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Abstract

As real-time and Internet of Things applications thrive in decades,
the demand and standard for event stream processing (ESP) have been
increased correspondingly in order to support such applications. Al-
though ESP systems have been evolved for decades since 2000s, there
still are limitations and challenges. This paper first defines the concept
of ESP and evaluates the key challenges in ESP systems, along with
two topics regarding modern ESP frameworks and future direction of
ESP. This work discusses each topic by reviewing relevant academic lit-
erature and relevant online document for ESP frameworks, followed by
conclusion summarizing the answers for each research question.

1 Introduction

For large number of applications in modern technology era, real-time processing
or real-time response are essential since such applications cannot afford long
latency or delayed processing time. For example, detecting plummeting or sudden
increase in stock markets, anomaly indicator in patients’ health care system, real-
time traffic condition report, require real-time data processing and response in
order to meet the need from users or customers. However, the real-time data is
not stable or even stored in a static database. On the contrary, the real-time data
usually is streaming data which is generated by data sources and transported
along the networks. Also, as Internet of Things (IoT) applications thrive these
years, data generated from sensors source are regarded as complex patterns [7], so
that it need complex event processing [24] which is one kind of ESP. Therefore,
proper and powerful ESP frameworks play decisive roles in supporting these
applications.

Although IoT and real-time applications needed the ESP to support their
functions, developing an ESP system is hard and should consider plenty of per-
spectives. As Stonebraker et al. [20] mentioned in their paper, 8 requirements are
asked to satisfied in order to develop a real-time stream processing system. Be-
sides the basic requirements for ESP systems, Fragkoulis et al. [12] compared the
early and modern ESP systems in different perspectives (regarding time man-
agement, elasticity, fault-tolerance). Also, they pointed out the open problems in
such perspectives which indicates that some of the challenges and the difficulty
in developing ESP still can be improved.
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Plenty of ESP frameworks or solutions had been developed by previous re-
searchers. These ESP frameworks had evolve from early ones(e.g. Aurora, Ni-
garaCQ , STREAM [6, 11, 9] etc.) to modern ones (Apache Storm, Apache Flink,
Spark Streaming [4, 1, 5]). We are now still witnessing the emerging of ESP sys-
tems since the researchers are still improving ESP to overcome such challenges
and limitations.

This paper is structured in four sections. First, the Introduction is pro-
vided to introduce the background of event stream processing. A Methodology
followed by Introduction states the research questions of this literature review
and corresponding motivation of each research question. Then in Discussion
of Literature , the contents are divided into three part in order to answer each
research question respectively. Last but not least, a Conclusion is stated to
summarize this paper.

2 Methodology

In order to clarify the direction of the literature review, research questions should
be stated. Therefore, the research questions and the rational motivation for re-
search questions are as follows.

• RQ1: What are the future directions of development of the event stream pro-
cessing framework?
− I desire to figure out what the future direction of ESP is. To be more spe-

cific, I try to summarize the future direction for researcher and developer
based on current frameworks of ESP. To answer this research question,
I must first obtain the fundamental knowledge and comprehensive back-
ground in ESP. Therefore, I further come up with two sub-questions as
follows.

• RQ1.1: What is event stream processing? What are the key challenges of
event stream processing?
− I try to investigate the definition of event stream processing from a view

of reader without any technical background. After setting up an initial
definition, as a beginner of ESP, I try to identify the key challenges in
this field.

• RQ1.2: What are the modern frameworks for event stream processing?
− After having fundamental knowledge about ESP, I try to investigate how

ESP system work. Therefore, I single out several representative current
frameworks used for event stream processing, in order to figure out how
they work and what their strategy and components are.

3 Discussion of Literature

3.1 Definition

Before discussing other perspectives of event stream processing, we must first
understand what event stream processing is. An easy way to describe event
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stream processing is that the processing or the analyzing of continuous streams
of events. If we separate the terms and explain each term respectively, the “event”
represents the data point in a system (e.g. patients’ anomaly condition detection
in health care system, plummeting detection in the stocks market). “stream” rep-
resents continuous data delivery of these events. “processing” refers to any action
taken on these events or data (e.g. analyzing, transformation, aggregation).

Moreover, it is important that we must recognize the difference between data
(batch) processing and event stream processing. Abadi et al.[6] describe their
data stream management model, Aurora, as a “software system processing and
reacting to continual inputs from many sources (e.g., sensors) rather than from
human operators.” However, traditional database management system (DBMS)
is a passive system storing large static data elements lets human to take actions.
Therefore, we can refer event stream processing as taking action on continual
data flow while refer batch processing as taking action on static data.

Type of Stream Processing System The term event stream processing is not
a simple method or a concept. When mentioning stream processing, we discuss
the systematic approach way to solve the stream processing problem. Therefore,
we provide the definition of the type of stream processing system. To be more
specific, the type of stream processing system determines what operations or
functions that the system provides. Röger and Mayer [17] distinguish General
Stream Processing systems (GP) and Complex Event Processing systems (CEP)
[24]. We illustrate the characteristics of two type of system in the Table 1.

3.2 Key Challenges in ESP

As ESP is a dynamic framework applying continuous operations from the input
stream data instead of a static system allowing user to query and access. There-
fore, the researchers may confront more complex and intractable problems when
building or maintaining a ESP framework. Macrometa1, a company providing
platform for building real-time distributed applications, pointed out challenges
of ESP in different perspectives. I picked several aspects from their contents.
Moreover, some perspectives proposed by other researchers are also relevant and
must be considered. Therefore, I summarize their viewpoints for key challenges
of ESP in 4 aspects: QoS, time management, parallelization and elasticity. The
rationale for selecting QoS is that QoS is the main performance evaluating mech-
anism for ESP systems. The other 3 aspects are discussed in the ESP field by
researchers. Also, several comprehensive surveys [10, 12, 17] included these three
aspects in their works. These are the rationale for selecting these four aspects.
Moreover, more details for these aspects are provided as follows.

1 https://www.macrometa.com/
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Table 1: Type of stream processing system

Type Characteristic Examples

GP

- GP systems continuously take actions on the items
of streaming data.

- The output data streams are produced by the opera-
tors in the system. Each output stream can be an input
stream for another operator, or can be used by other
applications directly.

- Data Stream Management System (DSMS) is provided
by GP systems in order to make ongoing queries on
streaming data.

Aurora,
Apache Storm

CEP

- CEP systems are used for detecting specific patterns
of data stream so that certain information is able to
obtain.

- The inputs of systems are composed of certain observed
triggered events.

- The operators would take charge of finding the series of
ongoing data stream which satisfies the certain pattern.

- Whenever a pattern is detected, the operator emits an
output event.

Apache Flink
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• Quality of Service (QoS)

It is always important to pursue high QoS or to provide users with high QoS
in ESP systems. QoS is a performance measure for evaluating ESP systems’
performance. QoS can be separated into two parts - throughput and latency.
High throughput and low latency are the main QoS goals for ESP systems.
Shulka et al. [18] define latency in ESP systems as the interval between inputs
consumed at the source tasks and all its output messages generated at the sink
tasks. Also, they define throughput as the aggregated rate of output messages
emitted from the output operators (sink tasks) in a certain interval.

It is hard to maintaining high QoS in ESP systems since it not only re-
quires well-equipped infrastructure but also strategies for resource management
(elasticity) and parallelization. Moreover, there may be a trade off between low
latency and high throughput [23]. All of the perspective mentioned above are
thorny problems which make pursuing high QoS harder.

• Time management

On one hand, in ESP systems, the timestamp or the notion of time must be
defined clearly. Otherwise, it will affect the quality of output results directly.
On the other hand, the stream data can be out-of-order since they may arrive
ESP system with different latency (late data) [19]. Stonebraker et al. [20] illus-
trates the same concept with an example - the data streams reaching in certain
time window are marked by a corresponded timestamp, while some data arrives
lately (out-of-order). Therefore, handling out-of-order and manage the correct
timestamp are crucial issue in ESP systems.

• Parallelization

As for parallelization, Röger and Mayer [17] distinguish two cases of paralleliza-
tion: task parallelization and data parallelization. In task parallelization,
ESP systems parallelize the different operators, while in data parallelizations,
they partition the input stream with different methods and then run multiple
instances of identical operator.

Röger and Mayer [17] also proposed the challenges and limitations of each
case of parallelization. The main challenge on task parallelization is that it will
reveal three limitations. First, the network traffic increases when multiple oper-
ators receive the input streams completely. Second, if the operators processing
speeds differ, the load balance may be affected. Third, the scalability in task
parallelization is limited.

For the challenge of data parallelization, they discuss the limitations with
different methods of data splitting. To be short, the limitations of data paral-
lelization include expressiveness, scalability, load balancing, and increasing com-
munication overhead, which depend on different splitting method.
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• Elasticity

Elasticity or resource elasticity is a key characteristic in cloud computing, which
allows organisations to dynamically change infrastructure capacity with min-
imum human intervention, i.e. auto-scaling systems. Lorido-Botran et al. [16]
pointed that while it enables a service to allocate and release resources dynam-
ically, adjust the changing demands, determining the proper resources is hard.
de Assunção et al. [10] further classified the managing elasticity of data stream
processing into two problems: (1) releasing and allocating the resources in order
to coordinate with the workload; and (2) arranging and performing the actions
for adjusting the workload to get use of newly allocated or released resources.

3.3 Modern ESP Systems

Generation of Streaming Processing Systems Before illustrating the con-
tent of modern ESP systems, it is better to realize the generations of SP systems,
so that we can have a comprehensive view of emerging and developing trend of
SP systems. de Assunção et al. [10] classified the emerging of SP engines into
four generations. Moreover, Fragkoulis et al. [12] provides a comprehensive view
of evolution of stream processing systems. I summarize their point of view and
provide them in Table 2.

Current ESP Systems The third generation’s stream processing systems is
discussed in the following section, since we desire to focus on the state of the
art solution of stream processing. However, the first and second generation’s SP
systems are obsolete because most of them are developed over a decade ago.
Moreover, the fourth generation’s SP systems are still in developing (emerging)
period which are not mature enough. Therefore, we focus on third generation
which is well-developed, and single out several representative framework to dis-
cuss.

• Apache Storm

A data pipeline in Apache storm [4] is also called Topology. Fig 1(a) shows
the concept of topology, which represents a directed graph of data flow and
depicts how the tuples (data) process among them. Apache storm utilize master-
slave structure with a master node running daemon process called Nimbus.
Nimbus interacts with Zookeeper [13] to schedule the tasks among clusters
and take actions for node failures. Although Apache Storm is fault-tolerant and
scalable, Wingerath et al. [23] pointed out that its state management can only
feasible on application with small state, due to synchronous updating which will
affect latency. Moreover, Apache Storm implements a back pressure mechanism
to throttle data ingestion in case data ingested speed overtakes the processing
speed.

A storm cluster is composed of several worker nodes. Each worker node runs
a supervisor daemon process and several worker processes (i.e. JVM 2 [22]). A
2 Java Virtual Machine
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Table 2: Generations of stream processing system

Generation Characteristic

First

- The first generations’s SP system supports extension of
classical DBMS.

- Allow queries over dynamic data.
- Provide interface and SQL-like language which allow

users for operations.

Second

- The second generation’s SP system enable distributed
processing by using message passing for communicating.

- The distributed processing, however, reveals the chal-
lenge for elasticity management and load balancing.

Third

- Enable specification and execution of user defined func-
tions (UDF).

- Ordinarily, deploy on shared-nothing clusters.
- Have task and data parallelization.
- Enable explicit state management and enhanced fault

tolerance.

Fourth

- Some processing elements are placed at the edge of the
network.

- More distributed environment (fog, edge computing).
- Programmable network
- In-transit processing systems
- Online event processing [14]
- Heterogeneous architectures [15]
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JVM runs several executors which execute tasks (spouts and bolts). A spout
takes charge of reading the streaming data from an external source. A bolt is
responsible for listening to data from internal nodes and writing data to the
external storage.

• Apache Samza

Apache Samza [3] is a data stream framework which is co-developed with Apache
YARN [21] for deployment and with Apache Kafka [2] for messaging. A Samza
job submitted through YARN client triggers YARN to initiate and supervise one
or more containers. Apache Samza jobs are not able to communicate directly,
but can use Kafka as message broker. An example of a samza job illustrates at
Fig 1(b), which represents a step in processing pipeline and is corresponded to
the bolt in Apache storm.

In comparison to Apache storm, Wingerath et al. [23] pointed out that
Apache Samza needs more work to deploy since it does not only depend on
Zookeeper but also requiring Apache YARN for fault tolerance. Apache Samza
also support JVM-Language, and are also scalable since a samza job runs in
parallel tasks by Kafka partitions. For state management, contrasting to Apache
Storm, Apache Samza can handle large amount of state in fault tolerance since
it maintains the local state and replicates them to Kafka. A key-value store is
utilized for recording this state updates in other machines in cluster, so that it
can recover quickly from failure.

• Apache Flink

Apache Flink [1] supports batch and data stream processing in common run-
time. Apache Flink execution model is also a master-slave execution architecture,
which a master called Job Manager and workers called Task Managers. The
job manager takes charge of checkpointings (watermark items are injected into
data stream in order to create states’ checkpoints), failure recovery, receiving
jobs, scheduling tasks. The task managers executes the tasks in the data flow of
Flink. In Flink applications, Operators can be divided into subtasks (which are
allocated in different containers or machines) and streams can also be separated
into stream partitions. Therefore, Flink can achieve parallelization through cor-
responded two mechanisms: determining degree of parallelism of operators and
streams.

Analogous to storm, the workers in Flink support JVM process which allows
them run subtasks in separated thread. Also, similar to Storm, Flink implement a
back pressure mechanism through buffering in order to avoid ingestion overtaking
the processing speed.

• Spark streaming

Apache Spark is a cloud computing framework, which is an extension of
MapReduce model, supports streaming and batch processing. In a Spark deploy-
ment, a cluster manager is responsible for managing resources; a driver program
takes charge of scheduling; several workers run the tasks for execution.
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Fig. 1: (a) Apache Storm topology and (b) Apache Samza data flow [23]
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Apache Spark introduces a core abstraction called RDD (resilient distributed
datasets), which are distributed and immutable collections of records. Utilizing
RDD enables Spark to keep track of RDD’s lineage so that it is resilient to fault
tolerance or machine failure.

Moreover, in Spark, before processing through workers, data is transformed
into sequence of RDD called DStream [25] (discretized stream) in order to
better deal with faults and stragglers. In a short interval, Dstream store the
receiving data and generate new datasets representing intermediate state. The
intermediate state is composed of RDDs and datasets stored during the next
interval. This model stores the states in the memory so that it can recompute
and resume fast from faults.

3.4 The Future Direction in ESP

As de Assunção et al. [10] stated in their survey that we are now witnessing
the emergence of fourth generation of data stream processing systems, highly
distributed frameworks using fog and edge computing are explored currently.
They also proposed several directions which may encourage researchers and de-
velopers to focus on. First, using Software Defined Network (SDN) and Network
Functions Virtualization (NFV) not only makes network programmable but also
provides approach to allocate network capacity for data flow among data cen-
tres. Second, in-transit stream processing which places the processing elements
or operators along the network between data source and the cloud. Third, as
launching of high-level abstraction frameworks (e.g. Google cloud dataflow [8])
and large amount of demands in IoT application, researchers have tried to find
solution to reduce latency in the field of edge and fog computing.

Moreover, the key challenges mentioned in section 3.2 must be considered.
It is always beneficial to pursue high QoS. However, there may be a trade off
between low latency and high throughput [23]. For time management, man-
aging out-order data stream is still a thorny problem nowadays. (e.g. aligning
watermarks in different time domains from various data sources) As for paral-
lelization and elasticity, Röger and Mayer [17] also pointed out the trend of edge,
fog, in-network computing. They encouraged considering such computing with
heterogeneous environment.

4 Conclusion

As the evolution of event stream processing in decades, the researchers and devel-
opers improve the ESP systems from one generation to the next. The challenges
and limitations for devising ESP systems are considerable, so only several repre-
sentative key challenges are included in the work. Also, a large amount of ESP
frameworks had been launched with strategy confront these challenges while I
single out four frameworks to introduce their characteristics and details. To con-
clude this work, I try to summarize the answers for the main research question
and the sub-questions as follows.
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• RQ1: What is the future direction of development of the event stream pro-
cessing framework?

It is hard to identify a specific future direction for ESP since the current frame-
works still confront the challenges and limitations. Some researchers provided
their views and encourage exploring the edge computing for the next genera-
tion of ESP. As a result, with edge computing, the frameworks will be more
distributed by placing multiple data centres and processing elements in them.

Also, software define framework and network functions virtualization pro-
ducing programmable networks benefit the data flow between data centres. Pro-
grammable networks provide the ability to allocate network capacity among data
centres.

In-transit stream processing is another issue or direction to investigate. It
places the processing element along the network between source and the cloud.

Moreover, some researchers focus on the online event processing [14] in order
to solve the problems in transaction-processing domain.

In addition, the edge computing combined with heterogeneous environment
can be another direction to explore. The directions mentioned above are relevant
to the trend in forth generation framework provided in Table 2. Finally, I list
them as follows in order to provide a concise overview of these directions.

- Edge computing for more distributed environment
- Programmable networks
- In-transit processing systems
- Online event processing
- Heterogeneous architectures [15]

• RQ1.1: What is event stream processing? What are the key challenges of
event stream processing?

A clear definition of event stream processing is provided followed by a classifica-
tion (type) of ESP systems. This way, we can not only understand what ESP is,
but also recognize what ESP systems do and what their difference are. The char-
acteristics and example frameworks of two types of ESP systems (GP and CEP)
are provided. Moreover, 4 key challenges for ESP are selected: quality of service,
storage, time management, parallelization, and elasticity. They are all relevant
and representative not only for previous ESP systems but also for current ESP
frameworks. For QoS, a performance mechanism for ESP systems, there may
be a trade off between high throughput and low latency. For storage, the ESP
should support various operations to maintain flexibility and efficiency. For time
management, it is hard to deal with out-of-order data. For parallelization, each
case of parallelization confront different limitations, such as traffic increasing in
network, scalability and load balancing etc. For elasticity, it is hard to plan a
allocate and release strategy; also hard to do such actions for the strategy.

• RQ1.2: What are the modern frameworks for event stream processing?
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The Table 2 introduces the generations of ESP system which give us an
overview of evolution of ESP frameworks. To be short, the first generation is
the extension of DBMS; the second generation start focusing on distributed
work; the third one enables the user defined functions and supports explicit state
management; the forth are still emerging and focusing on the edge computing
field.

Four current ESP frameworks are illustrated in section 3.3, which are Apache
Storm, Apache Samza, Apache Flink, Spark Stream. Each of them are repre-
sentative for modern ESP frameworks. For Storm, a topology concept and the
executors: spouts and bolt, should be emphasized. For Samza, the deployment
system: YARN, and the message broker: Kafka, are its important features. For
Flink, a job manager, task managers, and checkpointing with watermarks are
impressive. For spark streaming, it introduce RDD and DStream which make
ESP more reliable and fault-tolerant.
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