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Abstract

Federated Learning(FL) is a decentralized learning approach that
trains machine learning models on multiple devices collaboratively un-
der the coordination of a server[l, 2]. It has been facing many chal-
lenges that are affecting the model performance, such as heterogeneous
data challenge, heavy communication cost and privacy issues. In this
paper, different FL algorithms are reviewed that highlight many exist-
ing FL problems along with various optimization techniques, aiming
to raise attention for further development of FL.

Index Terms: Machine Learning, Federated Learning, Non-IID Data, Data
Partitioning, Optimization, Privacy Preserving

1 Introduction

As IT is developed rapidly, Machine Learning (ML) has been extensively
used and shows effectiveness in various fields. However, to train a ML model
with excellent performance, it is required to have a large number of training
data while these datasets might contain sensitive information that are not
supposed to be revealed to the public (e.g. medical data). With increasing
concern of data security, Federated Learning (FL) has emerged recently to
enable privacy-preserving machine learning. However, with the decentralized
setting, the amount of data in each device might be insufficient. It is difficult
to train a robust model in FL with small amount of data, compared with
centralized training. Thus, The main goal of FL is to preserve data privacy
while maintaining good performance [3, 2, 1, 4, 5]. The general FL framework
consists of a central server and multiple clients. Each client holds a local



dataset that is not shared with other parties. The server has a global model
that is designed to train on the clients’ data. During the model training, the
global model is distributed by the server to each client to train a local model.
Then, the server aggregates all the model parameters and results from all
clients and updates the global model while the decentralized training process
repeats until convergence [1]. As data is not shared in the FL process, the
desired model can be trained without leaking any private information. Many
recent research works have adopted this FL framework and try to improve it
with better performance and enhanced security.

This literature study aims to explore the potential of FL and thus it
focuses on highlighting the current trends, the challenges facing FL, and the
potential of the FL. as an approach for privacy-preserving machine learning.
Thus, we propose the following research questions:

e RQ1: what are the current research trends for Federated Learning?
e RQ2: what are the challenges faced by Federated Learning?

e RQ3: what are the possible future research directions for Federated
Learning?

The methodology used in this paper includes selecting literature, defining
research questions, classifying literature into different categories, presenting
findings and summarizing the paper. To select literature, we used academia
tools such as Scopus and Google Scholar. As shown in the Appendix, 20
papers were selected based on the large number of citations, how recent they
were published and whether they were published by high-ranked journals
or conferences (e.g. IEEE Conference on Computer Communications, ACM
SIGSAC Conference on Computer and Communications Security, IEEE In-
ternet of Things Journal and etc.).

As FL uses data from different user devices, it is highly likely that the local
data in each client is not independent and identically distributed (non-1ID)
data. Because of the difficulty to train non-IID data, the non-IID data chal-
lenge becomes an important factor to study. Another interesting perspective
for FL research is data partitioning. Because of different data characteristics,
data samples can can be partitioned differently in clients. Based on the over-
lapping data samples (common users or common features) among clients, the
FL training process can be designed differently to keep good performance.
FL also has many other existing problems such as heavy communication cost,
slow convergence and low model accuracy. It has been a popular trend for
researchers to investigate different kinds of federated optimization techniques
and improve the FL process. Besides, as mentioned above, data privacy has



always been the primary concern in FL studies. Thus, we chose to review
these scientific publications based on how they tackle non-IID data, how they
partition data, their optimization techniques and methods used to preserve
data privacy.

We structure this paper into 4 sections. After Introduction, some gen-
eral concepts related to FL are introduced in Overview, including the defini-
tion of data partitioning, IID data and non-I1ID data, applications to machine
learning and privacy risks and security mechanisms. Different scientific pub-
lications are compared and discussed in details in Discussion. Lastly, the
summary of the paper is shown in Conclusion as well as the possible future
research directions for FL.

2 Overview

2.1 Federated Learning Algorithms and Data Parti-
tioning

Based on how data is distributed in each client, FL can be classified into three
categories, namely horizontal federated learning, vertical federated learning
and federated transfer learning [4, 5, 2|. In horizontal federated learning,
each client holds a local dataset with different users but same features, while
in vertical federated learning, each dataset can have many common users but
different features of the same users. Federated transfer learning is a hybrid
approach of horizontal federated learning and vertical federated learning that
typically deals with insufficient or unlabelled data where there is not much
overlap in users and features among different datasets [2, 5].

2.2 Applications of Federated Learning to Machine Learn-
ing Models

FL is widely applied to machine learning problems. Table 1 lists the applica-
tions of FL to various ML models to solve various problems. A ML model is
trained in the FL process for every client with the objective of minimizing the
averaging model training loss [5, 4]. Most of the published research works use
Neural Network(NN) models, such as convolutional neural network (CNN)
and long-short-term memory (LSTM) to demonstrate the effectiveness of
their FL algorithms with high learning accuracy for various ML problems.
The most widely used ML use case is image classification. Some other ML
use cases such as sentiment analysis and synthetic dataset generation, next



word prediction, speech recognition, document classification, financial prob-
lem classification and credit score prediction are also used to illustrate the
applicability of FL under different ML scenarios. Compared with NN mod-
els, linear models, including support vector machines (SVM) and logistic
regression, have less model complexity and easier to implement, though the
performance may not always be the best [5]. Thus, linear models are usually
used with certain optimizations in FL systems. Lastly, tree models, such as
the tree boosting algorithm, are also efficient machine learning models that
can be combined with FL framework.

Ref | Paper ML model ML Use case
[6] | McMahan, | CNN & LSTM | Image classification & Next
et al. word prediction

[7] | Chen et al. | CNN & LSTM | Handwritten digit image
recognition & Human activ-
ity recognition

[8] | Kang et al. | CNN Image classification

9] | Yang et al. | CNN Image steganalysis

[10] | Gao et al. | CNN Electroencephalography

(EEG) classification

[11] | Mills et al. | CNN Image classification

[12] | Xu et al. CNN Image classification

[13] | Li et al. LSTM & multi- | Image classification & Sen-
nomial logistic | timent analysis & Synthetic
regression Dataset generation

[14] | Dimitriadis | LSTM Speech recognition

et al.
[15] | Yu et al. SVM Cardiac image classification

[16] | Yang et al. | Parallel Dis- | Image classification & Doc-
tributed Logistic | ument classification

Regression
[17] | Cheng et | Gradient  Tree | Financial problem classifi-
al. Boosting algo- | cation & Credit score pre-
rithm diction

Table 1: Various ML models used in FL algorithms



2.3 Federated Learning and Non-IID Data Challenges

According to Ting et al. [4], IID data refers to independent and identically
distributed data. In a FL setting, the non-1ID data is often more challenging
to work with as training data. Non-IID means these datasets from different
clients are independently generated and often heterogeneous with different
distributions. With the statistical heterogeneity, Ting et al. pointed out
that the non-IID data in the FL training process could cause problems in
terms of the FL performance. Non-IID can also affect the predicted accu-
racy which could be largely dependent on the divergence of non-I1ID data. As
consequence researchers in this field proposed many state-of-art approaches
to deal with problems caused by non-IID data, such as reducing the commu-
nication overhead and speeding up the model convergence [6, 11, 7, 18] and
the details are discussed further in Chapter 3.

2.4 Privacy and Security

The main purpose of FL is to protect the sensitive data in each client from
being exposed. However, there exit many adversary attacks targeting ma-
chine learning models, the learning process or input data, leading to the
leakage of private information [5]. To enhance security and preserve user
privacy, many proposed FL systems adopted different privacy mechanisms.
For instance, differential privacy is a widely used security mechanism where
random noise is added to data or model (e.g. Gao et al. [10]). As for cryp-
tographic methods, the input and output messages are usually encrypted
during communication (e.g. Bonawitz et al. [19]). While the privacy mech-
anisms secures the data privacy, they might have side effects that limits the
performance of FL systems. Hence, recent novel FL systems have often seek
a trade-off between security and performance [5].The details of each security
mechanism and how it is applied in different FL algorithms are shown in
Chapter 3.

3 Discussion

3.1 Non-IID Data Challenges

With data heterogeneity, FL. model training can be problematic. In this sec-
tion, several FL algorithms that dealt with some performance issues with
non-I1D data are briefly introduced. Table 3 includes the optimization tech-
niques for non-1ID data. The corresponding FL algorithms are introduced in
the following, while the optimization details are described in later sections.



McMahan et al. [6] proposed Federated Averaging(FedAvg) algorithm
that showed robustness on unbalanced non-IID data. FedAvg uses an itera-
tive synchronous update process for the convergence of the global model. A
fixed set of clients are selected for each round to execute the global algorithm.
Then, clients compute model updates and exchange intermediate results with
server. Server averages the resulting model parameters and updates the
global model to send back to clients to continue the iterative process. The
algorithm was tested on both IID and non-ID datasets and the results proved
its effectiveness on non-1ID data. Besides, Mills et al. [11]improved FedAvg
and proposed a communication-efficient FedAvg (CE-FedAvg). CE-FedAvg
performed well in non-1ID data scenarios using robust optimization and com-
pression methods. It achieved less communication cost and less number of
communication rounds to reach the same test accuracy. Similarly, Chen et
al. [7] proposed another novel approach that focused on non-1ID data and
communication and computation optimization by using asynchronous learn-
ing and temporally weighted aggregation. Chen et al. partitioned datasets
to fit the non-IID data requirements and outperformed FedAvg with fewer
communication rounds given the same test accuracy. Karimireddy et al. [18§]
showed that FedAwvg had the disadvantages of unstable and slow convergence
when dealing with non-IID data. Because heterogeneous data has different
distributions, each client will have have different local optimum for their own
loss function, which is far away from the global optimum. Thus, it can cause
the problem of client drift where the average of the local updates is the aver-
age of the local optimums, which is different from the true global optimum.
To solve the problem, Karimireddy et al. proposed SCAFFOLD. It used
correction term to make the local gradient move towards the global optimum
after each client update. Thus, the algorithm had faster convergence for
heterogeneous data.

Unlike the previous FL algorithms that are based on FedAwvg, Smith et
al. proposed MOCHA [20] which combined FL algorithm with multi-task
learning (MLT) to extract relations among non-I1ID data. MOCHA takes
each client as a task and the weights updating is regarded as a dual problem
that is applied to the MLT framework such that every client can obtain a
model targeting their own local dataset for solving the non-1ID data problem.
Apart from it, there have been previous research works that were targeting
data heterogeneity of specific data, such as electroencephalography (EEG)
data. Gao et al. [10] proposed a heterogeneous FL algorithm for EEG data
classification specifically, aiming to preserve EEG data privacy and improve
classification accuracy.



3.2 Data Partitioning

As described in Overview, FL can be classified based on data partitioning.
In this section, different FL algorithms with different data partitioning are
introduced in details, including horizontal FL algorithms, vertical FL algo-

rithms and federated transfer learning algorithms (Table 2).

Retf | Paper Data Partitioning | Method
[21] | Kim et al. | Horizontal FL BlockFL
[10] | Gao et al. | Horizontal FL hierarchical heterogeneous
horizontal FL
[15] | Yu et al. Horizontal FL privacy-preserving SVM
[17] | Cheng et | Vertical FL SecureBoost
al.
[16] | Yang et al. | Vertical FL Parallel distributed logistic
regression for vertical FL
[22] | Feng et al. | Vertical FL multi-Participant ~ multi-
Class vertical FL
[8] | Kang et al. | Vertical FL Semi-supervised ~ Vertical
Federated Learning with
MultiView Training
23] | Romanini | Vertical FL Py Vertical
et al.
[14] | Dimitriadis | Federated Transfer | Federated transfer learning
et al. Learning with dynamic gradient ag-
gregation
9] | Yang et al. | Federated Transfer | FedSteg
Learning

Table 2: FL algorithms classified in terms of data partitioning

3.2.1 Horizontal Federated Learning Algorithms

Many FL algorithms were proposed to deal with horizontally partitioned
data. As each client holds different datasets with common features but dif-
ferent users, the total user sample size is increased in the whole FL system
compared with local training. They usually upload local gradients to server
for aggregation and use the increased user sample size to improve model
accuracy [2]. BlockFL [21] was a horizontal FL framework that used the
blockchain network. Kim et al. pointed out that traditional FL system
might suffer from the vulnerability of the single central server and clients
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or devices with more data were not promoted to contribute in FL process.
Thus, BlockFL was designed to solve these issues. It allows each device to
compute local model updates and global model updates to prevent the system
suffering from single-server malfunctioning. It also provides data rewards to
encourage devices with larger size of datasets. Besides, Gao et al. proposed
Hierarchical heterogeneous horizontal FL (HHHFL) that targets on the data
heterogeneity of EEG data. It uses manifold projection for high dimensional-
ity reduction and it adopts the FL process for privacy preserving. In addition,
Yu et al.[15] proposed privacy-preserving SVM (PP-SVM) that was designed
for horizontally partitioned data. It constructs a privacy-preserving global
SVM model efficiently. The key information is secured using secure com-
putation of the kernel matrix. The results showed that PP-SVM preserved
data privacy through secure computation with linear communication cost.

3.2.2 Vertical Federated Learning Algorithms

In vertical FL, the vertically partitioned dataset consists of data with over-
lapped users. Researchers tend to make use of the overlapped user data and
aggregate different features [2]. Cheng et al. [17] proposed SecureBoost that
trained a federated gradient tree boosting model with high accuracy. Secure-
Boost follows the general FL workflow. Sensitive data is encrypted before
communication. In the local data, some users are the same in different clients
while there exist distinct users in each client. Thus, data alignment was per-
formed for finding common data samples. To construct the tree boosting
algorithm, the optimal tree is built by computing local optimal split and
optimal leaf weight in each client. The encrypted results will be sent to
server for aggregation. Experiment results proved that SecureBoost secured
data privacy with accuracy score as good as the non-federated tree boosting
algorithm.

In addition, Yang et al. [16] proposed vertical FL approach for parallel
distributed logistic regression models. Unlike other vertical FL algorithms
that use a coordinator as a third party for updating global model, Yang et
el. came up with a new approach that removed the coordinator. It reduces
the risk of information leakage and simplifies the system. Thus, every two
clients could communicate directly with each other for secure model updates.
In each client, there is a parameter server and several worker nodes where the
communication within a client only happens between every worker node and
the parameter server. Results showed that the system architecture worked
efficiently with large-scale dataset with fast training process.

To work with multiple clients and multiple classes in vertical FL setting,
Feng et al.[22] proposed multi- Participant multi-Class vertical FL (MMVFL)



based on the concept of multi-view learning while preserving data and label
information. Each client learns local model parameters and pseudo-label
matrix that represent data points till the model converges. As the clients
only send pseudo-label matrix updates to server for the purpose of secure
label sharing, the original data information is well preserved.

In vertical FL, most algorithms tended to work with the overlapped data
samples. To deal with the problem of limited common data, Kang et al.
[8] proposed a vertical FL algorithm with multi-view learning (Fed MVT). It
utilized the semi-supervised learning method to generate data representations
and predict pseudo-labels. Given a training dataset, two NN models are
used to learn feature representations of overlapped data and non-overlapped
data in each client. Three softmax classifiers are trained to improve the
representations and predict pseudo-labels for unlabelled data.

In addition, Romanini et al. [23] proposed PyVertical. Tt a vertical FL
framework that can be combined with split NN models for privacy-preserving
MNIST classification. The NN model is split into multiple segments and sent
to each client to train on their local data samples. The results are concate-
nated in the server for the global model updates while the communication
between any two parties is secured by using a cryptographic method called
Private Set Intersection (PSI) for computing the intersection of data ele-
ments.

3.2.3 Federated Transfer Learning Algorithms

Federated Transfer Learning (FTL) frameworks have been widely used to
deal with unlabelled data or datasets between two parties that do not have
much overlap [2]. Previous researchers have proposed many novel FTL ap-
proaches with optimizations of communication or privacy preserving. Dimi-
triadis et al. [14] proposed a FTL framework. It processes N random sampled
clients obtained from the client pool in each iteration step for model training.
The intermediate results are aggregated by the server for model updates. It
adopts unsupervised training method with N-best hypothesis to predict data
labels. It also combines a TTS-based (text-to-speech-based) audio generation
method to improve the model training for speech recognition task.

Yang et al. [9] proposed FedSteg for federated transfer learning. It im-
proves the performance of steganographic image detection with CNN-based
models. The proposed model follows the general FL process: a cloud model is
distributed to each client for local training and a server aggregates the results
and parameters for updating the global cloud model. All the communica-
tion is protected by encryption methods. By adopting transfer learning, each
client is able to train a personalized model based on their own data through



the integration of the global cloud model and the previous local model. The
results showed FedSteg outperformed other non-federated steganalysis meth-
ods with data privacy secured effectively.

3.3 Optimization

With limited communication bandwidth between client and server, large
communication cost becomes the major problem in federated optimization
[6]. Besides, the accuracy of the FL algorithm and the convergence rate have
always been important factors to consider when developing FL algorithms.
Previous researchers have proposed various optimization techniques (Table
3) to improve FL learning process such as speed up convergence, improve
model accuracy and reduce communication overhead, which is described in
details as follows.

To optimize the FL process, FedAvg [6] increased computation in each
client before communicating with server for averaging. The results showed
the most effective approach to have additional computation was to increase
the number of epochs for local stochastic gradient descent (SGD) updates.
The optimization successfully reduces the number of communication rounds
while keeping good test accuracy. However, it results in heavy communica-
tion overhead in each round and the model has slow convergence rate due to
data heterogeneity. Hence, Mills et al. [11] proposed CE-FedAvg that im-
proved the FedAuvg by using distributed Adam optimization [24] and state-of-
art compression methods. In CE-FedAvg, Adam optimization is used instead
of a normal stochastic gradient descent (SGD) for faster convergence. The
model uploaded from client to server is compressed first which reduces the
total number of uploaded data significantly. Hence, both the communication
rounds and the communication cost in each round are reduced. According to
Chen et al. [7], NN shallow layers have a much smaller number of important
parameters for learning performance compared with deep layers and should
have more regular updates. Therefore, instead of updating the entire model
synchronously (e.g. FedAwvg), Chen et al. proposed asynchronous model
updates that allowed parameters in NN shallow layers to be updated more
frequently. Such optimization leads to less data exchange in each commu-
nication round. SCAFFOLD [18] is another optimization algorithm based
on FedAvg. In addition to the original FedAvg steps, two state variables are
maintained for the client (”client control variate”) and server (”server control
variate”) to compute gradients and approximate the ideal updates by over-
coming gradient dissimilarity. Thus, it provides fast and strong convergence.

Dimitriadis et al. [14] proposed a hierarchical optimization method in
their FTL framework that significantly improved the convergence speed and
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Ref

Paper

Algorithm

Optimization Technique

Non-11D
data

Mecemahan
et al.

FedAvg

reduce communication
rounds with additional
computation

v

Mills et al.

CE-FedAvg

distributed Adam optimiza-
tion and state-of-art com-
pression for less communi-
cation and faster conver-
gence(based on FedAvg)

Chen et al.

enhanced
FL tech-

nique

temporarily weight aggrega-
tion for better convergence
and asynchronous model
updates for less communica-
tion (based on FedAvg)

[18]

Karimireddy
et al.

SCAFFOLD

use control variables to
overcome gradient dissimi-
larity for better convergence
(based on FedAvg)

[14]

Dimitriadis
et al.

federated
transfer
learning
framework

hierarchical  optimization
method with optimizers on
both client and server side
for faster convergence and
less communication

[13]

Li et al.

FedSaE

self-adaptively predict af-
fordable workload and se-
lect clients for fast conver-
gence and better accuracy

[20]

Smith et al.

MOCHA

efficient weight updating for
FL multi-task learning to
reduce communication cost
and speed up the learning
process

[10]

Gao et al.

HHHFL

target EEG data and im-
prove model accuracy

Table 3: FL. Optimization Techniques

lowered the communication overhead. To be more specific, it uses a client-
side optimizer and server-side optimizer. It also aggregates the estimated
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local gradients to boost the training process.

FedSaFE [13] is a self-adaptive framework. It can predict affordable work-
load for each client and select clients adaptively for high-quality model train-
ing. It deals with the problem where different client has different system
configurations(system heterogeneity). Though calculating workload and se-
lecting clients can cause slight overhead, the results showed that the overall
speed of convergence was significantly increased as well as the model accu-
racy.

HHHFL [10] maps the heterogeneous EEG data to one common embed-
ding space(manifold projection). It trains a privacy-preserving classifier with
NN. A combined loss function is used that is composed of both domain loss
and classification loss. Model accuracy is significantly improved compared
with the non-FL EEG classification algorithm. Apart from it, MOCHA [20]
optimizes the FL process by considering data heterogeneity and system het-
erogeneity. The algorithm gives each node flexibility of defining their own
parameters to perform efficient weight updating. It increased the speed of
the FL multi-task learning greatly.

3.4 Privacy and Security

Data privacy protection has been a primary focus in all FL framework. In
addition to improving the model performance, researchers often take a great
effort exploring different privacy-preserving approaches to prevent data leak-
age. In this section, various security mechanisms are discussed (Table 4) as
well as how they deal with different privacy issues under different circum-
stances.

Ref | Paper Security Mechanism/ Advanced Attack
[19] | Bonawitz et al. | cryptographic methods (use authenti-
cation, public-private key pair and en-
crypted messages)

9] | Yang et al. secure multi-party computation and
differential privacy

[25] | Lu et al. differential privacy(use noise and
laplace mechanism)

[26] | Wang et al. GAN-based user-level attack

[12] | Xu et al. use a double-masking protocol with

public-private key pair, encryption and
verification of result correctness

Table 4: Privacy-Preserving Mechanisms used in FL algorithm
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Bonawitz et al. [19] proposed a FL protocol with cryptographic methods.
Its security mechanism includes secret sharing, key agreement, authenticated
encryption, pseudorandom generator (PRG), signature scheme and public
key infrastructure. The secret information is split into n segments before
sharing. Besides, a public-private key pair is generated to protect against
active adversaries. In each communication round, the messages are encrypted
and sent to the other party with a private key for authentication. Besides,
PRG can produce indistinguishable random seed. The signature scheme can
verify the validity of a public key with a message and a signature, while the
public key infrastructure is designed to register clients for identification.

Besides, in FedSteg (9], the shared parameters among different parties
are encrypted. Several encryption approaches are exploited, such as se-
cure multi-party computation and additively homomorphic encryption, to
ensure privacy-preserving steganalysis. Results showed that using differential
privacy provided similar protection to additively homomorphic encryption
method, proving the extensibility of different security mechanisms applied to
FedSteg.

Lu et al. [25] proposed their FL algorithm using differential privacy(DP)
mechanism to ensure data privacy. During model training, noise is added to
local data for the local model to be trained on each client. Laplace mechanism
is used along with a sensitivity ”s” on local data model to be broadcasted to
other clients. The whole DP training process repeats until model converged
or timeout.

Privacy attacks are well-developed using generative adversarial networks
(GAN) to reconstruct data representatives among all clients or even targeting
a specific client. To illustrate the risk of privacy leakage at user level, Wang
et al. [26] proposed a client-specific multi-task GAN model. It can identify a
specific client and perform strong attacks to recover client data precisely. The
attacks include a passive attack that analyzes updates from clients and an
active attack that sends an isolated model to the victim client for recovering
data samples. Results proved that such user-level attack was more effective
than the regular GAN-based attacks and inversion attacks. Hence, it raises
attention on the improvement of privacy-preserving mechanisms in future FL
development.

Additionally, when FL is combined with deep neural networks, privacy
leakage could happen during model training and it might be difficult to ver-
ify the correctness of the aggregated results, thus, Xu et al. [12] proposed
VerifyNet to solve these security problems with a double-masking protocol.
Except the server and clients, the proposed system includes a trusted author-
ity that assigns the public-private key pair to each client. The communication
between server and clients is encrypted and the server will need to generate
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a proof for each aggregated result for the verification of correctness. Results
showed the security of FL. was enhanced, though it caused large communica-
tion cost due to the verification and masking process.

4 Conclusions

FL enables prediction models to be collaboratively learned on distributed
devices. In this paper, we include some important factors of FL including
data partitioning, data heterogeneity, privacy preserving, optimization and
applications. There are yet some other issues that are not covered by the pa-
per are still worth studying, such as the application of FL in the industry and
business related issues. With the summary and discussion of various state-of-
art FL algorithms, we hope to raise attention and motivate further research
in FL. To answer RQ1 for the current trends of FL, recent FL algorithms
address the issues of model learning, privacy concerns and data challenges.
Many FL systems focus on developing efficient and practical FL with consid-
eration of real-world datasets. Besides, federated optimization techniques are
widely applied to improve the model accuracy, reduce overhead and enhance
security.

To answer RQ2, this paper discusses many challenges encountered by re-
searchers. The first challenge is data privacy leakage risks. The server and
clients need to exchange results in the middle of FL process. It is impor-
tant but challenging to protect the raw data without being revealed in the
communication. Another challenge is the heavy communication cost. As the
number of devices used in FL is large, communication can be a bottle neck
for FL performance [2]. It is necessary to reduce communication overhead
and speed up FL. Besides, local data in each client can have different charac-
teristics and distributions, which can affect the model performance largely.
Thus, effective FL optimization techniques should be developed to deal with
these data challenges. Novel FL systems have addressed these challenges
and made great efforts improving the general FL. workflow to make it more
efficient and secure.

RQ3 refers to the possible future research directions of FL. Though the
performance of FL has been improved significantly in recent years compared
with the original approach, there are still many remaining problems in FL
that need to be solved in the future. Data security has always been a concern
in FL. Despite of all the efforts adopting privacy-preserving mechanisms, the
risk of leaking sensitive information is still high, especially with the enhanced
adversary attacks. Thus, it leads to a future research direction of more
secured FL with methods such as reliable client selection and applying client-
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specific privacy restrictions [2, 5]. Besides, with an increasing number of
devices participating the FL process, the communication cost could be really
high and it is important to balance the trade-off between communication cost
and computation cost [2]. Moreover, though FL is popular, its application is
still limited. It could be also an interesting direction to extend its application
(e.g. in unsupervised setting) and modify system architecture [5]. Lastly,
clients might have different configurations in their systems. As FL is getting
more popular and more devices are getting involved, system heterogeneity
should be further studied in future federated optimization [2, 13].
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Appendix

Year | Method & Novelty Paper
2017 | propose FedAvg Mcmahan et al.
2019 | propose BlockFL for horizontal FL Kim et al.
2020 | propose HHHFL to deal with heterogeneous EEG | Gao et al.
data
2006 | combine horizontal FL. with SVM Yu et al.
2017 | propose MOCHA as a federated multi-task learn- | Smith et al.
ing approach for non-IID data
2021 | propose SCAFOLD for heterogeneous data and | Karimireddy et
solve the ”client-drift” issue al.
2020 | improve FedAvg with Adam optimization and | Mills et al.
compression techniques
2019 | Use temporarily weighted aggregation and asyn- | Chen et al.
chronous model updates
2021 | propose SecureBoost and combine vertical FL with | Cheng et al.
boosting trees
2019 | combine vertical FL. with parallel distributed Lo- | Yang et al.
gistic Regression
2020 | propose MMVFL for multi-class and multi- | Feng et al.
participant problems
2020 | propose FedMVT as vertical FL in semi-supervised | Kang et al.
setting
2021 | propose PyVertical and combine verticla FL. with | Romanini et al.
split NN
2020 | propose a federated transfer learning framework | Dimitriadis et
with hierarchical optimization and dynamic gradi- | al.
ent aggregation
2021 | propose FedSteg as a F'TL for image steganalysis | Yang et al.
2021 | propose FedSaE to select participants self- | Li et al.
adaptively and deal with the system heterogeneity
issue
2017 | propose a privacy-preserving protocol with cryp- | Bonawitz et al.
tographic methods
[26] | 2019 | propose mGAN-AT attack that targets specific user | Wang et al.
[25] | 2020 | integrate FL with blockchain and apply DP Lu et al.
[12] | 2020 | propose VerifyNet with double-masking protocol | Xu et al.

19




