
Literature Study on enforcing software policies
Radu-Marian Doros,

Vrije Universiteit Amsterdam, The Netherlands
r.doros@student.vu.nl

ABSTRACT
Today, there is a growing and constant societal concern regarding
digital privacy and security. This study delves into the challenges
faced by software engineers in designing systems that comply with
diverse laws and regulations. We focus on policy-enforcement sys-
tems, which abstract policy details to accommodate generic policies.
Our investigation centers on the control models expressed by poli-
cies, the elements targeted by policy languages, and identifying
the common design components of systems managing control me-
chanics. The insights from this study have broad implications for
the design of software systems in various fields where regulatory
compliance is crucial.

KEYWORDS
Literature Review software policy enforcement, access control,
RBAC, ABAC, usage control

1 INTRODUCTION
1.1 Motivation
Software Engineers often face a multitude of challenges when de-
signing and implementing systems. These tasks are becoming in-
creasingly complex due to the addition of various laws and regula-
tions. For instance, the General Data Protection Regulation (GDPR)
has raised concerns among many small and medium-sized com-
panies due to the complexities involved in its implementation [8].
While the benefits of such regulations and policies are undeni-
able, they often lack simplicity in implementation and introduce
increased complexity. There is extensive literature on this topic,
with Hjerppe et al. [9] providing a comprehensive overview. How-
ever, a detailed discussion on the intricacies of GDPR is beyond the
scope of this work.

GDPR is just one example of the regulations that software sys-
temsmust complywith. Depending on the field for which a software
system is designed, other similar regulations may apply. Health-
care is one such field, known for handling a significant amount of
sensitive, private patient information. Yet, in many cases, GDPR
might be the only set of regulations that one needs to satisfy.

Given the diversity of laws and regulations that systems might
need to complywith, the field policy-enforcing systems have emerged.
Thes field focuses on designing systems that can accommodate
generic policies. This constitutes also the primary focus of this
study.

Moreover, this field is not solely motivated by the aim to simplify
the task of engineers in complying with regulations. Various appli-
cations of enforcing policies have been suggested, such as Mahiru
[20], where policies are a feature of the system and enable more
trusted exchange between its collaborating users.

1.2 Research Questions
During this study, we focused primarily on gathering information
related to or answering the following questions:

(1) What are the control models expressed by the policies
and their scope, and what elements of these models
do policy languages target? Policy enforcement systems,
while aiming for more generic policies, must consider the
expected control models during their design phase. The sys-
tem needs to be capable of granting the policy access to the
object in its model world. For instance, if the policies are
expected to express predicates concerning the system-time
of actions, the underlying system needs to accommodate this
requirement.
Simultaneously, it’s crucial to understand which types of con-
trol specifications policy languages can handle and under
which conditions. This combined understanding of control
models and policy languages will guide the design and im-
plementation of a robust and effective policy enforcement
system.
Wewill therefore explore the scope and limitations of control
models expressed by policies. We explore the control mod-
els of Role-Based Access Control (RBAC), Attribute-Based
Access Control (ABAC), and Usage Control (UCON).

(2) What are the common design components of systems
that handle control mechanics? To support different con-
trol mechanics, what kind of components are typically ob-
served in these systems?
While it is relatively simpler to design a system running
a central policy, how are systems able to handle multiple
policies?
For this, we look at finding which architectural components
systems need to extend with to support the desired control
models.

2 MODELS OF CONTROL
2.1 Access Control
Access control constitutes one of the most studied category of
control models. Literature in the field is quite vast, we limit the
scope of the section to extracting the general topics in the most
popular instances of access control.

2.1.1 Role-Based Access Control (RBAC). RBAC [15] methods de-
fine a simplified set of rules, that enjoy widespread use in settings
where role-based semantics coincides with a convetional organiza-
tional structure.

RBAC works on the basis of 𝑢𝑠𝑒𝑟𝑠, 𝑟𝑜𝑙𝑒𝑠, 𝑝𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 . Users are
assigned roles and roles are assigned permissions. Queries of the
form "user 𝑥 wants to perform action 𝑎, are they authorized?" are
resolved by finding the permission set of the user (generally first



Literature Study, 2023, Amsterdam, NL Radu-Marian Doros,

finding the roles of the user and then in turn finding the permission
set of the role) and then verifying if the action 𝑎 is in the permitted
operation set.

This works for many of the cases, since usually such access
control systems suffice. The system then models the scope of these
permissions.

To illustrate, consider a system that maintains a database of
users and their associated roles. Upon a user logging in, the system
queries the user’s role, retrieves the permissions assigned to that
role, and then determines the operations the user is permitted to
perform within the system. For instance, users with basic roles may
be prohibited from performing delete operations in a database.

However, RBAC is not without its limitations. One notable weak-
ness is its difficulty in adapting to more flexible demands, e.g. in
handling mechanisms that expire, such as temporary permissions
or time-limited roles.

2.1.2 Attribute-Based Access Control (ABAC). A survey of open
problems and questions related to 𝐴𝐵𝐴𝐶 is presented in [17]. We
summarize ABAC based on their section describing ABAC back-
ground.

ABACwas introduced to address the greatest considered problem
of RBAC, flexibility. Systems adopting ABAC models define more
flexible access control rules based on:
● Attributes of the subject (user). May include arbitrary infor-
mation that is relevant for the system, including job title,
age etc.
● Attributes of the object (resources of the system). May in-
clude metadata information about the resources, date of
creation, size, owner, security level or content-derived infor-
mation (was some policy-preserving pre-processing applied).
● Attributes of the Environment like time of the day, number
of users in the system, a workflow’s properties.
● Connection attributes, information about the session of the
user, location (for mobile systems) etc.
● Administrative attributes. Examples of these include like
threat levels at which policies some policies start playing a
role, minimum trust levels (how much trust a user has to
have to be able to access resources), maximum session length
and so on.

Access policies are then defined using policy languages (XACML
[6]) that define access decisions based on Boolean expressions over
the set of available attributes. This model allows the systems to
design the set of relevant attributed necessary for the creators of
policies and leaves the implementors of the policies the duty to
define the decision expressions that grant or deny access.

Hu et al. [10] continues and provides an extensive guidelines for
using and applying ABAC policies.

2.2 Usage Control
Previous subsections dealt with access control, there is however a
need to specify rules about what parties are allowed to do once the
access is already provided. The field of usage control explores such
issues.

𝑈𝐶𝑂𝑁𝐴𝐵𝐶 [14]: Introduced usage control. They define the 3
dimensions of usage control as (ABC):

Figure 1: UCON Authorization Evaluation Flow (taken from
[7]) - This shows the policy enforcement system tasks and
has implications on what a system looks like.

Figure 2: Extended UCON Authorization States (taken from
[7]) - This shows the interaction from a clients perpective
with the UCON model

● Authorization - Access
● OBligations - A specified set of actions subjects must per-
form before getting authorization (e.g. accepting terms of
conditions)
● Conditions - Context/Environment conditions that can affect
policy decisions

Following, they bring two configuration possibilities for each of
the dimensions of the 𝑈𝐶𝑂𝑁𝐴𝐵𝐶 model. Each dimension can be
either a precheck, a continuous check or sometimes a post-check.

UCON Flow: In the UCON (Usage Control) framework, the pro-
cess of managing policies and attribute updates is crucial for ensur-
ing consistent and secure system behavior. The fig. 1 illustrates the
high level flow of a UCON authorization system. Zooming in into
these aspects:

In fig. 1 it is shown that there are three steps checked by policy
reasoners. We can see that at the high level UCON running systems
must manage 3 classes of defined policies - pre, ongoing and post.
This constitutes the set of policies run. Another important mecha-
nism needed to be covered by UCON systems is the interaction with
the mutable attribute values. The application of the changes need
to be consistent and synchronized with future evaluations of the
attributes in a well-defined way. The exact modelling of this consis-
tent updates of attributes is further explored in [16]. These aspects
of update mechanisms are simplified in fig. 1 with the TranFunc()
abstraction.

Policy Reasoners: In the UCON framework, policy reasoners are
responsible for evaluating and enforcing access control policies.
These policies are categorized into three classes:



Literature Study on enforcing software policies Literature Study, 2023, Amsterdam, NL

(1) Pre-policies (pre): These policies are checked before a user’s
request is executed. They typically evaluate conditions such
as authentication, authorization, and other prerequisites for
access.

(2) Ongoing-policies (ongoing): These policies are continuously
monitored during the execution of a user’s request. They
ensure that access remains valid and compliant throughout
the interaction.

(3) Post-policies (post): These policies are evaluated after the
execution of a user’s request. They can perform actions such
as auditing, logging, and updating the system state based on
the outcomes of the request.

By managing these three classes of policies, UCON systems can
provide fine-grained control over access to resources and enforce
dynamic security requirements.

2.3 Languages
2.3.1 XACML [6]. The eXtensible Access Control Markup Lan-
guage (XACML) is a widely used XML-based language in the realm
of access control and policy-related research. Developed by the
Organization for the Advancement of Structured Information Stan-
dards (OASIS), XACML provides a standardized framework for
defining and enforcing access control policies. Its flexibility and
extensibility have made it a popular choice in many scientific arti-
cles and real-world applications related to access control and policy
management.

XACML is designed to express policies, rules, and access control
decisions in a structured, comprehensive, and extensible manner.
It supports ABAC by allowing policies to be defined based on the
attributes of the user, the resource to be accessed, the action to be
performed, and the context of the request.

In ABAC, access decisions are made by evaluating a set of at-
tributes against policies. XACML’s rich policy language and its
ability to express complex, multi-dimensional access control poli-
cies make it well-suited for ABAC. It can handle a wide range of
attributes and can express policies that take into account various
combinations of these attributes.

Furthermore, XACML includes a request/response model for ac-
cess control decision making and a policy language for expressing
access control policies, both of which align well with the require-
ments of ABAC.

Many systems performing enforcement are based on XACML
and include additional components as described by XACML, some
of which are:

● Policy Decision Point (PDP) - This component evaluates the
policy and makes a decision on whether to grant access to a
particular resource based on the request.
● Policy Enforcement Point (PEP) - This component ensures
that the requested resources are adequately protected and
identifies which requests need further policy checks.
● Policy Information Point (PIP) - This component provides
information about where to retrieve attribute values.
● Policy Execution Point (PXP) - This component is responsible
for executing the decisions made by the PDP, enforcing the
rules defined in the policy.

● Policy Administration Point (PAP) - The PAP allows for the
administration of the policies, such as making changes or
updating their configuration.
● Policy Retrieval Point (PRP) - This component is responsible
for retrieving the relevant policies for the PDP to evaluate.
● Policy Management Point (PMP) - This component over-
sees the overall management of the policies, including their
creation, deletion, and modification.
● Policy Translation Point (PTP) - This component is respon-
sible for translating policies into a format that can be under-
stood and enforced by the PEP.
● Event Processing Point (EPP) - This component processes
events related to the enforcement of policies, such as the
submission of a request for action, the completion of an
action, the detection of a policy violation, or changes in the
system policy state.

However, it can be noticed in the literature the terms are loosely
used and maybe inconsistent. The definitions for PXP, PRP, PMP,
and PTP are based on general understanding of these terms, as
their specific definitions can vary depending on the context and
the specific implementation of the XACML framework.

Take for example the Policy Execution Point (PXP) architectural
component, which is responsible for executing the decisions made
by the Policy Decision Point (PDP), enforcing the rules defined
in the policy. This could involve actions like granting or denying
access to a resource, logging the decision, or triggering other actions
in the system.

Depending on the application context, the PXP responsibilities
will vary greatly. For example, let’s look at what the component
would do in different contexts:

● In a network security system, the PXP might be responsi-
ble for controlling access to network resources based on
the decisions made by the PDP. This could involve actions
like opening or closing network ports, rerouting traffic, or
blocking specific IP addresses.
● In a data management system, the PXP might be responsible
for controlling access to data based on the decisions made by
the PDP. This could involve actions like granting or denying
read or write access to specific data records, encrypting or
decrypting data, or triggering data backup or replication
processes.
● In a cloud computing system, the PXP might be responsi-
ble for controlling access to cloud resources based on the
decisions made by the PDP. This could involve actions like
starting or stopping virtual machines, allocating or deallo-
cating resources, or managing access to cloud storage or
databases.

Policy Machine . Ferraiolo et al. [4, 5] describe the architecture of
the Policy Machine show how they differentiate from 𝑈𝐶𝑂𝑁𝐴𝐵𝐶 .
Their focus is touching more upon authorizations and obligations
and leave out aspects of conditions. That is, they avoid covering
environmental (system) requirements in their design space. The
focus seems to be more on the relationships and attributes of policy
elements, and how these can be used to define and enforce a wide



Literature Study, 2023, Amsterdam, NL Radu-Marian Doros,

Figure 3: Policy Machine Architecture (taken from [5])

range of security policies. This makes it a very comprehensive spec-
ification document designing access control policy enforcement
architecture systems. The fig. 3 illustrates the proposed architec-
ture, showing the usage of most of the aforementioned XACML
architectural components.

2.3.2 eFLINT [19]. The eFLINT language, as described in [19], is
built upon the Hohfeld legal framework, which focuses on two
fundamental relations between individuals in normative matters:

(1) ’Duty-Claim’ Relation - This relation arises when one indi-
vidual has a duty or obligation towards another individual.
It signifies that the first individual is obligated to perform
or refrain from certain actions, and the second individual
has the corresponding claim to expect the fulfillment of that
duty.

(2) ’Power-Liability’ Relation - This relation exists when one
individual possesses the power or authority to perform a
particular action, and another individual is liable or subject
to the effects or consequences of that action. It denotes the
ability of one individual to exert control or influence over
another individual’s rights or interests.

By incorporating the Hohfeld legal framework, eFLINT provides
a foundation for expressing and reasoning about these core relations
within normative systems. This framework enables the specification
and analysis of duties, claims, powers, and liabilities, facilitating
the modeling and enforcement of complex normative policies in
various domains.

eFLINT employs a general mechanics where a configuration is
dynamically updated by events and actions. The system’s rules of
duties are designed to detect violations of specified norms. Events
trigger changes in the configuration, while actions represent indi-
vidual behaviors. Duties define expected behaviors and obligations,
and violations are monitored by the system.

Normative actors - fig. 4. The Normative actors section details
the building of a system with normative actors that answer eFLINT
queries. The normative actors update their state based on these
queries which can change the state (actors can issue actions that
might trigger duties or cause violations). Normative actors will then

Figure 4: eFLINT Normative Actors

notify actors of any such occurrences.

The paper claims eFLINT is able to be used in systems employing
policy enforcement mechanisms and can be used to fulfill four types
of enforcement:

(1) Ex-ante enforcement of permissions: This involves the preven-
tion of actions that are not permitted, thereby ensuring that
all activities are within the boundaries of established rules
and regulations.

(2) Ex-ante enforcement of positive duties: - informing actors of
their duties to perform certain actions

(3) Ex-post enforcement of violations of prohibitions - giving rea-
sons for why actions were not allowed

(4) Ex-post enforcement of violated duties - giving reasons for
why duties were violated

Some variations are also mentioned to support different kinds
of applications:

(1) Monitoring actors - fig. 5 fig. 6 - a set of actors that monitor
the behavior of actors and report actions based on these
observations to the Normative actors.

(2) Internal Normative actors in multi-agent systems - actors
(encompassing agents) can use internallymanaged normative
actors to maintain internal beliefs and states.

eFLINT case study GPDR. The case study examined a practical
application of eFLINT, in a banking environment with respect to
the General Data Protection Regulation (GDPR). The study focused
on the GDPR requirement of obtaining a data subject’s consent
prior to processing their data.

The example showed that the use of eFLINT allowed for the
translation of this normative act - obtaining consent - into enforce-
able rules based on specific actions and duties. The use of eFLINT
also facilitated enhanced clarity and facilitated the effective imple-
mentation of enforcement mechanisms.

Related, [18] describe a way to extend eFLINT to have coop-
erative policy checkers. Authors extended eFLINT with two new
constructs for the purpose of formalizing dependencies between
social policies and the connections between social policies and
system-level policies. For this they introduced the Extends and



Literature Study on enforcing software policies Literature Study, 2023, Amsterdam, NL

Figure 5: eFLINT "sketched" Monitoring Actors

Figure 6: eFLINT Monitoring Actors Zoom-In: Possibly a
composition of a client to a "higher" normative actor and a
normative actor itself, Interacting with its subActors clients
and receiving events from the System based on their interac-
tion.

Syncs with keywords. These enable more possibilities for the norms
represented by eFLINT state to be changed.

They however, never fully make a "local" policy evaluation run-
time. They only use their already mentioned client-server imple-
mentation, where the server is a normative actor and clients are
actors. Clients then collaborate into the same server and create

the Facts and Actions they want. The other actors are themselves
notified whenever violations or duties are raised.

Parizi et al. [13] design normative multi-agent systems, by in-
troducing normative agent components. Introduces BDI enhanced
with normative reasoning. They refer to the belief-desire-intention
(BDI) architecture of Jason to contrast their addition with. Their
enhancement is two-fold:

● A replacement of the belief-base with normative reasoner.
Beliefs are now held in the form of norms. Instead of only
belief-updates, agents handle duty-events, act-events, viola-
tion events.
● An enhancement over the set of actions that can be per-
formed compared to fact-updates. System enables more gen-
eral act-performing actions.

The general layout of the components and communication is
shown in fig. 7. Agents interact with their own normative advisors
and take actions based on these interactions with the environment
(and other agents). Agents get informed when normative events
happen (duty events raised, norm violation etc.) and furthermore,
might choose when to follow, extend or violate rules themselves.

Furthermore, the authors connect their MAS mechanisms to
a way of implementing stricter "normative protocols" for agents
collaborating and conforming to enforcing norms. Compared to
the general layout in fig. 7, authors introduce enforcer agents, that
watch over norms and can provide incentives to comply.

3 CONCLUSION
RQ1What are the control models the policies express? What

is their scope? We looked at multiple control models. In Kayes
et al. [12] we find a taxonomy of the Access Authorization Models
as shown in fig. 10. The relationship between Access Control and
Usage control is illustrated in fig. 9. We enumerate the control
models:

● DiscretionaryAccess Control (DAC): In thismodel, the owner
of the resource decides who can access it and what they can
do with it. The scope of DAC is typically limited to individual
users and resources.
● Mandatory Access Control (MAC): This model is often used
in environments that require a high level of security. Access
decisions are made based on the classification of information
and the security clearance of users. The scope of MAC is
typically an entire system or organization.
● Role-Based Access Control (RBAC): In RBAC, access deci-
sions are based on the roles that users have within the system.
This model is often used in large organizations where roles
are defined according to job competency, authority, and re-
sponsibility.
● Attribute-Based Access Control (ABAC): ABAC is a more
flexible and comprehensivemodel. Access decisions aremade
based on attributes of the user, the resource, the action, and
the environment. ABAC can express a wide range of policies,
making it suitable for complex, dynamic environments.
● Usage Control (UCON): UCON is a comprehensive model
that considers not only the access but also the usage of re-
sources. It can express policies that continue to apply even



Literature Study, 2023, Amsterdam, NL Radu-Marian Doros,

Figure 7: eFLINT handling beliefs in MAS for a digital marketplace (taken from [13])

Figure 8: General Architecture - Policy Reasoner as a state
updating Event loop

Figure 9: 𝐴𝐶 ⊆ 𝑈𝐶𝑂𝑁 (taken from Jung et al. [11]) -

after access has been granted, and it can adapt to changes in
the environment.

Access control models, such as Discretionary Access Control
(DAC), Mandatory Access Control (MAC), Role-Based Access Con-
trol (RBAC), and Attribute-Based Access Control (ABAC), offer
varying degrees of complexity and flexibility. DAC and MAC, for
instance, provide straightforward, structured control mechanisms,
making them suitable for environments with clearly defined and
static access requirements. RBAC and ABAC, on the other hand,
offer more flexibility and are better suited to dynamic environments
with more complex access requirements.

However, for systems that require control over not just access
but also the usage of resources, Usage Control (UCON) provides a
comprehensive solution. While UCON is inherently more complex
due to its broader scope, it offers the flexibility to express a wide
range of policies and adapt to changes in the environment.

In conclusion, the choice between access control and usage con-
trol models should be guided by the specific requirements of the
system.

RQ2 What are the common design components of systems
that handle control mechanics? We illustrate in fig. 8 the gener-
alized design of policy reasoning systems. This diagram represents
a state-updating event-loop, where users query (and get notified
by) the policy enforcement services.

Systems in the literature represent a variation of it:

● Access Control: Hides the system behind the Policy Reasoners
and acts as a gateway to the system services. In the context
of an ABAC modelled system, the hidden services do not
emit events to the Policy Reasoners, but they can update
Attributes, effectively changing the access policies.
● Usage Control: In case of usage control we differentiate be-
tween the types of granularity of the usage control models.
The more general case of UCON, is illustrated in 1, showing
the general evaluation loop of the policy reasoner inside.
– Pre-usage control: this can be viewed as access control,
users ask permissions from the policy reasoners for they’re
usage. They are not monitored continuously if their usage
keeps respecting the norms. It can be combined with post-
usage checks, which represents auditing or offline usage
control.

– Continuous usage control, where the users interact with
the system’s assets and this usage is monitored by policy
reasoners to respect norms online. This represents the
more general model, and intuitively the more expensive
one. The System continuously needs to emit events to the
Policy reasoner and let it update its state.

– User specified policies: Languages such as eFLINT, when
forming the runtime of the policy reasoners and managing
their state, empower users to not only perform actions but
also modify the state of the policy runtime. This facilitates
dynamism and the alteration of normative reasoning. For
instance, in eFLINT, this can be achieved through defin-
ing new types and leveraging the Extends and Syncs with
features.

– Extra-deontic mechanics: Systems can be architected with
policy reasoners that performmore than just deontic checks
(e.g., an action violates the specified normative rules). They
can also perform potestative checks, raising events related
to a user’s duties or detecting violations of unfulfilled
duties.
Potestative elements features of eFLINT are similar to
UCON obligations, with the added benefit of eFLINT also



Literature Study on enforcing software policies Literature Study, 2023, Amsterdam, NL

Figure 10: Taxonomy of Access Authorization Models (taken from [12]) -

issuing notification events to the actors. In UCON, on the
other, subjects learn about their obligations on access and
during usage.

– Composable Policies: [13] introduced in a multi-agent-
system environment the idea of combining isolated policy
reasoners with different components isolated on the user-
side. Furthermore, methods are sketched out about how to
combine the policy reasoners to create a higher level pol-
icy runner. These reasoners interact with the lower level
reasoners, they update the beliefs of local policy reasoners
and in turn influence the local agents decisions. While the
local reasoners are designed to notify and aid in decision-
making the local agents, the higher-level policy reasoner
has a purpose of enforcing norms and triggering handling
of eventual violations of the norms. Local policy reason-
ers, on the other hand, have a more consultative purpose,
agents being allowed to deviate from norms when they
don’t correspond to the local agents desires as described
in [13].

Difference between fig. 8 and fig. 1: fig. 8 in eFLINT depicts a
loop that resembles the continuous checking of attribute values
seen in fig. 1 of UCON, in the ongoing phase. The difference is
that fig. 8 is more general in what is handled and is updating the
normative state. In fig. 1 we have attributes and attribute updates
updating permissions and potentially the future evaluations of the
authorization reasoner.

A second difference is the possibility of systems following the
fig. 8 to allow more than only deontic-style normative rules. Rea-
soners can notify users and systems of changes in the powers a
normative actor might have.

Context Design. As discussed in Kayes et al. [12], there is a trend
of designing the access control systems with a focus on designing
context-awareness.

Similarly, it is possible for UCON models to employ similar tech-
niques. The topic is explored in Bai et al. [1, 2].

Esterhuyse et al. [3] also introduce the idea of exposing the events
to the policy reasoners. This way the running policy checkers are
able to "build their own context state" through the monitoring of
the event log. It is the checkers’ choice which events to filter out
and which events to filter in to update these internal states.

Designing the context the policy reasoners have access consti-
tutes an important decision for the system. These decisions have an
important impact on the flexibility of the subsequent policy specifi-
cations. Access to a well-designed context data can be leveraged
into more powerful policies.

Concluding Remarks: A common feature among various policy
reasoning systems, including certain implementations of RBAC,
ABAC, UCON, and user-specified frameworks implementing poli-
cies in normative languages like eFLINT, is the utilization of a state-
changing event loop handler. This mechanism, while not universally
present, is integral to these systems when employed, enabling them
to dynamically adapt to changes, enforce policies effectively, and
maintain system integrity. It’s important to note, however, that
not all systems, particularly simpler RBAC implementations, may



Literature Study, 2023, Amsterdam, NL Radu-Marian Doros,

employ such a dynamic mechanism, instead relying on more static
policy definitions and enforcement.

This shared characteristic has implications for the architecture
of systems intending to implement any of these policy frameworks.
The system design must be flexible enough to accommodate the
event loop handler, which requires continuous monitoring of sys-
tem events, efficient handling of these events, and dynamic updating
of the system state in response to these events.

REFERENCES
[1] Guangdong Bai, Liang Gu, Tao Feng, Yao Guo, and Xiangqun Chen. 2010. Context-

aware usage control for android. In Security and Privacy in Communication Net-
works: 6th Iternational ICST Conference, SecureComm 2010, Singapore, September
7-9, 2010. Proceedings 6. Springer, 326–343.

[2] Guangdong Bai, Lin Yan, Liang Gu, Yao Guo, and Xiangqun Chen. 2014. Context-
aware usage control for web of things. Security and Communication Networks 7,
12 (2014), 2696–2712.

[3] Christopher A. Esterhuyse, Tim Müller, L. Thomas Van Binsbergen, and Adam
S. Z. Belloum. 2022. Exploring the Enforcement of Private, Dynamic Policies
on Medical Workflow Execution. In 2022 IEEE 18th International Conference on
e-Science (e-Science). 481–486. https://doi.org/10.1109/eScience55777.2022.00086

[4] David Ferraiolo, Vijayalakshmi Atluri, and Serban Gavrila. 2011. The Policy Ma-
chine: A novel architecture and framework for access control policy specification
and enforcement. Journal of Systems Architecture 57, 4 (2011), 412–424.

[5] David F Ferraiolo, Serban I Gavrila, and Wayne Jansen. 2015. Policy machine:
features, architecture, and specification. (2015).

[6] Simon Godik and Tim Moses. 2002. Oasis extensible access control markup
language (xacml). OASIS Committee Secification cs-xacml-specification-1.0 (2002).

[7] Ali Hariri, Amjad Ibrahim, Theo Dimitrakos, and Bruno Crispo. 2022. WiP:
Metamodel for Continuous Authorisation and Usage Control. In Proceedings of
the 27th ACM on Symposium on Access Control Models and Technologies. 43–48.

[8] Matthew RA Heiman. 2019. The GDPR and the consequences of big regulation.
Pepp. L. Rev. 47 (2019), 945.

[9] Kalle Hjerppe, Jukka Ruohonen, and Ville Leppänen. 2019. The general data
protection regulation: Requirements, architectures, and constraints. In 2019 IEEE
27th International Requirements Engineering Conference (RE). IEEE, 265–275.

[10] Vincent Hu, David Ferraiolo, D. Kuhn, A. Schnitzer, Knox Sandlin, R. Miller, and
Karen Scarfone. 2014. Guide to attribute based access control (ABAC) defini-
tion and considerations. National Institute of Standards and Technology Special
Publication (01 2014), 162–800.

[11] Christian Jung, Jörg Dörr, B Otto, M Ten Hompel, and S Wrobel. 2022. Data
usage control. Designing Data Spaces: The Ecosystem Approach to Competitive
Advantage (2022), 129–146.

[12] ASM Kayes, Rudri Kalaria, Iqbal H Sarker, Md Saiful Islam, Paul A Watters, Alex
Ng, Mohammad Hammoudeh, Shahriar Badsha, and Indika Kumara. 2020. A
survey of context-aware access control mechanisms for cloud and fog networks:
Taxonomy and open research issues. Sensors 20, 9 (2020), 2464.

[13] Mostafa Mohajeri Parizi, L Thomas van Binsbergen, Giovanni Sileno, and Tom
van Engers. 2022. A Modular Architecture for Integrating Normative Advisors in
MAS. In Multi-Agent Systems: 19th European Conference, EUMAS 2022, Düsseldorf,
Germany, September 14–16, 2022, Proceedings. Springer, 312–329.

[14] Jaehong Park and Ravi Sandhu. 2004. The UCONABC usage control model. ACM
transactions on information and system security (TISSEC) 7, 1 (2004), 128–174.

[15] Ravi S Sandhu. 1998. Role-based access control. In Advances in computers. Vol. 46.
Elsevier, 237–286.

[16] Ulrich Schöpp, Chuangjie Xu, Amjad Ibrahim, Fathiyeh Faghih, and Theo Dimi-
trakos. 2023. Specifying a Usage Control System. In Proceedings of the 28th ACM
Symposium on Access Control Models and Technologies. 193–200.

[17] Daniel Servos and Sylvia L Osborn. 2017. Current research and open problems
in attribute-based access control. ACM Computing Surveys (CSUR) 49, 4 (2017),
1–45.

[18] L Thomas van Binsbergen, Milen G Kebede, Joshua Baugh, Tom Van Engers, and
Dannis G van Vuurden. 2022. Dynamic generation of access control policies
from social policies. Procedia Computer Science 198 (2022), 140–147.

[19] L. Thomas van Binsbergen, Lu-Chi Liu, Robert vanDoesburg, and Tomvan Engers.
2020. EFLINT: A Domain-Specific Language for Executable Norm Specifications.
In Proceedings of the 19th ACM SIGPLAN International Conference on Generative
Programming: Concepts and Experiences (Virtual, USA) (GPCE 2020). Association
for Computing Machinery, New York, NY, USA, 124–136. https://doi.org/10.
1145/3425898.3426958

[20] Lourens E. Veen, Sara Shakeri, and Paola Grosso. 2022. Mahiru: a federated, policy-
driven data processing and exchange system. ArXiv abs/2210.17155 (2022).

https://doi.org/10.1109/eScience55777.2022.00086
https://doi.org/10.1145/3425898.3426958
https://doi.org/10.1145/3425898.3426958

	Abstract
	1 Introduction
	1.1 Motivation
	1.2 Research Questions

	2 Models of control
	2.1 Access Control
	2.2 Usage Control
	2.3 Languages

	3 Conclusion
	References
	Untitled



