X

Xl VRIJE
% UNIVERSITEIT
AR°  AMSTERDAM

UNIVERSITY OF AMSTERDAM

Uncover the Secrets of PKCE: Elevating

OAuth2.0 for security of native clients

Literature study

Student: Alina Boshchenko (2732782)

Supervisor: Dr. A. Belloum, University of Amsterdam

July 21, 2023



Contents

1 Introduction

2 OAuth2.0 authorization flows

3 Authorization code flow on native clients
4 Proof Key for Code Exchange

5 Limitations

6 Best practices

7 Conclusion

11

13

14



Uncover the Secrets of PKCE: Elevating OAuth2.0 for security of native clients

Abstract. This study examines the OAuth2.0 extension known as Proof Key for Code Ezxchange
(PKCE) and its role in safequarding native client applications against code interception attacks.
OAuth2.0 is an industry-standard authorization framework that facilitates federated authentication,
and PKCE has emerged as a crucial enhancement to address specific security challenges faced by
native applications. This study provides a comprehensive overview of OAuth2.0, followed by a de-
tailed exploration of the PKCE mechanism. It also analyzes potential vulnerabilities and limitations
in PKCE’s implementation, offering insights into mitigation strategies and best practices to enhance

the security of native OAuth2.0 applications.

1 Introduction

OAuth2.0 is an industry-standard authorization framework that conquered the federated authen-
tication niche. There are other ways of providing federated authentication, but they are way less
generic, if we take the SAML protocol [1] as an example it would be way more enterprise-oriented.
OAuth2.0 establishes a trusted relationship between the resource owner, typically the user, the
application seeking access (client), the authentication server, and the server holding the resources
(resource server) [2]. There are several possible flows for the Oauth2.0 mechanism, figure 1 shows
the general concept. In OAuth 2.0, the client first registers with the server using a client ID and
(optionally) client secret. To make the whole scheme secure, each pair client id/client secret should
be registered in the authorization server in advance. When the user wants to authorize the client,
they are redirected to the authorization server’s authentication page. The user authenticates them-
selves, and after that server asks the user to approve giving certain permissions to the client app.
Once the user grants consent, the server issues an access token. Later client can present this access
token to the resource server, which verifies its and grants access to the resources. The killer feature
is the lifespan of the access token. The access token always lives for a very short period of time,
usually from 3 minutes to 1 hour.

As we mentioned before, there are several possible OAuth flows, we now look a bit more in detail

into them.



Uncover the Secrets of PKCE: Elevating OAuth2.0 for security of native clients

User Authorization Server

f

Do you give these Generate
@ permissions to the client

app? | /

> Access Token

[ 3

@ Yes

Give me an @
access token?
Here is
the token

Access Token

Client App

Figure 1: RFC 6749: The OAuth 2.0 Authorization Framework [3]

2 OAuth2.0 authorization flows

Let us briefly describe the authorization flows, emphasizing the authorization code flow, which will

be the basis for further study.

Client Credentials Flow
This flow allows the application to pass the client secret and client id to an authorization server

without user intervention [3].

1. The application authenticates with the authorization server, passing the client secret and client

id.

2. The authorization server checks the client secret and client id and returns an access token to

the application.

Resource Owner Password Flow
The Resource Owner Password Flow requires users to submit their credentials via a form. Credentials
are transferred to the backend of the application and may be retained for future use before an Access

Token is granted. It’s essential that the app is completely trusted. Therefore, this flow is generally



Uncover the Secrets of PKCE: Elevating OAuth2.0 for security of native clients

not recommended [3].

1. The user clicks a login link in the application and enters credentials into a form managed by

the app.
2. The application stores the credentials and passes them to the authorization server.
3. The authorization server validates credentials and returns the access token

Implicit Flow with Form Post
This flow uses OIDC to implement a web sign-in that functions like WS-Federation and SAML. The
web app requests and receives tokens via the front channel, without requiring extra backend calls or

secrets [3].

Hybrid Flow
This flow allows the application to obtain immediate access to an ID token while enabling retrieval

of additional access and refresh tokens [3].

Device Authorization Flow
This flow allows to authenticate users without asking for their credentials. It provides a better user

experience on the devices where it is hard to enter credentials [3].
1. The user starts the app on the device.
2. The device app requests authorization from the authorization server using its client id.
3. The user is asked to authorize the device by following the link on their computer or smartphone.
4. If the consent was granted, he application requests the token endpoint.
5. Authorization server responds with an access token.

Authorization Code Flow

This flow is the key flow for this study as PKCE was built as an extension to it and it is used further
in this report to describe the attacks and mitigation measures [3], [2].

The distinguishable feature of this flow is the presence of the access code, which is exchanged for

the access token. The flow works as follows:

1. A user tries to access the client and initiates the authorization flow.



Uncover the Secrets of PKCE: Elevating OAuth2.0 for security of native clients

2. The client application calls the authorization server’s authorization endpoint.
3. The authorization server responds with the redirect URI.

4. The user gets redirected to the consent form.

5. The user authenticates with their identity source and gives their consent.

6. The authorization server issues an authorization code for the client application.

7. The client application requests the token endpoint to exchange the authorization code for the

authorization token.

8. The authorization server validates the authorization code, client ID, and client secret, and if

everything is valid returns the token.

9. The client application requests protected resources from the resource server and submits the

token it received in the previous step.
10. The resource server validates the token and responds with the requested resources.

Note that the token introspection endpoint needs to be able to return information about a token,
so most likely it would be located at the same place as the token endpoint.
The request will be a POST request containing just a parameter named “token”. It is expected
that this endpoint is not made publicly available to developers. Applications should not be allowed
to use this endpoint since the response may contain privileged information that developers should
not have access to. One way to protect the endpoint is to put it on an internal server that is not
accessible from the outside world, or it could be protected with HTTP basic authorization.
Also, according to the specification, Oauth 2.0 should be performed over a secured connection such

as TLS only.

3 Authorization code flow on native clients

Considering the authorization code flow, we now want to focus on the part of this flow responsible
for the issue of the authorization code which will be exchanged for an access token to get access to
the data. Let’s discuss why this complication is required and why the auth code is needed. If we
take a look at arrow 6 in Figure 2, we can notice that these mechanics are processed via browser

(HTTP) redirects (so as 2,3 arrows as well). So in such redirects, there are not many ways to keep



Uncover the Secrets of PKCE: Elevating OAuth2.0 for security of native clients

Service ABC
Resource Server
App XYZ Service ABC @
@ Authorization Server | - - = -» | Resource Server
@ verifies the access
>
_ Authorization Endpoint token and returns
Link to Service ABC? —> the requested
resource
= <«--,
— Introspection Endpoint I @ Py
-
— -
Token Endpoint (— N
1
Y

@ (3) ® @

1

1

1
1 1

1 ! Web API
1
Vo
Service ABC .
@ Authorization Page App XYZ -
I « b
1 1
1 1
App XYZ is b
requesting the — | Authz Code : :
— I

permissions @ o
N 1
i 1
(a)
==

Figure 2: Authorization Code Flow, RFC 6749, 4.1, https://www.authlete.com/

anything secret. It is technically possible to add a token to the URL as it will survive the redirect,
but any proxy or reverse proxy will write all those URLSs to access logs, so anyone that has access to
logs will be able to use those tokens. An alternative can be headers, however, they are also visible,
even in the Chrome Developer Tools [4].

Therefore, we need a one-time auth code (OTP) that lives for a very very short time before the
exchange to a token which lowers the chances of it being compromised. It is considered secure due
to the change of code to the token being usually performed on a request from backend to backend,
not on the level of the HTTP requests so the browser is not involved here. It’s also clear in what
network those backends are located.

Another point of interest here is the ability of the authorization server to know where to redirect
back the URL with code to get to the client application. As an attacker, I can technically construct a
URL that would impersonate the client application to authorize in authorization server and instruct
the server to return the code to my personal server [5]. There are, for example, no signatures on step

2,3,6 in Figure 2(unlike SAML), only HTTP redirects, so there is no trust, and therefore for each



Uncover the Secrets of PKCE: Elevating OAuth2.0 for security of native clients

client application, there is a list of addresses on which it is possible to return code/token depending

on the flow.

Redirects

I would like to elaborate more on the topic of redirects on native clients. Figure 3 illustrates the
case of custom redirect URIs - when the user clicks on a link and instead of opening the browser
window it opens the app. If an app controls the domain name ”app.example.com” it is possible to
use ”com.example.app” as their scheme. Some authorization servers assign client identifiers based
on domain names, for example, ”client1234.example.net”, which can also be used if reversed in the
same manner. A scheme such as ”myapp”, would not work as it is not based on a domain name [6].

A limitation of using private-use URI schemes for redirect URIs is that multiple apps can typically

CANCEL CONFIRMATION
® Your location
. San Jose Airport
i 9
b
Your Southwest Flight to Maui leaves in 2 * 3
hours. Need a ride to the airport? E Q
Request an Uber
Y {5 e
REQUEST uberX

Figure 3: Illustration of the case of custom redirect URIs - when the user clicks on a link and instead

of opening the browser window it opens the app.

register the same scheme, which makes it hard to determine which app will receive the authorization.

An interesting point here is that according to the OAuth2.0 flow, two different apps can split the



Uncover the Secrets of PKCE: Elevating OAuth2.0 for security of native clients

responsibility - one makes the authorization request, and another - handles code and token, it is not
prohibited by the protocol.

When an app wants to register itself as a handler for a custom scheme, it typically interacts with
the operating system’s APIs or configuration files. For example, in Android, the app registers itself
as a handler for the custom scheme in the app’s manifest file (AndroidManifest.xml). By adding
an intent filter with the appropriate scheme in the manifest, the app declares its ability to handle
incoming requests with that scheme.

It is important to say that the ability to register custom scheme handlers is a necessary functionality
provided by operating systems to enable legitimate app interactions. However, attackers can abuse
this functionality if they can install a malicious app on a user’s device and register themselves as a
handler for a custom scheme associated with a widely used OAuth 2.0 app. Later we will see how

this limitation can become a perfect surface for the code interception attack [7].

4 Proof Key for Code Exchange

PKCE (RFC 7636) is an extension to the Authorization Code flow to prevent CSRF and authoriza-
tion code injection attacks. PKCE was originally designed to protect the authorization code flow in
mobile apps, but its ability to prevent authorization code injection makes it useful for every type of

OAuth client, even web apps that use client authentication [8].

Authorization code interception attack

In the authorization code interception attack, the attacker intercepts the authorization code re-
turned from the authorization endpoint within a communication path not protected by TLS such as
inter-application communication within the client’s operating system. Once the attacker has gained

the authorization code, it can use it to obtain the access token.

1. In step 1 of Figure 4, the native app running on the end device, such as a smartphone, issues an
OAuth2.0 Authorization Request via the browser /operating system. The Redirection Endpoint
URI in this case typically uses a custom URI scheme. Step 1 happens through a secure API that

cannot be intercepted. However, it may potentially be observed in advanced attack scenarios.

2. The request then gets forwarded to the authorization server in step 2. Because OAuth requires

the use of TLS, this communication is protected by TLS and cannot be intercepted.



Uncover the Secrets of PKCE: Elevating OAuth2.0 for security of native clients

4 )

©

Init Authz I Evil B T e —— -
App
\ app | ____ >
)
TR X ®
1 »  Authz .
User Authz 1 *,Code |

Request ! \®|
®y

®)
oo JpT
__ O

End device

Auth server

Figure 4: Authorization Code Interception Attack flow

3. The auth server returns the auth code in step 3.

4. In step 4, the Auth Code is returned to the requester via the Redirection Endpoint URI

provided in step 1.

This way, if a malicious app registers itself as a handler for the custom scheme in addition to the
legitimate app it is able to intercept the authorization code in step 4.

It seems that even with the access code there is another barrier preventing the attacker from gaining
access — the client credentials. However, if the target application is a mobile app or a Single Page
Web App (SPA) chances are that they will be using the same client credentials for every instance
of the app and the credentials are hardcoded into the apps. These are the kinds of apps that are
known as public clients. It is not possible to ensure that those credentials have been kept secret and
no one else already had them. For public clients, it is recommended not to perform any actions by
trusting the secret [9], [8]. This allows the attacker to easily request and obtain an access token in

steps 5 and 6.

Mitigation
The basic idea behind PKCE is proof of possession. The client application should give proof to



Uncover the Secrets of PKCE: Elevating OAuth2.0 for security of native clients

the authorization server that the authorization code belongs to it in order for the server to issue
an access token for this client. The mitigation technique is presented in Figure 5 and is described

below.

Client App f_- code_verifier

[118, 24, 223, 180, 151, 153, 224, 37, 79, 250, 96, 125, 216, 173,
[lil:_f. 21‘:;621’235 1;3102» 135_}»717531» 025245 134‘-::17991: 225::16 9951- 1‘-3285- :1;; 13133’ base64url 187, 186, 22, 212, 37, 77, 105, 214, 191, 240, 91, 88, 5, 88, 83,
17, 130, 12.1] , 37, 77, 105, . 240, 91, 88, 5, 88, 83, 132,141, 121]
SHA256
[19, 211, 30, 150, 26, 26, 216, 236, 47, 22, 177, 12, 76, 152, 46, [19, 211, 30, 150, 26, 26, 216, 236, 47, 22, 177, 12, 76, 152, 46,
base64url 8, 118, 168, 120, 173, 109, 241, 68, 86, 110, 225, 137, 74, 203, 8, 118, 168, 120, 173, 109, 241, 68, 86, 110, 225, 137, 74, 203,
112, 249, 195] 112,249, 195]

k code_challenge

(E9Melhoa20wvFrEMTJguCHaoeK1t8URWbuUGJSstw-cM)

Figure 5: New values generation with PKCE

1. The client uses the output of a random generator to create a 32-octet sequence. It is the secret

value and it’s crucial to make it hardly predictable.
2. Encoding this sequence as base64 provides the value of the so-called code_verifier.

3. The code_verifier is then hashed via the code_challenge_method hash function, in most cases

it’s SHA256, to produce a new sequence.

4. The sequence from step 3 is encoded with base64 and it provides the value of the so-called

code_challenge.

The client sends the authorization request with the code_challenge and the code_challenge
_method. The authorization server then records the code_challenge and code_challenge_method
along with the authorization code that is granted to the client. If the consent is granted, client
receives the access code. After that, the client sends an access token request along with the
code_verifier. The authorization server retrieves the information for the code grant. Based on
the recorded code_challenge_method, it hashes and encodes the value of provided code_verifier.

The calculated value is then compared with the value of code_challenge.

10



Uncover the Secrets of PKCE: Elevating OAuth2.0 for security of native clients

The key contribution of this approach is that the code_challenge or the code_verifier cannot be in-
tercepted as the communication between the client and authorization server should be conducted
through a secured TLS channel. The code_verifier and the code_challenge should only be used once
per token requesting cycle. Every time an authorization request is made a new code challenge should
be sent.

Since the code challenge is sent through the browser it is highly important that the code challenge is
not the same as the code_verifier. Otherwise, if by some means an attacker has access to the HTTP
request (for example through HTTP logs) then the use of PKCE will be useless. Due to those
measures we bind together the client app and authorization code and mitigate the code interception

attack [8], [10].

5 Limitations

Judging by the previous section it seems that the mitigation was found. But let’s now discuss the

limitations of this approach. Let us introduce a PKCE bypass with an app impersonation attack.

PKCE bypass via app impersonation attack.
Let’s consider a target native app and an attacker, who managed to install a malicious app on the
same device. They are able to steal the client_id of the target app and register the same redirect

URI [11]. The illustration of the attack is provided in Figure 6.

1. The evil app initiates the authorization flow and generates the Authorization Request. The
Authorization Request contains the client_id and redirect_uri of the target app. This way the

user and the authorization server cannot recognize that the malicious app initiates this request.

2. The browser is called and the Authorization Request is sent to the authorization server (Face-

book, Google, etc.).

3. We assume that the user is authenticated and they authorize access to the requested resources.

As a result, the Authorization Response containing the code is sent back to the browser.
4. Now, the browser calls the malicious app registered handler and it receives the code.

5. In step 5 of Figure 2 the malicious app sends the code_verifier used for the computation of
the code_challenge. Thus, the stolen code can be successfully redeemed and the malicious app

receives the access_token and id_token.

11



Uncover the Secrets of PKCE: Elevating OAuth2.0 for security of native clients

/ \ Authz code,
code_verifier

R T .’.

Evil
App App
Authz
Request Authz
Code
client_id

code_challenge
challenge_method

= = = = = === - - -

0S | Browser il il ] »

O

End device Auth server

Figure 6: App impersonation attack flow

This way the attacker again manages to get access to the resources.

Mitigation For the attack described above to be successful we need to fulfill a number of im-
portant requirements.

First, we need to ensure that the malicious app has higher priority when handling the same Redirect
URL, which is possible to do according to the specification of the OS.

Second, in some cases stealing the client id and client secret requires a lot of effort. Sometimes it
requires traffic sniffing, which is under the HT'TPS. However, we cannot say it is the guarantee as
there are cases of public networks or unsafe actions of the user.

But let’s consider the biggest difference between the code interception attack (Figure 3) that led to
the development of PKCE and current attack (Figure 6). The thing that immediately catches the

12



Uncover the Secrets of PKCE: Elevating OAuth2.0 for security of native clients

eye is the user. In the first attack user is the one who initiates the request and they expect to see a
pop-up asking for a confirmation. In the second scenario, the app itself initiates the authorization
flow introducing the need for phishing tecniques to make the user approve the permissions. With-
out PKCE it would not be needed. Therefore, most importantly, it’s crucial to trick the user into
authorizing access to the requested resources.

Obviously these factors does not completely mitigate the attack, but they significantly lower the
chances of success.

Let’s now discuss a bit more ways of mitigation.

We already discussed that certain types of callback URL can be registered by more than one app,
meaning only a client ID needs to be stolen in order to impersonate a real app. However, this still
requires a malicious app to trick the user to sign in before tokens can be retrieved. It is considered
to be a best practice for an apps to only us the scopes they need, preferably read-only ones. After

that it depends on the type of native app.

Mobile applications

A mobile app can use Claimed HTTPS Schemes via an HTTPS callback URL to overcome the
problem of redirects. It is backed by App Links on Android or Universal Links on iOS. Even if a
malicious app uses the correct client id, it cannot receive the login response with the authorization
code, because it will be received on a URL like this, and the mobile OS will only pass this to the

app that has proved ownership of the domain via the deep linking registration process [6].

Desktop applications

For desktop apps the situation is a bit more complicated, since only Loopback and Private URI
Scheme callback URLs are allowed to be used. It relies on users to avoid installing malicious apps.
One of the good practices would be to only install apps from stores that require code signing, which
also inform the user who the publisher is. It is generally considered that if users install malicious

apps then perhaps they have more serious problems.

6 Best practices

In this section we will summarise the best practices and recommendations.

e For the refresh tokens it is best to use PKCE in conjunction with the Refresh token rotation,

13



Uncover the Secrets of PKCE: Elevating OAuth2.0 for security of native clients

meaning that any time a refresh token is used to get a new access token it should be replaced

with a new one, so every time we generate a new pair of refresh and access tokens.

e Let us introduce two types of user agents. An external user agent is typically the device’s
native browser with a separate security domain from the native app. Embedded user agents,
on the other hand, are browsers integrated within other software. They are designed to render
web content within a specific application.

RFC documents two approaches for native apps to interact with the authorization endpoint.
This best practice requires that native apps must not use embedded user-agents to perform
authorization requests and allows that authorization endpoints may take steps to detect and
block authorization requests in embedded user-agents [5].

In typical web-view-based implementations, they can record every keystroke entered in the
login form to capture usernames and passwords, automatically submit forms to bypass user
consent, and copy session cookies and use them to perform authenticated actions as the user.
Even when used by trusted apps belonging to the same party as the authorization server,
embedded user-agents violate the principle of least privilege as they can access the user’s full
authentication credential, not just the OAuth2.0 authorization grant that was intended for the

app. It makes the whole OAuth2.0 concept useless and increases the attack surface.

e It’s a good practice not to use the hardcoded constant client id, but rather replace it with a
client id per app instance. It’s not possible for all kinds of apps, but if the architecture allows,

it would be definitely beneficial as it requires more effort to get non-constant client id.

e There are OAuth2.0 flows that allow applications to authorize access without user consent, an
example could be the client credentials flow. Those flows are definitely not advised to be used

in native clients, even with PKCE.

7 Conclusion

In conclusion, PKCE has become the industry standard in native OAuth2.0 applications. PKCE
addresses the security challenges specific to these types of applications, providing an additional
layer of protection against code interception and unauthorized access. Its widespread adoption and
support by major OAuth2 providers make PKCE a reliable and recommended choice for developers

looking to enhance the security of their native apps. By implementing PKCE, organizations can

14



Uncover the Secrets of PKCE: Elevating OAuth2.0 for security of native clients

ensure that user authentication and authorization processes remain more secure, bolstering the

overall trust and confidence in their applications. In conclusion we would like to say that the

development of PKCE made a huge contribution in the OAuth2.0 on native apps security, but even

it can’t become a silver bullet.

References

[1]

[9]

B. Campbell, C. Mortimore, and M. Jones, “Security assertion markup language (saml)
2.0 profile for oauth 2.0 client authentication and authorization grants.” [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc7522

T. Lodderstedt, M. McGloin, and P. Hunt, “Oauth 2.0 threat model and security considera-
tions,” RFC 6819 (Informational), Tech. Rep., January 2013.

E. D. Hardt, “Rfc6749: The oauth 2.0 authorization framework.” [Online]. Available:
https://datatracker.ietf.org/doc/html/rfc6749

D. Fett, R. Kusters, and G. Schmitz, “A comprehensive formal security analysis of oauth 2.0,” in
Proceedings of the 2016 ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2016.

R. Yang, C. L. Wing, and T. Liu, “Signing into one billion mobile app accounts effortlessly with
oauth2.0,” The Chinese University of Hong Kong, 2015.

OAuth.com. Redirect uris for native apps. [Online]. Available: https://www.oauth.com/

oauth2-servers/redirect-uris/redirect-uris-native-apps/

M. Shehab and F. Mohsen, “Securing oauth implementations in smart phones,” in Proceedings
of the 4th ACM Conference on Data and Application Security and Privacy, ser. CODASPY
2014. ACM, 2014.

E. Sakimura, J. Bradley, and N. Agarwal. Rfc7636: Proof key for code exchange by oauth
public clients. [Online]. Available: https://datatracker.ietf.org/doc/html/rfc7636

F5 Labs. Securing apis in banking with oauth and pkee. [Online]. Available: https:

//www.f5.com/labs/articles/cisotociso/securing-apis-in-banking-with-oauth-and-pkce

15


https://datatracker.ietf.org/doc/html/rfc7522
https://datatracker.ietf.org/doc/html/rfc6749
https://www.oauth.com/oauth2-servers/redirect-uris/redirect-uris-native-apps/
https://www.oauth.com/oauth2-servers/redirect-uris/redirect-uris-native-apps/
https://datatracker.ietf.org/doc/html/rfc7636
https://www.f5.com/labs/articles/cisotociso/securing-apis-in-banking-with-oauth-and-pkce
https://www.f5.com/labs/articles/cisotociso/securing-apis-in-banking-with-oauth-and-pkce

Uncover the Secrets of PKCE: Elevating OAuth2.0 for security of native clients

[10] RingCentral. Auth code pkce flow. [Online]. Available: https://developers.ringcentral.com/

guide/authentication/auth-code-pkece-flow

[11] V. Mladenov and C. Mainka. (2017) Pkce: What can(not) be protected. [Online]. Available:
https://web-in-security.blogspot.com/2017/01 /pkce-what-cannot-be-protected.html

16


https://developers.ringcentral.com/guide/authentication/auth-code-pkce-flow
https://developers.ringcentral.com/guide/authentication/auth-code-pkce-flow
https://web-in-security.blogspot.com/2017/01/pkce-what-cannot-be-protected.html

	Introduction
	OAuth2.0 authorization flows
	Authorization code flow on native clients
	Proof Key for Code Exchange
	Limitations
	Best practices
	Conclusion

