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Abstract

Cancer immunotherapy has been considered an important treat-
ment for patients with end-stage cancer in recent years. In cancer im-
munotherapy, personalized vaccines can be produced by using tumor
proteins with a high binding affinity to the MHC-I protein. This pa-
per first explains why personalized vaccines are necessary for cancer
immunotherapy, then focuses on five methodologies and their machine-
learning models for predicting protein binding affinity, namely NetMHCpan-
4.0, MHCflurry, MHCflurry 2.0, DeepRank, and DeepRank-GNN, ben-
efits and drawbacks of each method. Finally, the paper concludes with a
discussion of potential advancements in MHC binding affinity prediction
methods.

1 Introduction

Over the years, the medical community has devoted itself to researching ways to
treat cancer in patients with advanced-stage cancer. Common cancer treatments
include surgery, chemotherapy, radiation therapy, and immunotherapy. Although
there are several treatment options for cancer, each of them often has limitations,
such as surgical removal of the cancer site, which is only effective for early-
stage cancer. Radiation therapy is associated with damage to local peripheral
tissues, while chemotherapy causes severe side effects as a result of the drugs
administered. Among them, cancer immunotherapy is a relatively new treatment
but has already established itself as a majorstay of mainstream cancer[16].

The principle of immunotherapy is to treat cancer by utilizing the patient’s
own immune system. The treatment is accomplished by selecting targeted tumor
mutation[16] and use these mutated tumor peptides to activate the immune
system’s ability to combat the disease[15] and thereby eliminating the tumor.
Immunotherapy has shown excellent results in the treatment of a variety of
malignancies and is more efficient, better tolerated, and reduces adverse reactions
compared to other conventional treatments[25].

Personalized cancer vaccines are formulated on the basis of selective mu-
tated tumor peptides. However, a patient’s cancer can contain thousands of
mutations[28]. Therefore, selecting the appropriate tumor mutation peptides
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to utilize as vaccine candidates represents the major challenge for cancer im-
munotherapy. Tumor peptides must have high binding affinities to Major His-
tocompatibility Complex(MHC) proteins in order to be effective vaccine candi-
dates. Software tools such as NetMHCpan-4.0[13], MHCflurry[4], MHCflurry2.0[4],
DeepRank[1], and DeepRank-GNN[2], which used state-of-the-art machine learn-
ing (ML) techniques have been demonstrated to identify tumor peptides with
high MHC protein binding affinities. To date, researchers are still developing
new ML methods to improve the accuracy of binding affinity predictions.

This paper is divided into four sections. First, the Introduction section is
provided to explain the background of cancer immunotherapy and the necessity
of using ML techniques to formulate personalized cancer vaccines. The Method-
ology section is followed by defining the research questions of this paper and
each motivation. In the Discussion of Literature section, the content is di-
vided into four subsections to discuss the four different software tools based on
machine learning techniques that predict binding affinities. Each research ques-
tion will also be answered respectively. Finally, a Conclusion section is listed
to summarize the paper.

2 Methodology

In this section, the methodology that I used will be described. First, is the se-
lection of literature papers, since the topic of the paper is related to the design
of personalized cancer vaccines using ML techniques. Since the immunotherapy
method using MHC binding affinity for personalized vaccines was only intro-
duced around 2017, the predictive models introduced by the industry are still
limited. From the suggestion of the e-Science Center of Amsterdam, which is
an expert in personalized cancer vaccines, I selected five of the most represen-
tative software tools of the modern era that were most mentioned in the papers
for comparison as my literature research. Two of the tools, DeepRank[1] and
DeepRank-GNN[2], were developed by the e-Science Center Amsterdam, where
I will be doing my internship, so it was very helpful to get a quick overview of
the ML mechanism used for cancer vaccine design. Google Scholar is used to
searching for publications that provide background information on the biology
related to the formulation of the personalized cancer vaccine. In this paper, I
will focus on machine learning models the five software tools designed to predict
good vaccine candidates instead of discussing how to design cancer vaccines in
practice. Therefore, the research questions and the motivation is as followings:

• RQ1: What are the future directions of machine learning techniques for per-
sonalized cancer vaccine design?
− The goal of this research question is to investigate how the accuracy

and performance of the future machine learning model for predicting
the binding affinity of MHC complexes to formulate personalized cancer
vaccines can be improved and implemented. To answer this question, I
need to delve into the machine-learning models currently being used in
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the field for the design of personalized cancer vaccines to gain a better
understanding of the issue they are dealing with. As a result, I have come
up with the following two subquestions.

• RQ1.1: What are the requirements for a suitable vaccine candidate?
− The goal of this research question is to understand what the requirements

are for a mutated tumor peptide to become a good vaccine candidate.
This answer will be relevant to how machine learning models are trained
and what are the expected test outputs from the model.

• RQ1.2: What are the major software tools for predicting vaccine candidates?
What are the key challenges for these software tools in predicting vaccine
candidates?
− The goal of this research question is to discuss the five main software tools

NetMHCpan-4.0, McFlurry, McFlurry2.0, DeepRank and DeepRank-GNN
and to find the challenges these software tools are facing by comparing
their advantages and drawbacks.

3 Discussion of Literature

In this section, I will review the five current state-of-art tools for binding affinity
prediction in the scope of personalized vaccination. In Section 3.1, a brief sum-
mary of the articles will be described based on the time of publication of the
tools. In Section 3.2, a detailed description of the machine learning models of
the tools will be provided, including the architecture of the model and how the
model was trained and tested. In Section 3.3, I will discuss the limitation each
tool faces and how it can be improved.

3.1 Literature Summary

Jurtz et al. [13] proposed a method NetMHCpan-4.0, which makes predictions
of the binding of cellular peptides and MHC-I peptides based on their binding
affinity(BA) and eluted ligand(EL) information. The greatest contribution of
NetMHCpan-4.0 is that it improved the traditional use of only cellular BA data
to predict the binding of MHC to peptides. The problem with using only BA
data to predict the MHC binding of peptides leads to a correspondingly high
false positive rate which in turn leads to the unsuitability of the personalized
vaccine. The IEDB(Immune Epitope Database)[7] has a large amount of publicly
available BA and EL data. Therefore, NetMHCpan-4.0 used the data provided
by IEDB to train the machine learning model, with the combination of two data
domains, BA and EL, to make the prediction of MHC binding more reliable. Ju-
rtz’s team tested NetMHCpan-4.0 by comparing its performance using different
data domains. While the regular NetMHCpan-4.0 method is trained using BA
+ EL data, the model was also trained using BA data and EL data only. The
result showed that the Area Under Curve (AUC) score of the BA+EL model
received the highest score around 0.95, followed by the model trained with just



4 C.Y. Lin

BA data, which is slightly lower than the performance of BA+EL, and finally
the model trained with only EL data, whose AUC score is only close to 0.85.
As a result, by merging the BA and EL data-set, the method NetMHCpan-4.0
may effectively increase the prediction accuracy. In addition, the following brief
introductions to binding affinity and eluted ligands are provided:

Binding Affinity
In the biomedical field, the binding of two proteins can be seen as a reversible,
rapid equilibrium process. Binding Affinity is a value that describes the strength
of the binding interaction between two proteins[14] and is often seen as an in-
dicator of the binding between the tumor peptides to MHC-I proteins in cancer
immunotherapy.

Eluted Ligand
The eluted ligand is a naturally occurring peptide that can be eluted from antigen
presenting cells (APCs)[22]. The information of the elution ligand is independent
of the MHC cells and is not present on the surface of the cells. It provides
beneficial biomedical data that can be used to predict appropriate peptides.

O’Donnell et.al [20] proposed an open-source software tool MHCflurry to pre-
dict the binding of MHC-I peptides. Before the development of MHCflurry, the
training process of MHC-I binding tools training process, such as NetMHCpan-
4.0, could only be operated by developers and its use was primarily restricted
to private research purposes. In response to the surge in the discovery of tumor
neoantigens, O’Donnell’s team has released a Python-based package, MHCflurry,
which is open-sourced and simple-to-install[4]. MHC-flurry features a config-
urable interface, and its machine-learning model can be modified and re-trained
according to the user’s needs. Similarly to NetMHCpan-4.0, MHCflurry also
trained the model based on binding affinity data and MHC ligands. However,
MHCflurry supports more variable peptide lengths between 8 and 15 using
a fixed-length encoding algorithm. The first four and last four alleles of the
peptide are regarded as the "anchor location" that is most related to MHC.
Following that, the inputted peptides are represented as a 15-length sequence
with the anchor position alleles fixed and the residue alleles filled in with an
X character[20]. To measure the effectiveness of MHCflurry, O’Donnell’s team
applied a mass spectrometry (MS) data set that comprises a substantial amount
of MHC data[18]. According to the outcome, MHCflurry can identify up to 7000
predictions per second, which is approximately 400 times as fast as NetMHC-
pan 4.0. Furthermore, MHCflurry also presents a better prediction accuracy for
peptides of lengths other than 9[20].

Two years later, O’Donnell et al. [21] published an improved version of
MHCflurry, known as MHCflurry 2.0. O’Donnell’s team developed two sepa-
rate predictors to increase the accuracy of prediction for MHC-I peptides. The
BA predictor focuses on predicting the binding affinity of class 1 MHC, just as
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the common MHC-I predictor. Although the selection of MHC-I proteins with
higher affinity is the most basic criterion for formulating a personalized cancer
vaccine, O’Donnell’s team decided to include other presentation pathways in the
antigen delivery process as a requirement as well. Therefore, the second pre-
dictor, also referred as the antigen process (AP) predictor, is created based on
allele-independent effects [21]. O’Donnell’s team first trained the BA predictor
utilizing cellular affinity information and MS data sets. The AP predictor model
was then constructed using a training set produced by the BA predictor. The
training set contains identified peptides(hit) and unidentified peptides(decoys),
where the hits and decoys are both recognized by the BA predictor[21]. A small
data collection of allele-independent data that were not used in the BA predic-
tor was then applied to model the AP predictor. As a result, MHCflurry 2.0
surpasses NetMHCpan4.0 and its previous version MHCflurry with a 40% im-
provement in positive prediction value(PPV) due to the integration of the BA
and AP predictor[21].

Renaud et al. [23]proposed a deep learning Python package DeepRank[1]
that uses 3D convolutional neural networks (CNNs) to analyze protein-protein
interactions (PPIs). Through the PPIs, one can observe the whole process of cel-
lular interaction. This is crucial for predicting how proteins will function in can-
cer immunotherapy. Renaud’s team collected more than 7000 pieces of 3D struc-
ture data sets of protein-protein complexes from the Protein Data Bank(PDB)
database[5], which is a valuable resource database for structural biology research.
Renaud’s team further processed the PDB files to intercept and analyze only the
interface residue between the two protein chains. The atoms that are covered by
the two protein chains at an agreed-upon distance are referred to as the interface
residue. The complexes of a residue interface are then mapped using a Gaussian
mapping technique onto a 3D grid. The mapped 3D grid data is then displayed
as 3D images, with each grid point comprising values related to various interface
properties. The 3D images of PPI are stored in a HDF5 file format which is used
for the training and testing of Deep Rank’s CNN model[23]. The DeepRank plat-
form has two functions, classification, and prediction. For classifications, Deep
Rank can determine whether the inputted PPI 3D image is a biological or a crys-
tal artifact. For prediction, DeepRank can predict the binding affinities of the
two proteins based on the PPI 3D images, which is the primary feature related
to immunotherapy. DeepRank also demonstrates its high processing efficiency
by using MPI to perform parallel processing on a large number of PDB files,
thus outperforming the two existing methods, PRODIGY and PISA.

The following year, Réau et al.[24] published a new version of the Deep-
Rank Python package[2], known as DeepRank-GNN. DeepRank-GNN, as its
names indicate, chose GNN to create the model as opposed to DeepRank, which
employs CNN as its deep learning model. The reason for abandoning CNN in
favor of GNN is that CNN has some drawbacks, such as that it is not suffi-
cient to extract the overall structural information because it uses data from
the Euclidean space to represent images[17]. Additionally, the PPIs data re-
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quires argumentation before it is fed into the model, which will affect the overall
performance. Similarly to DeepRank, DeepRank-GNN focuses on analyzing the
interface residue of the PPIs. In contrast, the PPIs for DeepRankGNN are trans-
formed into graphs rather than images, with the interface residue’s atoms serving
as the graph nodes and the two protein chains’ contact residues serving as the
graph edges. The PPI graphs are then stored in the HDF5 file format. DeepRank-
GNN was evaluated by Réau’s team using DOVE and HADDOCK scores. As
a result, DeepRank-GNN demonstrated a notable improvement in the perfor-
mance of PPI data processing, and DeepRank-GNN also required significantly
less storage than DeepRank.

3.2 Model Description

NetMHCpan-4.0
NetMHCpan[13] built its model on NNAlign[19], a platform to construct neural
network models and evaluate the performance of peptide-MHC interactions. A
design schematic of the neural network model of NetMHCpan-4.0 is shown in
Figure 1. The BA and EL data used to train the model are from IEDB[7], with a
total of 85217 data sets inputted. The neurons in the hidden layer were trained
using 10 randomly generated configurations and 5-fold cross validation, yielding
a combination of 100 networks.The output layer contains two output neurons:
the first neuron returns the score for binding affinity, while the second neuron
outputs the score of eluted ligand.

Fig. 1: The Neural Network Model of NetMHCpan-4.0 [13]

MHCflurry
The open source Keras neural network package[3] is applied to implement MHCflurry
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in Python. MHCflurry encodes each residue of the peptide and converts it into a
sequence of length 15 and assembles a 15x21 matrix as input to the MHCflurry
model. The binding affinity of each allele was calculated as the geometric mean of
the results from the set of 8 to 16 neural networks in each of the 320 MHCflurry
models. The geometric mean results are further converted to a scale of 0 to 1,
with larger values representing the stronger binding of the allele to the MHC-I
peptide.

The binding affinity and MHC ligands datasets used for model training come
from the IEDB[7]. Before training, the data sets are filtered and those with-
out MHC-I and nonidentifiable names are discarded, leaving only those peptides
identified by mass spectrum, for a total of 143,898 quantitative and 439,978
qualitative binding affinity data[20]. MHCflurry is derived from 40 frameworks
that are trained on allele-specific affinity data or trained on only quantitative
affinity data. Four replications were trained for each of these 80 potential out-
comes, resulting in 320 models for each allele[20]. 90% of the data is used to train
each neural network, and the remaining 10% is used as test data to generate the
MHCflurry neural network model[20].

MHCflurry 2.0
As an improvement version of MHCflurry, MHCflurry 2.0 is also implemented
based on the neural network library, Keras[3]. As mentioned in the previous
section, MHCflurry is made up of two predictors, the BA predictor and the
AP predictor, and thus, the two predictor model is built separately. For the
BA predictor, MHCflurry 2.0 expands on its previous version, from requiring
a separate neural network model to train each allele, to being able to train
up to 14993 MHC-I alleles on a single neural network model[21]. The input to
the neural network model contains the encoded peptide converted sequence and
the amino acid sequence of the selected 37 positions in the allele. Similarly to
MHCflurry, the model outputs the binding affinity results and scales them from 0
to 1. As mentioned in the previous section, the AP predictor is trained based on
the hits and decoys from the BA predictor. In MHCflurry 2.0, O’Donnell’s team
defined a binding affinity less than 0.5744 as a "hit". MHCflurry 2.0 features 140
training models in total, whereas MHCflurry 2.0 is made up of 35 architectures
and uses four duplicated data sets[21]. In addition, in each neural network, 90%
of the data is used for training and the remaining 10% is used as test sets.

DeepRank
DeepRank uses the widely used Pytorch[6] deep learning framework to imple-
ment its neural network model[23]. The training procedure begins with the model
receiving HDF5 files containing multiple 3D PPI images with features and labels.
Users can simply filter the PPI images from the HDF5 files that they intend to
input into the model based on the features and labels of the PPIs[23]. Those PPI
images that match the values set by the user are fed into the neural network
model and trained through a series of CNN layers, such as convolutional layers,
pooling layers, and finally fully connected layers. The data sets trained for the
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model comprised a total of 5739 PPI complexes. The data set is divided into two
parts: training and validation, while the training portion comprises 80% of the
data set[23]. The outcome of the model, the binding affinity values, are stored
in an HDF5 file for further use. The overview of the DeepRank neural network
model is shown in Figure 2.

DeepRank-GNN
DeepRank-GNN uses the Graph Interaction Network (GINet) to form the neural
network model[24]. The GINet architecture is a new GNN architecture that
can strengthen convolution network feature representations[27]. DeepRank-GNN
imports HDF5 files which includes multiple PPI graphs to the model for training.
In the GINet architecture, each PPI graph is further divided into two subgraphs,
one of which is an internal graph connecting atoms within the same protein
and the other is an external graph connecting atoms between two proteins[24].
The internal and external subgraphs are successively transferred to a series of
GNN layers, such as the graph convolution layer, pooling layer, and the fully
connected layer. Lastly, a scatter mean procedure was employed to combine the
two subgraphs before constructing the final representative graph. The output
graphs of the DeepRank-GNN model are also saved in the HDF5 file format for
further binding affinity analysis[24].

Fig. 2: The Neural Network Model of DeepRank [23]

3.3 Challenges and Future Directions

NetMHCpan-4.0 was the first method that predict MHC-I interaction based on
information both on the binding affinities and eluted ligands. However, NetMHCpan-
4.0’s execution speed is its major flaw. MHCflurry was introduced to solve the
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problem of NetMHCpan-4.0 execution efficiency with 396 times faster execu-
tion speed. In addition, MHCflurry features fixed-length encoding that allows
proteins of different lengths to be input while preserving the anchor positions,
which is most relevant to MHC-I. MHCflurry does, however, have the limitation
of only supporting a specific set of alleles. Its improved version, MHCflurry 2.0
expands the number of supporting alleles from 112 to 14993 types. Furthermore,
MHCflurry 2.0 enhances its MHC-I prediction ability by implementing two sep-
arate predictors, the BA and AP predictors. A significant flaw with MHCflurry
2.0 is that the data used for training the AP predictor is already detected by
the BA predictor, which may cause the accuracy of the AP predictor to be over-
stated. DeepRank, a platform that uses the CNN deep learning technique, was
published. DeepRank converts PPIs into images for model training; the model
itself has the benefit of flexibility because the user can select the PPIs depending
on features and labels. However, DeepRank has several major drawbacks such
as the 3D grid size used for the model is fixed, so large PPI may not fit into
the model, and CNN may require more data argumentation. DeepRank-GNN
addresses these issues by implementing the model using GNN, which presents
PPIs via graphs as opposed to images since the neural network model can man-
age any size of graph. However, the performance of DeepRank-GNN still has
large space for improvement. Finally, existing models suffer from the same prob-
lem, that is, the number of alleles that can be supported is still insufficient, and
the variable length of proteins that can be processed is similarly constrained.

3D modeling approaches may be an ideal way to predict vaccine candidates,
which is not limited by the protein variability length and can also identify more
rare MHC allels through 3D structures. Geometric deep learning is a newly de-
veloped technology used in machine learning techniques for 3D modeling and
is optimized for molecular sciences[11]. The feature of geometric deep learning
is that its neural models are generated from non-Euclidean domains, for exam-
ple, graphs[12]. This technique allows the representation of cells to be rendered
graphically from 3D models instead of converting them into 2D grids for model
training. The atoms in the cell represent the nodes in the graph, and the associ-
ations between the atoms represent the edges of the graph[11]. Therefore, future
models may apply geometric deep-learning techniques to address problems in
existing models.

4 Conclusion

In this literature study, I studied and analyzed five methodologies, namely NetMHCpan-
4.0, MHCflurry, MHCflurry 2.0, DeepRank, and DeepRank-GNN to investigate
how to formulate a suitable personalized cancer vaccine with machine learning
technology. Based on my research questions, three conclusions can be drawn
from the study:

1. Mutated tumor peptides must bind MHC proteins with high affinities to
become suitable vaccine candidates.
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2. Although existing methods have been improving machine learning models
to predict protein binding affinity with increasing accuracy and speed, there
is still a shortage of supported alleles and protein length variability, which
limits the accuracy of prediction.

3. Future methodology for determining vaccine candidates could focus on train-
ing mutated tumor peptide 3D modeling using the geometric deep learning
technique.

Some nice algorithms used in the existing predicting tools can also be followed
in future methodology. For example, the fixed-length encoding algorithm used
in MHCflurry enables the ability to support variable length alleles, the idea of
interface residue between the two protein chains from DeepRank also improves
the accuracy by focusing on the most relevant part of the cells. Lastly, the
protein-protein interactions (PPIs) used in DeepRank and DeepRank-GNN sup-
port generating the overview of cellular interaction, which is useful to represent
input data for future models based on GDL.

The limitation of this literature study is that only the five most-mentioned
binding affinity prediction methods in the field and their machine-learning mod-
els were introduced. Other minority approaches such as MixMHCpred and DeepMHC
also provide good MHC prediction and may also be included in future references.
In addition, limited research and discussion were conducted on the pre-processing
part of the data before applying them to model training. Moreover, the perfor-
mance analysis tools used in the model were not thoroughly covered. Future
research can take into account all of these restrictions.
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A Terminology Table

Term Definition
Allele An allele is a gene variant that resides in the same location[8].
Antigen Process A immune process that expresses the trigger of immune cells.

AUC
The Area Under Curve (AUC) is a performance analysis method for
measuring how much the model is capable of distinguishing between
classes.

Binding Affinities The strength of binding interactions between two molecules.
Cancer Im-
munotherapy

Cancer immunotherapy is a type of therapy that treats cancer by acti-
vating self-immune system.

Mass Spectrometry An analytical approach for evaluating the mass-to-charge ratio (m/z) of
one or more molecules within a sample[10].

MHC Protein
The major histocompatibility complex (MHC) is a group of closely re-
lated genes on vertebrate DNA that code for cell surface proteins required
by the immune system[9].

PPI Protein-protein Interactions(PPI) is the area of a protein’s surface where
it interacts with another[26].
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