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1 Introduction
Large Language Models (LLMs) have revolutionized various applications across

fields from academic achievements to industry scenarios. LLMs enable machines

to understand, generate, and manipulate human language with unprecedented

accuracy and fluency. The evolution of LLMs has been marked by significant

milestones, from early statistical models to advanced neural networks like Trans-

formers. Pure parameterized language models like LLMs store world knowledge

from a large corpus in the parameters of the model, representing the model’s

understanding and generalization of the training data. However, LLMs still face

several difficulties, such as factual hallucinations [1] and the lack of domain-

specific expertise [2].

To address the limitation, language models can adopt semi parametric meth-

ods by integrating non parametric corpus databases with parametric models.

Retrieval Augmented Generation (RAG) [3] empowers LLM models by incor-

porating external knowledge to enhance the relevance of the results and the

availability in industrial scenarios. Especially for industries that need domain-

specific expertise and to keep data confidential, embedding relevant data sources

is crucial to let LLMs generate more accurate and reliable responses.

The reminder of this study is orgainized as follows: Section 2 introduces the

background of LLM and RAG and other related techniques. Section 3 introduces

current works of RAG. Section 3 we draw a brief conclusion by summarizing the

main contributions. Finally, we discuss the remaining problems for future work.

2 Background
2.1 Large Language Models (LLMs)
LLMs are large-scale, pre-trained, language model based on artificial intelligence

technology. With language modeling, machines can understand and communi-

cate in human language. This research has been gained wide attention and can

be regarded as 4 main phrases as in Figure 1. [4] We set the time mostly based

on the publication date of the most representative research at each step, there-

fore the time period for each stage may not be entirely correct.
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Figure 1: Language models (LM) path of evolution

• Statistical language models (SLMs). Originating in the 1990s, SLMs are pri-

marily built on the principles of statistical. The dominating idea is based

on Markov chain models, e.g., predicting subsequent words based on recent

contextual history. The SLMs with a fixed context length n are typically

known as n-gram models [5]. It predicts next word based on the likelihood of

occurrence of a sequence of words, and estimate the probability of text as the

product of their word probabilities. SLMs have been widely used in many in-

formation retrieval (IR) and natural language processing (NLP) tasks. How-

ever, natural language is always sparse so n-gram models can not efficiently

capture the pattern in diverse and various texts. N-gram models also face

curse of dimensionality where estimation of high-order models becomes com-

putationally infeasible due to the exponential growth in the number of pos-

sible word combinations.

• Neural language models (NLM). NLMs represent a more advanced phase in

the development of language models, where neural networks such as multi-

layer perceptron (MLP) and recurrent neural networks (RNNs) [6] are em-

ployed. For the shortcomings in n-gram models, the work in [7] solve the

curse of dimensionality by introducing distributed representation of words

(commonly referred to as word embeddings). This technique fundamentally

changed the way context is processed by aggregating features into distributed

word vectors. Building on the idea of distributed representations, word2vec

framework [8] was introduced specifically designed to efficiently compute

word embeddings using neural networks. These researches first introduced
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the use of language models for representation learning (beyond word sequence

modeling) and had a huge impact for NLP field.

• Pre-trained language models (PLM). Pre-trained Language Models (PLM)

have set a new benchmark in language processing with the advent of ELMo

[9]. Different from word2vec where one word corresponds to one fixed vector,

ELMo utilizes a bidirectional LSTM network to generate dynamic contex-

tualized word representations. Furthermore, BERT was invented [10] with

transformer [11]architecture, marking a significant evolution by enabling bidi-

rectional training on extensive unlabeled datasets. These models serve as

general-purpose semantic features that significantly boost the performance of

NLP tasks. Following this study, virous of models like GPT-2 [12] and BART

[13] emerged, establishing a robust “pre-training and fine-tuning” paradigm

widely embraced in the field. It is often necessary to fine-tune the PLM to

accommodate different downstream tasks.

• Large language models (LLM). In PLMs, scaling model size or data size usu-

ally improve model ability on downstream tasks following scaling law [14].

Even though just increasing model and data sizes and remaining similar

structure, these models achieve unprecedented processing capabilities. They

exhibit unique emergent abilities that surpass their predecessors in handling

complex tasks, including effective few-shot learning. Consequently, the aca-

demic circles decided to name these large PLMs as “large language mod-

els”. LLMs now specifically refers to these extensive models [15], [16], which

continue to attract substantial research interest. Notably, applications like

ChatGPT which showcases remarkable conversational skills with humans,

highlighting the practical potential of LLMs. This surge in research and de-

velopment reflects in the increasing volume of related academic publications

post the release of such models.

In summary, Large Language Models (LLMs) derive from years of language

modeling research than a brand new concept. Now LLMs show significant prob-

lem solving ability. These days, the AI community is being greatly impacted by

LLMs. The problem solving ability and development of LLMs is revolutionizing
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the fields of AI research. To a certain extent, LLMs can be used as general-

purpose language task solvers in NLP, and the research paradigm is moving in

favor of LLM utilization.

2.2 Retrieval Augmented Generation (RAG)
However, despite the success of LLMs, they still face challenges. The issues are,

e.g., LLMs knowledge is usually out of date [17], sometimes generate hallucina-

tion content [1], also the lack of domain-specific expertise [2].

To address these limitations, The concept of Retrieval-Augmented Generation

(RAG) [3] was proposed in 2020 and combines a pre-trained retriever for the

first time with a pre-trained seq2seq model with end-to-end fine-tuning. It was

after NLP moved into the era of LLMs in 2022 that RAG really emerged as a

compelling solution, especially after ChatGPT was proposed the as shown in

Figure 2 [18]. RAG effectively combines the parametric knowledge of LLMs with

non parametric external knowledge bases, making it one of the most important

methods for implementing large-scale language models.

Figure 2: Technology tree of RAG research.

In common definition, RAG has two main phases: retrieval and generation. The

retriever utilizes an embedding model to retrieve relevant documents based on
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the problem. The retriever is the core component of the RAG framework, re-

sponsible for retrieving relevant information from an extensive knowledge base.

The retriever analyzes the user’s input query and retrieves the most relevant

paragraphs. The generator then uses these retrieved contexts to generate an-

swers based on the LLM. It is responsible for transforming the search results into

natural and fluent text. Its input includes not only traditional contextual infor-

mation, but also relevant text snippets obtained by the retriever. RAG method

avoid retraining the entire large model for each specific task. On the contrary,

they can attach a knowledge base to provide additional input information to

the model and improve its response accuracy.

Because of the high cost of training high-performance large models, academia

and industry have attempted to enhance model generation by incorporating

RAG modules in the inference phase to integrate external knowledge in a more

cost-effective way. RAG provides a more efficient solution for complex knowl-

edge-intensive tasks in large models by optimizing key parts such as retrievers

and generators. RAG improves the relevancy of the answers while decreasing

the rate of mistakes in LLMs.

The scope of RAG search is also gradually expanding. Early RAG focused on

open source, unstructured knowledge, e.g., Wikipedia. As the scope of search

expands, structured, high-quality data can also be used as a knowledge source.

Besides RAG development timeline, in Figure 2, the tree illustrates two more

aspects of RAG development:

• Augmentation data: Data sources include unstructured data, structured data

and LLM-generated content.

• Augmentation stage: Retrieval-Augmented Generation (RAG) can enhance

performance at three stages: pre-training, fine-tuning, and inference, repre-

sented as three branches in the tree.

Pre-training involves initially training a model on a large-scale generalized

dataset to learn a wide range of linguistic patterns and knowledge. The inception

of RAG coincided with the rise of the Transformer architecture, aiming to com-

bine broader knowledge with pre-training models for more robust representa-
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tions. Inference occurs when a trained model generates predictions based on new

input data. With the advent of LLMs, RAG research has focused on exploiting

the powerful in-context learning (ICL) capabilities of LLMs to tackle knowledge-

intensive tasks. By providing better information, RAG enhances LLMs’ abili-

ties to handle more complex tasks during inference. Fine-tuning is the further

training of a pre-trained model for a specific task or domain to optimize its

performance in that particular application. As LLMs have developed and found

widespread use, domain-specific retrieval has improved accuracy and relevance

by tailoring information to specific tasks.

Overall, RAG ensures that the generated content is not only contextually accu-

rate but also deeply aligned with specialized knowledge, making it particularly

suitable for industry scenario.

2.3 Prompt Engineering
Prompt engineering has been an important method for improving LLM perfor-

mance. This method makes clear, task-specific clue for computers in natural

language, and representative examples are chosen with care to be included in

the prompt. Without changing the parameters, output of LLMs can improved

by strategically designed prompts, enabling them to excel across diverse tasks

and domains. It is important because of its ability to steer responses. Therefor

LLMs can be more flexible and applicable in a wider range of industries. Next,

we will provide a brief overview of prompt engineering techniques, spanning

from basic to some latest advanced.

• Zero-Shot Prompting

No need for training on massive amount of data, LLMs can perform some zero-

shot tasks [19]. In the prompt, there is no additional examples to guide the

model. The model will only leverage its own knowledge to produce output based

on the prompt.

• Few-Shot Prompting

Few-shot prompting enhances model understanding by providing a limited num-

ber of examples [20]. This technique is particularly effective for complex tasks,

where even a small number of high-quality examples can significantly improve
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performance. However, longer inputs lead to increased token consumption, and

the impact of prompt selection and composition on the results is still not fully

understood.

• Chain-of-Thought (CoT) Prompting

The two techniques mentioned above belong to In-Context Learning (ICL).

The core idea of ICL is to learn from analogies, mimicking the human learning

process. Initially, ICL is given some examples that form the context of the task.

These examples are written in natural language templates. Then, ICL connects

the query question (i.e., the input) with a contextual presentation (some rele-

vant cases) to form the input with hints, and feeds it into the language model for

prediction. However, this method has limitation such as unstable. To compen-

sate these shortcomings, Chain-of-Thought (CoT) add thoughts in the middle,

in each steps [21]. Unlike traditional ICL, which provides more input to generate

output, CoT involves predicting the “thought process” (referred to as rationale

in academic fields) along with the answer. These thought processes are used as

hints to get better answers and do not need to be shown for actual use. Instead

of rigidly providing sample questions and answers, intermediate reasoning ses-

sions are given so that the model learns the logic of reasoning and thinking in

the intermediate process. This method not only mimics human leaning process

as learning from examples but more closely to the core of human intelligence,

human cognitive processes.

However, high-quality examples which needed in CoT usually involves manual

efforts. These could lead to suboptimal results. To mitigate this limitation, Auto-

CoT [22] was introduced. As the name suggests, Auto-CoT automatically gen-

erates rationales by instructing LLMs with a “Let’s think step-by-step” prompt.

This automatic process may contain errors, so it is important to build diverse

demonstrations. First, Auto-CoT divides questions into clusters. Then it selects

a representative question from each cluster to generate its reasoning chain. The

process is illustrated in Figure 3.
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Figure 3: Overview of the Auto-CoT method

Auto-CoT has even better results than manual methods. One interpretation is

that Auto-CoT does not apply a fixed template. Instead, each task generates

its own set of examples. This is because the problem sets differ, leading to more

various results.

• Self-Consistency

One of the more advanced techniques than CoT prompting is self-consistency

[23]. First it uses a set of huamn set CoT examples as prompt as LLMs input.

Then it samples a set of candidate outputs from the LLM to generate a set

of different candidate inference paths. Eventually it selects the most consistent

answer among multiple reasoning paths. By aggregating multiple responses to

the same prompt, self-consistency ensures that the final answer to an input rep-

resents a consensus vote, which tends to be more reliable and accurate than

simple CoT completions on their own. Even when regular CoT is ineffective,

self-consistency still be able to improve results.

3 Current Work
This chapter is going to introduce three RAG frameworks and current study

about RAG. The research paradigm of RAG has been evolving and can be sum-

marized into three categories: Naive RAG, Advanced RAG, and Modular RAG.

The emergence of Advanced RAG and Modular RAG is aimed at addressing the

shortcomings of Naive RAG in use.
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3.1 Framework
[18]

• Naive RAG

Naive RAG follows a traditional process that includes indexing, retrieval, and

generation.

The indexing process is a crucial initial step in data preparation, which takes

place offline and involves multiple stages. It starts with data indexing, where

raw data is cleaned and extracted, and various file formats such as PDF, HTML,

Word, and Markdown are converted into standardized plain text. In order to

adapt to the contextual limitations of the language model, these texts are sub-

sequently segmented into smaller, more manageable blocks, a process known as

chunking. These blocks are then transformed into vector representations through

an embedded model, which is chosen for its balance between inference efficiency

and model size. This helps to compare similarities during the retrieval phase.

Finally, create an index to store these text blocks and their vector embeddings

as key value pairs, which allows for efficient and scalable search capabilities.

In retrieve process, after receiving the user query, the system uses the same

encoding model as the indexing stage to convert the input into a vector repre-

sentation. Then calculate the similarity score between the query vector and the

vectorized blocks in the index corpus. The system prioritizes retrieving the top

K blocks that are most similar to the query. These blocks are then used as the

contextual basis for extensions to address user requests. The generated query

and selected document are rendered as a prompt, and a large language model

generates the answer.

The response method of the model may vary depending on task specific crite-

ria, allowing it to either utilize its inherent parameter knowledge or limit its

response to the information contained within the provided document. In the

case of continuous dialogue, any existing dialogue history can be integrated into

the prompt, enabling the model to effectively participate in multiple rounds of

dialogue interaction.
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Naive RAG faces significant challenges in three key areas: “retrieval,” “genera-

tion,” and “enhancement. The retrieval quality presents various challenges, in-

cluding low accuracy, resulting in inconsistent blocks retrieved with the query,

and possible issues such as hallucinations or airborne objects falling. Low recall

rates can also occur, resulting in the inability to retrieve all relevant blocks,

thereby hindering the ability of LLMs to build comprehensive responses. Out-

dated information further exacerbates the problem and may lead to inaccurate

search results.

-Advanced RAG

Advanced RAG was developed to address the shortcomings of Naive RAG, im-

plementing pre retrieval and post retrieval strategies.

Pre Retrieval Process: Optimizing Data Indexing: The goal of optimizing data

indexing is to improve the quality of the indexed content. This involves five

main strategies: enhancing data granularity, optimizing index structure, adding

metadata, alignment optimization, and hybrid retrieval. Enhancing data gran-

ularity aims to improve the standardization, consistency, factual accuracy, and

rich context of text, in order to enhance the performance of RAG systems. This

includes removing irrelevant information, eliminating ambiguity between enti-

ties and terms, confirming factual accuracy, maintaining context, and updating

outdated documents. Optimizing the index structure involves adjusting the size

of blocks to capture relevant context, querying across multiple index paths, and

utilizing node relationships in the graph structure to capture relevant context.

Adding metadata information involves integrating referenced metadata (such as

date and purpose) into blocks for filtering, and integrating reference metadata

for chapters and subsections to improve retrieval efficiency. Alignment optimiza-

tion solves alignment issues and differences between documents by introducing

“hypothetical questions” in the documents. Hybrid retrieval refers to the fusion

of retrieval through multiple recalls, such as the sparse retrieval method of BM25

and the dense retrieval method of deep learning models.

Post Retrieval Process: After retrieving valuable context from the database, the

key is to merge it with the query as input to LLMs, while addressing the chal-
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lenges posed by contextual window limitations. Simply presenting all relevant

documents to LLM at once may exceed the contextual window limit, introduce

noise, and hinder attention to key information. Additional processing is required

on the retrieved content to address these issues. Rerank。 Re ranking the re-

trieved information and repositioning the most relevant content to the edge of

the prompt is a key strategy. This concept has been implemented in frameworks

such as LlamaIndex, LangChain, and HayStack. For example, diversity rerank

prioritizes reordering based on document diversity, while LostInTTheMiddleR-

anker alternates between placing the best document at the beginning and end of

the context window. In addition, methods such as coherenAI rerank, bge rerank,

and LongLLMLingua recalculate the semantic similarity between relevant texts

and queries, solving the challenge of interpreting semantic similarity in vector

based simulation searches.

• Modular RAG

The modular RAG structure is different from the traditional plain RAG frame-

work, providing greater flexibility and adaptability. The modular RAG para-

digm is becoming increasingly common in the RAG field, allowing for serialized

pipeline or end-to-end training through multiple modules.

The organizational structure of modular RAG is highly adaptable, allowing for

the replacement or rearrangement of modules during the RAG process to adapt

to specific problem contexts. For example, adding or replacing modules, adjust-

ing the flow between modules and optimizing RAG assembly line

The optimization of the retrieval process aims to improve the efficiency and

quality of information in the RAG system. The current research focuses on in-

tegrating diverse search techniques, refining retrieval steps, incorporating cogni-

tive backtracking, implementing multifunctional query strategies, and utilizing

embedded similarity. These efforts collectively aim to achieve a balance between

retrieval efficiency and contextual information depth in RAG systems.

Assuming document embedding. HyDE is based on the belief that generated

answers may be closer in the embedding space than direct queries. Use LLM

and HyDE to create a hypothetical document (answer) for the query, embed
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this document, and use result embedding to retrieve real documents that are

similar to the hypothetical document. This method is not based on searching

for embedding similarity through queries, but focuses on embedding similarity

from one answer to another. However, it may not always produce ideal results,

especially when the language model is unfamiliar with the topic, which may lead

to more erroneous instances.

4 Future Work
Despite RAG technology has achieved significant progress, there are still some

challenges that require further research.

• Context length

The effectiveness of RAG is limited by the contextual window size of large lan-

guage models (LLMs). A balance window that is too short may lead to insuf-

ficient information, while a window that is too long may lead to information

dilution. The trade-off is crucial. With continuous efforts to expand the LLM

context window to almost infinite sizes, research on RAG adaptation to these

changes has raised important questions [Xu et al., 2023c, Packer et al., 2023,

Xiao et al., 2023].

• Robustness

The presence of noise or contradictory information during the retrieval process

may have a negative impact on the output quality of RAG. This situation is

vividly referred to as’ misinformation may be worse than no information ‘. Im-

proving the resistance of RAG to such adversarial or false inputs is gaining

research momentum and has become a key performance indicator [Yu et al.,

2023a, Glass et al., 2021, Baek et al., 2023].

• Actual use of RAG

The practicality and consistency with engineering requirements of RAG have

promoted its adoption. However, improving retrieval efficiency, enhancing doc-

ument recall in large knowledge bases, and ensuring data security - such as

preventing LLMs from inadvertently disclosing document sources or metadata

- are key engineering challenges that need to be addressed [Alon et al., 2022].
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5 Conclusion
Our analysis divides the RAG framework into three developmental paradigms:

primary, advanced, and modular RAG, each paradigm representing a gradual

enhancement of its predecessor. The advanced RAG paradigm goes beyond basic

methods by integrating complex architectural elements, including query rewrit-

ing, block reordering, and prompt summarization. These innovations have led to

a more detailed and modular architecture, improving both the performance and

interpretability of LLM. The integration of RAG with other AI methods such

as fine-tuning and reinforcement learning has further expanded its capabilities.

Although RAG technology has made significant progress, there are still many

research opportunities to improve its robustness and ability to manage extended

contexts.
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