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ABSTRACT
Recent advancement of artificial intelligence (AI) in the past few
years have increased the complexity of models far beyond the
bounds of human intelligibility. In order for AI to yield the best
of expectations across its many application fields, the barrier of
explainability has to be addressed. Paradigms underlying this prob-
lem constitute the eXplainable AI (XAI) field, which is deemed to
play a key role in order to further adopt AI. With XAI being as
relevant as ever, this work aims to provide an overview of the field
through summarizing previous efforts, gathered through systematic
literature search and analysis. This work has further contributed
by formalising the main technical obstacles the field is facing and
highlighting how other works have contributed to either expose or
attempt to refute these challenges. Our prospects have led to a clear
outline of the field, where we hope our work to serve as reference
material to stimulate further research.

KEYWORDS
Systematic Literature Review, XAI, Explainable AI, Interpretable
Machine Learning, IML, Machine Learning, ML

1 INTRODUCTION
In the past decades, research trends in computer science have been
increasingly moving towards covering the domain of Artificial
Intelligence (AI) and more specifically Machine Learning (ML) and
Deep Learning (DL). The predictive models that have been enabled
through these fields have similarly vastly increased in complexity
in order to maximise their predictive power [10].

Nevertheless, this focus on strongly prioritising the model’s
accuracy above all else has gained increased criticism as it gener-
ates black-box models that are inherently non-transparent in their
decision-making preventing users from properly assessing, under-
standing and possibly correcting the models [1, 10, 30]. In fact,
colossal traction is gathering on imposing a six-month moratorium
on the development of any Large Language Model (LLM) more com-
plex than GPT-4 [26]. These concerns become especially stringent
as AI is moving towards mission-critical domains, where AI-driven
decisions can have a profound impact on human lives, such as
medical imaging [20] and criminal justice [16].

As a result of the ever-growing concerns regarding black-box
models, the field of eXplainable Artificial Intelligence (XAI) is dedi-
cated to addressing the issue of non-transparency with the goal and
vision of transparent, fair and accountable models. The field has
been steadily increasing in size, which we see reflected in several
scientific events. Some examples include the conference on Fairness
Accountability and Transparency (FAccT) and the workshop on

Figure 1: The accuracy versus explainability trade-off. Tradi-
tional Machine Learningmodels are confined within the blue
area, whereas the goal and vision of XAI is create models
that are both explainable and accurate.

Human Interpretability in Machine Learning (WHI) hosted by the
International Conference on Machine Learning (ICML) where XAI
plays a key role. Even though the advances in XAI have been suc-
cessful in making models more transparent and socially acceptable,
the field has not yet reached full maturation, hence XAI is still
facing some hurdles in its way towards adoption and gaining trust
in a variety of communities [9].

Motivated by the visions of XAI and these obstacles, this work
aims to capture field of XAI as a whole by reviewing some of its
concepts and taxonomies. Furthermore, we formalise challenges
in the field of XAI and their relevant contributions. We will also
present our method to identify relevant research.

2 RELATEDWORK
Several literature reviews on XAI, attempting to describe the field
through its multiple related disciplines, have been published in
he past few years. An instrumental work was done by Barredo
Arrieta et al. [9] where the authors made several key contributions.
Firstly, a novel definition of the target audience as a key element
of explainability was proposed, which will be further discussed in
section 5. In addition, an outline of challenges and future research
directions were given. Contrary to our work, these challenges do
not only focus on the models per se, but also the model development
process and . Our work aims to focus on the contributions provided
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by the predictive modeling community and identify some technical
challenges.

the work of Vilone and Longo [40] aims to provide some of the
recent advancements in the field and capture its main concepts by
introducing a large set of taxonomies and classifications in order to
effectively capture relevant research trends. Similarly, Das and Rad
[12] provide a taxonomy of the field as well as an extensive set of
interpretable machine learning (IML) methods. The authors also list
some core challenges and identify new research opportunities to
follow. Similarly to our work, the apparent lack of evaluation meth-
ods, sensitivity to adversarial attacks and limitations of explanation
map visualisations were identified as main challenges for XAI. Con-
trary to these works, our work mainly focused on the challenges
and has formalized these challenges by summarizing a main body
of challenges in table 1 identified through relevant literature. We
have proceeded to provide intuitions and insights regarding these
challenges and share the recent advancements proposed to address
them.

3 STUDY DESIGN
3.1 Research Goal
With this study we aim to create an overview of the field of the XAI
and identify its challenges and opportunities for further research.
Specifically, we aim to review the technical challenges in the field.
With that goal in mind, we have defined a set of research questions
to properly identify the scope of this project. We have gathered a
body of relevant works that aim to answer these questions.

3.2 Research Questions
Following our earlier defined goal, we aim to concretely achieve it
through answering the following Research Questions (RQs):

RQ1 What are the main challenges that XAI is facing currently?
RQ2 Are there studies suggesting that XAI methods have pre-

dictable behaviour?
RQ3 Is there a methodology for ensuring the reliability of XAI

methods?

3.3 Initial Search
Organising the literature of explainable AI within a single review
within reasonable scope is a non-trivial task. Both the concept of
XAI and its applications are strongly multidisciplinary [9, 40]. As a
result, we opted to exclude the following works:

1) Works solely focused outside of the field of predictive mod-
eling. For instance, some of the works found focused on
improving XAI through user-grounded evaluations, which
were excluded.

2) Studies focusing on the application of XAI algorithms to
specific problems, rather than expanding the field. For in-
stance, papers focused on applying XAI in the medical
imaging domain were discarded.

3) Works not available in English.

We proceeded to conduct search queries within the ACM dig-
ital library, IEEE Xplore, Scopus and Google Scholar. The follow-
ing terms were used to find papers: ’explainable artificial intelli-
gence’, ’interpretable machine learning’, ’explainable machine learn-
ing’, ’XAI’, ’IML’. It was noted that term Interpretable Machine
Learning (IML) is similar to eXplainable AI (XAI). Although some
works propose that there is a nuance between the two terms, our
work has solely used the term XAI for the sake of consistency
[1]. In order to gain access to a wide variety of conferences and
journals, we opted to diversify our digital libraries and employed
these search queries on ACM digital library, IEEE Xplore, Scopus
and Google Scholar.

3.4 Further analysis
It was not feasible to properly analyse all of the results from the
systematic search given that the sheer volume of papers would be
too large and out-of-scope (numbering over a thousand works) for
our review. Instead, we identified a smaller body of main works [9,
13, 22, 24, 31–33, 35, 39, 40] and employed a snowballing approach
to further identify relevant works. We set an additional requirement
for these works to be peer-reviewed. Two other works outside of
scientific literature bearing significant relevance to this research
were further added and archived [25, 26], this yielded a total of 43
works.

4 OVERVIEW OF THE ALGORITHMIC
LANDSCAPE

In the field of XAI, a variety of taxonomies have been proposed
to properly identify each algorithm in the current landscape [1, 9,
12, 24, 39, 40]. The XAI field has grown to such proportions that a
single taxonomy might not be sufficient to properly conceptualize
it. Nevertheless, recent reviews of these taxonomies have suggested
a de facto standard which has been presented in Figure 2 [39]. The
dimensions of the taxonomy could be summarized as follows:

1) Scope: Regarding their scope, explanations are usually di-
vided between local and global scope. Local scope refers to
a explaining a single instance in the dataset, for instance a
prediction result from a single image. Global explanations,
on the other hand aim to explain the model on the fully
aggregated data, e.g. finding the importance of features on
the model.

2) Stage: XAI Algorithms are divided by the stage in which
explainability is seeded into the model. Ante-hoc and post-
hoc mean that the explainability is introduced prior and
after the training phase of the model respectively.
(a) Applicability For post-hoc methods, the further dis-

tinction is made between model-specific and model-
agnostic methods. The former comprises algorithms
which inner workings depend on both the internals of
the model and the architecture of the model. The latter
has no such constraints and simply uses inference of
the black-box model to generate explanations.

Marked examples of post-hoc model-agnostic methods in-
clude Local Interpretable Model Agnostic Explanation (LIME)
[35] and SHapley Additive exPlanation (SHAP) [31].
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Figure 2: From the work of Speith [39], this taxonomy was proposed as a result on a review on taxonomies in the field of XAI.
We refer to the five dimensions of abstraction in section 4 for further explanation.

3) Functioning: Describes the different inner functioning of
the methods. Structure Leveraging methods, for example,
rely on modifying specific structural parts of the model
they are trying to explain. Some examples include Gradient-
weighted Class Activation Mapping (Grad-CAM) [36].

4) Output Format: Describes the format of the result that
is produced by the explanation method. Note that this is
usually strongly linked to the input format, e.g. saliency
maps are typical for pictorial data. It is important to note
that XAI methods are not limited to a single output format.

5) Result The explanation result. Similar to the output format
in the sense that both are related to the resulting expla-
nation from an XAI method, yet this dimension describes
the result of the XAI method more abstractly. Surrogate
modeling, for instance, attempts to find a white-box model
(i.e. a model that is inherently interpretable) to approximate
a black-box model.

When reviewing the popularity of current research trends, it
becomes abundantly clear that current research is shifting towards
post-hoc stage algorithms that are model-agnostic [1, 22, 32]. The
clear advantage of model-agnostic interpretations is portability, or
the ability of these interpretations being able to be transported
over a larger class of models as opposed to their model-specific
counterparts.

5 EXPLAINABILITY DEFINED THROUGH
AUDIENCE

To further capture the definition of explainability, previous works
typically argue to make a distinction between different audience
groups [9, 13, 24]. When considering an AI algorithm that classi-
fies medical images, for example, stakeholders would include the
patients, doctors, the vendor that created the algorithm and any
regulatory agency operating in this domain. Clearly, there is wide
variety between these stakeholders in terms of AI knowledge and
explanation goal. The necessity becomes apparent as we note that

the technical challenges are strongly tied to this notion. Barredo
Arrieta et al. [9] were the first to define explainability with tar-
get audience as its cornerstone, making a distinction between five
groups, with three of these groups appearing in other works as well
[24]:

These groups are defined by (1) End Users, these are users affected
by the decisions of the model, e.g. the patients we mentioned in our
example. They are assumed to have little to no knowledge about the
data nor the model that made this decision. Their goals are typically
an understanding of their personal situation and assessing fairness
of the model. (2) Domain Experts This group is characterized by
users that have knowledge about their specific domain, but not
the predictive model they are working with. Their goals include
gaining trust in the model, gaining scientific knowledge. (3) AI
Experts, this group is characterized by knowledge about the model,
but not necessarily about the data it is processing. Their explanation
need is typically for model assessment and debugging in order to
improve the model development process.

This distinction between different users further complicates the
concept of explainability. Considering that each user group has
different explanation goals and technical knowledge, certain types
of explanations will only be appropriate for a specific audience.
Trying to argue for a single set of desiderata is likely to be a lost
cause; such desiderata would require a modularized scheme. Sokol
and Flach [38] propose a variety of dimensions to systematically
asses explainable approaches, arguing for a multi-faceted approach
to the deployment of explainability methods.

3
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Table 1: Summary of the proposed main challenges of XAI.

Challenge References Description
Non-Robust Explanations [5, 17, 22, 41–43] Explanations are known to display unexpected behavior in specific

settings. As a result, explanations can be unreliable due to unstable or
unfaithful explanations.

Hyperparametrizations [8, 22] Research on the effect of hyperparameters and their geometric effects
on explanations is still lacking. A general understanding on finding
optimal hyperparameters would greatly benefit the field.

The Curse of Dimensional-
ity

[22, 41] High dimensional data can be particularly detrimental to explanations
due to the traditional drawback for high dimensionality in ML, but
also because of the interactions between ML and XAI.

The Rashomon Effect [11, 13, 15, 21, 22, 28] The explanations offered by XAI can be different for models performing
equally well on the same dataset. Resulting explanations could be
misleading.

Adversarial Attacks [14, 17–19, 27, 37] A large body of research has demonstrated that adversarial attacks
are possible on XAI methods. In this context, adversarial attacks rely
on generating perceptually similar instance or models that produce
significantly different explanations.

Lack of Quantitative Evalu-
ation

[1–3, 5, 6, 23, 32, 34] The lack of quantitative evaluation of XAI is another reason why trust
is lacking. A properly defined set of metrics to evaluate an explanation
of a model should establish a way to assess the performance of XAI
algorithms.

6 CHALLENGES OF XAI
In spite of XAI being an appealing concept with a noble goal and
vision, the field is still dealing with challenges that are in the way
of reaching its full potential. Nevertheless, as discusses in section
2, none of the previous works focus on viewing these challenges
purely from the perspective of predictive modeling, and a clear
overview is still lacking. Motivated by this concern, our work has
focused on identifying challenges in XAI purely related to the field
of predictive modeling. As such, we have provided an overview of
these challenges in table 1.

7 ROBUSTNESS OF EXPLANATIONS
Misleading interpretations can occur for perturbation-based meth-
ods including LIME, Randomized Input Sampling for Explanation
of Black-box Models (RISE) Petsiuk et al. [33] and SHAP. These
methods work by generating a set of perturbations on instances
used for model inference. The predictions generated using these
perturbations are in turn aggregated to generate explanations at a
local or global level. Because of these randomly generated artificial
instances, perturbation-based XAImethodsmight suffer from issues
regarding stability [41–43]. The inherent noise introduced by per-
turbing instances could lead to this data being non-representative
of the local or global space that the perturbed data is trying to em-
ulate. Consequently, produced explanations for statistically similar,
or the exact same training data might be different across differ-
ent iterations for the same XAI method, undermining trust in the
explanation as a result.

There are numerous proposed solutions regarding this issue. Za-
far and Khan [42] have proposed an alternative approach to Local
Interpretable Model-Agnostic Explanations (LIME) by circumvent-
ing the data generation step altogether. Instead, the surrogate model

is trained solely on the training instances with a weight to each in-
stance based on the distance from the instance to be explained with
a Gaussian kernel. Visani et al. [41] propose to instead guarantee
stability in regions defined by stability indices. They define metrics
related to stability and determine regions where these metrics lie
within unreasonable values and deem LIME to be unreliable in these
regions.

8 HYPERPARAMETRIZATIONS
The effect of hyperparametrizations on XAI explanations has not
received a lot of attention in the field. It is clear that high sensitivity
of hyperparameters impedes reproducibility, but could also raise
question to the correctness of the explanation and ultimately un-
dermine trust [8]. This is especially problematic for the AI novices
group, because their knowledge about hyperparametrizations is
assumed to be negligible. Bansal et al. [8] are one of the few works
to have performed sensitivity analysis for various hyperparameters
on the effect on the explanations for a set of XAI methods was per-
formed. It was concluded that explanations are relatively sensitive
to hyperparameters, i.e. varying the hyperparameters could lead to
unstable or unfaithful predictions. Interestingly, it was also shown
that XAI methods were surprisingly more robust when explaining
a robust model, i.e. a model that is not sensitive to relatively small
perturbations in its input.

9 THE CURSE OF DIMENSIONALITY
Considered to be detrimental to machine learning applications in
general, XAI is no exception with respect to the curse of dimen-
sionality. We have found that having redundant dimensions for
the model can lead to a phletora of issues for a variety of XAI
algorithms. This notion becomes even more stringent when the

4
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predictive models can achieve satisfactory prediction scores, even
with the redundant dimensions [41].

Getting back to the previous point on robustness of evaluations,
we first note that the curse of dimensionality aggravates the issue;
by increasing the dimensionality, the space of perturbations will be-
come exponentially larger and thus yield more noisy perturbations.
As a result, the models fitted on these perturbations will learn this
noise instead of the desired local instance and hence yield incon-
sistent explanations [41]. Computational effort could also suffer
drastically in high-dimensional settings. Computing exact Shapeley
values, for instance, relies on all possible combinations of features,
which takes exponential time [31]. Finally, in local methods, defini-
tions of neighbourhood or distance in conjunction with distance
metrics could be prone to the curse of dimensionality. Aggarwal
et al. [4] show that classic distance metrics such as Euclidean dis-
tance scale poorly with dimensionality. As such, using fractured
metrics or different distance metrics thanMinkowski distances with
order of the norm (P value) higher than one was found to yield
consistently more effective results.

10 THE RASHOMON EFFECT
The Rashomon Effect is the phenomenon that different predictive
models with similar performance metrics on the same dataset con-
tradict each other. This is due to the approximation functions being
constructed in a different manner. The term was named after the
movie "Rashomon" from 1950 and Breiman [11] were the first to
formalize the term in the field of predictive modeling. This effect
could lead to some contradicting explanations and conclusions
about the data. An example is provided by Dong and Rudin [15],
who identified a set of equally well performing models for the
COMPAS dataset [25]. This dataset concerns itself with predicting
recidivism risk and includes sensitive attributes such as race and
gender. It was demonstrated that the models differed greatly in the
feature importances they attributed. Particularly, they found that
the importance of criminal history correlated negatively with the
importance of race among different models. Nonetheless, as stated
by Hancox-Li [21] "just because race happens to be an unimportant
variable in that one explanation does not mean that it is objectively
an unimportant variable", i.e. an explanation for a single model
might not be a suitable explanation for the actual associations in
the data.

We must note that this is not a limitation inherent to XAI; the
algorithms perform as they should by staying faithful to predictions
of the model. It is expected for different models to have different ex-
planations. Having said that, there are cases in which the Rashomon
effect can be used as a means of manipulation, especially consid-
ering the end users group. Getting back to the COMPAS dataset, it
is possible for organisations to opt for models whose explanations
place less stress on sensitive factors, such as race, gender and age.
Lakkaraju and Bastani [28] conduct a user study in which they
demonstrate how such fairwashing practices can be achieved and
how they are deemed acceptable by users. Furthermore, in section
11, an advarsarial attack will be described which attempts to find
a similarly good model that effectively does not explain sensitive
features.

The proposed solutions to this effect rely on identifying a set of
models that are subject to this effect, which has been conceptualized
as the Rashomon set. For instance, variable importance clouds could
be used to carefully compare and assess the variable importance
scores proposed for several models in the Rashomon set [15].

11 ADVERSARIAL ATTACKS
We define Adversarial attacks as an umbrella term covering the
following two definitions: (1) "Targeted attacks on trained machine
learning models using instances that are perceptually indistinguish-
able, yet produce predictions that are perceptually distinguishable
or (2) "Training a model using unrepresentative or inaccurate data
in order to generate malicious predictions. For the first of the def-
initions, the mentioned perturbed instances are usually named
adversarial examples, while the models mentioned in definition 2
are typically named adversarial models. Adversarial attacks were
first found out in deep learning (DL) , where classifiers yielded
drastically different predictions after being given an adversarial
example [18]. In more recent lines of research, adversarial attacks
have also been being explored in XAI for DL.

Ghorbani et al. [17] were the first to propose a method to gen-
erate such adversarial examples for model-specific methods. The
authors argued that the decision boundaries of neural networks
with many parameters are roughly piecewise linear [19], and use
this intuition to generate their examples. At sharp edges of the
decision boundaries, training instances have an especially large
influence on the loss while their values are relatively close. Af-
ter identifying sharp edges in the decision boundaries, training
instances near these boundaries are used to generate perceptually
infinitesimal perturbations to obtain adversarial examples. A visual
example is given in 3a. Whereas earlier works merely demonstrated
the existence of adversarial attacks, such attacks yielded no con-
trol over the explanation. More recent works have demonstrated
that methods exist in order to find adversarial examples that can
control explanations arbitrarily [14]. As a proof of concept, such
an adversarial example is provided in 3b.

Adversarial machine learning is not limited to adversarial attacks
based on instance perturbations that we have demonstrated before.
Another proposed idea is building a model which explanations do
not convey the actual associations in the data. This attack is based
on the Rashomon effect, which we have elaborated upon in section
10. Such models are named adversarial models, where instead of
the training instances, the model is manipulated to generate biased
explanations. Slack et al. [37] have introduced such an adversarial
model in order to attack LIME and SHAP. An adversarial model
was created on the COMPAS dataset [25], which has the goal of
predicting recidivism and harbors sensitive features such as race,
gender and age. LIME and SHAP generate perturbations that do
not consider the distribution between features in the dataset which
causes these perturbations to be out-of-distribution with respect to
the original data. Consequently, instances that are deemed out-of-
distribution could be trained using a classifier trained on innocuous
features with zero correlation to discriminatory features, while
the other instances could be trained with a (racially) biased model
that only considered such discriminatory features. Given that the
real-world data was assumed to follow the same distribution that

5
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the racially biased model was trained on, the resulting model was
deemed to be racially biased. Nonetheless, the explanations gener-
ated for this model were not showing the racially biased features
as important to the model, in spite of the model being biased by
design.

(a) The intuition behind adversarial attacks.

(b) An example of an adversarial attack.

Figure 3: Inspired by the work of Ghorbani et al. [17], fig-
ure 3a presents the intuition behind adversarial attacks. At
areas where the decision boundaries are non-smooth, train-
ing points have a large effect on the loss gradient. Consider
instance 𝑥𝑡 perturbed by 𝜖, it can be observed that this new
instance 𝑥𝑡 +𝜖 has a gradient perpendicular to its counterpart
and thus a signifcantly different explanation. Figure 3b is
a concrete example of an adversarial attack. Note that the
original image is similar to the manipulated one, yet the ex-
planation is manipulated.

12 LACK OF QUANTITATIVE EVALUATION
Properly quantifying the behaviour of model explanations is a
challenging task. Firstly, there is no such thing as ground truth
in this field; if there were to be a ground truth, there would no

need for explanations. Secondly, it is unclear which of the phletora
of methods to select. Motivated by these challenges, Nauta et al.
[32] have compiled a systematic literature review on evaluating
explainable AI. Some of their main findings included that many of
the recent works still either rely solely on user studies and anecdotal
evidence to report their results. Specifically, in only 58% of the
papers that were analysed, some form of quantitative evaluation
was applied. Nevertheless, it was concluded that the amount of
studies using evaluation metrics have been steadily increasing, in
comparison to the previous studies [1]. Using anecdotal evidence
and human evaluation instead of objective, quantitative evaluation
is deemed to be misleading in assessing explainability methods is
furthermore deemed to be misleading according to several papers.
Petsiuk et al. [33] argue that "keeping humans out of the loop
for evaluation makes it more fair and true to the classifier’s own
view on the problem rather than representing a human’s view"
and Adebayo et al. [2] have found that some explanations can be
independent of the model that trying to explain without humans
being aware. Similarly, [29] argue that interpretability research as a
whole "suffers from an over-reliance on intuition-based approaches
that risk –and in some cases have caused– illusory progress and
misleading conclusions."

12.1 Evaluation Schemes
In line with the maturation of the XAI field, several evaluation
schemes have been suggested by the research community in more
recent research works. We have identified a few of these methods
below:

1) Co-12 categorization scheme [32]: Besides providing a
systematic literature review, Nauta et al. [32] also provided
a categorization scheme in order to define evaluation quali-
tatively. Explainability is described as being multi-faceted
and this is made explicit through a set of 12 properties,
which are called co-12 properties. For each of these proper-
ties, relevant quantitative methods are classified to their
appurtenant co-12 property. Through this comprehensive
overview, the authors aimed to provide a more inclusive
view of explainability in order to use quantitative evalua-
tion in an insightful manner.

2) Faithfulness [6]: The concept of faithfulness is unavoid-
able in the discussion of evaluation metrics. This describes
the idea of how closely an explanation follows the under-
lying model. Alvarez-Melis and Jaakkola [6] have defined
the metric of faithfulness in order to evaluate the Pearson
correlation between the importance scores to the actual
attribution of features towards the prediction. In order to
achieve this, features deemed important by the XAI method
are incrementally removed and predictions are made with
the reduced set of features. Petsiuk et al. [33] propose sim-
ilar methods for image data, adding on by describing a
method of continuously adding features to measure the
effect on predictive accuracy.

3) RemOve And Retrain ROAR [23] is a proposed evalua-
tion benchmark specifically aimed towards model-specific
feature relevance based approaches. Similar to Faithfulness,
this method relies on removing features and evaluating the
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act on the performance of the model. The key difference
is that ROAR removes and fully retrains the model with
these features. It was found that a majority of explanation
methods did not perform better than or was on par with
a random assignment of feature importances. Only Var-
Grad and SmoothGrad-Squared were able to outperform
this random baseline.

4) OpenXAI [3] is an open source framework for evaluat-
ing and benchmarking post-hoc explanation methods. real-
world and synthetic datasets and a set of 22 evaluation
metrics were used in order to achieve this. It was argued
that this method is novel in the sense that it was the first
to encapsulate three notions of explanation reliability that
were identified in previous works: faithfulness, stability and
fairness. Additionally, benchmarks across eight different
datasets have been performed in order to compare the ex-
planation reliability of six different post-hoc XAI methods.

5) Local Explanation evAluation Framework (LEAF) [7] is a
proposed set of metrics to compare and evaluate models
based on feature importance (see Figure 2 for a taxonomic
overview). Their work focusesd specifically on evaluating
two of the most-used model-agnostic algorithms, namely
LIME and SHAP. Their metrics included the two more com-
monly used conciseness and local fidelity and the novel local
concordance, reiteration similarity and prescriptivity. A de-
tailed experimental evaluation on a variety of datasets was
performed, comparing LIME with SHAP.

13 DISCUSSION
From our review we were able to compile a body of works that
were largely published at prominent venues of the XAI community,
including FAccT, NeurIPS, SIGKDD, AAI and CVPR. A small minor-
ity of our work is composed of pre-prints that carried relevance in
the field were analysed and included. Admittedly, we intentionally
reduced the volume of research from our initial searches to allow
for proper analysis of the selected papers, i.e. sacrificing breadth
in order to gain depth in our analysis. As a result, there are no
quantitative guarantees that this work encompasses all the main
challenges, hence we explicitly do not claim our list of challenges
to be exhaustive.

Another thing worth noting is that the provided challenges
and examples are not mutually exclusive. When considering the
Rashomon effect and the adversarial attack described against model-
agnostic perturbation-based methods, we note that such an attack
may also be defined as finding amodel in the Rashomon set. Further-
more, we notice the intersection between non-robust explanations,
hyperparametrisations and the curse of dimensionality. In essence,
the idea connecting these challenges is that the noise introduced by
generating random perturbations for the algorithm could transfer
some of this noise into the final explanation. We have noted that
hyperparameters and dimensionality also play a role in the stability
of explanations.

Combing back to the research questions, as defined in 3.2, we
have identified a body of main challenges in 1 through a systematic
search of literature within XAI that addresses RQ1. Each of these
questions was presented in a more in-depth manner consecutively.

Furthermore, RQ2 was defined as "Are there studies suggesting that
XAI methods have predictable behaviour?". Through our identi-
fied works, it was concluded that the opposite of this ; most works
concerning themselves with studying the behaviour of XAI have
found that XAI behaves unpredictable in specific cases, as has been
demonstrated through adversarial attacks, high dimensional, hyper-
parameterizations. Finally, our third question: "Is there a method-
ology for ensuring the reliability of XAI methods?" is essentially
answered through providing theoretical guarantees using quan-
titative evaluation. However, the field on XAI has not agreed on
unified metrics for evaluation hitherto, which is impeding credi-
bility of explanations. In subsection 12.1, we have provided some
of the recent works that provide such evaluation schemes. We can
further conclude RQ3 by noting that the field of evaluation for
XAI is maturing as evaluation metrics are increasingly adopted in
research.

14 CONCLUSION & FUTUREWORK
This survey revolved around outlining the field of eXplainable Ar-
tificial Intelligence (XAI), which is deemed to be paramount step
towards the adoption of ML models in mission-critical domains.
In order to do so, a body of research was identified. This work
has focused on providing a high-level overview of the algorithmic
landscape and briefly touching upon the concept of model explain-
ability and its strong ties to audience. Our analysis has yielded a
global overview of the core technical challenges that the field is
currently facing identified through literature that addresses these
limitations. A more in-depth description of each challenge was sub-
sequently provided, describing the intuition behind the challenges,
indicating its relevance through proof of concepts or examples on
their potential industry disruption and indicating some proposed
solutions.

Through identifying challenges in XAI, we hope to outline some
opportunities for future work. We concretely advocate for directly
addressing the core challenges in 1. Somemore specific directions in-
clude providing further experimental evaluation on the effect of hy-
perparameters on explanations, i.e. providing theoretical analyses
on hyperparametrizations or optimizing in more general settings,
(2) Making perturbation-based methods more resistant against ad-
versarial attacks through more intelligent sampling, (3) devising
methods to detect adversarial attacks for explanations, (4) unifying
evaluation metrics into a single benchmark or (5) Devising new
methods to help mitigate the Rashomon effect through finding mod-
els in the Rashomon set and interpreting these results.
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