
MLOps and data versioning in
machine learning project

– Industrial Internship –

submitted by

Yizhen Zhao

Yizhen Zhao
yizhenzhao@hotmail.com

Student ID: 2658811

Supervisor

1st: Adam Belloum
2nd: Thilo Kielmann

Universiteit van Amsterdam
Vrije Universiteit Amsterdam

Contents

1 Introduction 1

2 Research Questions 1

3 Discussion of Literature and Blog 3

3.1 Definitions . 3

3.2 Popularity and importance of data versioning 3

3.3 Possible issues and requirements of data versioning 4

3.4 Tools and mechanisms for data versioning 4

3.5 ML lifecycle and MLOps framework 5

4 Project Implementation 7

4.1 Data versioning - DVC . 7

4.2 MLOps and lifecycle . 9

4.2.1 Automatically training and validation 9

4.2.2 Model deployment . 11

5 Reflection 12

6 Further research 14

References 15

A Glossary 16

B DVC related file format 17

C General information 19

D Data pipeline 19

E Format of sourcing data 20

F Technologies and services 20

i

1 INTRODUCTION 1

1 Introduction

As machine learning and AI propagate in technical Enterprise and become core
capabilities for solving complex real-word problems. If they are going to be the
essential part of an Enterprise, Enterprises should establish their machine learning
development process and tools to test, deploy, manage and monitor ML models in
production. The word MLOps is generated by applying DevOps principles to ML
system. Practicing MLOps means automatically monitor all steps in ML system,
such as integration, testing, deployment and infrastructure management. Data ver-
sioning also plays an important role in ML projects. Not only the code itself needs
version control, but the models and datasets. More and more data is being gen-
erated every day, thus the way to manage different versions and a large volume of
dataset matters.

Why more and more companies would like to include machine learning tech-
niques? Why data versioning matters? There are lots of reasons behind it. One of
the advantages of machine learning is it has the concept of pattern recognition and
through some observations, it allows computers to learn without being programmed
and perform certain tasks. It helps us create an approximation of decisions logic
where the logic is unknown to us, but we have observations through abundant data
[1]. As the code and datasets might be improved over time, it is important to record
information about how the data was processed and what artefacts or results were
generated, which allows us reproducing any artefacts or results in the future[2].

The main objective of this report is to conduct an industrial implementation of
data versioning and a basic ML lifecycle of a machine learning project and reflect on
the characteristics and constraints of industrial practice, in comparison with study
contents at university.

I will elaborate my project report step by step from the following aspects. First,
background information is here in Introduction. Second, I will list Research
Questions and the motivations for choosing them. In the following, in Discus-
sion of Literature and Blog, I will classify the literature, online websites and
conduct a detailed analysis to answer the research questions. Then, the actual
industrial implementation of our project will be described in Project Implemen-
tation. A reflection on study contents being applied in an industrial context and
further research will be displayed in Reflection and Further research. Finally,
extra information about the company, data pipeline, example of data format and
terminologies mentioned in this paper or names generated by our data team are
explained in Appendix.

2 Research Questions

One of the tasks we encounter right now is that we will use a machine learning
approach for one of the features in flags library, flag combo, which tells an outlet
it sells combo or not. If an outlet sells combo, then set the value of flag combo
as 1 for that outlet. But we haven’t established a framework or rules for our data,

2 RESEARCH QUESTIONS 2

model version control, or identify our MLOps lifecycle1 yet. Since our code, data and
models might be improved over time and it is necessary to have a good methodology
in terms of version control for all of them and keep using them in production.
Moreover, as machine learning approaches are also used in our other libraries, and
they will take more places in the future. It is a good chance to do some researches
in the field of data versioning and apply it to our pipelines. There are already lots
of discussions and researches about data versioning2 and the important role it plays
in MLOps lifecycle3.

Therefore, the research questions I defined and the rational motive for the stated
research questions are:

• Q1: What is the current state of data versioning in the marketplace?

– Before actually implementing the data versioning into our pipeline, it’s
better to do some research and planning first. Study the state of MLOps
lifecycle with existent use cases. Identify the tools or mechanisms used
for data versioning.

• Q2: What kind of requirements need to be considered when considering apply
data versioning into the project pipeline?

– Various requirements need to be considered when applying data version
control in a company. For examole, we need to search for tools that
support data or model version control. As Git4 is widely used for col-
laborating and tracking changes in code. Maybe there are some tools for
versioning dataset or model that can be integrated with Git.

– We need to identify a framework for data versioning and MLOps lifecy-
cle for our project that we could easily integrate with our current code
architecture, figure out the process to manage it and align with our tech-
nology stack. The fact is we do not have too much time (e.g. 6 months)
to implement this feature and we need to deliver our result in time.

– We need to define our rules for version control. For example, what kind
of changes on a dataset can be regarded as a new version.

• Q3: What kind of approaches or frameworks can be used for building an
integrated ML system and to continuously operate it in production?

– We want to identify the approaches in the marketplace for building an
integrated ML system and to continuously operate it in production, and
what is the final decision for our data versioning mechanism. Showing
the discussion and plans we had for it and the reasons for choosing or not
choosing certain approaches.

1https://blogs.nvidia.com/blog/2020/09/03/what-is-mlops/
2https://medium.com/acing-ai/ml-ops-data-science-version-control-5935c49d1b76
3https://blog.datatron.com/version-control-for-ml-models-with-code-algorithms-and-training-

data-sets/
4https://git-scm.com/

3 DISCUSSION OF LITERATURE AND BLOG 3

3 Discussion of Literature and Blog

Relevant papers or blogs will be analyzed and discussed in this section to answer
the research questions listed above. The selected literature and online websites can
be grouped into the following topics: Definitions, Popularity and importance
of data versioning, Possible issues and requirements of data versioning,
Tools and mechanisms for data versioning and MLOps framework and
lifecycle. The discussions of relevant findings of the literature and blogs are under
each topic.

3.1 Definitions

Data versioning and MLOps are the two main topics discussed in this report. The
first step is to understand the actual meaning of these two terms.

Data versioning, according to the definition in Stanford libraries[3], versioning
means when you make changes on data, a new version and new copies of data have
been generated, so that you can easily rollback and retrieve specific versions of
data. A blog[4] explained what do we mean by ‘data versioning’. A version is when
something changed and different from an earlier form. We could consider it as a
new version when there is a change in the content or architecture of the source.

MLOps is a relatively new field, but we are familiar with the term DevOps, In
Lucy’s research[5], she mentioned DevOps contains 2 words, Developers and Opera-
tions. It connects the development and operations, enables them to work and collab-
orate efficiently, automatically deploy, monitor and deliver software into production.
According to the blogs[6][7], MLOps follows the similar principle, modeled on the
existing discipline of DevOps, but involved one more module, machine learning part
which contains not only the machine learning model code but also data. Hence,
MLOps combines machine learning part, DevOps and data engineering, which aims
to deploy, maintain and deliver the ML system in production reliably and efficiently.

3.2 Popularity and importance of data versioning

As we defined the definition of data versioning. Why is it important to introduce
this term? Why it matters? The same blog[4] established on ANDS5 mentioned
researchers are required to correctly identify the dataset they used in their research
so that the reproducibility can be guaranteed. By using the unique version number
that follows the standardized rules, enables researchers to know whether and how
the data has changed over time and choose certain version of a dataset to working
with.

A use case established on Research Data Alliance6, submitted by Jens[8] related
to the data revision and version for data products said it is true that data ver-
sioning is necessary for ensuring the reproducibility of research. Modern software

5https://www.ands.org.au
6https://rd-alliance.org

3 DISCUSSION OF LITERATURE AND BLOG 4

systems evolve rapidly and may have many variants. Each variant may address
different requirements. For example, in ML projects, models might be improved
overtime and we might use a different combination of hyperparameters that con-
duct different results. The same for data, datasets involved in ML projects may
also change overtime. Thus, versioning enables us to reproduce certain steps in ML
projects, which means we could repeatedly run ML algorithms on a certain version
of datasets and obtain the same or similar results on a particular project. In any
continuous integration or continuous delivery cycle, reproducibility is an important
characteristic.

3.3 Possible issues and requirements of data versioning

Some possible issues exist when considering data versioning. Currently, there is no
agreement or standardized rules among data communities on how and when data
should be versioned[4]. For example, what kind of change on a dataset can be
regarded as a new version? How to define a major or minor change? Currently, the
most commonly adopted approach is semantic versioning7. But the situation may
differ from use cases and companies’ software settings.

In Thorsten’s research[9], they mentioned in a ML project, it is common that
data scientists may test different ML algorithms, hyperparameters and so on, aiming
to find out the best result for ML tasks. However, they need to manually log the
version numbers so that they could easily track the process, compare results among
different versions of ML models, reproduce certain steps in a ML project. But
manually logging is inefficient and error-prone. Besides, the ML project is not only
about code, but also data. Currently, the most common version control techniques
used in software engineer systems, such as Git, could not fulfill the requirements for
ML projects because of the scale and formats of data.

3.4 Tools and mechanisms for data versioning

As the possible issues and requirements for data versioning are discussed in the
previous section. In this section, tools and mechanisms for implementing data ver-
sioning will be discussed. In the same research of Jens’[8], they summarized 38 use
cases from 33 organizations for data versioning, such as tools they used, workflows
and ‘best practice’ for versioning.

Regrading to what kind of changes on dataset should be considered as a new
version, W3C[10] described some scenarios that most publishers agreed. A new
feature is added or an existing feature is removed from a dataset, this can be a
major version. While for the minor version, an error was identified in one of the
existing features in the dataset and this error must be corrected. The important
thing here is that avoid making changes without incrementing the version number
and the versioning information of a dataset should be consistent and informative so
that this dataset is trustworthy.

7https://semver.org

3 DISCUSSION OF LITERATURE AND BLOG 5

There are some similarities between software versioning and dataset versioning.
For instance, some data projects release major/minor releases. We could use the
principle for software versioning and apply it to dataset versioning. Jennifer[11]
described the use of a distributed version control system like Git and the hosting
site GitHub for data analysis and workflow. For a large project that may release
frequently, the generic Git workflow8 is, a master branch is always used for release.
Feature branch is used to develop new functionalities separately and only merged
with develop branch. The develop branch is created next to master branch, after
successfully tested the functionalities on develop branch, it merges to master, which
then can be released. Basically, the Git workflow may differ from projects. But it
often makes sense to use a branch strategy described here and make sure to have a
consistent naming strategy for branches and versioning.

Another tool for data versioning mentioned in this research[8] is DVC (Data
Version Control)9. DVC is built to make ML projects shareable and reproducible.
It uses so-called DVC-file10 which contains a description of a file that can be used
for versioning, to manage the large dataset, ML models and can be integrated with
Git for managing code as well. DVC allows storing large data files, ML models with
Git, without checking the file contents into Git. It has an easy-to-use command-line
operation similar to Git and it can be used with any cloud provider (S3, Google
Cloud).

3.5 ML lifecycle and MLOps framework

Data versioning is only part of the machine learning projects. Machine learning
project itself also needs an end-to-end workflow, so-called lifecycle. A case study es-
tablished by Saleema[12], they studied how various Microsoft software teams build
their software applications with AI features and described a nine-stage workflow
for developing machine learning projects, shown in Figure 1. In the first four
stages (Model requirements,Data collection,Data cleaning,Data labelling), de-
signers decide which features are needed, look for available dataset or collect their
own dataset, remove outliers in the dataset and assign the true labels to each
record. Feature engineering executes operations such as an extract or select in-
formative features for training models, and during Model training, we train our
model based on the clean, feature generated, labels assigned dataset. Then in
Model evaluation, the engineers evaluate the output model on validation tests.
Finally, in Model deployment and Model monitoring, deploy the model on the
target devices and continuously monitor the model in production.

One of the main challenges of MLOps is how to integrate the ML lifecycle or
workflow into the typical CI/CD process. Microsoft established a case study for
designing the MLOps framework on their official website[13]. They have a similar

8https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
9https://dvc.org/

10https://dvc.org/doc/user-guide/dvc-files-and-directories

3 DISCUSSION OF LITERATURE AND BLOG 6

Figure 1: Nine stages of the machine learning workflow

ML lifecycle as the one described above (i.e. Saleema’s[12] case). The basic idea for
the MLOps framework is shown in Firgure2.

Figure 2: MLOps process flow

It follows Gitflow workflow11, feature branch uses to explore or develop new
features in a project, once the feature branch is done, it merges to master branch
(or you may also have develop branch to record the history of a project). Once the
milestone for that state is created, we create release branch for it. The MLOps
process flow is described below.

• When a pull request is opened from a feature branch, the pipeline runs tests
that test the code quality (e.g. unit test), as well as model validation test,
which test model quality on the mocked data.

• When a pull request merged to master branch, the CI pipeline runs the same
tests mentioned above, and it packages the whole project as the artifacts.

• After the artifacts are available, a CD pipeline will be triggered, which validate
the end-to-end process on the development machine learning environment, a
scoring result (e.g. accuracy result of the ML model) will also be published.

11https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow

4 PROJECT IMPLEMENTATION 7

• Once the milestone for that specific state is created, it merges to the release
branch, and the same CI/CD pipeline described above will be executed again.

4 Project Implementation

In this section, the project implementation will be described. After identified the
tools and requirements for data versioning and the generic lifecycle for the ML
project, we will take them into consideration when implementing our approach.
First, I will elaborate on the research and general operation we explored for data
versioning using DVC. Then, discuss the basic ML workflow or lifecycle, together
with data versioning we decided to implement on one of our ML projects.

I will use our ML project as an example. We create a Git repository for training
and validating ML model, named dash-ml-flag-combo. Another one named dash-
docker-flag-combo for deploying the model.

4.1 Data versioning - DVC

Version control for ML projects, we need to consider not only the code, but also the
data and ML model (i.e. ML artefacts). DVC12 is an easy to use tool that it works
on the top of Git, as we are familiar with Git, hence we decided to explore this tool
for data versioning. An example diagram of the project structure is shown below
to help better explaining the data versioning. A complete diagram will be shown
in section 4.2. The dvc part will be generated when implementing data versioning,
which will be described in the following bullet points.

During the implementation, I made a demo video to present the general operation
of data versioning to my team, which includes the following operations. This demo
can be found here.

First you need to install13 the DVC and initialise it in your ML project Git
repository. The scenarios for data versioning we considered and implementation
details are listed below.

/

dash-ml-flag-combo

data

training

training.csv

training.csv.dvc ---> dvc file for training.csv

.dvc

cache

a3 ---> a copy of training.csv (stored in dvc cache)

04afb96060aad90176268345e10355

gitignore

12https://dvc.org/doc
13https://dvc.org/doc/install

https://drive.google.com/file/d/1nfjyyfScQw-wNiJ1I5d0gb4wxltp3j2R/view?usp=sharing

4 PROJECT IMPLEMENTATION 8

config ---> store information about remote storage

• Versioning ML artefacts: DVC uses a so-called *.dvc file which contains a
unique md5 hash14 to link the dataset to the project. DVC stores the copy
of this data file into DVC cache, using the first two letters of the hash as the
folder name, shown in the diagram above (i.e. a3). Then use the Git command
(e.g. git commit) to record this stage.

1 # Using dvc add to start tracking files and generate .dvc file

2 dvc add data/training/training.csv

3 # Using git commit to version the .dvc file

4 git add data/training.csv.dvc data/.gitignore

5 git commit -m "Add training data"

• Storing versioned ML artefacts: DVC supports various cloud storage that
enables us to store our dataset or models in remote cloud storage (e.g. S3). In
order to do this, first, we need to setup the remote storage using DVC, then
upload the ML artefacts to this remote storage. By doing so, we do not need to
keep the large dataset in our Git repository, the lightweight, human-readable
*.dvc file which contains the link to our real dataset will be kept in the Git
repository.

1 # Setup remote storage using dvc

2 dvc remote add -d [storage_name] s3://[bucket]/[dvc_storage]

3 # Upload dataset to remote storage S3

4 dvc push

After executing this command, a remote will be added into DVC config, which
looks like:

[' remote ” storage name ” ']
u r l = s3 : / / [bucket] / [dvc s to rage]
[core]
remote = storage name

• Retrieving ML artefacts: Having DVC-tracked data stored remotely, it
can be downloaded to Git repository when needed. As the DVC file stored
in Git repository contains the hash to uniquely identify the data and remote
information is stored in DVC config, it knows where to find the data on remote
storage and download the data to the local project.

1 # Using dvc pull to download data

2 dvc pull

14https://en.wikipedia.org/wiki/MD5

4 PROJECT IMPLEMENTATION 9

• Making changes on dataset: When making changes to dataset locally, the
DVC add command allows us to track the latest version of the dataset. It will
update the md5 hash inside the DVC file and then the new version of dataset
has been linked to the project.

1 # Using dvc add to track the new version of dataset

2 dvc add data/training/training.csv

3 # Push the new version to remote storage

4 dvc push

5 # Record the stage for the new version of dataset

6 git commit -m "training set updated"

• Switch between versions: When we want to rollback to a certain version
of dataset, git checkout will help us checkout a commit or a revision of DVC
file, and then using dvc checkout to synchronize data.

1 # Using git checkout to checkout a commit you want

2 git checkout <...>

3 # Using dvc checkout to sync data

4 dvc checkout

4.2 MLOps and lifecycle

Now our ML artefacts are managed by DVC, together with code, they are carefully
crafted by Git. We try to establish a basic workflow for our ML project, which
enables us to version control the data and model, automated training and validation
stages, reproduce the ML lifecycle easily, which leads us to achieve a basic level of
MLOps.

4.2.1 Automatically training and validation

Based on the discussion between our team, we revised the project structure, which
is shown in the diagram below.

/

dash-ml-flag-combo

assets

data

training.csv

validation.csv

data.dvc ---> dvc file for both training.csv and validation.csv

metrics

model

flag combo.pkl ---> output of training.py

src

ml pipeline

4 PROJECT IMPLEMENTATION 10

train.py

validate.py

select feature.py

DVC also provides a dvc.yaml15 describes the pipeline of a ML project and can
be generated manually or by DVC command and dvc.lock16 file that similar to .dvc
file contains md5 hash information related to ML artefacts. This enable us easily
run or rerun the whole pipeline or certain stages of a ML project automatically. The
workflow of establishing the ML pipeline we defined is described below.

• DVC initialise: For a new ML project, the DVC needs to be installed and
initialized. The remote storage for keeping the ML artefacts should also be
initialized in this part.

1 # Install DVC

2 pip install dvc

3 # Initialize DVC (from inside of the Git repository)

4 dvc init

5 # Setup DVC remote for storing ML artefacts

6 dvc remote add -d [storage_name] s3://[bucket]/[dvc_storage]

• DVC flow: The strategy and workflow for generating the ML pipeline will be
described here. Dataset which will be used as input of a ML project should
be version controlled by DVC, the strategies of using DVC achieving data
versioning is described in section 4.1. The output of the ML pipeline will be
tracked by DVC automatically (i.e. the trained ML model, flag combo.pkl).
The details about the DVC command and parameters for creating ML pipeline
can be found on their official documentation.

1 # 1. Using dvc add to keep track of the initial dataset

2 dvc add assets/data

3 # 2. Create dvc pipiline that runs each stage of ML project.

4 # Stage train. Specify the stage name (train), input (-d),

5 # output (-o) and followed by a command

6 dvc run -n train \

7 -d src/ml_pipeline/train.py -d assets/data/training.csv \

8 -o assets/model/flag_combo.pkl \

9 python src/ml_pipeline/train.py

10 # Stage validate. Output format for metrics and plots is different

11 dvc run -n validate \

12 -d src/ml_pipeline/validate.py -d assets/data/validation.csv \

13 -M assets/metrics/accuracy.json \

14 --plots-no-cache assets/metrics/matrix.png \

15 python src/ml_pipeline/validate.py

16 # 3. Run git add to include all relevant files to git staging,

15https://dvc.org/doc/user-guide/dvc-files-and-directories#dvcyaml-file
16https://dvc.org/doc/user-guide/how-to/merge-conflicts#dvclock

https://dvc.org/doc/command-reference/run

4 PROJECT IMPLEMENTATION 11

17 # this will include *.dvc, dvc.yaml, dvc.lock, these dvc artefacts

18 # will be source controlled by git

19 git add [use relevant options]

20 # 4. Git commit, followed by dvc commit to record this stage

21 git commit -m "MESSAGE HERE"

22 dvc commit

23 #5. Git push and dvc push to push code to Git repository and

24 # ML artefacts to remote storage

25 git push [revelant options]

26 dvc push

At this point, we have committed to Git and DVC that are linked together.
Git commit has all the information we need to reproduce the state of data,
model and pipeline related to this commit.

• Reproduce a state in a point of time: In the previous stage, we created
the ML pipeline and had the git commit that contains everything needed to
reproduce the pipeline. Here we will describe how to easily rerun the whole
pipeline or a certain stage in the ML project. For example, if dataset changed
or the ML algorithm used changes, certain stages can be reproduced easily.

1 # Get a state for the git repository for the certain commit

2 git checkout -b [branch/commit]

3 git pull

4 # Get a state of assets related to this commit by using dvc pull

5 dvc pull

6 # If necessary, you could rerun the whole pipeline or certain stage

7 dvc repro # rerun whole pipeline based on dvc.yaml

8 dvc repro -p [stage_name] # rerun certain stage

9 # If necessary, you could compare the metrics by using following command

10 dvc metrics show

4.2.2 Model deployment

After obtained the trained model, we plan to deploy it on AWS Sagemaker and use
it in production. From one of the colleagues’ previous experience, we plan to use the
batch transform17 of Sagemaker to deploy our trained model. It only supports CSV
file and JSON file as input file. The idea of batch transform is that by using simple
API, you can run predictions on large or small batch datasets easily, there is no need
to break down the datasets into multiple chunks or run prediction in real-time which
could be expensive. There is a parameter that allows you to customize the payload
size per mini-batch, which means it will load as much as records in the dataset it
can to perform the prediction.

17https://docs.aws.amazon.com/sagemaker/latest/dg/ex1-batch-transform.html#ex1-batch-
transform-api-low-level

5 REFLECTION 12

We followed an example18 of how to deploy a custom model on Sagemaker. Our
Git repository dash-docker-flag-combo follows the same structure. Basically, it starts
a Flask service and holds your application and execute prediction job on input data.
It also provides a Dockerfile that allows you bundle everything in a Docker image
and upload to ECR, then in Sagemaker, you can create a model19 based on that
Docker image from ECR and start a batch transform job based on the model you
created where has the prediction logic.

The key parameters20 we set for Sagemaker to execute the batch transform are
listed below in table 1. By doing so, we are able to run prediction on our input
data, a JSON file (1.8GB) in 20 minutes.

Key Value Meaning
Job name [your-job-name] The name of your batch transform job

Model name [your-model-name]
The name of the model, which loads the image
pushed to ECR before with prediction logic in it

Instance type
ml.m5.2xlarge
($0.538 per hour21)

EC2 instance type you want to use
for batch transform job

Instance count 1 The number of instance
Max payload size 5MB Maximum size allowed for a mini-batch.

Batch strategy MultiRecord
Specifies the number of records to include
in a mini-batch for an HTTP inference request.

S3 data type S3Prefix Input data configuration

Split type Line
The method to use to split the transform job’s
data files into smaller batches.

S3 URI s3://[bucket]/[path] The path for your input data
Content type application/json The data format

S3 output path s3://[bucket]/[path] The path for storing the output data

Assemble with Line
Defines how to assemble the results of the
transform job as a single S3 object.

Table 1: Key parameters for launching batch transform

5 Reflection

During this project, we are trying to achieve a basic level of MLOps and apply
version control to a machine learning project. This is a new experience for me
and also for the company. I used to work with machine learning in one of the
courses at university but never touched the version control or MLOps for a machine
learning project. Before implementing this project, the company used their own
ways to manage the machine learning model, which could be inefficient and need a

18https://github.com/ritchie46/sagemaker-custom-model
19https://docs.aws.amazon.com/sagemaker/latest/APIReference/API CreateModel.html
20https://docs.aws.amazon.com/sagemaker/latest/APIReference/API CreateTransformJob.html

5 REFLECTION 13

lot of labor work. In university, courses like Data Mining22 and Machine Learning
for the Quantified Self23 taught by Professor Mark Hoogendoorn24, we learned the
knowledge to build the machine learning model from end-to-end, which allows me
to understand better about the lifecycle of machine learning project. But due to
the time limit of a course, we are unable to keep working on the maintenance or go
through a lot of iterations of a machine learning project. While in a company, they
need to manage the machine learning model and keep improving the result of it in
a long term, this is why we want to introduce data versioning and MLOps, which
can help us better manage and maintain the machine learning project.

Apart from that, I also learned new skills during this project. DVC which we
used for data versioning is a new tool that we have never worked with. My team
gave me enough freedom to do research and explore how to use this tool and what
is the best practice for versioning a machine learning project. Then I made a demo
to show what I have found and created a proposal about the basic workflow of our
ML project. Meanwhile, we had several discussions about this within our team to
exchange our thoughts and finally decide the best practice that satisfies our needs for
versioning our ML project. Sagemaker is also a new tool that we introduced in our
team for deploying the ML model. One of my teammates who has rich experience
with AWS and I worked together to explore the Sagemaker. As mentioned in section
4.2.2, this involves different technique skills, I have learned Docker and Flask in one
of the courses (Web Services and Cloud-Based Systems25) taught by Professor Adam
Belloum26 and have basic hands-on experience on them. Through this project, I was
able to apply what I have learned at university and combine it with a new skill (i.e.
Sagemaker).

We worked as a team during this project. We would have our own tasks but
meanwhile, we would work together, for example, at the beginning of this project,
we had a brainstorm to define the tasks we need to do in order to achieve the
final goal of this MLOps project. Bring our own ideas about the steps we need to
follow and then discuss together the priority of each task. As we have a different
background, senior data engineer, software engineer and we have different project
experiences, this allows us to provide our own opinions and find a compromise way
that everyone is satisfied with. I benefit a lot from their rich working or project
experience. For example, when defining the standard architecture for our ML project
and the structure for saving ML artefacts on remote storage, I did not consider the
long-term management of this project and the real situation of it. In theory, the
structure and mechanism I provided are clear and easy to manage. But in the real
situation, it might not be suitable for long-term management and overcomplicate
the way we manage it. Years of working experience and maintaining projects in long
run help them know what might happen in the future and what might be the best
solution when dealing with problems in a project.

22https://studiegids.vu.nl/en/2020-2021/courses/X 400108
23https://studiegids.vu.nl/en/2020-2021/courses/XM 40012
24https://www.cs.vu.nl/∼ mhoogen/
25https://studiegids.uva.nl/xmlpages/page/2020-2021-en/search-course/course/79525
26https://www.uva.nl/profiel/b/e/a.s.z.belloum/a.s.z.belloum.html

6 FURTHER RESEARCH 14

One of the differences I noticed between university and company is that in the
company, the project we are working on will be used in production and provides
commercial value. Therefore, before actually implementing a project, we need proof
of concept and validate the plan with the team leader or even the project lead. Apart
from the project itself, during implementation, from the companies’ perspective, we
need to take cost into consideration. For example, when exploring Sagemaker, we
learned from one of the colleagues’ experience, Sagemaker provides another way to
deploy the model but that is way more expensive and he did not notice that when
he uses Sagemaker. So in our solution, we used batch transform which is cheaper
and you only pay for how much you use. While in university, there are some cases
that we might fail in projects. But failure is the mother of success, as long as we
could learn from our failure, it is still a valuable experience.

6 Further research

We applied the data versioning and model deployment on a simple machine learning
project. We will try to apply what we have developed so far to other ML projects
as well. In the meantime, improve the mechanism for data versioning and try to
find the best practices of MLOps that satisfies all our ML projects. As we just
introduced these technologies into our company for managing ML projects, other
ML projects need time to adapt to the mechanism we defined.

Furthermore, Microsoft established a maturity model[14] that helps users to
clarify the MLOps principles and practices. It contains four levels, which shown
in table 6 below. Now we are in-between level 2 and 3. We cannot satisfy all
characteristics of MLOps requires in such a short time (i.e. two months), now
we utilized DVC to build a simple pipeline for training and validating the ML
model, which also allows us easily reproduce the ML project. For model deployment,
Sagemaker will automatically load the input data, apply the prediction function on
it and output the result data. In order to achieve further levels, there is still a lot
of work to do. For example, one of the characteristics of level 4 is to automate the
entire ML pipeline or lifecycle. Right now we still need manually release the model
and deploy that model in production. Besides, as mentioned in section 3.5, there
is a CI/CD pipeline needed for ML project that enables us to perform continuous
training of the model and lead to continuous delivery of prediction service.

Level Description
0 No MLOps
1 DevOps but no MLOps
2 Automated training
3 Automated Model Deployment
4 Full MLOps Automated Operations

Table 2: MLOps maturity model from Microsoft (For more details please see
here[14])

REFERENCES 15

References

[1] Why Machine Learning? Https://towardsdatascience.com/why-machine-learning-
303e6bdaa29d.

[2] Creating reproducible data science workflows with DVC., Https://medium.com/y-
data-stories/creating-reproducible-data-science-workflows-with-dvc-3bf058e9797b.

[3] Data versioning - Stanford Libraries, Https://library.stanford.edu/research/data-
management-services/data-best-practices/data-versioning.

[4] Data versioning - ANDS, Https://www.ands.org.au/working-with-data/data-
management/data-versioning.

[5] M. O. Lucy Ellen Lwakatare Pasi Kuvaja, “Dimensions of devops,” Agile Pro-
cesses in Software Engineering and Extreme Programming, vol. 212, pp. 212–
217, 2015.

[6] What Is MLOps? Https://blogs.nvidia.com/blog/2020/09/03/what-is-mlops/.

[7] ML Ops: Machine Learning as an Engineering Discipline, Https://towardsdatascience.com/ml-
ops-machine-learning-as-an-engineering-discipline-b86ca4874a3f.

[8] J. Klump, L. Wyborn, M. Wu, R. Downs, A. Asmi, G. Ryder, and J. Mar-
tin, Research Data Alliance Data Versioning Working Group Compilation of
Data Versioning Use Cases, Jan. 2020. doi: 10.15497/RDA00041. [Online].
Available: https://doi.org/10.15497/RDA00041.

[9] T. Berger, M. Chechik, T. Kehrer, and M. Wimmer, “Software Evolution in
Time and Space: Unifying Version and Variability Management (Dagstuhl
Seminar 19191),” Dagstuhl Reports, vol. 9, no. 5, T. Berger, M. Chechik, T.
Kehrer, and M. Wimmer, Eds., pp. 1–30, 2019, issn: 2192-5283. doi: 10.

4230/DagRep.9.5.1. [Online]. Available: http://drops.dagstuhl.de/

opus/volltexte/2019/11379.

[10] Data on the Web Best Practices, Https://www.w3.org/tr/dwbp/dataversioning.

[11] J. Bryan, Excuse Me, Do You Have a Moment to Talk About Version Control?
Nov. 2017. doi: 10.1080/00031305.2017.1399928.

[12] S. Amershi, A. Begel, C. Bird, R. DeLine, H. Gall, E. Kamar, N. Nagappan,
B. Nushi, and T. Zimmermann, “Software engineering for machine learning: A
case study,” in International Conference on Software Engineering (ICSE 2019)
- Software Engineering in Practice track, ICSE 2019 Best Paper Award, IEEE
Computer Society, May 2019. [Online]. Available: https://www.microsoft.
com/en-us/research/publication/software-engineering-for-machine-

learning-a-case-study/.

[13] Design a machine learning operations (MLOps) framework to upscale an Azure
Machine Learning lifecycle, Https://docs.microsoft.com/en-us/azure/architecture/example-
scenario/mlops/mlops-technical-paper.

[14] Machine Learning Operations maturity model, Https://docs.microsoft.com/en-
us/azure/architecture/example-scenario/mlops/mlops-maturity-model.

https://doi.org/10.15497/RDA00041
https://doi.org/10.15497/RDA00041
https://doi.org/10.4230/DagRep.9.5.1
https://doi.org/10.4230/DagRep.9.5.1
http://drops.dagstuhl.de/opus/volltexte/2019/11379
http://drops.dagstuhl.de/opus/volltexte/2019/11379
https://doi.org/10.1080/00031305.2017.1399928
https://www.microsoft.com/en-us/research/publication/software-engineering-for-machine-learning-a-case-study/
https://www.microsoft.com/en-us/research/publication/software-engineering-for-machine-learning-a-case-study/
https://www.microsoft.com/en-us/research/publication/software-engineering-for-machine-learning-a-case-study/

A GLOSSARY 16

A Glossary

AI Artificial Intelligence. 1, 5

API An application programming interface is a computing interface that defines
interactions between multiple software intermediaries.. 11

AWS Amazon Web Services. 21

CD Continuous delivery or continuous deployment. 6

CI Continuous integration. 6

CI/CD CI/CD generally refers to the combined practices of continuous integration
and either continuous delivery or continuous deployment. 5

combo A ”combo” is usually two regular products/food items sold together as a
combination or ”combo” because they taste good together. 1

CSV Stands for ’comma-separated values’. It is a simple file format used to store
tabular data, such as a spreadsheet or database. 11

Deliveroo Online food ordering and delivery platform. 19

DevOps DevOps is the combination of cultural philosophies, practices, and tools
that increases an organization’s ability to deliver applications and services at
high velocity. 1, 3

Docker image A read-only template that contains a set of instructions for creating
a container that can run on the Docker platform.. 12

Dockerfile A text document that contains all the commands a user could call on
the command line to assemble an image.. 12

ECR Elastic Container Registry. 12, 21

ECS Elastic Container Service. 21

flag combo One of the features generated in flags library, which tells an outlet it
sells combo or not (e.g. A burger with fries is a combo). 1

Git repository A repository on Git. This repository tracks all changes made to
files in your project, building a history over time.. 7, 8, 12

IAM Identity and Access Management. 21

JSON JavaScript Object Notation is a lightweight data-interchange format. 11, 12

B DVC RELATED FILE FORMAT 17

ML Machine learning. 1–7, 9–11

MLOps A compound of ”machine learning” and ”operations”. 1, 2

online platform The online food ordering and delivery platform such as Ubereats
and Deliveroo, where we could find the information related to the outlet and
menu information. 19

outlet A shop or restaurant that sells the food or drinks on those online platform.
1, 19

S3 Simple Storage Service. 5, 8, 21

sourcing data In our case we call it sourcing data27, it means raw data scraped
from website, describes information about the outlets that exist on the online
platform. There are two types of raw data, one contains information related
to an outlet (e.g. name, address, country) and another one contains the menu
information of the outlets (e.g. category, brand, volume). 19

Ubereats Online food ordering and delivery platform. 19

B DVC related file format

• *.dvc file: Here is an example of training.csv.dvc.

outs :
− md5 : a304afb96060aad90176268345e10355

path : t r a i n i n g . csv

• dvc.yaml file: A yaml file generated based on the command we use in section
4.2.1 which contains two stages: train and validate.

s t ag e s :
t r a i n :

cmd : python s r c / dash ml f lag combo / m l p i p e l i n e / t r a i n . py
deps :
− a s s e t s / data / o u t l e t t r a i n i n g s e t 2 3 1 0 2 0 2 0 . csv
− s r c / dash ml f lag combo / m l p i p e l i n e / t r a i n . py
outs :
− a s s e t s /model/ f lag combo . pkl

v a l i d a t e :
cmd : python s r c / dash ml f lag combo / m l p i p e l i n e / v a l i d a t e . py
deps :
− a s s e t s / data / o u t l e t v a l i d a t i o n s e t 3 0 1 0 2 0 2 0 . csv
− s r c / dash ml f lag combo / m l p i p e l i n e / v a l i d a t e . py

27https://www.talend.com/resources/data-source/

B DVC RELATED FILE FORMAT 18

metr i c s :
− a s s e t s / met r i c s / s c o r i n g . j son :

cache : f a l s e
p l o t s :
− a s s e t s / met r i c s / con fus i on mat r ix . png :

cache : f a l s e

• dvc.lock file: A dock file generated automatically based on the command we
used in section 4.2.1 and the yaml file.

t r a i n :
cmd : python s r c / dash ml f lag combo / m l p i p e l i n e / t r a i n . py
deps :
− path : a s s e t s / data / o u t l e t t r a i n i n g s e t 2 3 1 0 2 0 2 0 . csv

md5 : a3c254dd0904baacc93968bd79faf8e0
s i z e : 782343

− path : s r c / dash ml f lag combo / m l p i p e l i n e / t r a i n . py
md5 : 14 b1578f0a9be8169ce85a5e8dfc7d49
s i z e : 4474

outs :
− path : a s s e t s /model/ f lag combo . pkl

md5 : c7b5ac139090143fa35b0c19198f879f
s i z e : 792590

v a l i d a t e :
cmd : python s r c / dash ml f lag combo / m l p i p e l i n e / v a l i d a t e . py
deps :
− path : a s s e t s / data / o u t l e t v a l i d a t i o n s e t 3 0 1 0 2 0 2 0 . csv

md5 : 912 d6576b001c09633704b0403b446db
s i z e : 423668

− path : s r c / dash ml f lag combo / m l p i p e l i n e / v a l i d a t e . py
md5 : a8b5a44546e75c9666ca50be5e2a1508
s i z e : 4127

outs :
− path : a s s e t s / met r i c s / con fus i on mat r ix . png

md5 : e07078d0ffd2959cb64bd81831d17144
s i z e : 15820

− path : a s s e t s / met r i c s / s c o r i n g . j son
md5 : 91 ecf5bc6583e5a83c933939aa943760
s i z e : 126

C GENERAL INFORMATION 19

C General information

The name of the company is Dashmote28, Rokin 86, 1012 KX Amsterdam and I
work there as a Data Engineer Intern. Dashmote is a company that mainly focuses
on big data analysis to provide services to companies which are in food or beverage
market. Some of our clients are Heineken, Coca-cola, etc.
We use data from the Internet to help our clients to understand and predict con-
sumption trends in the current market based on when, where, and what customers
post on online platform. The end to end processes of our services is shown in Fig-
ure 3. During Data Acquisition, sourcing data is collected from various online
platform such as Ubereats. The sourcing data contains information about the out-
let that exists on that online platform. For example, the name, address, website
URL, meal menu, etc. During Data Services, according to the requirements from
the clients, we developed a customized pipeline that processes the data and head
to Business Intelligence department, where the result will be visualized in a
way that clients can have a better understanding of their brands, sales, and clients.
These reports will help our clients to explore the market, control the cash flow and
make future business decisions.

Figure 3: End to end process (Figure from Dashmote)

D Data pipeline

The pipeline that our data team is working on is shown in Figure 4. 5 main cus-
tomized libraries in this figure are: pre-processing, matching-ml, portfolio-*, merging
and flags. It shows how the sourcing data will be processed from the beginning to
the end. The function of each library will be described in this section.

• pre-processing: The sourcing data, which contains information about the
outlets, will be pre-processed. Operations like fill the missing value for address
(longitude and latitude) will be executed here.

• matching-ml: It matches the same outlet that exists on different platforms.
For example, two restaurants, through the address or postcode that we know
they are the same restaurant, might exist on both Ubereats and Deliveroo.

28https://dashmote.com

E FORMAT OF SOURCING DATA 20

Figure 4: Data pipeline (Figure from Dashmote data team documentation)

• portfolio-*29: It is a library that deals with the data at the drink level. After
pre-processed the sourcing data, in the portfolio step, it extracts drinks related
information (e.g. drink brand, volume) for each outlet.

• merging: It merges all the data mentioned in previous steps and generates
the final data product. The final data product contains several tables that
describe different domains of the outlet. For instance, one table describes
the information related to the outlets (e.g. address), one describes the drinks
information and etc.

• flags: Flags library is created for providing extra information to clients. The
output from the flags is displayed in the visualization part. The idea of this
flags library is to assign a flag (0 or 1) to an outlet in a certain domain based
on the information we got during the Merging step. For example, if an outlet
sells alcoholic drinks, then the flag for this outlet in this domain will be 1.

E Format of sourcing data

The example of the outlet related information (sourcing data) is shown in table 3.

address country cuisine ... name postal code source
85 Endeavour, AU AU Sandwiches ... Yachties 2500 deliveroo
Corrimal, Wollongong,AU AU Tacos; Wraps ... Tres Jefes 2500 deliveroo
19 corral,Wollongong,AU AU Pizza ... Blue river 2500 deliveroo

Table 3: Outlet information table format

The example of the portfolio drinks table (generated in Portfolio step) is shown
in table 4.

F Technologies and services

Table 5 shows the main technologies and services that we are using:

29The name after portfolio- means online platform (e.g. ubereats)

F TECHNOLOGIES AND SERVICES 21

alcohol category id source ... price source brand volume
False Drinks 96f9c3-34da ... 15.00 deliveroo Mojo unknown
False Congee 0651bd-04ee ... 4.500 deliveroo Coral 600
False Modifiers 7d4480-2f54 ... 16.80 deliveroo Heineken 330

Table 4: Drinks information table format

Technologies/ Services Usage

Docker
It is a set of platform as a service products that use
virtualization to deliver software in packages called containers.
Our libraries will be run remotely in a Docker container.

AWS S3
A storage service offered by Amazon, which is used to
store all the data we have.

AWS ECS
A container orchestration service,
which allows us to deploy docker images on it.

AWS ECR
A Docker container registry
which is used to store our Docker images.

AWS DynamoDB A database used to store our data.
AWS IAM A service that helps us manage access to Amazon services.

Airflow
A workflow management platform, which allows us to
view and check the status of each step in our pipeline.

Jenkins
An automation service that automatically tests the code
we implement to make sure the quality is good.

AWS Sagemaker
A platform that help developers to prepare, build, train
and deploy machine learning models.

flask
A web framework, which provides you with tools, libraries
and technologies that allow you to build a web application.

git
A distributed version-control system for tracking changes in
any set of files. We use git for managing our code.

Table 5: Technologies used in Dashmote

https://www.docker.com/
https://aws.amazon.com/dynamodb/
https://airflow.apache.org/
https://www.jenkins.io/

	1 Introduction
	2 Research Questions
	3 Discussion of Literature and Blog
	3.1 Definitions
	3.2 Popularity and importance of data versioning
	3.3 Possible issues and requirements of data versioning
	3.4 Tools and mechanisms for data versioning
	3.5 ML lifecycle and MLOps framework

	4 Project Implementation
	4.1 Data versioning - DVC
	4.2 MLOps and lifecycle
	4.2.1 Automatically training and validation
	4.2.2 Model deployment

	5 Reflection
	6 Further research
	References
	A Glossary
	B DVC related file format
	C General information
	D Data pipeline
	E Format of sourcing data
	F Technologies and services

