculated to
be not effective against the attacks by Pal et al. (2019). Yu et al. (2020) prove that their attacks
can be evaded by PRADA. More specifically, by selecting some parameter M, Yu et al. (2020) can
simulate a normal distribution of query samples without significantly degrading the adversary model
performance. Therefore, this attack will evade PRADA.
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Similar to PRADA, there is the proposal by Kesarwani et al. (2018), which "quantifies the extraction
status of models by continually observing the API query and response streams of users". The authors
propose two strategies, which either measures the information gain or the feature space spanned by
the user queries. This can be used to estimate the learning rate of the user. Pal et al. (2019) evaluated
this defense mechanism in their research and they speculated that their attack will probably get caught
by the methods proposed by Kesarwani et al. (2018). However, they argue that they could tweak their
active learning subset strategy to decrease the information gain or cover only a limited portion of the
feature space spanned by the queries, making them less suspicious.

Another popular defense mechanism is watermarking, as described by Zhang et al. (2018); Uchida
et al. (2017), where a digital watermarking technique is applied at the training stage DNNs to verify
the ownership of the DNN models. Watermarking has no influence on the performance of the model
since the watermark is embedded when training the DNN. Uchida et al. (2017) defines a certain
’hidden’ which can be a certain shape or noise in the training data. When this model would receive
this hidden key, the model would output an unrelated label with high certainty. Consequently, this
model of digital watermarking can also work through APIs. When a stolen model is queried through
an API with this hidden key and the unrelated label is returned, this model can be assumed as stolen.
Various papers have considered watermarking as potential defense mechanisms against their attacks,
Chen et al. (2020); Mosafi et al. (2019); Krishna et al. (2019). Chen et al. (2020) claim that their
attack is not venerable against watermarking since their attack requirements are minimal. In the paper
of Mosafi et al. (2019) it is claimed that the method of Uchida et al. (2017) does not work against
the attacks proposed, since their training is based on random combinations of input. Therefore, the
authors find the chances of triggering the hidden key negligible. Krishna et al. (2019) note that
watermarking works against their attacks. However, the authors note that watermarking does have
some limitations. Namely, watermarking assumes that the attacker will publish the stolen model
online, after which it can be detected by watermarking. Therefore watermarking is irrelevant if
the stolen model is never published. Secondly, when the attacker anticipates watermarking, one
can take steps to prevent being detected. The authors give three methods to prevent detection:
differentially private training on extraction data (Abadi et al. (2016); Dwork et al. (2014)), fine-tuning
or re-extracting an extracted model with different queries (Chen et al. (2019); Szyller et al. (2019)),
or issuing random outputs on queries exactly matching inputs in the extraction data (Krishna et al.
(2019)).

Subsequently, there is rounding which is used by Tramèr et al. (2016); Orekondy et al. (2019); Wang
and Gong (2018) and also described by Fredrikson et al. (2015). Tramèr et al. (2016) explore the
effects of rounding on softmax models. The results show that rounding class probabilities to 4 or 5
decimals, as is done by BigML, have no influence on the attacks success. When rounding to 2 or 3
decimals, the attack is weakened slightly but still outperforms when compared to outputting class
labels only. For regression trees, rounding has no effect and for classification trees no influence is
noted until rounding up to 2 decimals. For their other models, "rounding confidences 3 or 4 decimal
places severely undermines our attack" (Tramèr et al. (2016)). Orekondy et al. (2019) examine that
rounding has little effect on their attacks, with rounding up to 2 decimals still providing 99% original
performance. When rounding up to 1 decimal, the performance seems to decrease more. Wang and
Gong (2018) also examine that rounding is not effective enough to prevent certain attacks on ML
algorithms. To summarise, although rounding is a relatively simple mechanism to implement by the
victim side, it does not provide real protection against the threats of model extraction attacks.

Lee et al. (2018) propose a method that applies perturbation to the predicted softmax probability
scores to dissuade model extraction. Duddu and Rao (2019); Pal et al. (2020) have both considered
this defense mechanism for their attacks. Pal et al. (2020) note that this attack will not influence
the working of their attacks since their attacks only requires the predicted label to work accordingly.
Duddu and Rao (2019) explained the workings of the defense mechanism by Lee et al. (2018) but did
not elaborate on the effects on their attacks. Since no other papers discusses before have evaluated
this defense mechanism, we cannot make any assumptions about the influence of the method by Lee
et al. (2018) on the model extraction attacks discussed in this research.

Atli et al. (2020) have developed their own method for detecting queries by Knockoff nets. Their goal
is to detect queries that do not correspond to the main classification task of the victim model. For this,
a binary classifier is proposed based on the ResNet architecture. This binary classifier can be used as
filter in front of the prediction API. The authors claim that their defense method correctly detects
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up to 99% of the adversary queries, which is more than the other state-of-the-art out-of-distribution
detectors.

Jagielski et al. (2019) mention in their research that they have considered one defense mechanism,
which is removing access to probability values. They mention that they functionally-equivalent attack
is completely broken by this defense mechanism and do not provide further information on how to
evade such defense mechanisms.

As discussed previously, Duddu and Rao (2019) have considered defense mechanisms such as PRADA
and methods described by Kesarwani et al. (2018); Lee et al. (2018). However, the authors have not
shown that these methods have been tested against the proposed attack. Therefore, it is difficult to
say whether the proposed attack gets caught or becomes less effective by the aforementioned defense
mechanisms.

Chandrasekaran et al. (2018) proposes data randomization as defense mechanism. More specifically,
they propose two versions, data-independent randomization and data-dependent randomization. In
general method, a wrong output is given instead of the correct output, with some probability. For
the data-independent randomization, this probability is not dependent on the data that the user is
querying, so effectiveness of this method will not be guaranteed. However, for the data-dependent
method, the probability of providing the wrong output is based on the query input and the labeling
function. When this is done correctly, the effectiveness of the adversary’s attack is not guaranteed
anymore.

The remaining defense mechanisms is not discussed in this research paper, since they are not used
very often, therefore being not that relevant for the large scope of this research paper.

6 Discussion

Membership Inference

Various of the discussed papers propose that overfitting is a sufficient condition for vulnerability
against membership attacks. However, overfitting is not always necessary for an attack to succeed.
Some papers also looked into the influence of certain datapoints on the final model as a connection to
vulnerability to membership inference attacks. These two factors seem to be the best predictors of
susceptibility of a model.

Many of the attacks that were proposed follow the strategy from Shokri et al. (2017), many of
which are really successful even at the more limited assumption levels. The current body of research
suggests that there are many ways to stage a successful membership attack, even on well-generalized
models. Successful attacks have been staged against many type of deep-learning models, from
classifiers to generative models, and on a variety of datasets.

As successful attacks are certainly shown to be possible, there is not a conclusive answer on why
exactly some attacks work as well as they do. Why exactly models leak information about their
training set is still an active question, even though a couple of useful steps have been done in this
direction.

The main defenses against this attack seem to stem from regularization techniques and differential
privacy. Although there is always a trade-off between privacy of the training set and utility of the
model. Sometimes to such an extent that it would make the model no longer competitive if the privacy
loss is low.

Model Inversion

The various model inversion attacks discussed in this work are aiming for a diverse set of results.
Some succeed in reconstructing complete data samples from the training data, while others extract
only attributes or properties. Regardless, all these methods can result in a loss of privacy for the
people contributing data to the training set. But as most of these attacks are applied in a controlled
environment, it is difficult to determine how much of this privacy risk carries over to real-world
contexts.
The amount of information necessary to execute most attacks is quite high. Half of the methods
require white box access to work at all. Some attacks should theoretically work under minimal
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prerequisites, but then prove to be effective only when auxiliary information is used. How to obtain
this information is usually not mentioned. However, model extraction could be used to gain white box
access if necessary, and depending on the specificity demands on the auxiliary data, it is sometimes
possible for the adversary to find or even to generate such a dataset. Thus concerns for privacy are in
most cases legitimate.
To offer protection, some implementation of DP is usually sufficient, taking into account granularity
and utility. Finding techniques to determine the optimal DP algorithm and ε value to use in a given
context is a topic for further research. In a collaborative setting, the most effective defense is to
further reduce or hide the information contained in the gradients. This could be done by adding noise,
clipping, compressing, or encrypting them. However, these more involved methods of protection
often take more time to implement and could decrease the utility of the model critically, which may
motivate model owners especially in business contexts not to use these defenses. Therefore, using
techniques as simple as rounding the confidence scores could be valuable as well.
Something that is often missing in the literature on model inversion is an analysis of the cost, in
terms of time and money required for the attack. Query budgets are regularly used to constrain and
evaluate model extraction attacks and would be just as useful in this context. Making some estimate
on the time needed to execute an attack, parameterized by the size of the training set or other suitable
aspects, is also very valuable.

Model Extraction

A lot of discussed model extraction techniques are aimed at NN models. We suspect that this is from
the rising popularity of NN models throughout the past years. Another reason might be that NNs
and variations of NNs are widely used by MLaaS providers for image classification for example.
When comparing the methods of the attacks between these NN papers, most models follow the same
paradigm. We have also looked at other categories of ML models, such as SVMs, Decision Trees and
Logistic Regression.

Furthermore, we have discussed the prerequisites for every paper in detail. The results are similar to
model inversion techniques, where the amount of information necessary is generally quite high. From
our findings we can conclude that most papers do require knowledge of the model type beforehand,
while the architecture of the model is not always required. With regards to domain knowledge, there
is a limited set of papers that do not require any domain knowledge before commencing the attack.
Knowledge of the database on the other hand is less frequent required. When comparing query
budgets, less than half of the discussed papers have imposed some query budget on their attack.
Moreover, almost half of the papers have discussed the amount of queries needed to complete the
queries to the desired standard. From this we can conclude that a small subset of the papers think
query budgets are important for the feasibility of their attack, while almost half of the papers assume
that they can send unlimited queries to the victim to complete their attack.

With regards to defense methods, there are some papers that have not considered testing some defense
mechanisms against their attacks. While this is not particularly wrong, it does not show that the attack
is really valid in real-world settings, where these defense mechanisms might be deployed. Therefore,
we would strongly advise to consider at least some of the defense mechanisms mentioned in Section
5.3. More than half of the papers have considered some form of defense mechanisms. And most of
these papers show that their proposed method evades this particular defense mechanism. Thus, the
authors only show the defense mechanisms that had no influence on their proposed attack. Therefore,
we feel that authors are picky with which defense mechanisms they decide to evaluate, only showing
the ones which have no influence on their attack. We judge that attacks would be even more valuable
when they are tested on multiple defense mechanisms, and not only report the defense mechanisms
that can be evaded.

Conclusion

To conclude this review, we state a few general observations and provide some directions for future
research.
Firstly, the amount and variety of literature on this subject proves that there are still many security
problems with current machine learning models. Even without implementing differential privacy or
other complex methods, there are some simple modifications that can be applied to most model types
and which significantly lower the risk of a successful attack.
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However, differential privacy is an important notion for achieving good protection. It is not necessary
to use this in all cases, but for sensitive domains such as medical data, models should be watertight.
In this light, we find that more research still needs to be done on different implementations of DP.
From the papers we have discussed, it is clear that the trade-off between privacy and utility is not yet
understood well enough, and future works should take this into account.
With regards to model extraction, we judge that more research has to be done on defense mechanisms
imposed on the extraction attacks. There has to be a more thorough selection and testing of multiple
defense mechanisms to ensure validity in real-world scenarios. To a lesser extent, this also applies to
the other attacks: many papers do not discuss defense well enough or at all.
Additionally, the connection between membership inference and model inversion could be investigated
more. The methods and defenses that are effective for membership inference often also work for
model inversion, specifically for data reconstruction.
Lastly, it could be useful to employ a more theoretical perspective to these attacks. There are some
attempts to define general notions or algorithms, but most works have an empirical approach, which
means that it is unclear whether the attack works on models or data that have not yet been tested.
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