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ABSTRACT
Particle physics involves careful examination of sub-atomic parti-
cles and their interactions with each other and their surrounding
elements. The main challenge across particle physics remains the
separation of background noise from the true signals. Physics con-
trols and algorithms that were being used for examination so far
have been successful to a certain extent. With the rapidly increasing
volumes of data generated, these algorithms are unable to keep up
or are hard to improve such that new findings can be made possible.
These concerns paved way for neural networks to take over the
traditional physics algorithms, due to their ability to handle and
learn complex, non-linear relationships. This transition to neural
networks is especially being considered in neutrino studies.

There is a lack of systematic information on what neural net-
works have been used in neutrino research and to what degree
of success. This study examines relevant work done with neural
networks in the field of particle physics. The study has a two-fold in-
terest. It wishes to aid physicists who may be lacking knowledge in
artificial intelligence to use this study as a guide on getting started
with neural networks in their field. It also wishes to serve as a
reference point for computer scientists who are looking to develop
new learning techniques or architectures that can specifically cater
to this niche yet significant branch of physics.

The study identified notable reliance on convolutional neural
networks (CNNs) in the field. It is evident from the studies that
CNNs can be used as a valid starting architecture as it has already
provided successful results for existing experiments. The study can
also recommend Graphical Neural Networks (GNNs) for geometri-
cally irregular data based on it’s use at a detector. The study noted
challenges in objectively comparing results across studies due to
differing metrics and recommends a standardisation be put in place.
Overall, despite the relatively few case studies using neural net-
works in particle physics, it is evident that these networks can be a
part of future physics research.

KEYWORDS
systematic literature review, deep neural networks, convolutional
neural networks, particle physics, HEP, neutrino detection, jet anal-
ysis

1 INTRODUCTION
Physics through the course of time has accounted for many funda-
mental properties of the universe. Yet, several questions regarding
the elementary constituents of matter still remain unanswered. For
instance, it is well known that when neutron stars collide, they
produce supermassive stars or black holes [13]. However, there
is not much information on what the cores of such stars or black
holes comprise of. What is however known, is that all of these

events have one particle in common - a neutrino [13]. Neutrinos
are elusive, weakly interacting particles that were discovered first
by Pauli in the 1930s [16]. Majority of the universe is made of dark
matter - what scientists believe to be the key to understanding the
origins of universe [29]. Neutrinos are the only known particles
from dark matter [38]. Understanding neutrinos has become in-
creasingly significant for researchers. Specifically, experiments are
being conducted to understand the mass of neutrinos, the reason
for their oscillation, their ability to change forms and the role it
plays in the birth and continuum of the universe [27].

With simultaneous advancement in hardware and computing
power, the ability to detect and understand neutrinos on Earth
has drastically increased. Particle physics has taken upon the role
of understanding neutrinos and the laws that govern it [2, 3, 7, 8,
16, 38]. Large particle accelerators are atypical for particle physics
experiments whereby protons and anti-protons are collided at high
speeds to try to recreate exotic particles. These exotic sub-atomic
particles are such that they can hardly ever be observed directly.
Instead, detectors look to capture evidence of interactions these
particles have with each other or with their surroundings [16].
Through this process, petabytes and even exabytes of data are
collected in real time and analysed for signs of tracks, rings, jets
and showers that are associated with such particle interactions [35].
Such experiments so far have made use of physics algorithms and
those have worked well in detecting particles to a certain degree.
However, these techniques fail when it comes to identifying new
particles or studying previously unknown behaviour that has not
been defined by the algorithm parameters [26]. These algorithms
are also unable to keep up with large volumes of rapidly changing
data. Thus, reliance on physics algorithms have led research to a
standstill and limited the potential for new discoveries [26].

Meanwhile, neural networks have faced several cycles of hype
over the past decade or so. Early attempts at incorporating neural
networks were often unsuccessful due to limited understanding,
large computational hours, hardware limitations, and lack of pow-
erful architectures [6]. Early applications that were developed were
highly sensitive to errors and data quality [6]. They were unable to
cope with changing data and varied, complicated data types [6, 26].
At the time, combining expensive particle detectors with such fickle
systems were viewed as an inconvenience rather than an advantage.
Moving onto recent times, significant advances in computing power
led to better storage of data, faster execution times and improved
error handling. These directly contributed to allowing real-time pro-
cessing of data. Storage of large datasets were now made possible,
directly affecting the ability to train networks with larger datasets.
Additionally, general theoretical research was mitigated to address
the concept of neural networks being a black-box. Advances in
computational theory led to development of powerful learning al-
gorithms, optimisation techniques and robust architectures [17].
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These factors combined led to new interest in application of neu-
ral nets to complicated problems, including problems in particle
physics [26].

1.1 Background on Neutrinos
Neutrinos are fundamental particles of the universe and considered
exciting because of how different they are from other particles.
Unlike other elementary particles, they carry no charge and are
extremely small in mass, close to zero [16]. They also do not inter-
act via the strong forces and electromagnetic forces. Rather, they
interact only via the weak subatomic force - a subatomic force that
causes radioactive decay of atoms. Thus, they travel through matter
undetected [16]. They come in three flavours or types called electron
neutrinos, tauon neutrinos and muon neutrinos and it was recently
discovered that neutrinos can change types and masses [16].

Most of the neutrinos present are known to have existed soon af-
ter the formation of the universe. On Earth, neutrinos are produced
by nuclear reactors, natural radioactive changes in the atmosphere
and particle accelerators. The Sun produces neutrinos via nuclear
fission that occurs in its core. They are also generated from the
births, deaths and collisions of stars and supernovae explosions
[38].

A trillion neutrinos approximately pass through the Earth every
second yet, only one neutrino gets to react with matter on Earth,
once every day [4]. For a neutrino to react, it has to hit an atom at
it’s core.When it does so, it results inweak boson particles. However,
detecting them remains extremely hard for two reasons. First, when
neutrinos interact to give out resulting particles (weak bosons), they
only last for one ten thousandth of a trillionth of a trillionth of a
second [4]. Second, these particles travel a distance of less than one-
one-thousand of a size of a proton. [4] These two factors combined
make it extremely challenging for a neutrino to react with an atom
and thus get detected.

There are a few ways of detecting neutrinos with under-water
detectors being most popular. In water, neutrino particles travel
undisturbed and may travel faster than light. They may react with
some particles in the water and create a charged lepton that pro-
duces a light known as Cherenkov’s light. These flashes of light
are detected by photomultiplier tubes that can infer direction, en-
ergy and flavour of the neutrino [4]. Detectors additionally need
to cover a significant surface area so that more than one neutrino
can be detected per day. No matter the kind of detector, they all
need to be placed such that background noise from cosmic activity
and other terrestrial noise is minimised. Several experiments have
been set up that attempt to do just this. Super Kamiokande is a
water based detector that uses Cherenkov light to detect neutri-
nos. It was successfully able to detect neutrinos from a Supernova,
which led to renewed interest in the field [44]. IceCube is another
experiment located in the South Pole that uses a cubic kilometre
of ice embedded with photomultiplier tubes to detect neutrino
events [8]. MiniBooNE detector uses pure mineral oil that allows
low energy muons and protons, invisible in water, to be detected
[5]. The KM3NeT is another effort currently being built under the
Mediterranean sea, focused on detecting deep space neutrinos [7].

Neutrinos are the most abundant particles in the universe but
hardly much is known about them. Studying their origins can help

resolve many mysteries of the universe. Since they travel through
space practically unaffected, physicists believe that neutrinos can
help learn about the origins of universe.

1.2 History of Neural Networks in Particle
Physics

Neural networks (NNs) were first acknowledged in physics around
1988, in the field of particle physics [23]. Particle physics comprises
the study of the fundamental building blocks of nature - quantum
physics, irreducible, elementary particles and big bang [2]. Particle
physics largely involves low level pattern recognition and physics
process determination. According to Denby (1999), low level pattern
recognition includes finding tracks made by particles and process
determination encompasses obtaining properties such as angular
momentum, spatial topology and energy emissions of particles.
Studies of such processes require work to be done either in real
time or offline. Denby (1999) described particle physics processes
to be characterised by larger magnitudes of background noise with
small, rarer occurrences of real events at any given point in time.
Therefore, data analysis are of two kinds - real time or offline
research. Applications that make use of real-time triggers, attempt
to filter out most background noise and look out for particle events
in real time. Offline reconstruction requires using massive compute
power to build such events and employ efficient algorithms to parse
through the noise [23].

Denby (1999) found neural networks that have been used in parti-
cle physics have been used in both real time and offline applications.
Overall, neural networks have had challenges being recognised as a
statistical tool within the community of particle research. The main
challenge in particle physics lies in the fact that such experiments
often have to deal with new and unknown phenomenon. Neural net-
works in such instances have to be developed based on unknown,
and guessed parameters. Models trained on such parameters then
further reflect these unknowns and inaccuracies. The ease of use of
neural networks make it tempting to combine them with unknown
variables to obtain results, and this remains the biggest trap in the
field [23]. Given these accepted fallacies, there are a few large-scale
detector experiments that have attempted to incorporate neural net-
works. Fermilab has a muon trigger built around a test beam in it’s
detector that applies low level pattern recognition techniques [4].
Fermilab also uses neural networks to analyse proton-anti-proton
collisions and measures top-quarks and lepto-quarks [4]. The Hera
accelerator has a prototype experiment that studies momentum
from colliding particles [45]. The Hera accelerator has a secondary
experiment called ZEUS that uses a form of feedforward network to
identify deeply inelastic neutral current events [1]. The CMS exper-
iment at the Large Hadron Collider (LHC) uses a neural network
based trigger to identify electrons from protons [18]. The transition
radiation detectors (TRD) at CERN use pattern recognition systems
to discriminate between electrons and hadrons whereby particles
are identified based on the electromagnetic radiation patterns pro-
duced [14].

1.3 Contribution
The goal of this study is to conduct a systematic assessment on
applications of neural networks in the field of particle physics. The

2



255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

A Comparative Review of Neural Networks for Neutrino Detection , ,

313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392

results of this assessment can determine if neural networks are
indeed a promising solution for further research of neutrinos.

In order to achieve this goal, a systematic collection of stud-
ies were gathered and finalised with the help of additional filters.
For each selected case study, the area of focus for the paper was
determined. Next, the problem space was identified and all pre-
processing and data preparation was noted. Special attention was
given to the architecture and training decisions. Relevant metrics
were noted and efforts were made to understand if the neural net-
work provided any advantage over existing methodologies.

At present, there are no comparative reviews that have assessed
the state-of-the-art for application of neural networks to neutrino
research (and by extension particle physics). With growing body
of research in particle physics and artificial intelligence, it is safe
to predict that there may be more researchers who would wish
to adapt neural networks to their own work. This study aims to
assist physicists lacking in-depth AI expertise to assess the work
that has already been done in their field and provide a reference
point. Results from this study could also be examined by artificial
intelligence experts to understand the gaps between what particle
physics needs and what neural networks can deliver, and work on
developing more streamlined solutions for the community.

The rest of the paper is organised as follows - study design
(Section 2) for this work is described through the combination
of research goal and research questions. Next, to answer these
research questions, a search strategy and criteria are determined
to find suitable papers. Data extraction procedure is then briefly
stated and the validity of this study is highlighted. Results (Section
3) from primary studies are organised by topics of particle physics
and discussed. These results are summarised (Section 4) and the
study is concluded (Section 5) by stating potential implications for
future work.

2 STUDY DESIGN
2.1 Research Goal
Preliminary search demonstrated insufficient applications of neu-
trino specific neural networks and thus, the scope of this study
extends to neural networks applied across all constituents of parti-
cle physics. The results are a valid extension to neutrinos as they
form a subset of particle physics [38].

This study aims to carry out a systematic review of the state-of-
the-art neural networks in the field of particle physics to identify
how they have been applied. The study aims to identify a set of
suitable candidates for the purpose of neutrino detection and high-
light the conditions under which they were deemed successful. The
overview of case studies in this paper can allow researchers to
decide if they can use existing methodologies, or further develop
them for their work. Additionally, computer scientists can use this
study to determine the shortcomings of the present algorithms and
architectures and develop new ones based on the requirements in
field.

2.2 Research Questions
The goal of this study is to examine and summarise relevant neural
networks that are in use in the field of particle physics. To assist with
the stated research goal, research questions were first formulated.

RQ-I What are the types of neural networks that have been applied
in particle physics?

RQ-I.I What kind of analysis has being conducted using these
neural networks in particle physics?

RQ-I.II Are there any neural networks that have been used to
specifically detect neutrinos?

RQ-II Has application of neural networks resulted in improved
metrics over previous research methodologies?

RQ-I is the first step of the research - to identify the various
architectures that have already been put to use, and forms the basis
of this study. These architectures will be examined in detail in this
study to understand the conditions of their setup and if they can
be replicated. RQ-I.I notes if any specific kinds of particle analysis
are more popular and work well with neural networks. Alternately,
there could also be certain analysis that could be deemed unsuitable
for neural networks. RQ-I.II specifically understands if neutrinos
are currently being researched using neural networks. RQ-II is
the quantitative aspect of the study where the study conclusively
tries to determine if neural networks have positively impacted
research. Positive improvements could be in the form of improved
or simplified research process at the least, with proof of lesser
research hours required to achieve the same results as traditional
methods. It could be in the form of faster processing of the same
data or ability to process larger amounts of data. Improvements in
the best case would be if new information was brought to light via
neural nets that could not have been discovered otherwise, leading
to breakthroughs.

2.3 Search Strategy and Criteria
Based on the defined research goal and research questions, a search
strategy was adopted (Table 2). As part of the search strategy, an
electronic search space was identified, along with a list of keywords
to effectively obtain all empirical studies. The list of main keywords
were identified as physics, neural network, particles. Based on this
list, several iterations were generated to include search strings and
additional keyword synonyms (Table 1).

To ensure quality research, only peer-reviewed journal publi-
cations and conference papers were chosen as part of the search
criterion [41]. Thus, all articles, newsletters, books, magazines and
demo papers were excluded. Since neural nets were first mentioned
in 1988, the search period was extended from 1988 till present date
[23].

2.4 Selection criteria
The study focuses particularly on the use of neural networks in the
branch of particle physics. To identify studies that could directly
meet this goal, an inclusion and exclusion criteria was developed
[31]. This is described in the Inclusion/Exclusion Criteria (I/E) be-
low.

I1 Studies focused on describing neural networks in the field
of particle physics. This criteria was used to exclusively
examine particle and matter study that used neural networks.

I2 Studies that involved pattern recognition, image reconstruc-
tion, event classification or physics process determination.
This criterion was utilised to improve relevance as iden-
tification of neutrinos and similar particles often involve

3



393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

, , Shruti Rao

451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530

Keywords physics, HEP, particle physics, neutrinos,
neutrino physics, neural networks
classification, deep neural networks,
artificial neural networks, prediction,
neural networks

Search String physics prediction and classification,
physics prediction or classification,
HEP and prediction,
HEP and classification,
HEP and artificial neural networks,
HEP and neural networks,
particle physics and artificial neural networks,
particle physics and neural networks,
neutrinos and artificial intelligence,
neutrinos and deep learning,
neutrinos or hep or particle physics
and deep learning or
neural networks or classification

Table 1: Search Keywords and Search Strings Used for Iden-
tification of Relevant Studies

Search Space ACM Digital Library, Google Scholar,
IEEE Xplorer, ScienceDirect

Publication Type Journals, Conferences
Language English
Publication Period 1988 - present

Table 2: Search Strategy Adopted for Identification of Pri-
mary Studies

reconstruction of paths, energy inferences, and classification
against background noise.

I3 Studies that provided quantitative evidence of model accu-
racy or performance. Studies without such metrics were
dismissed due to insufficient information.

I4 Studies that included description of network architecture.
As reporting the setup was an important part of this study,
only studies that included this information were retained.

E1 Studies that did not use neural networks as their primary
methodology but as an extension. This criteria was required
as this study focuses only on use of neural networks.

E2 Secondary or tertiary studies such as literature reviews or
surveys. This exclusion criterion was adopted in order to
exclude studies which did not report the desired level of
detail regarding implementation.

E3 Studies in the form of editorials and tutorial, short papers,
and poster. These were mostly for general information and
thus deemed to not provide the required level of detail.

E4 Studies that were not published in English language. Transla-
tion of non-English text would have made the analysis time
consuming and prone to misinterpretation.

E5 Studies that had not been peer reviewed. In order to ensure
that a certain industry standard was met, peer-reviewed
papers were considered as an indicator of such quality.

Field Description
Identifier [Unique ID for paper]
Title [Title of primary study]
Author [Author (s)]
Year [Year the study was published]
Abstract [Short summary of study]
Keywords [List of relevant keywords]
Search Scope [Specify if study is published as journal or

conference paper]
I/E Criterion [Check against all I/E criterion]
Included? [Study included if all inclusion criterion are

met and no exclusion criterion are met]
Theme [Specify the area of particle physics the study

is relevant for]
Table 3: Data Extraction Form Fields and Description of
Fields

Thirty three papers were identified using the search strategy
mentioned in 2.3 and were refined to fifteen papers after examining
against the Inclusion/Exclusion criteria specified under 2.4. These
fifteen studies formed the primary studies for this review.

2.5 Data Extraction
To extract and catalogue relevant information from identified pri-
mary studies, a data extraction sheet (Table 3) was used [30]. The
data extraction form was designed keeping in mind the need to
collect information such that the research questions could be ad-
dressed [31]. Apart from cataloguing the studies by authors, title
and abstract, all papers were cross-checked against the inclusion-
exclusion (I/E) criteria. The studies were marked to be included if
they met all inclusion criteria and none of the exclusion criteria.
Additional notes was made to asses if the studies had been pub-
lished as part of a journal or a conference. Finally, the themes of
particle physics that were covered by the studies were noted. This
was to ensure that applications across a variety of particles were
discussed at the very least.

Figure 1 shows that majority of the finalised primary studies
were all from Journals. The few papers that were submitted to
conferences were also submitted and published in Journals but are
indicated separately in Figure 1.

Figure 2 shows the years the primary studies were published
across. Majority of the chosen papers were all fairly recent work.
The earliest dated paper was from 1993 which is when neural net-
works were initially broached upon for interdisciplinary applica-
tions [38]. It seems that the application of these networks were
forgotten until 2014 whereby it picked up popularity once again.
Most work towards neural networks in particle physics occurred
in 2016 but then saw a gradual decline. This could be a possible
indication that interest in neural networks have tapered off in the
field once more. However, the papers included extend up to 2019,
indicating a relevant coverage.

It was considered important to note the areas of particle physics
that were covered by the primary studies. Figure 3 helps highlight
the potential topics that have already been addressed as a suitable
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Figure 1

Figure 2

Figure 3

candidate for neural networks. While most topics are directly re-
lated to the particles themselves, a study seems to have applied
neural networks as a control.

2.6 Study Validity
The ideal next step should have been to check for validity of chosen
studies with the help of an expert or the publishing authors. As
per Kitchenham (2007), data extraction should be performed inde-
pendently by two or more researchers. Reports from participating
researchers should then get compared and assessed. Uncertainties
about any primary sources should be investigated as part of sensi-
tivity analyses. Alternatively, a test-retest process could have been
used where an external researcher performed an extraction from
a random selection of primary studies to check for consistency.
However, this step of validity remains missing in this study [31].

3 RESULTS
Particle identification and categorisation is core in particle physics.
Common practice for characterising such particles include recon-
struction of clusters, tracks, jets, rings and showers associated with
particle interactions [10]. Traditional physics techniques while suc-
cessful have trouble with correctness in reconstruction of such
high level features. More so, the features used to characterise these
events are limited by what is already known to the physicists. These
factors combined limits the potential for discovering new informa-
tion [10]. It was noticed that most work applied neural networks to
topics of High Energy Particles (HEP), jet analysis, energy recon-
struction, physics trigger mechanism(control) and neutrinos. The
results from the primary study are presented here and grouped by
these aforementioned themes of particle physics they explored.

High Energy Particles (HEP)
Baldi et al. (2014) discussed the nature of discovering particles in
HEP whereby a small subspace of extremely high dimensional data
has to be isolated. The key challenges in the field arise due to the fact
that exotic particles are very rarely produced, exist for very short
periods of time and cannot be directly observed. The hypothesis for
a new particle gets tested on the subspace and the prediction gets
compared against the null hypothesis. Baldi et al. (2014) state that
the ratio of the sample likelihood functions for the two hypothesis
are the optimal distinguishing quantity. This ratio is known as the
relative likelihood. The authors found significant improvements
and advances in deep learning to be a strong argument for using
deep neural networks (DNN) for particle classification [12].

Baldi et al. (2014) set up benchmark cases for two kinds of particle
experiments. The first benchmark classification task was defined to
identify new Higgs Bosons (HIGGS). The authors obtained a set of
low and high level features. They noted the superior discriminating
power of the high level features. The second benchmark task aimed
to distinguish supersymmetric particles (SUSY). Due to the nature
of these particles, creating low and high level features were quite
challenging. The authors used multivariate analysis (TMVA) to
generate the baseline performance. To train their deep learning
model, Baldi et al. (2014) choose 2.6 million training samples and
100,000 validation samples. They used a five-layer neural network
with 300 hidden units per layer. For their parameters, they chose
a learning rate of 0.05 and a weight decay coefficient of 1 x 10-̂5.
They pre-trained their data using autoencoders. Separate classifiers
were trained for each type of feature set: low level, high level and
combined features, to note whether the neural network learnt the
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distinguishing features. This was done for both Higgs Boson and
SUSY data [12].

Baldi et al. (2014) reported the area under the curve (AUC) as
their primary metric as it could explain their best classifiaction
model. They also calculated discovery significance - a standard
metric in HEP. This metric indicates that small increases in AUC
represent significant enhancement in discovery significance. The
TMVA baseline classifier trained on the combination of high and
low level features showed the highest AUC scores of 0.81. In com-
parision, the DNN classifier resulted in a score of 0.88. The DNN
also scored higher than the TMVA across low and high level feature
sets, with an overall 8% improvement. A similar yet slightly less
significant performance improvement was noted with the SUSY
data [12].

Overall, Baldi et al. (2014) found that deep learning techniques
were able to discover insight from high level features. They were
able to find additional separation power, as demonstrated by the
superior performance of the DNNwith low-level features. The DNN
demonstrated its ability to select events near the same signal values
and also retain events away from the signal-dominated regions [12].
The paperwas thus able to effectively demonstrate the improvement
caused by DNNs over traditional TMVA scoring techniques. The
authors did not however discuss the problems in case of multiple
background noise sources. They also failed to address and provide
reasoning for their hyper parameter selection.

Particle physics experiments often involve long exploratory pro-
cesses of combing through high volumes of data in attempts to
identify and analyse relevant signals while attempting to uncover
new physics phenomenon. Racah et al (2016) discussed how relevant
information could be extracted from raw data into high level repre-
sentations using deep neural networks. They used data from the
Daya Bay Neutrino Experiment and demonstrated convolutional
deep neural networks (CNNS) as a classification filter. The Daya Bay
Experiment has been trying to detect and observe anti-neutrinos
produced by nearby nuclear power plants [9].

Racah et al. (2016) believed that since neural networks could
express complex data, deep learning in particular would be useful
for exploring high dimensional data in new light. They obtained
data pertaining to charge deposits in each of the photo-multiplier
tubes (PMTs) in the anti-neutrino detector. The authors attached
physics derived labels to identify five types of event classes such
that anti-neutrino events were separated from the rest. Since the
data was in the form of 2D images, the authors first used supervised
CNNs. Equal representation of the types of classes were maintained
and each value in the 8x24 image was log transformed. This was
done since a specific muon class had significantly higher values
than the rest, skewing the overall data. The supervised CNN was
initialised with convolutional layer alternated with a pooling layer
and finally two fully connected layers. Altogether, the network
had six layers. tanh, max and softmax were used as activation
functions respectively. The network was trained on 45,000 examples
using stochastic gradient descent (SGD) as an optimiser. 15,000 test
samples were then trained and t-SNE was used to visualise the
features. The accuracy scores across the five types of classes were
consistently high (89.1% 97.4% 99.7% 95.1 % 92.8%) and CNN scored
highest when compared with k-Nearest Neighbours (kNN) and
Support Vector Machines (SVM) [36].

For unsupervised learning, Racah et al. (2016) used an autoen-
coder with transposed convolutional layers. Here, the encoding
segments comprised of convolutional and max-pooling layers, fully
connected hidden layers and finally de-convolutional layers. Sum
of squared error was used as the loss function and the network was
trained using gradient descent with a learning rate of 0.0005 and
momentum coefficient of 0.9. The network was trained on 31,700
examples and tested on 7,900 samples. t-SNE visualisations were
used to interpret the effectiveness of unsupervised learning. The
authors remarked on the well-defined clusters that represented
the individual classes without having used any physics knowledge.
The authors also compared several event images with the ones
reconstructed by the autoencoders. Overall, they noted that the
auto-encoder was able to filter out input noise and reconstruct the
shape for different events [36].

Authors Racah et al (2016) applied CNNs to identify different
classes of events including anti-neutrinos from images captured by
the Daya detector. They additionally attempted unsupervised learn-
ing and noted the effectiveness of the algorithm that worked even
without physics knowledge. Unsupervised learning for clustering
could be a potential application as highlighted by the authors. They
could further the autoencoder approach by attempting alternative
filters and especially feed higher volumes of data. The authors do
not discuss image resolution used but, they could test the effec-
tiveness of unsupervised learning with variable image resolution
as well. If unsupervised networks could be further strengthened,
then pipelines could incorporate them as it reduces the need for
complex, handcrafted features.

Physics Control
Experiments in particle physics is predominantly accelerator based
with a number of complex, non linear, interacting systems, long cy-
cles and very small tolerance to parameter changes [38]. Traditional
physics control techniques are increasingly becoming inadequate in
managing such systems. Edelen et al. (2016) found neural networks
to be the next generation of controls. Edelen et al. (2016) found that
neural networks (NNs) were a superior tool for modelling, control-
ling and analysing complex, evolving systems. They describes a use
case at the Fermilab Accelerator Science and Technology Facility
(FAST) that they believed to be a suitable use case for application of
neural network based controls. The authors identified the regula-
tion of the resonant frequency of the electronic gun at FAST. They
stated several challenges associated with the given system - specifi-
cally the cavity temperature. Traditional regulation controls failed
to perform under long periods of dynamic conditions. Further the
controls required manual adjustment to deal with the dynamically
changing conditions, thus reducing efficiency [26].

As the problem was unconstrained and non linear, Edelen et al.
(2016) used Broydon-Fletcher-Goldfarb-Shanno (BFGS) algorithm
optimization to generate weights and biases. A feedforward archi-
tecture with delays were used with two hidden layers and 20 hidden
nodes per layer. A hyperboilc tangent sigmoidal activation function
was used and results were noted. The aim of the NN was to act
as a controller that would regulate the RF gun. For this, the mean
absolute error (MAE) and maximum errors were calculated. The
NN showed a very tolerable, low MAE of 0.018 and the maximum
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error of 1.049. Edelen et al. (2016) found the value setting time to
be five times faster than the traditional method [26].

Overall, Edelen et al.(2016) were able to find significant success
in implementing the feedforward NN as a experiment control with
no manual human involvement. They were able to improve control
time over the system by demonstrating shorter parameter setting
time. The work could be validated further by using additional train-
ing data. As there was no mention of the size and shape of training
and test data, it was hard to determine transferability of the results.
The network could be updated to use reinforcement learning as a
means to tune the intuition of the NN. By using the NN as a control,
this study demonstrated the flexibility of NN applications outside
of it’s typical use cases.

Jet Analysis
Pattern recognition is also crucial for jet analysis where a narrow
beam of sub-atomic particles known as hadrons are produced as
a result of high energy collisions [39]. But the identification and
estimation of energy produced by such jets pose a challenge due to
large background noise of low energy hadrons that get produced
alongside rare jets. Dong and Gyulassy (1993) state that while con-
ventional analysis techniques worked for proton-proton (pp) colli-
sions, they failed for proton-nucleus (pA) collisions as a result of
higher nuclear background. To address this, the authors studied the
application of feed-forward neural networks for jet analysis. They
demonstrated in their paper that a high-pass linear neural filter
could be trained to allow for a bias-free estimator of jet energy. The
high-pass linear neural filter additionally remained "nearly" bias
free even in case of pA collisions with high nuclear background.
They extended their study and showed that they could recover the
underlying primitive jet distribution with a high degree of accu-
racy. Finally, their methodology also provided for a quantitative
estimate of average energy loss - a significant metric, sought after
by physicists [24].

Dong and Gyulassy (1993) described their architecture to have
a simple high pass filter in the first layer of their neural network
based on a threshold. Their second layer performed a sort on the
remaining values and the final third layer estimated the jet energy.
For their analysis however, they assumed physics threshold values
to be fixed while study dictates that they should be variable to
optimise results [43]. Monte Carlo event generators were used to
produce a training sample. To achieve the physics goal of recover-
ing the primitive jet distribution from the distorted results of the
neural network, the authors deconvoluted the filtered out jet values
in the second layer. They however found that deconvolution led
to propagation of the error, which increased with increase in jet
energy. They proposed settling for the error since it was very small.
The final constrained deconvolution errors were 1% to 7% and the
response remained within 10% of the desired value even under high
nuclear background. This was previously impossible to note with
the traditional analysis techniques [24].

The authors were able to quantitatively demonstrate the ability
of neural networks to perform jet analysis even with large nuclear
background which traditional techniques failed to do so far. They
were able to attain new physics information by deconvoluting the
network to gather primordial jet distribution. This approach could
pave way for origins of such particles. The study does fall short in

terms of realistic data for training, which Monte Carlo simulations
do not provide. The study used fixed threshold values that would
ideally be variable with the training and finally, the study acknowl-
edged the loss of information leading to deconvolution errors as a
result of the measurement process.

Top-quarks are the heaviest of all observed elementary particles
that were discovered and are still being researched at CERN [37].
Scientists are looking for ways by which a trigger mechanism or
a control can tag jets that originated from top-quarks. Pearkes et
al. (2017) presented a methodology for discriminating top-quark
originated jets (signal) from all other flavours (background). They
believed that CNNs might not be the ideal network for tagging
top-quarks. This was because the images that capture such energy
deposits had no identifiable features such as corners or edges that
might aid in the learning process. It was determined that lack of
identifiable features combined with sparse images would not result
in the best performance from CNNs [35].

The authors cited domain knowledge as the main driving force
behind all pre-processing. Vectors representing the constituents
of the jets were generated. As part of data preprocessing, these
vectors were scaled, rotated, flipped and finally ordered. Monte
Carlo simulations were used by the authors to generate 3.75 million
top-quark jets and and equal number of background noise. The
dataset was split such that 80% was used for training the network.
10% of the remaining data was used for validation and another 10%
for testing. For the (DNN), an input layer comprising of individual
jet constituents was initialised. This was followed by 4 hidden layers
and an output layer that presented a binary prediction. RELU was
used as the activation function for the hidden layers and the sigmoid
function was used for the output layer. An adaptive learning rate
optimiser - Adam was used for training to handle sparse gradients
and noise [35].

Receiver operating characteristic (ROC) curves were used to
assess the ability of the DNN to reject background. ROC curve
showed background rejection of 45 at 50% efficiency operating
point. Background rejection was 65 for the top-quark at the same
efficiency. Area under the curve (AUC) reported 0.934 and 0.946 for
background and top-quark respectively [35].

This study proved an interesting approach as the typical method-
ology of using images for particle tagging was rejected for a feed-
forward neural network. The reported scores indicated that the
network was able to distinguish between these two classes to a
very high degree. The distinguishing aspect of this study was that
information loss was at a minimum, since data was not converted
to images. The authors did not compare obtained results against
a benchmark. This prevents the ability to fairly judge if the DNN
played a relevant role in the experiment. As the authors expressed
a wish to maintain sequence processing, further work on this topic
could be continued with Recurrent Neural Networks and Long
Short Term Memory (LSTM) units [40].

Standard Model (SM) of physics describes known elements and
their interactions with environment and with each other. However,
there are particles that are beyond the Standard Model (BSM) and
hence remain largely unexplained. Long lived particles (LLP) are
one such type of particles from the BSM model that are being
examined at the Large Hadron Collider (LHC) [28]. Calorimeters
are part of experiments that try to determine the energy displaced
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by such particles from jets. In their study, Bhattacherjee et al. (2019)
converted data captured by calorimeters to images. In these images,
energy deposits tracked by the calorimeters were represented as 2D
image intensities. The authors then trained a CNN to distinguish
between LLPs and non-LLPs using 28x28 images of energy deposits.
Non-displaced energy events were considered background noise
and the displaced energy events were considered as LLP events. As
such, four classes for each level of displacement were established.
The networkwas adjusted to have two convolutional layers and non-
linearity was introduced via RELU. L2 regularisation was applied to
weights and the outputs were batch normalised. Each output layer
was followed by a max-pooled layer that reduced the dimension
of the image by half. Next, the output was flattened and passed
through the softmax function. Adam was used as an optimiser
with a learning rate of 0.001. The network was trained on 60,000
images and validated and tested on 20,000 images respectively. A
ROC curve was used to assess signal efficiency against background
rejection.

For a signal efficiency of 60%, they noted background rejection
of 81.70%, 91.06%, 96.39% and 99.6% for four levels of displacement.
The performance of the network was extremely high for the higher
displacement cases. The authors Bhattacherjee et al. (2019) found
these results to be significantly better than existing physics results
averaging around 68% across the four levels. They concluded that
the CNN was able to learn energy displacement features from im-
ages and was able to discriminate between the background noise
and LLPs [15] .

The study conducted by the authors has been the first of it’s
kind whereby energy was represented via image properties. The
network achieved spectacular results on the generated images. It
would be imperative to know how the model performs on real
world data. The authors additionally do not describe any image
pre-processing so it must be assumed that there was none, or based
on physics reasoning. It would also be interesting to examine how
the model performance changed based on the resolution of images.
Moreover, it would be important to note that as spatial energy data
was compressed into 2D images, there would have been been loss
of information, which was not addressed in the study.

Particle physics experiments have several use cases of Field Pro-
grammable Gate Array (FGPA) based triggers and data acquisition
systems because of the need for very low latency requirements
by the detectors. Duarte et al. (2018) presented a case for neural
networks in FGPA hardware. Such hardware is characterised by
low power and low latency. The authors addressed the inference of
DNNs for classification of jet substructures with FGPA hardware
as either a quark, a gluon, a W or a Z boson or a top-quark jet.
With current trigger strategies, these substructures are almost irre-
trievable amidst the background noise. The authors trained a fully
connected DNN with three hidden layers. ReLU was used as the
activation function for the hidden layers and softmax for the output
layer. Adam was used to minimise the categorical cross-entropy
loss function.

The neural network was able to classify top-quarks the best with
82% accuracy. It successfully classified quarks, gluons, w and Z
bosons with 73%, 76%, 74% and 71% accuracy respectively. Duarte
et al. (2018) further adapted this neural network to work on FGPA
hardware. To meet the constraints of the hardware, a compressed

three layer neural network was recreated and made efficient. First
the model was compressed via iterative parameter pruning and
retraining with L1 regularisation. This led to 70% of the parameters
being pruned. Next, the model was quantized by reducing precision
and pre-calculating non-trivial functions. The final compressed
three layer model was run using FGPA hardware. It achieved a
latency of 70 to 150 nanoseconds and a clock frequency of 200 MHz.
These results lay well within the industry standard latency range
of 1 microsecond [25].

The study by Duarte et al. (2018) presented a very promising
and interesting use case of neural network for classification of jet
substructures. The authors were able to achieve accuracy upto 82%.
They furthered their application by adopting the DNN to FGPA
hardware. They were able to run a compressed version of the same
network with latency results well below the required standards.
The paper does not discuss the use of more sophisticated neural
networks such as recurrent neural networks and Long Short Term
Memory (LSTM) units and how these could be adapted for FGPA. As
the jet processes are often time derived, LSTM would be beneficial
for analysis and importing it to the FGPA hardware might be a
challenge.

Energy Reconstruction
Bai et al. (2016) propagated the use of a Bayesian neural network
(BNN) to detect primary energies from interaction between cosmic
rays and atmosphere. Extended Air Shower (EAS) arrays allow for
observation of primary energy of a shower by evaluating the lateral
density of shower particles and noting it’s distance from the core.
The authors Bai et al. (2016) used BNNs to estimate energy in EAS
array experiments. As it was a non-linear function that they argued
that BNNs could provide better control over model complexity.
For their experiment, a toy detector array was designed and 3000
cosmic showers were simulated using SYBILL - a physics based
event generator. The authors presented the energy reconstructions
using a BNN with a single hidden layer and a linear fitting model
(LFM) that served as a physics baseline. BNNwas able to reconstruct
energy with 28.2% higher accuracy than the LFM at a lower levels of
cosmic rays. The BNN was able to improve energy reconstruction
at the rate of 43.0% over the linear model at extremely high levels
of cosmic rays [11].

The study was able to successfully implement a neural network
based alternative with significant improvements in results over the
baseline analysis. However, the baseline technique was modelled on
a linear relationship. It would be interesting to compare a baseline
non-linear function with the non-linear BNN for a fairer, equivalent
comparison.

Neutrinos
Szadkowski et al. (2014) proposed extending neural networks (NNs)
to study air showers that resulted from neutrinos interacting with
the Earth’s atmosphere (down-going) or crust (Earth-skimming)
on behalf of the Pierre Auger observatory. Amidst background
noise of cosmic rays, detecting the very infrequently occurring
neutrino showers has been the main challenge for the observatory.
All types of neutrino showers were categorised into two event
groups based on their electromagnetic properties - young showers
and old showers. Szadkowski et al. (2014) stated the inability of the
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Pierre Auger trigger to detect young neutrino showers thus far and
hypothesised it being due to the fact that the current triggers were
not sufficiently sensitive [43].

The authors Szadkowski et al. (2014) first presented a trigger
based on Discrete Cosine Transform (DCT) that could perform
pattern recognition to identify traces corresponding to the old
showers associated with both down-going and Earth-skimming
[42] events. DCT is a technique that is used to separate an image
into sub-parts or bands where each band has differing importance
with respect to the image quality [6]. Thus, it can transform image
from spatial or time domain to frequency domain. The DCT trigger
was able to detect all old showers based on sample test data [43].

The authors next proposed a NN for for the harder to detect
young showers. They proposed use of the Levenberg-Marquardt
algorithm for backpropagation. The Levenberg-Marquardt algo-
rithm or the Damped Least Squares (DLS) is encouraged when
sums of squares of non linear functions need to be minimised [33].
Computationally, the Levenberg-Marquardt was designed to allow
the computation to increase speed without having to compute a
Hessian matrix [33]. The NN with the Levenberg-Marquardt back-
propogation algorithm was set up to identify both young and old
showers using simulated Monte Carlo events. A three layer NN
with hyperbolic sigmoid transfer function (tansig) was trained on
245,760 different patterns grouped as 160 events. The authors pre-
sented extremely promising results. Noise was perfectly rejected
and the NN was able to to identify 161 patters out of the 160, with
one false-positive. Thus on simulated data, the authors showed the
ability of the NN to detect young showers with a very low error
rates that the Auger observatory was unable to detect [43].

While Szadkowski et al. (2014) presented the first known imple-
mentation of NNs on neutrino data, the paper faced a few short-
comings. First, the authors did not rationalise their choice of hyper-
parameters and the reason for using a three layer network. Further,
the authors only talked about error rates but did not discuss a few
other metrics that could allow the user to assess the performance
of the NN.

Liquid Argon time-projection chambers (LArTPCs) are a kind of
particle detectors that produce high resolution images of particle
interactions. Acciarri et al. (2016) examined deep convolutional
neural networks to reconstruct neutrino scattering interactions in
LArTPCs. For this, neutrino scatterings within captured images
had to be first identified and then classified, which justified the
use of CNNs. They explored the use of CNNs for detector images
that were very information sparse and contained lines from particle
paths that were far apart from each other. Thus, resulting images
were often empty. Acciarri et al. (2016) investigated the ability of
CNNs to classify images of single particles located in various parts
of the detector. They found that CNNs could detect these particles
to varying degrees and represent them using bounding boxes [3].

22,000 events per type of particle were used for training the
CNN in batches. Both high (576 by 576 pixels) and low resolution
images (288 by 288 pixels) were provided as separate demonstra-
tions to mimic realistic scenarios. The authors suggested choosing
batch size based on network size and GPU limitations. AlexNet
was trained for particle classification and loss was minimised us-
ing stochastic gradient descent (SGD). Next, for particle detection,

Faster-RCNN was trained to localise objects within images. Faster-
RCNN was provided with training images and equivalent truth
labels and ground truth bounding box. Faster-RCNN returned N
classification predictions and a minimum bounding box area. The
Faster-RCNN segment of the network was combined with AlexNet
after it’s fifth convolutional layer. This allowed for combined local-
isation and particle classification on images [3].

The results very quite promising as the authors noted R-CNN
combined AlexNet’s ability to distinguish track-like particles from
shower particles very well. For high resolution images, track-like
particles had 87.2% accuracy and 81.3% accuracy for shower-like
particles. For low resolution images, the score was understand-
able lower with 85.8% accuracy for track-like images and 77.3% for
shower-like images [3].

Based on the accuracy scores, it can be concluded that there
was reasonable localisation of both shower and track particles for
high and low resolution images. It would be imperative to note that
shower-like particles had the highest likelihood of being wrongly
classified for both high and low resolution images. Based on the
setup, the customised architecture might not generalise well outside
of the simulated environment that was set up by the authors. But
the key point was that the authors were able to demonstrate the
effectiveness of CNNs even with sparse images.

Neutrino event classification experiments at the LArTPC cham-
bers also involve tagging and identification of on-beam event im-
ages for a neutrino interaction. Authors Acciarri et al. (2016) devel-
oped a methodology that identified neutrino interactions on single
plane images and cropped them around the interaction region. They
then applied the network they described in their previous work to
classify particles in the cropped images [2, 3].

For training, Acciarri et al. (2016) generated Monte Carlo images
where an equal number of neutrino events were overlaid with cos-
mic background images from off-beam events. A total of 101,191
images were thus generated for training (and 32,220 images were
used for validation). Two classes were defined for the classifica-
tion task - Monte Carlo neutrino events and purely cosmic events.
InceptionResNet, composed of three different modules was used
for the task. Since detector images tend to be larger and of higher
resolution, the modules per block were reduced to allow for it to
meet memory constraints. FasterRCNN and AlexNet were once
again used as in their previous study to train for neutrino parti-
cle detection [3]. As part of data preparation, random cropping of
images were performed for each time the image was given to the
network. The authors reported an 80% accuracy score during train-
ing but faced certain amount of over-training indicated from lower
validation scores (78%). The authors deemed this acceptable due to
the large number of parameters. Next for detection training, Faster-
RCNN and AlexNet were once again trained but with modifications
to allow the output to be two classes - neutrino or background. The
authors re-initialised the last fully connected layer with Gaussian
weights instead of recycling weights used at the classification state.
They justified that this allowed for detection-specific layers to learn
both bounding-box regression and classification. Performance was
stated as very positive with 80.1% selection efficiency for neutrino
events. They believed that this efficiency would improve if all three
planes were used instead of just one plane (as in this study) [3].
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Authors Acciarri et al. (2017) continued on the study from [2] by
extending their work from single-plane images to three-planes and
combining it with optical detector data [21]. While maintaining the
same strategy of using simulated neutrino images and cosmic im-
ages (as background), the input images were left at 768 by 768 pixels
and 12 channels as the third dimension. This resulted in a large
amount of data. A new truncated network based on ResNet was
designed where the network repeatedly used residual convolutional
modules for faster training. The authors discussed the compromise
of having fewer layers learning fewer filters but preserving resolu-
tion, allowing for exposure to detailed features. The three planes
were passed individually through thee convolutional layers and
pooling layers to reduce the size of the feature map. In addition to
the images, the authors provided three supporting images for each
plane as additional information. Distribution of neutrino classifica-
tion scores showed a very good separation between the two types
of events. The selection efficiency improved to 85% (from 80.1%
with one plane images) [21].

Authors Authors Acciarri et al. (2016, 2017) [2] [3] [21] showed
promising demonstrations of particle classification, particle and
neutrino detection and neutrino event identification, all using forms
of CNNs. However, it is unknown if these metrics can be maintained
for real world data. It is also unclear if similar high results can be
obtained by generalising these models to data from other particle
detectors. Biases in network learning might be possible due to the
use of simulated images. The authors however made good use of
several combined architectures and provided a good starting point
for neutrino research for events in LArTPC. They also developed
an architecture that could be potentially included as part of the
detector pipeline.

Adams et al. (2018) continued on the work of Acciari et al. (2016,
2017) by developing a convolutional neural network that could
predict objects in image data at the pixel level [22]. They also built
their model using data captured by LArTPC and demonstrated that
electromagnetic particles (EM) could be discriminated from others
at the pixel level using CNNs [22].

Adams et al. (2018) trained U-ResNet, a deep semantic segmen-
tation network via supervised learning. First they used transfer
learning techniques by training the first half of the network on the
dataset from a previous work that contained single particle images
[3]. Then they developed a new loss factor called pixel-wise loss
(PL) weighing factor. This factor was multiplied by a single pixel’s
loss contribution to the total loss of an image. Thus, challenging sec-
tions of the image obtained higher weighted pixel loss, enabling the
network to focus it’s training on those regions. Following the loss
weighting procedure, RMSProp was used to optimise U-ResNet and
the process was monitored using the Incorrectly Classified Pixel
Fraction (ICPF) metric. The ICPF mean scored indicates the average
value of incorrectly classified pixel per image over all images on
all events in a sample [46]. The network was trained on 100,000
images and then tested on 20,000 images. U-ResNet achieved an
average ICPF of 6.0 for electron neutrinos and 3.9 for muon neu-
trinos. They noted that U-ResNet could classify pixels from low
energy and simple topologies fairly well with mean ICPF scores
of 2.3 and 3.9 respectively. The low mean ICPF scores once again
demonstrated the ability of CNNs to work with neutrino particles
at an even deeper, pixel level. The authors additionally obtained

real detector data called Michel electron data and compared the
results of their network with those obtained by physicists. They
found that the physicists had a lower mean ICPF score of 1.8 for
the electron samples while the network scored a mean ICPF of 2.6
[22].

The physicists had better results when compared to the network
and the authors believed this to be because the network focused on
physics features in the image. They believed that addition of spe-
cialised, handcrafted features driven by physics knowledge might
resolve the differences. Despite this, the study should be consid-
ered informative since the network did not have significantly poor
performance, whilst exploring a new methodology for training.
The authors were convinced that once the gap between the two
metrics was closed, their NNs would be a suitable candidate for the
detector’s data reconstruction pipeline.

IceCube is a neutrino observatory at the South Pole that solely
searches for high energy neutrino events [20]. It observes two
classes of such events - neutrino interactions within the detector
and high energy cosmic interactions in the upper atmosphere [20].
The detectors are physically arranged in an irregular shape and
faces sparse signals [19].

Choma et al.(2018) in their study on data from IceCube proposed
that the irregular geometry of the detectors can be modelled as
a graph with vertices as sensors and edges as learned functions
if the sensors spatial coordinates. They stated a large asymmetry
between positive and negative events as the main challenge. The
authors proposed the use of Graphical Neural Networks (GNNs) for
this work. GNNs were further deemed suitable since the IceCube
detector array is hexagonal and irregular eliminating the assump-
tion of stationarity. GNNs do not require such an assumption. The
authors generated two Monte Carlo datasets to represent signal
and background data. They considered muon neutrinos as positive
signals and the rest as negative background. As the background
was much larger in terms of magnitude than the signal, a high
rejection power was required. The GNN was initialised as a fixed,
weighted, directed graph. Output features of the last convolutional
layer were pooled and passed through the sigmoid function. 25,250
events were generated as signal and 109,491 events were generated
as background with 50% being used for training from both datasets
and 25% and 25% used for validation and testing. The performance
of the classification was noted against physics results and CNN
scores were used as baseline [19].

As per Choma et al. (2018), physics-derivedmetrics reported 0.987
signal to noise ratio for events per year and CNN reported 0.937
signal to noise ratio. The GNNs showed clearly superior results
by reporting 2.980 signal to noise ratio for events per year. The
GNN outperformed physics metrics by identifying three times more
signal (positive) events [19].

NOvA experiment aims to make precise measurements of neu-
trino oscillation parameters [34]. This requires reconstruction of
neutrino energy and flavour. Aurisano et al (2016) developed a tech-
nique called Convolutional Visual Network (CVN) based on CNNs
to achieve such goals. It was inspired by GoogLeNet architecture
that uses network-in-network (NIN) methodology to reduce dimen-
sionality and modify the learning capacity of convolutional layers.
The authors differed from GoogLeNet in that they had two distinct
views of the same image, rather than representing the single image
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in multiple colour channels. They also cut short the GoogLeNet net-
work after three inception modules on account of having simpler
images. Output from the final module was down-sampled using an
average pooling layer and classifier outputs were calculated using
softmax or exponential function during forward pass. The network
was trained using mini-batches on 3.7 million simulated neutrino
events and tested on 1 million samples [10].

The authors Aurisano et al. (2019) noted that they were able to ob-
tain optimal convergence by dropping the step size of SGD at fixed
intervals. Additional regularisation techniques were maintained
such as adding penalty terms to back-propagation calculations. To
measure the CVN’s performance, it was first compared against
existing metrics. Measurement-optimised efficiency scores were
obtained from existing physics metrics and compared against that
of the CVN. CVN scored an efficiency of 58% versus the existing
57% efficiency for muon neutrino interactions. The authors felt
that while the improvement was modest, it was still in the positive
direction. CVN however scored 40% efficiency over the pre-existing
metric of 35% for electron neutrinos. Additionally, the authors com-
puted a Figure of Merit (FOM) to assess the performance of signal
identification over background noise for oscillation parameters.
Overall, the CVN obtained a range of efficiency scores from 17.4%
at the lowest to 66.4% at the highest for various parameters. The
authors found the results quite promising since they performed
minimal event reconstruction and found positive performance with
a single algorithm [10].

Moreover, the CVN developed was used on atypical images,
specifically the readout of a calorimeter. This study therefore opens
up the possibility of using a different medium of data which might
be applicable to other detectors as well.

4 DISCUSSION
The studies reviewed thus far have all showed the nature of work
in particle physics and the ways in which neural networks could
be used to fill the gaps. Most analysis aimed at discovering new
particles involves distinguishing between signal and background
noise. With limited data and expensive infrastructure required to
study such particles, improvements to these physical tools are quite
constrained. This opens up other avenues for improvement - neural
networks [10]. The studies explored thus far all agreed with this
sentiment and applied neural networks to data from various particle
detectors to answer different questions. Table 4 summarises the
results by showing the attempted discovery and neural network
used for the study.

The neural networks trained were all more or less straightfor-
ward and involved feedforward networks and convolutional neural
networks with variations in hyperparameters and layers [12, 26, 43].
Often, studies converted data to images and applied CNNs. The
images passed on to the CNNs all shared similar characteristics of
being very large, very sparse and of high quality. However, stud-
ies often times left out justification for choosing hyperparameter
values [12, 43]. Knowing their reasoning would be useful to assess
soundness of the values and thus fully understand the results. Aside
from CNNs and feedforward networks, a study on cosmic rays used
Bayesian Neural Network to estimate energies from cosmic air
showers [11]. Some studies combined a few architectures such as

Reference Discovery Type of NN
Baldi et al. Higgs Bosons & Feedforward NN
(2014) supersymmetric particle (5 layer)
Szadkowski et al. Young and old Feedforward NN
(2014) Neutrino Showers (3 layer)
Edelen et al. Resonant Frequency Feedforward NN
(2016) Gun Control (2 layer)
Dong & Gyulassy Jet Energy & Deconvolutional
(1993) Primordial distribution CNN
Pearkes et al. Top-quarks in Jets Feed Forward NN
(2017) (4 layers)
Bhattacherjee et al. Long Lived Particle CNN
(2019) Jet Energy
Duarte et al. Jet Subsctructures Feedforward NN
(2018) (3 layer)
Bai et al. Cosmic ray Bayesian NN
(2016) energy reconstruction
Acciarri et al. Neutrino particle RCNN + AlexNet
(2016)
Acciarri et al. single plane FasterRCNN &
(2016) Neutrino particle AlexNet
Acciarri et al. On-beam ResNet
(2017) Neutrino particle
Adams et al. Pixel level U-ResNet
(2018) neutrino flavours
Choma et al. Neutrino flavours Graphical NN
(2018)
Racah et al. Anti-neutrino CNN &
(2016) particles Autoencoder
Aurisano et al. Neutrino flavours Convolutional
(2016) Visual Network

Table 4: Summary of Results

FasterRCNN with AlexNet, to create an informal pipeline that per-
formed a set of relevant tasks [2, 3]. One study in particular chose
to use Graphical Neural Networks (GNNs) instead of CNNs based
on the shape of the initial dataset [19]. With this in mind, the study
reported higher scores over CNNs and existing physics metrics that
were run on the same dataset [19]. A study on anti-neutrino parti-
cle identification additionally used unsupervised learning with the
help of a convolutional autoencoder [36]. This revealed that unsu-
pervised learning was a suitable candidate for particle classification
tasks. If unsupervised learning could be adopted more widely, the
overall experimentation process would be simplified with less need
to generate complex, handcrafted features. But additional research
would be required to assert this.

Most of the problems discussed involved identification of parti-
cles from background noise and then classification based on sub-
fields of particle physics. Under sub-atomic particle study, studies
used neural networks to classify Higgs Bosons and supersymmet-
ric particles from the background noise [12]. A few other studies
focused on jet analysis of sub-atomic particles from collisions. Such
analysis included measuring energy and tracing the particles pri-
mordial distribution [24]. A unique methodology was tested where
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energy displacement measurements by a calorimeter were repre-
sented as intensities on 2D images and passed onto CNNs [15].
Also under jet analysis, a neural network was trained to addition-
ally classify jet substructures on restrained hardware [25] Other
neutrino focused studies classified neutrino showers into young
and old showers [43]. A study at the Fermilab Accelerator success-
fully used neural networks to control a physical equipment at the
accelerator which presented an alternate and unique use case for
neural networks [26]. Another study accounted for the nature of
hardware prevalent in the detectors and presented a network that
was specifically adapted to run on them [25]. Notably the first of
its kind, the study set a precedent for future work that attempts to
improve networks being run on such hardware. The remainder of
the studies focused on working with neutrino data. Several studies
used experiment data from Liquid Argon Time Projection Cham-
bers (LArTPC) to identify particles in images (localisation) and
then classify them to various degrees [2, 3]. These studies addition-
ally compared results between high and low resolution images to
provide a comprehensive analysis. Other neutrino studies focused
on separating neutrino interactions from cosmic interactions [19].
Neutrino oscillation parameters and anti-neutrino particle detec-
tion were also examined with data from various detectors [10, 36].
Additionally, for the work on neutrino oscillation parameters, the
authors trained their network to read from instrument readouts
rather than particle or space images [10]. This also has added po-
tential for expanding the scope of what CNNs can be trained on.

In several cases such as jet analysis, where data was time sensi-
tive, network architecture could be extended to include Long Short
Term Memory (LSTM) units, for more intuitive learning [24, 25].

Different applications call for different representations of the
metrics. For example, some general classification related metrics
include reporting on accuracy, precision, recall, F1-scores, ROC and
AUC [32]. Due to the varied nature of the datasets and questions
being answered, a varied number of metrics got reported. This made
it challenging to compare the successes of studies with respect to
one another. There were very few studies that stated comparisons
of their networks against the standard physics results. Baldi et al.
(2014) pointed out an interesting metric - discovery significance in
their study [12]. This could be adopted by future studies assessing
neural networks for their field as it presents an interesting perspec-
tive of the potential for discovery. Often there was no reporting on
loss and the extent to which it was minimised by the study.

All of the studies did not leave much scope for being generalised
across other detectors and experiments based on the described
method. Moreover, the training data itself was more often simulated
or toy data thus leaving open questions regarding its extensibility
to real world data [2, 3, 21, 22]. Not many of these studies discussed
production value potential of being incorporated as part of the
larger detector system. Finally, there was no talk about implications
on hardware being used or the performance or training hours. It is
possible that these were considered insignificant as the population
that conducted these studies themselves used high performance
computing systems that is often available to such particle detectors
and based on the details outlined in the report, did not engaging in
online training or training with massive samples. This is something
that must be kept in mind by readers attempting to recreate some
of these experiments.

5 CONCLUSION
The nature of particle physics research is such that most of the
work is often exploratory and researchers usually do not know
what they should be looking out for. Particle detectors are often the
source for studying and collecting data. These instruments gather
exabytes of data that need to be carefully probed from all angles
to make new discoveries. While the state-of-art in instrument and
hardware has significantly improved, this has allowed for detailed
data capture. Traditional physics algorithms and controls are unable
to keep up with the burst of high quality, irregular data, making
new discoveries harder and enforcing more manual labour on the
researchers themselves. With this gap between inferior information
extraction techniques and superior information gathering systems,
researchers can look to artificial intelligence to fill the gap. While
neural networks have not been adopted as widely, there have been
some attempts to adopt them into research pipelines. This could
be credited to new advances in DNNs themselves such as having
the ability to train with multiple hidden layers, improved speedup
of stochastic gradient descent algorithms using graphics proces-
sors, new learning algorithms and introduction of methods such as
autoencoding.

The study set out to gather and summarise all the work that
has been done so far in the realm of particle physics using neural
networks. Doing so would serve as an overview of the state-of-the-
art in neural networks under this branch of physics and act as a
reference for those in the field wishing to adopt neural networks
themselves. Summaries of the methods undertaken, the problems
addressed and the results obtained could serve as a starting point
for others in particle physics wishing to adopt neural networks to
their own work but not necessarily having technical expertise in
the area of artificial intelligence.

A search strategy was adopted to identify thirty three studies
that were then filtered down to seventeen studies based on an In-
clusion/Exclusion criteria. Referring back to the research questions
that were identified in Section 2.2, it was seen that much of the
work in particle physics required classification of particles, separat-
ing signals from copious amounts of background noise or pattern
recognition and inferring secondary properties of particles (RQ-I.I ).
Convolutional neural networks (CNNs) were the most commonly
adopted networks for these tasks, followed by feedforward percep-
trons (RQ-I ). Often the resulting data were treated as images that
CNNs are known to work well with. However, the sparse nature
of these images were different from the typical images CNNs get
trained on. Studies showed an overall preference for using sim-
pler architectures with very few studies attempting to build more
customised pipelines. This could be attributed to the fact that the
researchers carrying out this study had a physics background. Over-
all, despite very few tweaks to the original structure, CNNs were
able to do the job of classification well. Feed-forward perceptrons
were noted to be the other popular choice, likely due to it’s simpler
set up. There was a varied use of metrics for diagnosis and per-
formance measurements for similar tasks across different studies.
Out of the studies that compared their results with existing physics
metrics or a certain baseline, it was seen that all neural networks
performed better (RQ-II ). The CVN developed by Aurisano et al.
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(2016) scored slightly below the available physics metric but the
decrease was considered insignificant [10].

Based on the successes of the described papers, this study can
conclusively state that CNNs would be an ideal starting point for
any similar exploratory work with particles and images as data.
However, some of the studies discussed converted data to images
in order to use CNNs. This indicates a potential for inefficiency and
loss of information. Additional networks and models need to be
explored to determine if they can be used for the data without any
intermediate conversion of data to images. The role of recurrent
or modular neural network architectures could be explored for ex-
ample. The nature of particle physics is such that often variables
and their relationships with each other are less understood. Thus,
caution should be used when employing such variables with neural
networks that have not had any prior adjustments. Further, caution
should be used when interpreting results and checks should be
in place to ensure that overfitting is minimised. Most of the train-
ing was performed with simulated data, rather than existing data
collected by detectors. It would be advised to use real world data
as much as possible. Experiments should also try to assess results
against current physics standards to quantitatively determine the
benefits of using neural networks. Finally, this study recommends
that future work also assess feasibility of adopting the networks into
a full development pipeline such that it can be truly incorporated
into the system and made an official part of ongoing research.

The study shows that there is certainly more in-depth work
required to understand how complex networks could be applied to
the field. Additional studies would be required to investigate data
preparation and pre-processing by itself. Work could be focused on
developing architectures that specialise on training with extremely
sparse images. With these gaps in place however, neural networks
at their current state have a very promising role in the future of
particle physics and by extension neutrino research.
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