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Abstract

With the emergence of big data, various distributed parallel data pro-
cessing frameworks are developed to address the processing and storage
challenges. Among these frameworks, Apache Spark has become the de
facto open source standard for big data processing for its ease of use and
performance. However, Spark itself as a complex system is highly con-
figurable, while nowadays in the era of cloud computing, users also need
to determine the instances to be used before running the actual appli-
cations. Therefore, researchers purpose plenty of performance models in
aim of addressing the issue. A good performance model can help user to
tune the configuration parameters of Spark and choose the appropriate
execution environment. This report provided an overview of the existing
state-of-art in performance modeling of Spark.

1 Introduction

Nowadays, big data is becoming part of people’s daily life. Companies in all
kinds of sectors like banking[13], retail[2], healthcare[10] and IoT[25] are all
starting to make use of the massive amount of data generated and collected
to solve complex real-world data science question. Thus, numerous big data
frameworks have been introduced to address the issues with big data. The
two most influential open-source data parallel frameworks for large-scale data
analytics developed are MapReduce[11] and Apache Spark[31].

MapReduce is one of the earliest and widely-used distributed data-parallel
frameworks [11]. MapReduce exposes a simple programming interface, which
includes two stages called map and reduce. Map function takes a key-value
pair to generate a set of intermediate key-value pairs. The output of Mapper is
input for reducer in such a way that all key-value pairs with the same key goes
to same reducer. The Reducer will then aggregate the set of key-value pairs
into a smaller set of pairs as the final output. MapReduce is widely adopted by
users to tackle big data challenges, but the framework has several limitations.
Applications like machine learning and graph processing which are becoming
more and more popular require iterative processing of the data. In MapReduce,
the only way to share data across jobs is stable storge, so every job needs to
read the output of the previous job through HDFS, which incurs huge overhead.

To overcome the limitation of MapReduce, Spark was purposed with nu-
merous innovations[31]. Spark keeps in-memory states across iterations using
Resilient Distributed Datasets (RDDs). Data in Spark is expressed in RDDs
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which are immutable, partitioned collections of records and can only be built
through coarse-grained deterministic transformations. Instead of replication for
fault tolerance, lineage is used which has no cost if nothing fails. Two types
operations on RDDs are transformations for building new RDDs and actions for
computing results. Higher level abstraction of data using Dataframe is intro-
duced in Spark SQL which is similar to the widely used data frame concept in R
[5]. After submitted to Spark cluster, an application is divided into one or more
jobs, and each job is divided into a few stages according to the dependency rela-
tionship between the RDDs. Tasks in the same stage have no data dependence
between each other, thus they can be handled in parallel by executors. Due to
the better performance [24], rich APIs and optimizations for the complex needs
of modern data analysis, Spark has become the most popular large-scale data
processing framework in industry.

However, big data processing systems like Spark are complex systems with
a wide range of choices open to users. On the application side, users can have
different sets of Spark configurations tailored to different workloads. Each con-
figuration option of Spark will affect the performance of the workload in a
certain way. Moreover, configuration comes from different layers of Spark may
intertwine with each other in a complex way in terms of performance[29], which
only complicates matters. On the system side, in the era of cloud computing,
users will be forced to choose suitable number of specific instance types from the
cloud computing vendors. Each instance type have slightly different computing
and communication capability. Given so many options to opt for, it is often
quite hard for users to answer questions like ”What is the cheapest instance
configuration to finish this job given these configuration in one week” or ”What
will be the optimal Spark Configuration for this workload”. Researchers tried to
address these questions using performance modeling, which aims to help users
to choose from all kinds of options by understanding and modeling different
performance characteristics of various data-intensive applications.

The main objective of this paper is to conduct a literature review of the per-
formance modeling of Spark, where we want to figure out challenges and diffi-
culties in choosing suitable configurations for Spark applications, and what/how
performance modeling address this problem. This report is organized into the
sections described as below. First, relevant background information is intro-
duced in Introduction. Secondly, research questions and motivation behind are
described in Methodology. Then, related literature is organized to answer the
raised research questions in Literature Review. Finally, summary of this report
is included in Conclusions.

2 Methodology

In this section, we present the methodology used in this report. Google Scholar,
IEEE Xplore, ACM and ScienceDirect are used for searching and selecting pub-
lications. Only publications on establishing performance model on Spark or
solving certain Spark research questions based on performance model are in-
cluded. For those works that developed the performance model for solving
other research questions, and we only focus on the model itself. Some works
use simulation to address the problem of choosing suitable configurations, how-
ever these kind of models often require lots of simulation time and are hard to
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use[17], so we will only focus on performance models. In order to understand
what and how performance modeling is used in Spark, we establish the following
research questions:

• Q1: What is the objective the modeling? The goal of this question is to
understand that the use case of the purposed model. This could be the
execution time, the resource usage, the optimal configuration set, etc.

• Q2: What approach is used for building the model? The goal of this
question is to understand what kind of model is used for modeling the
performance of Spark. Performance model can be grouped around three
approaches: white-box, black-box or grey-box. White-box model or ana-
lytical model needs to symbolize the interactions between various system
internal components which needs a strong understanding of the underlying
system, while black-box model or machine learning model needs histori-
cal performance data of the workloads to establish a model which learns
the relationship of performance with the interactions of the system com-
ponents automatically. Grey-box model is a combination of white-box
model and black-box model and is intended for taking the best of both
approaches.

• Q3: What is the testbed for the evaluation? The goal of this question is to
evaluate the scalability of the models. The accuracy of models developed
and evaluated using a small number of nodes is probably doubtful if they
are used under many nodes, which is often the case for large-scale compute-
intensive applications in industry.

• Q4: What are workloads for evaluation? The goal of this question is
to understand the adoptivity of the model. Different types of workloads
have different performance characteristics. Some are CPU bound while
some others are network I/O bound. Apache Spark now as a unified
engine for large-scale data analytics is expected to execute different types
of workloads instead of only iterative ones.

Besides the questions listed above, we also want to identify challenges in
this field. We want to discover tradeoffs, considerations or pratical issues when
building the performance models in the literature.

3 Literature review

In this section, we will review the existing state-of-art in performance modeling
of Spark. In section 3.1, we presented a thorough summary of existing works in
chronological order. In section 3.2, a taxonomy of performance models built is
built based on the research questions to identify the research trends.

3.1 Literature summary

Wang and Khan [28] purposed a fine-grained white-box model to predict exe-
cution time and I/O cost, under the same instance configuration. The model
built is a hierarchical top-down fashion, firstly job time, secondly stage time
and lastly task time. In order to predict the performance, various performance
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metrics like run time, I/O cost and memory cost need to be collected. The
number of tasks will be executed in the actual job is the main factor for predict-
ing the performance for the actual job. The model is evaluated on WordCount,
Logistic Regression, KMeans clustering and PageRank using a 13 node cluster
with heterogeneous nodes.

Wang et al. [27] purposed a black-box model to predict the execution time
with Spark configurations and the size of input data. For collecting training
data, random search is performed over the parameters and select values uni-
formly random from the values. A binary classification model is built to predict
whether the execution time of a job based on a set of configuration parame-
ters values is improved. The ones classified as improved will be further used
a in finer-grained multi-classification model based to the improvement. The
model is tested on a 4 node cluster with heterogeneous nodes using Grep, Sort,
WordCount and Naive Bayes.

Venkataraman et al. [26] purposed a grey-box model to predict the execution
time based on a specified instance configuration, given the job and input data
size. To be more specific, they summarised high-level computation and commu-
nication patterns in Spark and tried to predict the overall execution time using
linear regression model. Only input data size and number of nodes are used as
features in the model. For computation patterns, time is positively correlated
to input and negatively correlated to number of nodes. For communication
patterns, tree dag communication has logarithmic relation with time, all-to-one
communication has linear relation with time, and one-to-one communication is
a constant factor in time. Instead of collecting the training of all the combi-
nation of input data size and number of machines, they made use of optimal
experiment design from Statistics which is supposed to minimize the trace of
the matrix that represents all the options, while the matrix is subjected to a
bounded total budget. The model was tested on various machine learning al-
gorithms in the MLlib in Spark using AWS. The number of nodes used ranges
from 16 to 64.

Islam et al. [16] purposed a grey-box model to predict the execution time
based on the number of executors. They model the relationship between time
and the number of executors using power function. The basic idea behind the
power function is that adding too many executors can cause overheads due to
serialization, de-serialization and intensive shuffle operations in the network.
Three types of applications are tested only on 2 worker nodes: WordCount,
Sort and PageRank.

Marco et al. [19] used black-box models to predict the memory footprint.
For an incoming application, the framework first extracts the features of the
program using system-wide profiling tools including vmstat, perf and PAPI.
Based on the feature values, it predicts which of the off-line learned memory
functions best describes the memory behavior of the application based on KNN.
It then instantiates the function parameters by profiling the application on some
small sets of the input data items. The framework is evaluated using HiBench,
BigDataBench, Spark-Perf and Spark-Bench on a cluster with 40 nodes.

Alipourfard et al. [1] used black-box model to generate the optimal or near-
optimal instance configuration that minimize cloud usage cost, guarantee ap-
plication performance and limit the search overhead. To be more specific, the
model is based on Bayesian Optimization, which estimates a confidence inter-
val of the cost and running time of each candidate cloud configuration. It has
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two functions. Prior function is used for black box modeling, while acquisition
function is used for choosing the next configuration based on the calculated ex-
pected improvement in comparison to the current best configuration. When the
expected improvement is less than a threshold and at least N cloud configura-
tions have been observed, the model stops the search. The model is evaluated
using TPC-DS, TPC-H, TeraSort, SparkML Regression and SparkML Kmeans
using 5 AWS instance types with 30-854 GB RAM and 12-112 cores. The frame-
work is evaluated on applications from HiBench, BigDataBench, Spark-Perf and
Spark-Bench on a cluster with 40 nodes.

Chao et al. [7] purposed a grey-box model to predict the execution time
with Spark configurations and the size of input data. Firstly relatively more
important configuration options are selected. The grey-box model predicts exe-
cution time of each stage firstly using different regression algorithms for different
stages, and then forecast the time cost of application based on predicted runtime
of each stage, using regression algorithm again. TeraSort, KMeans, PageRank
and WordCount are evaluated on this model using 32 worker nodes.

Nguyen et al. [22] purposed a black-box model to predict the execution time
with Spark configurations and size of input data. Firstly, 13 parameters are
selected for tuning and made use of customised Latin Hypercube Sampling to
generate a possible combination of values and collect training data. Best ma-
chine learning model is selected for a specific application to train the model.
Finally, recursive random search algorithm is used to identify candidate com-
binations of configuration settings. The model is evaluated on a 6-node cluster
with 72 cores using batch processing application, machine learning applications
and graph processing applications.

Maros et al. [20] purposed both a black-box model and a grey-box model to
predict the execution time. The first model relies only on features that capture
knowledge available before the execution. The second model make use of a
richer set of features which can be captured after the execution like information
provided by DAG. Both model make use of LASSO, neural network, decision tree
and random forest to identify the best solution for each scenario. Both models
are evaluated on TPC-DS, K-means and an ad-hoc benchmark developed on
SparkDL using a Microsoft Azure with 6 nodes and 8 cores per node, as well as
a 4-node private cluster with 12 cores per node.

Ardagna et al. [3, 4] evaluated two different white-box parallel computa-
tion performance modeling approaches to predict the execution time of Spark
application. The first model is based on a simple upper-bound on the average
execution time for Fork-Join queuing networks[21] and is referred as Fork-Join.
In this model, tasks are forked into identical subtasks which will be joined once
they are completed by corresponding servers. It only depends only on the num-
ber of parallel tasks and the average execution time of a single task which can
be estimated at based on historical data. The key factor affects the estima-
tion is the harmonic number. The second model modifies Mean Value Analysis
technique for queuing network to account for delays caused by synchronization
and resource constraints in DAG[18] and is referred as Task Precedence model.
The model uses DAG and the average execution time of each individual stage
as input. The model estimates the overlap probability between each pair of
tasks based on DAG which will be used as an inflation factor. Both model are
evaluated using TPC-DS, SVM, LR and K-Means using Azure with 3-13 nodes
and 4-8 cores per node.
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David Buchaca et al. [23] purposed a black-box model to predict the ex-
ecution time in order to find a suitable application configuration for a new
workload. The model uses both information from the log of the executed appli-
cation and low-level features from the workload to be optimized, and simulates
a Bayesian Optimization process to make predictions. The model is evaluated
on machine learning workloads from HiBench and spark-perf. The computation
environment is a local 4-node cluster with 20 cores per node.

Cheng et al. [9] purposed a black-box model to predict the execution time.
The model is built based on Adaboost, which is for estimating the scheduling
time and execution time for each type of job using different application config-
urations as features. In order to lower the sampling cost, projective sampling is
used to approximate the learning curve which reflects the relationship between
the number of samples required to train a model and prediction accuracy. The
model is evaluated on a 9-node local cluster with 24 cores per node.

Karimian-Aliabadi et al. [17] purposed an analytical white-box model to
predict the execution time of Spark applications using YARN scheduler. Yarn
scheduler is widely adopted for enabling Spark to run alongside with other
Hadoop workloads. The model is based on Stochastic Activity Networks, which
is a probabilistic generalization of Activity Networks from Petri Nets. A mono-
lithic model was firstly purposed for the simple double-queues scenario, which
is proved not scalable because of the proportional growing of the state space
size with the multiplicity. To address this issue, the model is decomposed and
the fixed-point theorem is used to estimate the final solution. The model is
evaluated on TPC-DS using a 4-node cluster with 10 cores per node. Yu et al.
[29] used a similar BO-based approach such as CherryPick [1] when trying to
optimize the application configurations in their model, however, they found that
such BO-based optimization approaches can not adapt to the input data size
changes, so datasize-aware Gaussian process is purposed to address this issue.
The model is evaluated on two different clusters. One cluster consists of four
nodes with 128 cores per node; another one consists of 8 nodes with 20 cores
per node.

Chen st al. [8] developed a white-box model to predict the execution time
of Spark applications. By taking inspiration from the field of Computational
Geometry, they constructed a d-dimensional mesh using Delaunay Triangulation
over a selected set of features. Delaunay Triangulation partitions the d feature
space into a set of interconnected d-simplexes, which helps to avoid overfitting.
The prediction of the execution time is done by calculating a hyperplane in d+1
dimensional space by bringing in the runtime dimension. Also adaptive sampling
was integrated to minimize the samples needed. The model is evaluated on a
10-node server with 16 vcores per node using WordCound, PageRank, Kmeans,
Bayesian and SQL Join from HiBench, and 4 other synthetic, more complex
benchmarks.

3.2 Literature classification

3.2.1 Objective

Predicting running time Prediction of the time Spark needs to finish exe-
cuting the application is the objective of most of the works [28, 27, 26, 16, 7,
22, 20, 3, 4, 23, 9, 17, 29, 8]. It is easier to understand because the running time
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is the most important performance metrics of the application which reflects the
overall performance of the application. The estimation of running time can be
further directly used in other specific tasks, like application configuration tuning
[23, 9, 30, 29, 8] and instance selection [26, ?].

Choosing application configuration This objective is closely related to
prediction of running time, but the model purposed in [27] generates the rec-
ommendation of application configuration directly instead of the running time.

Prediction of resource utilisation Model purposed in [28] is able to predict
the I/O cost of the application, while model purposed in [19] is able to predict
the memory footprint. Both models are valuable for some specific tasks like
resource scheduling, task co-location, etc.

Choosing instance configuration CherryPick [1] addressed resource utili-
sation in a different way, which used black-box model to generate the recom-
mendation directly for meeting a certain deadline.

3.2.2 Approach

White-box White-box needs deep understanding of the interactions of dif-
ferent components of the underlying computing framework as well as suitable
mathematical modeling approaches, which results fewer publications using these
approach [28, 3, 4, 17, 8]. These models make use of different modeling ap-
proaches including queuing networks, Petri nets and computational geometry.

Black-box Black-box approach mainly relies on machine learning techniques.
This kind of approach is popular due to its simplicity and it could produce good
results without deep knowledge of the underlying system. Most models are based
on this approach [27, 19, 1, 22, 20, 23, 9, 29] using all kinds of different linear or
non-linear models to capture the pattern of the data. The data is instrumental
in the black-box approach. Some works just utilize some basic knowledge known
before the execution [27, 26, 16, 20], while other works use more fine-grained data
collected from logs and hardware counters. Except the works based machine
learning model, some works make use of Bayesian optimization to approximate
the target cost function [1, 29].

Grey-box A hybrid approach is adopted in some works at the aim of com-
bining the merits of black-box approach and white-box approach. [7], [16] and
[26] tried this approach.

3.2.3 Testbed

The testbed used for evaluating the model is important for the scalability of the
result. Some works are evaluated on very limited hardware resources (less than
10 nodes) [27, 16, 22, 20, 23, 29]. These works might need further evaluations
before being put into use in industry. Testbed with about 50 nodes are rare
probably because of the cost involved.
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3.2.4 Workload

Apache Spark is now becoming a unified big data processing engine, so different
types of representative workloads are expected in the evaluations. Most works
use widely-used benchmark suite HiBench [15], which includes micro, machine
learning, sql, graph, websearch and streaming applications. Some works also use
BigDataBench[12], which is also a popular benchmark suite providing real-world
data sets and workloads. There are also some other benchmarks which focused
on some specific applications used by some works, like spark-perf benchmark
suite, which consists of a set of core RDD benchmarks and a set of machine
learning algorithm benchmarks using MLLib, TPC-DS / TPC-H which models
complex decision support functions and is widely used in evaluating the perfor-
mance of Spark SQL systems[6]. Some early works [28, 27, 26, 16] focuses only
on batch processing and machine learning applications when Spark SQL is not
mature. Most of the recent works include SQL-like workloads from benchmarks
during the evaluations.

3.2.5 Challenges

During the literature study, several challenges in this field are discovered and
described below:

• Cost is considerable for collecting training samples for black-box models.
Numerous configuration parameters could be used in the model and it
takes plenty of time for each run of the Spark application if the input
data set is large. So if the application is not periodic long job, then
build accurate black-box performance model will incur more cost than
running the application using sub-optimal configurations, which makes
models useless.

• White-box models are built on mathematical models that inevitably need
to make assumptions for controlling the complexity and improving the
scalability, which sacrifices the accuracy of the model.

• More and more Spark users run the their applications on cloud, which
introduces substantial noises due to cloud dynamics like network conges-
tion. Moreover, running Spark on cloud probably means some information
that can be easily collected in local clusters will become unavailable. Es-
pecially nowadays PaaS platforms provided by companies like Databricks
have gained popularity on the market, which actually includes lots of
proprietary optimization on the open-sourced Apache Spark. White-box
models will certainly become not suitable to be used under such case.

Some of the models purposed take some of this challenges into consideration
and try to address them from different perspective using different approaches.
For example, in order to lower the cost for collecting samples, some authors in-
troduce techniques from statistics like projective sampling[9], adaptive sampling
[8], optimal experiment design[26], etc. However, further research is needed to
address these challenges better.
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4 Conclusions

In this report, literatures on performance modeling for Spark have been sur-
veyed and analysed. So far, there are plenty of works trying to find a better
way to model the performance of Spark. Three conclusions can be drawn: (1)
black-modeling approach is favored due to the simplicity and good results, (2)
evaluation on the model using large-scale industry-level infrastructure is rare,
which reflects that research on performance modeling on Spark is majorly car-
ried out in academia, (3) most models can produce good results on different
applications, but the cost behind building such a model is non-trivial. Over-
all, research on performance modeling of Spark has made good progress so far,
but several practical challenges still need more research. Besides addressing
the challenges, there is little study on some topics like performance modeling
based on other schedulers like Mesos[14], how to sample data for building good
performance model, etc.

Limitation of this literature study is that the publications are only related
to performance modeling of Spark. There are plenty of literature on developing
performance model on MapReduce. These models cannot be directly used on
Spark though, they probably might be able to shed some lights on how to build
performance model on Spark.
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