A Review of Al-based Resource Allocation Approaches in
Cloud Environments

Li Zhong
1i.zhong@student.uva.nl
13509306

March 3, 2022

Abstract

Cloud computing, as a pay-as-you-go model, has become a popular choice in science and
industry because of its elasticity and simplicity. An efficient resource allocation mechanism is
necessary to completely lease the elasticity while minimizing the resources cost and meeting the
Service Level Agreement (SLA). In this paper, we study the application of Artificial Intelligence
(AI) in resource allocation for cloud environments. This research is divided into two categories:
resource provisioning in serverful clouds and serverless clouds. Serverless computing is a new
execution model of cloud computing, in which the cloud provider takes care of the servers and
resources on behalf of the cloud customers and releases the workload of users. Considering its
difference in execution and popularity recently, we will discuss it individually. In particular, we
survey the common challenges of resource allocation in clouds, and we investigate and compare
Al-based techniques in auto-scaling in normal clouds and serverless clouds.

1 Introduction

Cloud computing, as an emerging technology that delivers different kinds of services, such as data
storage, computing, and networking, is becoming increasingly popular. Cloud computing allows users
to deploy their applications elastically while ensuring the efficiency of the infrastructure and charges
only for resources actually consumed by users to save the total cost. There are three traditional
business models in cloud computing, including Infrastructure-as-a-Service (IaaS), Platform-as-a-
Service (PaaS), and Software-as-a-Service (SaaS) [I]. In recent times, a new paradigm appears in
cloud computing, which is serverless cloud computing or Function-as-a-Service (FaaS). Serverless
does not mean there is no server in the system, but it refers to the transfer of jobs about deploying
and managing resources on servers from application developers to service providers. Serverless cloud
computing reduces the workload of users and becomes more and more popular.

As a pay-as-you-go model, a well-performed resource allocation mechanism is necessary for
the cloud to meet the service-level agreement (SLA) while minimizing user cost and achieving the
elasticity of clouds. To make full use of the elasticity, it’s important to automate the whole process of
resource provisioning without humans’ intervention. The need of automating the process motivates
a lot of research on the field of auto-scaling, which aims to find effective approaches to dynamically
allocate resources more cost-efficiently without violating the SLA.

Because of the recent succcess of Artificial Intelligence (AI) in research problems in science
and industry, Al is getting increasing attention and appears in research about auto-scaling in
clouds. Commonly used Al algorithms include traditional machine learning methods and deep
learning methods, among which Reinforcement Learning (RL) is most popular as the mechanism of
dynamically allocating resources in the cloud.

In this report, we present a survey on the auto-scaling mechanisms of resources in serverful and
serverless computing environments. We will focus on Al-based resource provisioning methods, and
divide those methods into two categories, methods based on Reinforcement Learning and others,
to provide a complete review while maintaining the importance of RL in this field. To enlarge the
range of our topics, we also present some research in serverless clouds, which is expected to become
the default computing paradigm, largely replacing serverful computing and thereby bringing closure
to the Client-Server Era [2].

The rest of the report is organized as follows: Section 2 provides a brief introduction to the
process of resource allocation in clouds and identifies some challenges. The first part of Section
3 illustrates and classifies the proposed RL-based approaches in serverful clouds, and the second
part summarizes some other Al-based methods. Section 4 presents several Al-based methods in
serverless clouds, and Section 5 concludes and discusses the work of this report.

2 Resource Allocation in Clouds

2.1 Process of resource allocation

Resource allocation is a classic automatic control problem, which demands a controller that dynami-
cally tunes the type of resources and the number of resources allocated to reach certain performance
goals, reflected as the SLA. Specifically, it is commonly abstracted as a MAPE (Monitoring, Analysis,
Planning, and Execution) control loop [3] as shown in Fig

0 T I T

collect predict workload make decisions scaling
and and about operations are
summarize resource resource scaling performed
system sates utilization

Figure 1: The MAPE control loop

A monitoring system is necessary for resource allocation, which collects and summarizes the
states of applications and the infrastructure in runtime environments. Status information about
current systems and pre-defined SLA requirements between the provider and the client will then be
utilized by service providers to analyze and make plans for resource scaling.

Analysis and planning are stages where resource scaling mechanisms mainly participate. During
the analysis stage, resource allocation systems will collect and process the performance metrics from
the monitoring system and analyze current resource utilization. Some resource scaling approaches

will predict future resource demands of applications, which are called proactive methods. Methods
without the prediction stage are called reactive ones, which just respond to the current status of
systems and can not handle sudden bursts without performing any anticipation. Proactive methods
are usually more complicated and more stable than reactive methods by making enough anticipation.
In this report, most of the proposed works are about proactive methods.

In the planning stage, auto-scalers need to make decisions about whether to decrease or increase
the number of resources and what type of resources need to be scaled by considering both current
system utilization and SLA requirements. There are two types of resource scaling mechanisms:
horizontal scaling and vertical scaling. In horizontal scaling, the system is scaled out or in by
adjusting the number of assigned machines in the pool of resources to an application, such as the
WDMs of any type in normal clouds or the function instances in serverless clouds. On the other
hand, the number of machines will not be changed in vertical scaling. The system is scaled up or in
by adjusting the capabilities of individual machines, such as changing the CPU, memory, 1/O of
existing VMs or containers.

Execution of resource provisioning is a straightforward phase after determining the actual plans
of scaling actions and is implemented by cloud providers. Details of executing are hidden from
clients and beyond the scope of this paper. There is one thing to remember, that the time between

the resource being requested and the resource being available for work may cause delay and influence
the SLA.

2.2 Challenges in resource allocation

Runtime environments in clouds are complicated and user demands in clouds have high variance,
which makes the resource allocation more difficult and problematic. Several challenges need to be
considered and solved in the allocation of system resources:

Cold start delay Cold start delay is caused by the time between requesting resources and
resources being available. When new resources are allocated to the system, no matter new machines
or added capabilities of the machine, time is needed for the system to be reconfigured and for data
to be relocated. The startup time of VMs in normal clouds is usually in orders of fractions of a
second, and the latency of containers in serverless executions is largely dependent on each function’s
runtime dependencies and at times could grow to be even a few seconds [4], [5].

Resource efficiency Billing in cloud computing is based on a pay-as-you-go model, where
customers only need to pay for resources they actually consume, thus users want the efficiency of
resource utilization to be high enough to decrease the cost. In serverless clouds, the charge is only
for the resources provisioned during the execution time of applications, which is usually in the order
of milliseconds. Therefore, the allocation problem on serverless clouds is more complicated and
needs to be paid special attention in serverless clouds.

State management The runtime environment of clouds is complicated and is measured by
numerous metrics, including resource usage metrics, QoS metrics, and metrics related to configuration
aspects or the status of the deployed containers or VMs [6]. Those metrics demonstrate the status of
applications and resource utilization of the infrastructure, which provide information for auto-scalers
to analyze and plan the resource provisioning. However, the state space over a while can be extremely
large, slowing down the speed of analysis, thus an efficient definition of metrics is important when
designing the algorithm.

Diverse applications Types of applications on clouds are diverse, including compute-intensive
applications, such as scientific workload applications or deep learning applications, data-intensive

applications, such as data analysis applications, and cloud services, like user requests response
applications. Each type of application has different expectations and SLAs, and it’s hard to design
just one kind of resource allocation algorithm to meet the demands of all types of applications.

Those challenges increase the difficulty of implementing an efficient auto-scaler and there are three
main problems when scaling the resources: under-provisioning, over-provisioning and oscillation.
When the system is over-provisioning, there are more resources to use than those needed to satisfy the
SLA, which causes unnecessary costs for the client. On the contrary, in the under-provisioning case,
the system does not have enough resources to process all sub-tasks or user requests, and the SLA
requirement might be violated. Oscillation is where the system changes too quickly than the reaction
speed of auto-scalers, thus the system bounces from under-provisioning and over-provisioning.

As stated before, resource management schemes can be classified as reactive and proactive
categories which in the first case, when the workload increases/decreases to a predefined specific
threshold, resource management will be conducted [7]. Reactive methods lack anticipations about
future resource demands and usually cause over-provisioning when trying to meet the SLA. Although
proactive methods can make predictions about the status of the system, they still cannot make
completely accurate predictions and suffers from the three problems above. In this review paper, we
will introduce some previous works on resource allocation and analyze what aspects of challenges
they strive to solve.

3 Al based Resource allocation in cloud computing

There are four main different types of auto-scaling mechanisms in cloud computing, including static
and dynamic ones, which can be categorized into five classes: static threshold-based rules, control
theory, reinforcement learning, queuing theory and time series analysis [I]. In this paper, we mainly
focus on dynamic Al-based mechanisms, which can learn allocation rules from resource utilization of
runtime systems and adjust themselves without the intervention of system administrators. We first
introduce, compare and contrast previous works about the Reinforcement Learning (RL) method,
which is the most popular and powerful Al-based method on dynamic resource scaling. Then, we
introduce some other AT methods, such as Support Vector Machine (SVM), Markov Model or Neural
Networks (NN), to make our work more complete.

3.1 Reinforcement learning methods

Reinforcement Learning is dynamic planning algorithm, which can learn from states of systems
in the runtime and improve itself according to the received rewards after taking actions. These
properties make it suitable to plan resource provisioning in complicated and dynamic cloud computing
environments. In this section, some basics about the RL algorithm are given at first to help
understand, then some proposed works about RL are summarized and compared.

3.1.1 Basics of Reinforcement Learning

Reinforcement learning focuses on learning through direct interaction between an agent and its
environment [8]. The agent in resource scaling learns the best action to take based on the current
status of the application and infrastructure. Results of actions are measured by rewards received
after executing those actions, which need to be as high as possible when the agent or auto-scaler
decides a plan. Then the agent improves its rules about the action to take at different states based

the reward received in the previous steps in an iterative manner. The interaction between the agent
and the environment is shown in Fig

Action a

State St Reward Rt 1 Rt+1 St+1

Figure 2: The architecture of RL algorithm

RL algorithms in cloud resource provisioning are commonly divided into three types, containing
Q-learning, SARSA and Deep Q-learning. In Q-learning, the policy of mapping all system states to
their best actions are represented by the Q(s, a) value function and stored in a look-up table. After
taking action a, state s becomes to state s’, and its Q-value Q(s, a) is updated by considering both
the maximum reward of Q(s’, a’) and the direct reward by taking action a. In contrast to Q-learning,
SARSA is a more conservative strategy. When updating the Q-value, SARSA has already planned
the action for the future and is more sensitive to mistakes. However, Q-learning selects the direction
that maximizes Q-value each time it is updated and then re-selects the action in the next state. In
the Deep learning case, the table with @) values is replaced by a deep neural network to represent
the action-value function [6].

3.1.2 Review of previous works

Before applying RL methods in practice, three basic components have to be identified: the state
set, the action set and the reward metric. The first two elements are highly related to the scaling
mechanisms, and states and actions defined in horizontal scaling and vertical scaling are of big
difference. In horizontal scaling, states like input workload and number of VMs are mostly defined
and actions are like removing a VM, adding a VM or doing nothing. On the other hand, states in
vertical scaling are usually about the capabilities of resources in each machine, such as CPU and
memory. Actions are like adding or decreasing the number of resources in each machine or doing
nothing.

Agent in RL learns from the feedback of previous states and rewards of the system, and then
it tries to scale up or down the system by choosing the right action [9]. Some works integrate
RL algorithms into their reactive models and respond to the system when received signals, such
as the work by Barrett et al [I0]. This work creates an agent for each VM, which maintains its
own lookup table. These agents are trained in parallel, which is computationally expensive and
inefficient. Besides, the reactive model is unable to handle sudden bursts of tasks, thus it suffers
from over-provisioning when it tries to meet SLA requirements but causes a waste of money.

Other works employ reinforcement learning in a proactive way, which takes action in a fixed
period of time or predicts the need for scaling resources and makes scaling decisions when the need

is detected. One SARSA-based reinforcement learning method, RLPAS, is presented by Benifa et
al [I1I]. The purpose of this work is to dynamically provision the resources to maximize resource
utilization while reducing response time and increasing throughput. The states of this method
include the number of user requests and resource utilization statistics, throughput and response time.
The reward for state-action pairs is defined by the trade-off between application performance and
resource utilization. Researchers compared this method with one basic Q-learning algorithm and one
basic SARSA algorithm from reference works. After the experiment, they found that this method
can converge in a shorter time and performs better in the throughput and resource utilization than
another two baseline methods.

Asghari et al [12] proposed a resource management framework, RMFW | including scheduling
management, resource provisioning management, and VM management. This framework aims to find
a satisfactory compensation between several objectives, which are reducing user costs, maximizing
utilization of resources, and reducing job latency. It consists of multiple cooperative reinforcement
learning agents, which are assigned to different resources and are responsible for selecting the most
suitable task from all ready tasks. It uses the Markov game algorithm to integrate multiple learning
agents and calculate an overall reward for all agents. States in each learning agent are defined as
different resource utilization modes, and agents will take actions by selecting the next ready tasks
to execute. The reward is based on the association between resource utilization and execution time.
This Q-learning based reinforcement learning algorithm is tested in a simulation environment with
Workflowsim [I3] framework, and is compared with five previous works.

Bitsakos et al [I4] present the DERP (Deep Elastic Resource Provisioning) framework with three
different agents, including one simple Deep Q-learning agent and two complicated Deep Q-learning
agents. This framework was designed to reduce the complexity of a large size state space to increase
the speed of converging. It monitors the cloud system by several metrics that describe the resource
utilization, the number of user requests, and the number of clusters with different memory states.
In each state, the learning agent will choose one action from increasing one cluster, decreasing one
cluster, or doing nothing and will receive rewards to update the NN, which are determined by the
throughput and latency of jobs and the number of VMs. To evaluate the performance of their
framework, researchers deploy this method in Okeanos cloud services and test it in a real-world
environment. Experiment results show that it converges rapidly to the runtime environment and
manages to achieve the optimal behavior at most times.

Arani et al [I5] aims to deal with fluctuating demands and proposes a stable strategy. To minimize
total cost while maximizing resource utilization, it defines three discrete states: normal-utilization,
under-utilization, and over-utilization, inferred from the CPU utilization. The Q-learning based
scaling agent can choose to scale in, scale out or do nothing and receives rewards from one predefined
table, storing the transition matrix between states and actions. The experiment is simulated in the
Cloudsim toolkit [I6] with two real-world workload traces and compared to three baseline strategies.
Researchers define five performance metrics to evaluate the method: resource utilization, the number
of VMs, SLA violation, total resource cost, and profit. Similar to the work by Arani et al [I5],
this work in Arabnejad et al [I7] also aims at handling various workload traffics in the runtime
environments. It combines two standard RL strategies, i.e. Q-learning and SARSA, with fuzzy
logic. States about the system in this work are defined in a fuzzy manner, including nine states
about the workload and response time. It proposes two methods for reinforcement learning, fuzzy
SARSA learning (FSL) and fuzzy Q-learning (FQL) [17]. Experiments on an open-source ITaaS
platform, OpenStackﬂ with different workloads of user HTTP requests demonstrate the effectiveness

Thttps://www.openstack.org

and improvement of this method.

Besides resource utilization, some works also consider power consumption while maximizing the
throughput of jobs. Liu et al [I8] proposes a hierarchical framework to solve resource provisioning in
the global tier and power management in the local tier at the same time. It also combines the offline
pre-trained DNN with an online Q-learning agent to make accurate scaling decisions more rapidly
and decrease the dimensions of state-action pairs. States in the global resource scaling tier consist
of utilization requirement and job duration of applications and utilization level of the infrastructure.
The learning agent will obtain rewards by deciding the index of the server where the job is assigned
to and rewards are measured by the negative weighted sum of the total energy cost, the number
of VMs, and the reliability penalty. This method was compared with a standard round-robin VM
allocation policy, and experiment results showed that it saves the power consumption than the
reference work and achieves similar average latency.

Another different and novel method was proposed by Wei et al [19], which helps providers in
SaaS services to find the optimal policy of renting IaaS infrastructures to meet their clients’” demand
while minimizing renting expenses and maximizing resource utilization. It considers the different
types of VMs(on-demand and reserved) and corresponding different pricing models. The state
set of this Q-learning method includes all possible states that are related to a SaaS provider: the
workload of applications, the number of VMs of each type, and a time-stamp within the workload
period. The action set defines how many VMs of each type are to be assigned for the next execution
round, and rewards describe the total earnings SaaS providers can make via taking action a plus the
performance of the applications after action a. The experiment is designed to assess three kinds of
market situations: on-demand, reserved, and hybrid. In their experiments, the reward values reach
stability after several rounds and their method attains a satisfactory result.

3.2 Other methods

In addition to reinforcement learning based scaling mechanisms, other methods based on basic ma-
chine learning algorithms or statistical models are also extensively used in resource allocation. These
approaches are trained on pre-defined datasets and can be improved in real running environments to
save training time. This section introduce some previous works on resource scaling using traditional
ML algorithms, including Support Vector Machine (SVM), Markov Model, or Neural Networks
(NN).

To prove the hypothesis that the prediction accuracy of auto-scaling systems can be increased
by choosing an appropriate time-series prediction algorithm based on the performance pattern over
time [20], this work by Nikravesh et al in [20] conducts experiments under different performance
patterns to compare the accuracy of time-series based models on predicting future workloads. This
paper adopts SVM and Neural Network as their prediction model, considering that they are the most
effective prediction algorithms to predict future system characteristics [2I]. Finding suitable time
window sizes for these time-series models to include enough correlation between different periods but
avoid over-fitting at the same time is non-trivial work. Therefore, these two models are pre-trained
on the simulated workloads created by the TPC-W workload generator and are deployed and tested
against the testing dataset to fit the data and find the best hyperparameter. Researchers utilize
traditional evaluation metrics of regression problems, such as Mean Absolute Percentage Error and
Root Mean Square Error, to measure the performance of these models. Experimental results show
that SVM and NN outperform each other in different workload patterns, thus it’s useful to the select
most suitable prediction model according to the performance pattern.

Ajila et al [22] presents a machine learning classifier to improve QoS while reducing user cost as
much as possible by adjusting the number of Virtual Network Functions (VNFs) in the cloud. This
classifier learns seasonal patterns of traffic workloads from previous experience and considers the
underlying property of virtualization technology, such as the cold start time of virtual machines. By
defining about 20 features containing the information about the time of that day, measured traffic
at that time, and traffic change during the time interval, this classifier can learn temporal patterns
of traffic workloads. With the input of features describing the current status of the system, the
classifier will output the number of VNFs needed to handle current traffic. This classification model
is based on several popular ML algorithms, including decision-tree, Bayesian Network and Random
Forest, and experiment results demonstrate the promising accuracy of this classifier.

Simic et al [23] proposes a framework for applications about optimization problems. The
main component of this framework is an intelligent decision support engine for users to obtain
an optimization of the execution time of applications and resource cost. This decision engine is
based on artificial neural networks (ANN) and metaheuristics, which can provide evaluation results
about the performance of the infrastructure in the aspects of job execution time and the cost of
resources. Through the decision support engine, this auto-scaling framework is able to determine the
optimal strategy to make a compensation between execution time and resource cost. There are two
ANNSs in this framework, one is for estimating the time of the whole decision-making process and
another is for estimating the total engagement time of computing resources. Combining these two
predicted outputs, the decision-making engine will recommend optimal parameters for the framework
to minimize the execution time for the application. Experiments about optimization applications in
real-world simulations show that this decision support engine can save the infrastructure cost with
the same job execution time.

Apart from traditional machine learning based scaling approaches, some works utilize Markov
models to allocate resources. Nikravesh et al [24] proposes an auto-scaling system based on the
Hidden Markov Model (HMM) to minimize resource cost while maximizing the performance of
applications. Hidden Markov Models, as improved versions of Markov models, can model time-series
data and capture patterns in data when states are not visible to make predictions. To thoroughly
describe system conditions, researchers define a metric set containing multiple performance metrics
about the application and the infrastructure. The historical data for experiments are created
by the TPC-W benchmark generator, 60% of which are for training and the rest are for testing.
According to the experiment result, their HMM framework can make effective provisioning decisions
approximately 97% of the time.

Based on the one-layer HMM published in [24], Runsewe et al [25] presents a Layered Multi-
dimensional Hidden Markov Model (LMD-HMM) to analyze resource allocation problems for big
data streaming applications to broaden the range of types of applications. The changing data
streams in big data streaming applications are highly unpredictable, thus those kinds of applications
are easy to suffer from resource oscillation. However, big data streaming applications have strict
requirements for job latency, which increases the difficulty of provisioning resources. To overcome
those challenges, the LMD-HMM in this work proposes three cooperative layers to make decisions,
including a data ingestion layer, a processing layer, and a storage layer with a scaling decision-making
model. The hidden workload-related states defined in this model, including the number of streams
and the arrival rate of workloads, help the model to capture the distribution of application workloads
and make predictions according to the probability distribution.

4 Al-based Resource Allocation in Serverless Clouds

As a new emerging computing paradigm in cloud computing, serverless cloud computing does obtain
a lot of attention and an increasing number of research works arise in resource allocation of serverless
clouds. However, the applicability of RL-based technology to optimize auto-scaling capabilities
in serverless environments has not been adequately investigated [26]. Therefore, this section will
introduce some Al-based auto-scaling mechanisms, especially those based on reinforcement learning,
to explore the development of reinforcement learning in resource provisioning of serverless cloud
computing.

4.1 Al-based methods

Resource provisioning for serverless functions is fine-grained spatially (i.e., small resource volumes)
and temporally (i.e., short available time) [27], which means that resource requests in serverless
environments are shorter and have higher variance than in serverful clouds. Those properties increase
the difficulties for serverless service providers to achieve a stable resource scaling mechanism while
meeting the SLA. This section present some Al-based strategies from previous works on resource
scaling in serverless clouds.

Bhattacharjee et al [28] implements an intelligent resource scaling agent to manage the compute
resources in their Deep Learning Prediction Services system in serverless clouds. This scaling agent
is based on the deep learning algorithm and is able to predict future resource demands with workload
patterns learned from historical data. Resource allocation in this work is mainly by horizontal
scaling, and when the agent detects the need of scaling up/down resources, i.e. VMs in this context,
it will increase/decrease the number of VMs. One novel idea of this work is that when the deep
learning agent detects the over-provisioning of resources, it will allocate resources to the low-priority
batch jobs by vertical scaling. Through the implementation of both horizontal scaling and vertical
scaling, resource efficiency is improved.

One container-based resource management system for serverless computing is proposed in Somma
et al [29], which combines the admission control function and resource provisioning function. This
self-adaptive system minimizes the application’s response time and resource cost while maximizing
the application’s throughput through reinforcement learning. The admission controller limits the
access to internal containers and the auto-scaler is responsible for adding or removing containers.
The auto-scaler defines states as a triplet set, describing resource utilization in the previous and
current loop and the number of containers, and adjusts the resource by adding or removing one
container or doing nothing. The reward function of this RL agent is defined as the blocking rate of
applications and the number of provisioned containers. Experimental results of comparison with the
open-source container manager Kubernetes prove the efficiency of this resource management system.

Some workload-based or request-based auto-scalers start the scaling action when a predefined
maximum number of workloads or requests that the system can process in parallel is reached.
Therefore, a suitable maximum number of workloads or the maximum concurrency level for different
types of applications is necessary to meet the SLA while increasing resource utilization. Schuler
et al [26] proposed one solution to this problem, which implements a Q-learning based agent for
automatically scaling resources in serverless clouds. States in this RL agent contain information
about resource utilization and the concurrency level. This agent allocates resources by adjusting the
concurrency level via decreasing or increasing 20 requests every time or doing nothing.

The auto-scaling method proposed by Zafeiropoulos et al [6] considers not only the workload

properties but also throughput, latency, and other SLA requirements. In order to examine the
provisioning performance achieved by their approach in different settings for different types of
applications, they proposed two kinds of state sets, continuous state set and discrete state set. RL
algorithms are implemented on the basis of Q-learning and DynaQ+ respectively and are tested in
each environment. After a series of comparative experiments, the results show that there is a minor
difference in scaling performance between continuous state set and discrete state set. Considering
that the discrete state set can save training time and storage, it can be a default choice in many
situations.

5 Classification of Previous Works
This section gives a deeper comparative analysis of the reviewed works according to defined

taxonomies. We propose three metrics that describe the QoS objectives accomplished in each work,
the types of conducted applications, and the types of adopted algorithms respectively.

Table 1: Allocation Methods in Clouds

Work QoS goal Application H/V R/P Algorithms Environments

Barrett2013 9] Performance, Cloud servicess H R Q-learning Serverful
Cost

Benifa2019 [IT] Utiliz., Response Workflow H P SARSA Serverful
Rime, Through-
put

Asghari2020 [12] SLA, Cost Workflow H P Q-learning Serverful

Bitsakos2018 [I4] Utiliz., Cost Cloud services H/V P Deep Q-learning Serverful

Arani2018 [15] Utiliz., Cost, SLA, Workflow H P Q-learning Serverful
Profit

Arabnejad2017 [I7] Response Time, Workflow H P Fuzzy Q-learning, Serverful
Cost Fuzzy SARSA

Liu2017 [18] Latency, Energy Workflow H P Deep Q-learning Serverful
consumption,
Throughput

Wei2019 [19] Utiliz., Cost Cloud services H P Q-learning Serverful

Nikravesh2015 [20] Prediction accu- Workflow H P SVM, NN Serverful
racy

Rahman2018 [22] Cost, SLA Workflow H P Machine Learning Serverful

Simic2019 [23] Execution Time, Workflow H P ANN Serverful
Cost

Nikravesh2014 [24] Performance, Workflow H P HMM
Cost

Nikravesh2014 [24] Latency, Cost Independent H P HMM Serverful

Tasks

Anirban2019 [28] Utiliz., Cost Workflow H/V P Deep Learning Serverless

Somma2020 [29] Response Time, Cloud Ser- H P Q-Learning Serverless
Throughput, Cost vices

Schuler2021 [26] Performance, Workflow H P Q-learning Serverless
Cost

Anastasios2022 [6] Throughput, La- Workflow H P Q-learning, Serverless
tency, SLA DynaQ+

10

QoS objectives in resource allocation contain application performance, such as latency, throughput
and response time, and resource utilization, such as user cost, resource efficiency and energy efficiency.
Applications in the cloud are divided into three types according to the criterion adopted by Gari
et al in [30], including workflows, independent tasks, and cloud services. Workflow applications
consist of a set of dependent and readily-executable tasks, while independent tasks refer to a series
of logically-related but independent tasks. Cloud services handle user requests or other types
of dynamic workloads. The RL algorithms are categorized into Q-learning, SARSA and Deep
Q-learning.

The comparative result of proposed methods in serverful and serverless clouds is presented in
Table [1} where H/V represents horizontal or vertical scaling, R/P represents reactive or proactive
models and Utiliz. represents resource utilization.

6 Conclusion

In this report, we surveyed research into resource allocation approaches based on Artificial Intelligence
in serverful and serverless clouds. We first briefly introduce the MAPE process of resource provisioning
and identify some challenges in scaling resources. Then we summarize and compare some proposed
research works in Al-based allocation methods in serverful and serverless clouds, according to the
aspects of QoS objectives, types of applications, scaling mechanisms, and adopted algorithms.

The main focus of our work is on Reinforcement Learning approaches, because of their effectiveness
and popularity. RL-based scaling strategies can be divided into three categories: 1) Q-learning; 2)
SARSA; 3) Deep Q-learning. One of the important findings of this research is that most published
works on serverful clouds are based on Q-learning or SARSA, but there are an increasing number
of papers adopt Deep Q-learning for resource scaling in recent times. Some papers also use other
techniques in Al such as Deep Neural Network or Random Forest. The second finding of our work
is that Reinforcement Learning is not commonly used in serverless clouds, and those papers we
discussed in Section 4 are mainly based on Q-learning or improved Q-learning.

References

[1] Tania Lorido-Botran, Jose Miguel-Alonso, and Jose A Lozano. A review of auto-scaling
techniques for elastic applications in cloud environments. Journal of grid computing, 12(4):559—
592, 2014.

[2] Eric Jonas, Johann Schleier-Smith, Vikram Sreekanti, Chia-Che Tsai, Anurag Khandelwal,
Qifan Pu, Vaishaal Shankar, Joao Carreira, Karl Krauth, Neeraja Yadwadkar, et al. Cloud pro-
gramming simplified: A berkeley view on serverless computing. arXiv preprint arXiv:1902.03383,
2019.

[3] Chenhao Qu, Rodrigo N. Calheiros, and Rajkumar Buyya. Auto-scaling web applications in
clouds: A taxonomy and survey. ACM Comput. Surv., 51(4), jul 2018.

[4] Amoghavarsha Suresh, Gagan Somashekar, Anandh Varadarajan, Veerendra Ramesh Kakarla,
Hima Upadhyay, and Anshul Gandhi. Ensure: Efficient scheduling and autonomous resource
management in serverless environments. In 2020 IEEE International Conference on Autonomic
Computing and Self-Organizing Systems (ACSOS), pages 1-10. IEEE, 2020.

11

[5]

(6]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

Liang Wang, Mengyuan Li, Yingian Zhang, Thomas Ristenpart, and Michael Swift. Peeking
behind the curtains of serverless platforms. In 2018 USENIX Annual Technical Conference
(USENIX ATC 18), pages 133-146, 2018.

Anastasios Zafeiropoulos, Eleni Fotopoulou, Nikos Filinis, and Symeon Papavassiliou. Reinforce-
ment learning-assisted autoscaling mechanisms for serverless computing platforms. Simulation
Modelling Practice and Theory, 116:102461, 2022.

Emanuel Ferreira Coutinho, Flavio Rubens de Carvalho Sousa, Paulo Antonio Leal Rego,
Danielo Gongalves Gomes, and José Neuman de Souza. Elasticity in cloud computing: a survey.
annals of telecommunications-annales des télécommunications, 70(7):289-309, 2015.

Richard S Sutton, Andrew G Barto, et al. Introduction to reinforcement learning. 1998.

Yahya Al-Dhuraibi, Fawaz Paraiso, Nabil Djarallah, and Philippe Merle. Elasticity in cloud
computing: State of the art and research challenges. IEEE Transactions on Services Computing,
11(2):430-447, 2018.

Enda Barrett, Enda Howley, and Jim Duggan. Applying reinforcement learning towards
automating resource allocation and application scalability in the cloud. Concurrency and
computation: practice and experience, 25(12):1656-1674, 2013.

JV Bibal Benifa and D Dejey. Rlpas: Reinforcement learning-based proactive auto-scaler for
resource provisioning in cloud environment. Mobile Networks and Applications, 24(4):1348-1363,
2019.

Ali Asghari, Mohammad Karim Sohrabi, and Farzin Yaghmaee. A cloud resource management
framework for multiple online scientific workflows using cooperative reinforcement learning
agents. Computer Networks, 179:107340, 2020.

Weiwei Chen and Ewa Deelman. Workflowsim: A toolkit for simulating scientific workflows in
distributed environments. In 2012 IEEFE 8th international conference on E-science, pages 1-8.
IEEE, 2012.

Constantinos Bitsakos, Ioannis Konstantinou, and Nectarios Koziris. Derp: A deep reinforcement
learning cloud system for elastic resource provisioning. In 2018 IEEFE international conference
on cloud computing technology and science (CloudCom,), pages 21-29. IEEE, 2018.

Mostafa Ghobaei-Arani, Sam Jabbehdari, and Mohammad Ali Pourmina. An autonomic
resource provisioning approach for service-based cloud applications: A hybrid approach. Future
Generation Computer Systems, 78:191-210, 2018.

Rodrigo N Calheiros, Rajiv Ranjan, Anton Beloglazov, César AF De Rose, and Rajkumar
Buyya. Cloudsim: a toolkit for modeling and simulation of cloud computing environments and
evaluation of resource provisioning algorithms. Software: Practice and experience, 41(1):23-50,
2011.

Hamid Arabnejad, Claus Pahl, Pooyan Jamshidi, and Giovani Estrada. A comparison of
reinforcement learning techniques for fuzzy cloud auto-scaling. In 2017 17th IEEE/ACM
international symposium on cluster, cloud and grid computing (CCGRID), pages 64-73. IEEE,
2017.

12

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

28]

[29]

Ning Liu, Zhe Li, Jielong Xu, Zhiyuan Xu, Sheng Lin, Qinru Qiu, Jian Tang, and Yanzhi
Wang. A hierarchical framework of cloud resource allocation and power management using deep

reinforcement learning. In 2017 IEEFE 37th international conference on distributed computing
systems (ICDCS), pages 372-382. IEEE, 2017.

Yi Wei, Daniel Kudenko, Shijun Liu, Li Pan, Lei Wu, and Xiangxu Meng. A reinforcement learn-
ing based auto-scaling approach for saas providers in dynamic cloud environment. Mathematical
Problems in Engineering, 2019, 2019.

Ali Yadavar Nikravesh, Samuel A Ajila, and Chung-Horng Lung. Towards an autonomic
auto-scaling prediction system for cloud resource provisioning. In 2015 IEEE/ACM 10th
International Symposium on Software Engineering for Adaptive and Self-Managing Systems,
pages 35-45. IEEE, 2015.

Samuel A Ajila and Akindele A Bankole. Cloud client prediction models using machine learning
techniques. In 2013 IEEE 37th Annual Computer Software and Applications Conference, pages
134-142. IEEE, 2013.

Sabidur Rahman, Tanjila Ahmed, Minh Huynh, Massimo Tornatore, and Biswanath Mukherjee.
Auto-scaling vnfs using machine learning to improve qos and reduce cost. In 2018 IEEE
International Conference on Communications (ICC), pages 1-6. IEEE, 2018.

Visnja Simic, Boban Stojanovic, and Milos Ivanovic. Optimizing the performance of optimization
in the cloud environment—an intelligent auto-scaling approach. Future Generation Computer
Systems, 101:909-920, 2019.

Ali Yadavar Nikravesh, Samuel A Ajila, and Chung-Horng Lung. Cloud resource auto-scaling
system based on hidden markov model (hmm). In 2014 IEEE International Conference on
Semantic Computing, pages 124-127. IEEE, 2014.

Olubisi Runsewe and Nancy Samaan. Cloud resource scaling for big data streaming applications
using a layered multi-dimensional hidden markov model. In 2017 17th IEEE/ACM International
Symposium on Cluster, Cloud and Grid Computing (CCGRID), pages 848-857. IEEE, 2017.

Lucia Schuler, Somaya Jamil, and Niklas Kiihl. Ai-based resource allocation: Reinforcement
learning for adaptive auto-scaling in serverless environments. In 2021 IEEE/ACM 21st Interna-
tional Symposium on Cluster, Cloud and Internet Computing (CCGrid), pages 804-811. IEEE,
2021.

Hanfei Yu, Hao Wang, Jian Li, and Seung-Jong Park. Harvesting idle resources in serverless
computing via reinforcement learning. arXiv preprint arXiv:2108.12717, 2021.

Anirban Bhattacharjee, Ajay Dev Chhokra, Zhuangwei Kang, Hongyang Sun, Aniruddha
Gokhale, and Gabor Karsai. Barista: Efficient and scalable serverless serving system for deep
learning prediction services. In 2019 IEEE International Conference on Cloud Engineering
(IC2E), pages 23-33. IEEE, 2019.

Gaetano Somma, Constantine Ayimba, Paolo Casari, Simon Pietro Romano, and Vincenzo
Mancuso. When less is more: Core-restricted container provisioning for serverless computing. In
IEEE INFOCOM 2020-1IEEE Conference on Computer Communications Workshops (INFOCOM
WKSHPS), pages 1153-1159. IEEE, 2020.

13

[30] Yisel Gari, David A Monge, and Cristian Mateos. A g-learning approach for the autoscaling of
scientific workflows in the cloud. Future Generation Computer Systems, 127:168-180, 2022.

14

	Introduction
	Resource Allocation in Clouds
	Process of resource allocation
	Challenges in resource allocation

	AI based Resource allocation in cloud computing
	Reinforcement learning methods
	Basics of Reinforcement Learning
	Review of previous works

	Other methods

	AI-based Resource Allocation in Serverless Clouds
	AI-based methods

	Classification of Previous Works
	Conclusion

