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Abstract

Federated learning is a multi-part collaborative machine learning system. Unlike
traditional centralized machine learning, federated learning transfers training tasks
to the client side and only sends the model parameter results to the server. In
addition, by introducing more user participation, federated learning can expand the
training data set as a whole, thereby improving the quality of the overall model.
This article mainly explores the privacy challenges and protection technologies in
federated learning. First, the preliminary knowledge and threat models are intro-
duced. Second, the privacy vulnerabilities of federated learning are summarized
from the aspects of attacks. Third, the research achievements are summarized
according to the privacy protection solutions including homomorphic cryptosystem,
secure multi-party computation and differential privacy. Finally, by comparing
these solutions, the future research is prospected.

1 Introduction

As machine learning algorithms have shown obvious advantages in most recognition-related fields, a
large amount of intelligence applications have emerged in many industries. However, with the rapid
development of data-driven intelligent applications, the machine learning paradigm is also facing
new dilemmas and challenges[1]]. On the one hand, the machine learning paradigm hopes to provide
all users with a robust and efficient functional service. On the other hand, data as the "nutrition" of
the learning algorithm is difficult to fully share[2]. Moreover, due to the need to store a large amount
of data in a centralized manner, traditional machine learning often causes the problem of privacy
leakage of the original data owner and even triggers some more serious social problems, such as the
data leakage incident of Facebook[3]]. To this end, many stringent and comprehensive regulations to
protect user privacy have been introduced. An example is the General Data Protection Regulation
(GDPR) promulgate by the EU. The passage of these regulations and laws effectively protects user
privacy, but it also restricts the development of machine learning, making data difficult to mine and
use.

Federated learning was first proposed by Google to establish a sharing model between mobile
terminals and servers[4]. In federated learning, the participants upload the updated parameters
to the server after training on the local data, and then the server aggregates to obtain the overall
parameter and final model. Considering that the raw data does not need to be shared and will not
leave the owner’s local device at all, this framework can guarantee the protection of the privacy of
each participant[S]]. The training phase of federated learning model mainly includes the following
steps:

1. Participants download the global model from the cloud server.
2. Clients train the model on local data to obtain new model parameters.

3. Clients send the latest model update to server.



4. Server receives multiple model updates and takes a certain way to aggregate to update the
global model.

Although such a training method of exchanging model parameters without sharing original data can
effectively protect the privacy of users, federated learning still faces some privacy threats. Some
researches have shown that malicious participants can reversely infer the user’s sensitive data based
on the differences in the federated learning gradient parameters in each iteration. Therefore, federated
learning needs protect the privacy of parameter transmission and storage during the training process.
The attackers can act as clients, server or model analyst to make use of sensitive information contained
in parameter updates to perform model inversion attacks or model extraction attacks.

In order to combat these attacks, many researches have explored the application of privacy-preserving
technologies in federated learning. The current methods are mainly divided into two categories, one
is encryption methods, such as secret sharing, homomorphic encryption, SMC, etc.; the other is data
perturbation methods, such as differential privacy. Encryption methods provide effective means for
data privacy protection by encoding plaintext into ciphertext and only allowing specific persons to
decode it. However, they often require large computational overhead and are more difficult to apply
in actual scenarios. Data perturbation methods refer to adding randomized noise to the data to avoid
potential privacy information inference from the intermediate parameters. It is more lightweight but
it will affect the model performance. Therefore, it is critical to balance between privacy and usability.

The topic of this literature study is "Privacy protection in federated learning". Therefore the research
questions and the motivation are as follows:

* Ql: What is federated learning? How is its development? What is its current concern?
I try to summarize the framework, development and current concerns of federated learning.

* Q2: What is the privacy threat to federated learning? How to attack?
I try to analyze in detail the various privacy threats faced by the federated system from the
perspective of federated learning attacks, and systematically classify and summarize the
attack methods.

* 03: How do defend against the above privacy threats? What are these privacy protection
techniques’ pros and cons? How is the application of these techniques to FL?
In response to the privacy threats, I try to analyze the existing privacy protection technologies
in federated learning.

* (04: What is the future research direction of privacy protection in FL?
I try to identify the inadequacy of current researches and propose the potential future work.

2 Federated learning

As mentioned above, the main purpose of federated learning[4] is to jointly train machine learning
models with the help of private training data generated by multiple mobile devices. Data privacy
involving distributed mobile users can be protected by uploading only model parameters (such as
gradients) instead of uploading original data. The training samples on a particular device usually
follow the mobile user’s preferences, so the distribution characteristics of multiple training data are
unbalanced (or non-independent and identically distributed). Since federated learning has significant
advantages in the model training stage compared with traditional machine learning methods, this
article will focus on analyzing and researching the main characteristics of this stage. The training
phase of the complete federated learning model mainly includes the following steps|[6, [7]].

1. Initialization: All users have obtained a pre-allocated neural network model in their devices.
They can voluntarily join the federated learning protocol and determine the same machine
learning and model training goals.

2. Local training: In a certain round of specific communication process, the federated learning
participants first download the global model parameters from the central server, and then use
their private training samples to train the model to generate local model updates (ie model
parameters), And send these updates to the central server.

3. Model average: The next round of global model can be obtained by aggregating all model
updates obtained from different training samples and performing average calculation.



In the federated learning process, the above steps will be performed iteratively to achieve the purpose
of optimizing the current global model. The entire iterative process will stop when the global model
parameters meet the convergence conditions.

2.1 Classification of federated learning

According to the different data segmentation, three basic frameworks of federated learning are
proposed, which are vertical federated learning, horizontal federated learning and federated transfer
learning.[2019federated]. As shown in Table E], this classification method is considered from the
overlap of the user dimension and the feature dimension.

* Horizontal federated learning Horizontal federated learning framework is aimed at situa-
tions where each participant has the same sample but different feature spaces. It is mainly
used in B2B scenarios, such as two different companies from the same region, or collabo-
ration between a bank and an e-commerce company. Their customer set may be the same,
but their business scope is completely different. Yang Q et al.[2019federated] design an
implementation of this architecture, which requires a large number of encryption algorithms,
and has high computational and communication costs.

* Vertical federated learning Vertical federated learning is mainly aimed at situations where
the data of each participant has the same or similar feature space but different samples.
For example, two hospitals from different regions have very small customer intersections
but their businesses are similar. In addition, most B2C federated learning belongs to this
classification, such as learning for smart phone users’ input habits, or learning with pictures
and voices. Each user has different data, but the data structure is similar. Mcmahan et al.
post a vertical federated learning scheme for Android mobile terminal users[4]]. Bonawitz
et al. [[8] propose a secure aggregation scheme for this solution to guarantee privacy in the
model update process.

* Federated transfer learning Federated transfer learning is suitable for situations where the
data sets of all parties are not only different in samples, but also in different feature spaces.
This framework is only used as an extension of future federated learning, and it is difficult
to achieve secure and reliable federated transfer learning with existing technologies.

Table 1: Classification of federated learning

Classification Applicable scene Training method Privacy protection
Horizontal FL Same features but different samples  User dimension Differential privacy
Vertical FL Same samples but different features Feature dimension Encryption

Federated transfer learning  Different samples and different fea- Transfer learning
ture spaces

3 Privacy threat to federated learning

Federated learning realizes a mechanism that the data is not shared but the model is shared between
the participants. However, federated learning cannot guarantee individual privacy implied in the
data. In order to build a federal model, participants still have to send model parameters or gradients,
and such intermediate data are essentially a mapping of the original data according to certain rules.
Many researches have proven that a malicious participant can infer sensitive information of other
participants from the shared parameters or gradients[9, |10]. These attackers can act as clients, server
or even model engineer. From the perspective of participants, the threat model can be subdivided into
a honest-but-curious model and a malicious model. From the perspective of attack modes, attacks
can be classified into inference attacks, model extraction attacks, and model inversion attacks.

3.1 Classification of attackers
3.1.1 Honest-but-curious attacker

On the basis of complying with the security protocol, the honest-but-curious attacker will try to infer
or extract the private information from the intermediate parameters generated during the federated



learning process. At present, most researches on the offense and defense of federated learning assume
an honest-but-curious model. In real scenarios, due to the constraints of privacy regulations, most of
the participants conform to this kind of semi-honest but curious attacker assumptions and will not
attempt to carry out extreme malicious attacks. Honest but curious participants often act as clients.
They can explore all information received from the server, but they are not able to modify the training
process. Technologies like trusted execution environment (TEE) and security enclaves can limit the
impact of such attackers and the visibility of information in some cases, which weakens the threat
level.

3.1.2 Malicious attacker

For malicious attacker, the model’s security protocol setting will be more difficult. The malicious
attacker will not abide by any agreement, in order to achieve the purpose of obtaining private data,
any attack method can be adopted, such as destroying the fairness of the agreement, preventing
the normal execution of the agreement, refusing to participate in the agreement, and maliciously
replacing its own input without following the agreement. This will affect the design of the entire
federated learning setup and training process.

The malicious participant can be a client, a server, an analyst or a model engineer. The malicious
client can obtain all information received from the server in the training process and perform arbitrary
modification attacks. The malicious server can inspect the model parameters such as gradient updates
sent from the client, and tamper with the training process at will to launch an attack. A malicious
analyst or model engineer can access the input and output of the federated learning system and
perform various malicious attacks.

Comparing to honest-but-curious attacker, it will be more difficult to construct a secure federated
learning protocol against malicious attacker. The calculation and communication costs will be greatly
increased, and the design and implementation of the protocol will become more difficult or even
unusable.

3.2 Classification of attacks
3.2.1 Inference attack

As mentioned above, the federated learning mechanism requires all participants to upload model
parameters result of training the model on the local dataset. In this case, if the server is untrusted and
knowledge-rich, the participants’ privacy cannot be guaranteed. Such untrusted server can obtain a
lot of auxiliary information related to each client’s sub-model (such as model structure, user identity
and gradient), and has sufficient capacity to leak user privacy information. Inference attacks are more
concerned with restoring specific information in the data (often with higher accuracy), for example,
judging whether a specific data point or sub-dataset has been used for training is called membership
inference attack; judging whether the data used by other participants contains an attribute is called
attribute inference attack.

LT Phong et al.[11]] design a server-side inference attack, which uses periodically exchange model
parameters to calculate the private information of user training samples. However, this attack is
limited to a pure training setting, and local updates must be generated by training with a single
sample.

Melis et al.[[12] point out that the user’s unexpected information is likely to be inferred by malicious
users. The leaked information is likely to be used to construct certain passive and active attacks, such
as membership inference attacks. Different from server-side inference attacks, the only knowledge
that the malicious user has is the global model parameters generated by aggregation. Therefore, how
to obtain model updates of other users in each round of communication is a key issue in reconstructing
data samples||13]]. To this end, the attacker first obtains a snapshot of the global model parameters after
the model average, and saves these snapshots locally. Then, by calculating the difference between
subsequent snapshots, and further removing the newly added updates, the aggregation model updates
can be obtained from other users. In this way, the attacker can use the assistance of the auxiliary data
set to infer the data sample synthesized by all other participants[/14].



3.2.2 Model inversion attack

In model inversion attack, the attacker tries to get user privacy information from a simple-structured
algorithm model by dynamic analysis or calculation of similarity between data. Fredrikson et al. [|15]]
implements an attack to infer the patient’s sensitive genotype based on the medication linear model
with the basic information and prediction results of the patient.

In some complex algorithm models, using preset confidence to continuously modify the model can
successfully obtain the user’s true information under the condition of known sample labels[/16]], but
this method is only suitable for small training samples.

3.2.3 Model extraction attack

Model extraction attack is an attack proposed by Tramer et al.[17]] in 2016. The attacker try to infer
the parameters or functions of the machine learning model by sending data cyclically and viewing
the corresponding response results, thereby copying an attack method of a machine learning model
with similar or even the same function. Early model extraction attack is simple and the application
scope is limited. The research greatly improved the attack effect, and the scope of model extraction
attack was further enlarged.

The research results of Shokri et al. show that the training model has a certain "memory" effect on
the training data, and performing a reverse model attack on the basis of the extracted replacement
model will further increase its harm.

Table 2: Summary of Security Threats and Defensive Measures in Federated Learning

Attack Method Description Privacy protection

Inference Attack Infer the participating members based  Secret sharing;
on the auxiliary knowledge of the local Differential privacy
training model; or infer features based
on the global model parameters;

Model Extraction Attack Model extraction attack refers to the at- Secret sharing;
tacker trying to infer the parameters or  Differential privacy
functions of the machine learning model
and thus destroy the model confidential-
ity;
Model Inversion Attack ~ Model inversion attack refers to the at- Homomorphic encryp-
tacker use preliminary information to tion;
inverse-analyze the model and obtain pri- Hybrid defence scheme
vate data inside the model. Note: mem-
bership inference attack is aimed at a sin-
gle piece of training data, while model
inversion attack tends to obtain statistical
information

4 Privacy protection technology

In response to the multiple privacy threats faced by federated learning, this section discusses some of
the latest countermeasures against the above-mentioned attacks.

4.1 Differential privacy

In federated learning, all participants can obtain global parameters from the server. Malicious
attackers analyze the sharing model, leading to the risk of privacy leakage of other participants.
Although homomorphic encryption can protect the learning process by computing encrypted data,
these tools require each data source to perform a large number of encryption operations and transmit a
large amount of ciphertext, which makes them a burden on the entire system. For a federated learning
system, it is very important to choose an algorithm that is relatively simple and does not cause



additional overhead on performance. Among these different privacy methods, differential privacy is
widely used due to its powerful information theory guarantee, the simplicity of the algorithm and the
relatively small system overhead. In the current federated learning, the differential privacy method is
mainly used in the vertical learning framework in the B2C scenario.

Differential privacy technology can ensure that the shared model will not leak the information of
the data provider, that is, it can defend against membership inference attacks to a certain extent.
The research results show that when the number of data providers is large, the privacy differential
technology can protect the privacy of data providers with a small performance loss [18]]. Differential
privacy also has certain limitations. It can only provide privacy protection for a single record. If there
is a certain correlation between different records, the attacker can still perform membership inference
attacks on algorithms that satisfy the differential privacy protection [[19].

Set a random algorithm F', R is a set of all possible outputs, if for any two adjacent data sets D and
D’, and any subset S of R, there is

Pr[M(D) € S]a*Pr[F() € S]+¢

It is said that the algorithm M satisfies -differential privacy. The bigger the ¢, the higher the accuracy
of the model of algorithm F', but the lower the level of privacy protection. The comparison of
differential privacy models is shown in Table[3]

In addition, it is difficult to balance between privacy protection budget expenditure and federated
learning efficiency. This is because a lower privacy protection expenditure budget may not be very
effective for some large-scale attacks while adding more noise and disturbance will may severely
compromise model performance.

4.1.1 Local differential privacy

In local differential privacy, the training of data and the privacy-protection method can all be realized
on the client. Intuitively, local differential privacy mechanism is obviously superior to other solutions,
because users have full control over the use and release of data, and do not need a central server,
which has the greatest potential to achieve decentralized federated learning in a full sense. Abadi et
al.[20] propose deep learning scheme that combines the DP mechanism with the SGD algorithm to
achieve privacy protection. The method mainly uses noise to perturb the local gradient after each
iteration. After the advent of federated learning, there have been many studies suggesting that the
solution applies to federated learning barriers[21} 5]

Geyer et al.[22] propose a federated optimization algorithm for differential privacy protection of
participants—differential privacy stochastic gradient descent algorithm. It proves the effectiveness of
differential privacy to protect the data privacy of data holders. Meanwhile, it is proved that a large
number of data holders will make the federated learning with differential privacy behave more stable
and more accurate.

In order to improve the practicability of overly strict local differential privacy protection, the protection
mechanism can be redefined [23]], which not only ensures the security of sensitive information, but
also relaxes the restrictions on data, and designs a new local optimal differential privacy mechanism.
Solve statistical learning problems of all privacy levels, suitable for large-scale distributed model
fitting and federated learning systems.

However, there are still many problems in the local differential privacy itself and its application in
federated learning. The first is that the amount of samples it needs is extremely large. For example,
Snap applied local differential privacy to the training of spam classifiers, and finally collected
hundreds of millions of samples from users to achieve high accuracy. Google, Apple, and Microsoft
[24] have deployed a large number of local differential privacy on user devices to collect data and
conduct model training. Compared with the training of a noise-free model, the amount of data
required is often up to 2 orders of magnitude. Secondly, with high-dimensional data, it will be more
difficult for local differential privacy to achieve a balance between availability and privacy [25].
In addition, in the decentralized federated learning scenario, because there is no coordination of
the central server, participants cannot know the sample information from other participants, so it is
difficult to determine the size of the random noise they add, and the uneven distribution of noise will
seriously reduce the performance of the model.



4.1.2 Central differential privacy

When differential privacy methods were first proposed, most of them adopted a centralized form. A
trusted third-party data collector aggregated the data and perturbed the data set to achieve differential
privacy. Federated learning under the B2C architecture can also achieve this kind of perturbation on
the central server. Geyer et al.[22] improves the performance of framework mentioned above[20]],
collects the updated gradient of users on the server side, and hides the contribution of each node
by adding noise; They also prove that the centralized noise addition scheme can achieve user
level differential privacy rather than just the data point level of local differential privacy, which
means that it will not expose any participants of the training; finally, the experiment proves that
the model performance of this method precedes local differential privacy. The work in [26] applies
Similar differential privacy and federated learning settings to the field of natural language processing,
establishes an associative word prediction model, and shows excellent accuracy in actual scenarios.

Centralized differential privacy also has shortcomings. It is limited to a trusted central server, but the
server cannot be trusted in many scenarios. Therefore, distributed differential privacy can be used as
a compromise between LDP and CDP, or hybrid differential privacy can be used to avoid some of the
shortcomings of the two.

4.1.3 Distributed differential privacy

Distributed differential privacy first aggregates the data sent by some users on several trusted interme-
diate nodes and implements privacy protection, and then transmits the encrypted or perturbed data to
the server side to ensure that the server side can only get the aggregated results rather than the data.
This solution requires the client to first complete the calculation and perform simple perturbations
(such as local differential privacy with a higher privacy budget) or encryption, and send the results to a
trusted intermediate node, and then use the TEE, SMC, secure aggregation[§]] or secure shuffling[27]]
and other methods to achieve further privacy protection in the intermediate nodes, and finally send
the results to the server.

In order to prevent intermediate parameters and participants from revealing to the central server,
secure aggregation can be applied. Local differential privacy can be combined to prevent the server
from getting additional information from the aggregated result, we can use local differential privacy.
Goryczka et al. [28] proposed such a distributed differential privacy framework. It allows clients to
add a small amount of noise before submitting data to trusted intermediate nodes. The intermediate
node will use a secure aggregation protocol to submit these values to the server after a second
perturbation, and the server can successfully calculate usable results based on these data.

Secure shuffling is another method except for secure aggregation. Bittau et al.[27]] proposed a
secure shuffling framework Encode-Shuffle-Analyze (ESA) in 2017. By adding an additional step of
anonymous shuffling, users only have to add a little noise locally to achieve a high level of privacy
protection. Erlingsson et al. [29] further improved this framework and considered the combination
with federated learning.

Distributed differential privacy solutions have the advantages of both local and central differential
privacy. They do not require a server with a very high level of trust, nor do they need to add too much
noise locally. In contrast, distributed differential privacy generally requires high communication cost.

4.1.4 Hybrid differential privacy

Avent et al. [[30] propose the hybrid differential privacy scheme, which classifies users based on the
different trust relationships between clients and servers. For example, the user who least trusts the
server can apply the local differential privacy with the lowest privacy budget, while the user who
trusts the server the most can even send the original parameters directly; the server will also process
the data to varying degrees according to the user’s trust relationship.

The problem with this scheme is that additional communication cost and preprocessing cost are
required to divide the trust relationship.



Table 3: Comparison of differential privacy models

Classification

Terminal perform-
ing perturbation

Advantages

Disadvantages

Local differential

privacy

Central differential
privacy
Distributed differen-

Clients

Server

Trusted node be-

users have full control over the
use and release of data; No
need for any trust relationship

High accuracy

Low perturbation to achieve

Privacy and usability are difficult
to balance; Model performance is
affected;
A highly trusted central server is
needed;
The server can inspect each round’s

tial privacy (secure tween client and high privacy, no need for a aggregated report (information may

aggregation) server trusted central server be leaked); Not valid for sparse vec-
tors; A semi-honest server is as-
sumed;

Distributed differen- Trusted node be- Low perturbation to achieve Need a credible intermediary;The

tial privacy (secure tween client and high privacy, no need for a differential privacy guarantee of the

shuffling) server trusted central server shuffle model is reduced in propor-

tion to the number of hostile partic-
ipants of the calculation;

4.2 Encryption method

Encryption is the most basic method in security. The plaintext information is encoded through an
encryption algorithm to become a ciphertext that only a specific person can decode within a valid
time. Considering the huge computational overhead of encryption algorithms, there have been only a
few attempts to apply encryption for machine learning. However, in federated learning, the hidden
cost of data privacy and security is much higher than the computational cost, making encryption
algorithms get more attention.

4.2.1 Secret sharing

Secret sharing[31] refers to dividing the data originally to be transmitted into multiple parts, and then
sending them to each participant in turn. However, the original data cannot be restored by only one or
a small part of the participants, and the original data can only be restored when a larger part or all of
the participants put their respective data together.

The secret sharing mechanism is suitable for solving the situation of sensitive information leakage
when a malicious server participates in the training of federated learning. As the aggregator of the
shared model, the server can easily obtain the model parameter information of each data provider,
which poses a huge threat to the privacy of the data provider. This can be prevented by secret sharing
mechanism.

(n,t) Secret sharing is a commonly used means of sharing secret information where n is the number
of secrets divided (after the secret is divided into n parts, they are kept by n participants, and each
participant keeps 1 copy), t is the number of users participating in the recovery of secrets. The
algorithm divides the secret information s into n, which are kept by n different participants. Any
t participant cooperation can recover the secret information s, and less than ¢ participants are not
able to recover the secret information s. By means of secret sharing, the ownership of the secret is
distributed to each participant, rather than a specific manager or participant, to avoid the leakage of
the secret due to a single manager or participant being attacked, thereby ensuring the privacy and
information. According to actual needs, threshold secret sharing can be applied to determine at least
how many participants are needed to recover data.

Bonawitz et al. [32]] designed a practical security aggregation scheme based on Shamir secret sharing.
In face of the threat of an honest-but-curious server, this scheme can guarantee the security of the
intermediate model parameters and thus protect participants’ privacy. Meanwhile, considering the
features of federated learning, the scheme controls the protocol complexity, thereby reduce the cost
of computation and communication. However, the scheme is not effective for collusion attack.



4.2.2 Homomorphic encryption

Homomorphic encryption [33] is a special type of encryption function based on the homomorphism
principle. It focuses on the security of data processing. It allows the encrypted data to be processed
directly without knowing any information about the decryption function. In other words, other people
can process the encrypted data, but they cannot know any original data information during the process.
At the same time, the calculation result based on homomorphic encryption is consistent with the
calculation result directly on the unencrypted data.

Homomorphic encryption defines x and y as elements in the plain text space M, o is the operation on
M, and Ek() is the encryption function with key space K. If there is an effective algorithm F, such
that:

F(Ek(z), Fk(y)) = Ek(zoy)

It is said that the encryption function Ek(-) is homomorphic to the operation D. In most applications,
the homomorphic encryption scheme needs to support two basic and typical operations, namely,
additive homomorphic operation and multiplication homomorphic operation. A function that satisfies
both additive homomorphism and multiplicative homomorphism is called a fully homomorphic. The
data owner encrypts the data before transmitting the data. The cloud server calculates as usual after
receiving the data, but only on the ciphertext. After the result is obtained, the ciphertext of the result
is returned to the data holder, and the data holder can obtain the final result after decryption. The
use of encrypted data transmission can effectively defense against malicious(or semi-honest) server.
Homomorphic encryption has strong privacy protection capabilities, but its efficiency is difficult to
improve because data encryption process brings more computation overhead and slower computation
speed[33]].

Using homomorphic encryption, the server aggregates the cipher text parameters and cannot obtain
the user’s privacy parameters. Ho Q R et al. [34] use homomorphic encryption to implement a privacy
protection protocol of horizontal linear regression. Hardy S et al. [35]] use entity resolution and
homomorphic encryption to conduct privacy-protected federated learning on vertically distributed
data.

Aono Yoshinori et al.[36] propose a new deep learning system based on honest-but-curious cloud
servers. It uses a homomorphic encryption scheme to achieve the aggregation of gradients on honest
and curious servers, and ensures that the system reaches the joint data set with all participants. The
trained corresponding deep learning system has the same accuracy.

4.3 Encrypted computation environment

4.3.1 Secure multi-party computation

Secure multi-party computation(SMC) proposes a privacy protection scheme for the collaborative
computation problem between a group of untrusted parties. Secure multi-party computation ensures
that the independence of input, the correctness of calculation, and decentralization are not affected.
At the same time, each input value is not disclosed to other members participating in the computation.

In other words, SMC aims at the problem of how to safely calculate an agreed function without a
trusted third party. Each participant is restricted to not get any input information from other entities
except for the calculation result. Throughout the execution of the calculation agreement, the user
always has control over the personal data, and only the calculation logic is public. These features
make secure multi-party computation a preferred technology in a federated learning environment.

Aono et al. [36] point out that in collaborative learning, even if users upload few local parameters,
their private data information is likely to be secretly stolen by untrusted servers. Secure multi-
party computation ensures that the independence of input, the correctness of computation, and
the decentralization of features are not affected, and at the same time, each input value is not
leaked to other members participating in the computation. In addition to the computation results,
each participant cannot get any input information from other entities. During the execution of the
computation agreement, the user always has control over the personal data, and only the computation
logic is public.



Mohassel et al. [37] has proposed an SMC protocol that supports two participants to perform machine
learning under the semi-honest assumption. These works have laid the foundation for the future
application of SMC in federated learning.

4.3.2 Trusted computing environment

Trusted computing (TC) is a study launched by the Trusted Computing Group (TCG), hoping to en-
hance the security of various computing platforms through dedicated security chips (TPM/TCM)[38]].
Compared with trusted computing, TEE is more conducive to the use of portable devices. Because
the security in this environment can be verified, part of the federated learning process can be placed
in a trusted computing environment.

Corresponding to TEE, the rich execution environment (REE) technology of traditional mobile
devices has openness, scalability and versatility. However, in the data privacy and security scenario,
an isolated and trusted environment is required to process keys and private data. Here TEE and REE
are isolated from each other and can only communicate with each other through specific ports. The
characteristics of the hardware mechanism protection of the trusted computing environment fully
guarantee the privacy and security of data.

Trusted computing environment plays a very good role in data protection for the federated learning
system, and provides protection for remote secure computing for privacy and other sensitive data.

5 Conclusions and future work

There are currently some review papers and results on the research and development direction of
federated learning. Bonawitz et al. [8|] summarize the three major problems in current federated
learning, mainly the communication bandwidth problem, the convergence problem of model training,
and the coordination problem with cloud service providers. Peter Kairouz et al.[21]] present an
systematical collection of recent advances, open problems and challenges of federated learning. In
addition, the existing solutions for privacy protection in federated learning are not convincing enough,
and they still have their own shortcomings.

This section summarizes the answers for the research questions mentioned in section 1:
e Ql: What is federated learning? How is its development? What is its current concern?

Section 1 and 2 give a detailed description of the development of federated learning. The basic
framework, categorization and current shortcomings are also analyzed and summarized.

* Q2: What is the privacy threat to federated learning? How to attack?

The attackers can be classified as malicious attackers and honest-but-curious attackers. According to
different authorities, they can perform model inversion attacks, model extraction attacks and inference
attacks. The detailed introduction is included in Section 3.

e 03: How do defend against the above privacy threats? What are these privacy protection
techniques’ pros and cons? How is the application of these techniques to FL?

In response to the privacy threats, the protection technologies including data perturbation, encryption
and secure computation environment are introduced in detail in Section 4. The privacy protection
scheme of over 20 papers is summarized, their advantages and limitations are analyzed.

e Q4: What is the future research direction of privacy protection in FL?

The balance of data privacy and availability As mentioned in Section 4, in the scenario of federated
learning, users need to independently add noise to achieve disturbance, which makes it more difficult
to achieve a balance between data privacy and usability. However, existing studies have proved
that as long as enough training participants are introduced, privacy and usability can be considered.
For example, Geyer et al.[22] find through experiments that a federated learning framework with
differential privacy protection in a scenario with 10,000 participants, After training, the accuracy
of the model can be exactly the same as that of federated learning without differential privacy in
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the scenario of 100 participants. Other studies from major companies[20, |29]] have also proved that
the introduction of a reliable differential privacy mechanism in federated learning means that the
demand for participants will increase by 2 to 3 orders of magnitude, and it will Greatly increase
communication and computing costs. With the help of centralized differential privacy or distributed
differential privacy, this will be slightly alleviated.

Future research needs to continue the balance between privacy, availability and data volume, such as
how to further compress the number of participants and training samples while ensuring data privacy
and availability.

Lack of trusted servers or trusted nodes Centralized differential privacy must be implemented by
a trusted server; and distributed differential privacy, even if secure shuffling or secure aggregation
strategies are introduced, it still requires a trusted intermediate node to achieve it. It is often difficult
to meet these conditions in real situations. Obviously, a trusted execution environment (TEE) can
be used as a solution (as described in 4.3.2). , TEE is generally deployed between the underlying
software and hardware, which is equivalent to a mini virtual machine supported by hardware. It calls
exclusive software and hardware resources under an open and transparent protocol, and can and can
only interact with a fixed network interface, which can provide Relatively high level of privacy and
trust.

However, introducing TEE into federated learning will bring other problems. For example, the
current TEE architecture can only access CPU resources, but cannot access GPU resources which
is commonly used in machine learning. In addition, TEE is also vulnerable to side channel attacks,
which will lead to the failure of TEE. Future work can further focus on the optimization of TEE and
the study of the combination of TEE and federated learning.

Huge communication and computation overhead Considering that in the federated learning sce-
nario, most users need to complete computing and communication tasks on mobile terminals. At
this time, the evaluation criteria for computing and communication costs are completely different
from traditional machine learning. In order to avoid encryption algorithms as much as possible,
researchers have proposed secure shuffling and secure aggregation methods, but this has brought
great communication overhead. The work in [[39] proves that the sparseness of the model update in
bits can effectively reduce the communication cost, but this will also increase the calculation cost,
and it is uncertain whether the reduction in communication cost brought about by this approach is
cost-effective.

Establish a unified privacy disclosure metric The existing federated learning frameworks such as
TensorFlow federated[40] does not consider the integration with SMC or DP applications. Therefore,
the development of a federated learning privacy protection enhancement framework is a research
direction that needs to be solved urgently.
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